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ABSTRACT
We study effects of heating by dark matter (DM) annihilation on black hole gas accretion. We
observe that, for reasonable assumptions about DM densities in spikes around supermassive
black holes, as well as DM masses and annihilation cross-sections within the standard WIMP
model, heating by DM annihilation may have an appreciable effect on the accretion on to
Sgr A∗ in the Galactic Centre. Motivated by this observation we study the effects of such
heating on Bondi accretion, i.e. spherically symmetric, steady-state Newtonian accretion on
to a black hole. We consider different adiabatic indices for the gas, and different power-law
exponents for the DM density profile. We find that typical transonic solutions with heating
have a significantly reduced accretion rate. However, for many plausible parameters, transonic
solutions do not exist, suggesting a breakdown of the underlying assumptions of steady-state
Bondi accretion. Our findings indicate that heating by DM annihilation may play an important
role in the accretion onto supermassive black holes at the centre of galaxies, and may help
explain the low accretion rate observed for Sgr A∗.
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1 INTRODUCTION

The spectacular images recently provided by the Event Horizon
Telescope (EHT) Collaboration (see Akiyama et al. 2019, as well
as several follow-up publications) have driven interest in accretion
on to supermassive black holes to new heights. One of the targets
of the EHT is Sgr A∗, the supermassive black hole with mass M =
4 × 106 M� (Ghez et al. 2008; Genzel, Eisenhauer & Gillessen
2010; Gillessen et al. 2017) residing at the Galactic Centre (GC).
In this paper we are interested in the remarkably low rate at which
gas in the central bulge is actually accreting on to Sgr A∗: it has
long been recognized that this rate, estimated to be a few times
∼10−8 M� yr−1, is roughly three orders of magnitude below the
standard Bondi estimate for the rate at which gas is gravitationally
captured by the hole at 0.1 pc (Baganoff et al. 2003; Shcherbakov &
Baganoff 2010; Ressler et al. 2017). The Bondi value for the rate is
determined from the gas density and temperature inferred from the
diffuse X-ray emission observed byChandra at ∼2 arcsec (∼0.1 pc)
from the black hole and is ∼2 × 10−5 M� yr−1. The rate at which gas
actually accretes on to the black hole is inferred from polarization
measurements (Marrone et al. 2007) and models of the near-horizon
accretion flow and emitted luminosity (Shcherbakov & Baganoff
2010; Ressler et al. 2017).

� E-mail: tbaumgar@bowdoin.edu

The current explanation for this large difference begins with the
assumption that the gas originates from stellar winds from the ∼30
Wolf–Rayet (WR) stars that orbit within ∼1 pc from Sgr A∗ and
that this gas thus has a broad distribution of angular momentum.
Hydrodynamic simulations in 3D (see e.g. Cuadra, Nayakshin &
Martins 2008; Ressler, Quataert & Stone 2018) then suggest that,
while the inflow rate at ∼0.1 pc is ∼2–3 × 10−5 M� yr−1, which is
close to the Bondi value for the rate at which gas is gravitationally
bound to the black hole, only a small fraction of this mass actually
accretes to smaller radii �0.1 pc, since only the low angular
momentum tail of the stellar wind is able to accrete. As it approaches
the event horizon of Sgr A∗, even this gas likely has sufficient
angular momentum to form a geometrically thick disc. This near-
horizon disc has been simulated in general relativistic radiation-
magnetohydrodynamics by several investigators in recent years
(see e.g. Ryan et al. 2017; Sa̧dowski et al. 2017; Chael et al.
2018, and references therein), forming the theoretical framework
for interpreting present and future observations of Sgr A∗ by various
instruments, including the EHT.

In this paper we investigate the possibility that heating by dark
matter (DM) annihilation may provide another reason why the
accretion rate on to Sgr A∗ is much lower than the canonical Bondi
value. We will explore this possibility by reconsidering the classic,
steady-state, spherical Bondi flow problem (Bondi 1952) but with
heating arising from the inclusion of DM annihilation (see also
Johnson & Quataert 2007, who found that the inclusion of thermal
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conduction in the Bondi solution similarly leads to a reduction in
the accretion rate). Among the parameters we allow to vary are the
gas adiabatic index γ and the DM density profile parameter α. The
choice of γ roughly accounts for cooling, which is not incorporated
explicitly in our equations: in the absence of heating, γ = 5/3 applies
to adiabatic flow (no cooling), while γ = 1 applies to isothermal
flow (extreme cooling). The parameter α is determined by the power
law that describes the increase in the DM density with decreasing
radius r from the GC.

Our goal is to use this simple, modified Bondi accretion model
to determine whether such heating can suppress the inflow rate
for a given set of gas dynamic parameters at large distance from
the black hole and a physically plausible DM annihilation rate.
Even if effective in reducing the accretion rate, it is not likely that
spherical Bondi flow will supplant our current understanding of
the more complicated flow patterns found in the 3D hydrodynamic
simulations. However, if effective in the case of Bondi flow, heating
by DM annihilation may be another mechanism that should be in-
corporated in future hydrodynamic simulations. (In ‘hot accretion’
disc models like ADAFs, which also have been employed to model
Sag A∗, heating by viscous dissipation plays a dominant role; see
e.g. Yuan & Narayan 2014 for a review.)

This paper is organized as follows. Section 2 assembles plausible
DM local and global parameters and uses them to construct the
heating rate due to DM annihilation. Section 3 derives the basic
Newtonian equations for steady-state, spherical accretion of gas
from rest at infinity, incorporating this heating term. Section 4
identifies the range of parameters for which the flow smoothly
crosses a transonic point and summarizes the accretion rates for such
cases. Section 5 does the same for solutions that remain subsonic.
Section 6 applies the results to the GC and Sgr A∗. We summarize
our findings in Section 7, and also delineate some caveats that might
alter the results obtained in the earlier sections.

2 HEATING RATE DUE TO DM
ANNIHILATION

We adopt the standard weakly interacting massive particle (WIMP)
model for the DM, which we treat as collisionless particles of mass
mχ that undergo annihilation reactions in a density spike around Sgr
A∗. The heating rate per unit volume due to annihilation is given
by

�(r) = ε
1

2
n2

DM(r)〈συ〉2mχc2 = ε
ρ2

DM(r)

mχ

〈συ〉c2, (1)

where nDM(r) is the DM number density, ρDM(r) is the DM mass
density, 〈συ〉 is the annihilation cross-section, which we take to
be constant (i.e. s − wave annihilation), and ε is the efficiency
at which the liberated energy goes into the local heating of the
accreting gas. We take this efficiency to be constant, even though
in general it may also depend on the gas density and temperature,
which enter the local opacity and optical depth to the annihilation
product(s). Taking ε = 1 provides an upper limit to the heating
rate and its influence on the flow. If we follow Fields, Shapiro &
Shelton (2014) and adopt as our canonical DM annihilation cross-
section and mass the reference point of Daylan et al. (2016) we then
have a DM particle with mass mχ = 35.25 GeV annihilating to bb̄

with a cross-section 〈συ〉 = 1.7 × 10−26 cm2 s−1, which are close
to the values expected for a thermal relic origin of DM. Appreciable
∼0.1–10 GeV gamma-ray emission is expected to accompany the
annihilation process. For this model, estimates of ε ∼ O(1) are not
unreasonable. We note that DM annihilation has been suggested as

a source of the ∼1–5 GeV gamma-ray excess from the inner few
degrees of the GC observed by Fermi (Calore, Cholis & Weniger
2015; Ajello et al. 2016; Daylan et al. 2016) and employed to assess
the DM spike and particle parameters (Fields et al. 2014; Shelton,
Shapiro & Fields 2015), although other plausible candidates for the
excess (e.g. a new population of pulsars) have been proposed.

A supermassive black hole will steepen the density profile of
DM within the hole’s sphere of influence, rs ≈ GM/υ2

0 , which is
comparable to the region within which gas becomes bound to the
black hole. We assume that the DM velocity dispersion υ0 in the
GC outside rs is comparable to the thermal velocity dispersion of
the gas. While the precise profile for this DM density spike depends
on the properties of DM and the formation history of the black hole,
it typically may be written as a piecewise power law according to

ρDM(r) =
{

ρann(rann/r)γsp , r ≥ rann,

ρann(rann/r)γann , r < rann,
(2)

plunging to near zero in the vicinity of the black hole horizon.
If, for example, the supermassive black hole grows adiabatically
from a smaller seed (Peebles 1972), before which the DM density
obeyed a generalized Navarro–Frenk–White profile (NFW, Navarro,
Frenk & White 1997) of the form ρDM ∼ r−γc , then the black hole
will modify the profile, forming a spike given by equation (2)
with γ sp = (9–2γ c)/(4 − γ c) (Gondolo & Silk 1999). Possible
values for γ c and γ sp are reviewed in Fields et al. (2014) and
references therein, but here we choose as a canonical value γ c =
1, for which γ sp = 7/3. We note that for 0 < γ c ≤ 2 the power
law γ sp varies at most between 2.25 and 2.50 for this adiabatic
growth scenario. By contrast, gravitational scattering off a dense
stellar component inside rs could heat the DM, softening the spike
profile and ultimately driving it to a final equilibrium value of γ sp =
3/2 (Gnedin & Primack 2004; Merritt 2004) or even to disruption
(Wanders et al. 2015); we will therefore show results for a range of
different values of γ sp.

At r= rann the DM density in the spike reaches ρann, once referred
to as the ‘annihilation plateau’ density. At this radius the annihilation
time-scale equals the Galaxy age T, whereby

ρann = mχ

〈συ〉T . (3)

For r < rann the density in the spike is not a flat plateau profile but
varies as in equation (2) with γ ann = 1/2 for s-wave annihilation
(Vasiliev 2007; Shapiro & Shelton 2016). For our canonical particle
model and T≈ 1010 yr, we find ρann = 1.7 × 108 M� pc−3 and rann =
3.1 × 10−3 pc.

Chandra X-ray measurements at approximately 2 arcsec from
the GC give thermal temperatures kT ≈ 1.3 keV, corresponding to
sound speeds as = (γ kT/μmp)1/2 ≈ 550 km s−1, assuming γ = 5/3
and a mean molecular weight μ = 0.7 (Baganoff et al. 2003). For
a black hole mass of M ∼ 4 × 106 M� this yields a Bondi capture
radius RB = GM/a2

s ∼ 0.061 pc ∼rs.
For radii r ≥ rann we may write the heating rate in equation (1)

as a power law,

�(r) = �0

( rann

r

)2γsp

, �0 = ε
ρ2

ann

mχ

〈συ〉c2, r ≥ rann. (4)

For our canonical DM model we find �0 = ε × 3.35 ×
10−11erg cm−3 s−1. In our discussion of heated Bondi accretion in
the following sections we will ignore the transition from γ sp to
γ ann at r = rann, and will, for simplicity, assume that the heating
is governed by (4) at all radii. Typically the gas accretion rate is
established near rs � rann, justifying our simplification. While it is
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straight-forward to relax this assumption, it leads to a well-defined
mathematical problem with few free parameters; we will comment
when this assumption may affect our astrophysical conclusions.

We recall that for typical values of 1 � γ � 5/3 and γ sp the rate at
which mass is captured by the black hole in smooth, transonic Bondi
flow in the absence of heating is established by gas parameters
near the transonic point rs ∼ RB � rann. The steady-state rate
of capture and spherical accretion in this case is given by Ṁ0 =
4πr2ρu ∼ 4πλsρs(GM)2/a3

s , which is independent of r. Here λs

is a parameter of order unity depending on γ (see equation 39
below). The corresponding gas density inside rs increases as ρ(r) ∼
ρs(rs/r)3/2 and the square of the sound speed increases as a2(r) ∼
a2

s (rs/r)3(γ−1)/2. The importance of heating by DM annihilations
may then be inferred from the ratio R of the heating rate by DM
annihilation in a volume between radius r/2 and r over the rate at
which thermal energy in an unheated gas would flow adiabatically
into this volume

R(r) ∼ �(r)4πr3

Ṁ0a2(r)

∼ 4π�0r
3
s

Ṁ0

(
rann

rs

)2γsp ( rs

GM

)(
r

rs

)3(γ+1)/2−2γsp

. (5)

Evaluating this ratio at rs for our canonical DM model with Ṁ0 ∼
10−5 M� yr−1, ε ∼ 1 and γ sp = 7/3 gives R(rs) ∼ 1, i.e. R(rs) is
of order unity. Note also that this ratio increases with decreasing r
whenever γ < 4γ sp/3–1, which is the case for all realistic values of
γ when γ sp = 7/3 (but not when γ sp = 3/2). The fact that R is of
order unity at the sonic radius and may grow to even larger values at
smaller radii suggests that DM annihilation heating, if present, will
significantly affect the inflow solution. This observation motivates
our study of the effects of this heating on the simplest possible
accretion model, namely spherical Bondi accretion.

3 BASIC EQUATIONS

3.1 Fluid equations

Bondi accretion Bondi (1952) describes the spherically symmetric
steady-state accretion of a fluid on to a black hole, from rest at
infinity. Following Bondi’s original work we will adopt a Newtonian
treatment here (see Michel 1972, Shapiro 1973, or Shapiro &
Teukolsky 1983, hereafter ST, for relativistic generalizations),
and will describe the black hole as a point-mass M, generating
a Newtonian potential GM/r, where r is the distance from the
black hole. The fluid flow is then governed by the Newtonian
fluid equations – the first law of thermodynamics, the continuity
equation, and the Euler equation – in the presence of this potential.
Unlike Bondi, however, we will not assume that the fluid flow is
adiabatic, and will instead allow for a heating term �, as discussed
in Section 2.

3.1.1 Equations in differential form

In the presence of a heating term �, the first law of thermodynamics
takes the form

dε

dt
+ P

d

dt

(
1

ρ

)
= �

ρ
, (6)

where ε is the specific internal energy density, ρ the mass density,
and P the pressure. The time derivatives in equation (6) are to be

taken along the fluid flow, e.g.

dε

dt
= ∂ε

∂t
+ υr ∂ε

∂r
, (7)

where we have assumed spherical flow, and where υr is the radial
component of the fluid velocity. We assume that, as r → ∞, the
fluid is at rest, υr → 0, at uniform density ρ → ρ∞.

We will adopt a gamma-law equation of state (EOS) throughout,
so that

P = (γ − 1)ρε. (8)

For adiabatic flow, the constant γ can be related to the specific heat
of the gas. For a non-relativistic, ideal monatomic gas, which is
relevant for the accretion problems we study here, we have γ = 5/3.
Even for the non-adiabatic flows considered here we always assume
that γ remains constant throughout; we will pay special attention to
γ = 5/3, but will consider other values also to account for cooling.
We define K ≡ Pρ−γ , so that

P = Kργ . (9)

In the adiabatic case, i.e. for isentropic flow, K is a constant (see
equation 15 below), but in general that is not the case. We can then
compute the sound speed a from

a2 = dP

dρ

∣∣∣∣
s

= γKργ−1 = γ
P

ρ
, (10)

where the derivative in the second term is taken at constant entropy
s, and hence at constant K.

For spherically symmetric flow, the continuity equation can be
written as

∂ρ

∂t
+ 1

r2

∂

∂r
(r2ρυr ) = 0, (11)

while the Euler equation becomes

∂υr

∂t
+ υr ∂υr

∂r
= − 1

ρ

∂P

∂r
− GM

r2
, (12)

where we have assumed that the fluid’s self-gravity can be ignored.

3.1.2 Equations for steady-state flow

We now focus on steady state, so that all partial derivatives with
time vanish. Since we will mostly be concerned with in-flow, we
also define

u = −υr (13)

for convenience. The first law (6) can then be written as

dε

dr
+ P

d

dr

(
1

ρ

)
= − �

ρu
. (14)

Combining this with (8) and (9) we find

dK

dr
= − (γ − 1)

ργ

�

u
. (15)

As expected, K becomes a constant for adiabatic flow, when � = 0.
For steady-state flow, the continuity equation (11) reduces to

d

dr
(r2ρu) = 0, (16)

or, equivalently,

ρ ′

ρ
+ u′

u
+ 2

r
= 0, (17)
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where a prime denotes a derivative with respect to r. Finally, the
Euler equation (12) becomes

uu′ = − 1

ρ
P ′ − GM

r2
. (18)

In order to eliminate the pressure P from this equation we take a
derivative of (9),

P ′ = ∂P

∂ρ

∣∣∣∣
K

ρ ′ + ∂P

∂K

∣∣∣∣
ρ

K ′ = a2ρ ′ + ργ K ′, (19)

and insert this into (18) to obtain

uu′ = −a2 ρ ′

ρ
− ργ−1K ′ − GM

r2
. (20)

Using (15) we can now eliminate K and find

uu′ = −a2 ρ ′

ρ
+ (γ − 1)

�

ρu
− GM

r2
. (21)

Equations (15), (17), and (21) form a coupled system of three
ordinary differential equations for the dependent variables K, ρ,
and u describing the non-adiabatic fluid flow profiles (note that K
couples to u and ρ through equation 10). The last two of these
equations contain both u

′
and ρ

′
; it is therefore convenient to

combine the equations and find expressions for u
′

and ρ
′

alone.
This results in

u′ = u
D1 + H

D
(22)

and

ρ ′ = −ρ
D2 + H

D
, (23)

where we have defined the coefficients

D1 ≡ 2a2

r
− GM

r2
(24)

D2 ≡ 2u2

r
− GM

r2
(25)

D ≡ u2 − a2 (26)

H ≡ (γ − 1)
�

ρu
(27)

3.1.3 Integrated equations

Both the continuity equation and the Euler equation can also be
integrated directly. Integrating the continuity equation (16) yields

Ṁ = 4πρur2 = constant , (28)

where Ṁ is the accretion rate.
Integrating the first term on the right-hand side of the Euler

equation (21) yields∫
a2 ρ ′

ρ
dr = γ

∫
P

ρ2
dρ = γ

∫
Kργ−2dρ = γ

γ − 1

∫
Kdργ−1

= γ

γ − 1

[
Kργ−1

] − γ

γ − 1

∫
ργ−1dK

=
[

a2

γ − 1

]
+ γ

∫
�

ρu
dr, (29)

where we have used (10), (9), integration by parts, and (15).
Integrating the remaining terms in (21) and using (29) we now

obtain

u2

2
+ a2

γ − 1
− GM

r
+

∫ r

∞

�

ρu
dr = a2

∞
γ − 1

(30)

where a∞ is the sound speed at r → ∞. In order to integrate the
heating term we now write � as

� = ρuA∗
( rann

r

)α

(31)

where A∗ becomes a constant if α is chosen as in (33) below. To see
this, we combine (31) with (4) and solve for A∗,

A∗ = �0

ρu

( rann

r

)2γsp−α

= 4πr2
ann�0

Ṁ

( rann

r

)2γsp−α−2
, (32)

where we have used (28) in the last step. We now choose

α ≡ 2γsp − 2 (33)

so that A∗ becomes the constant

A∗ = 4πr2
ann�0

Ṁ
. (34)

Since �0 has units of energy per time and volume, A∗ has units of
length per time squared, or, equivalently, speed squared per length.
For γ sp = 7/3 we now have α = 8/3, and for γ sp = 3/2 we find α =
1. Since A∗ depends on the accretion rate Ṁ , it cannot be computed
from the DM model parameters of Section 2 alone. We will use
representative values in many of our examples, and will evaluate
possible values of A∗ for Sgr A∗ in Section 6 below.

Inserting (31) into (30), and assuming α > 1, we can now integrate
the heating term and obtain the Bernoulli equation

u2

2
+ a2

γ − 1
− GM

r
− A∗

α − 1

rα
ann

rα−1
= a2

∞
γ − 1

. (35)

For α = 1 the integral of the heating term diverges logarithmically
as r → ∞. For astrophysical models of GCs this may not be a
problem, since the accretion flow does not extend to arbitrarily
large distances. For our treatment here, however, we will assume α

> 1.
Inserting (31) into (15) yields

K ′ = −(γ − 1)
A∗

ργ−1

( rann

r

)α

, (36)

which cannot be integrated analytically unless A∗ = 0.

3.2 Adiabatic flow revisited: � = 0 = A∗

Before embarking on a treatment of heated Bondi accretion in the
following sections, we first review the special case of adiabatic flow
with � = 0 = A∗. We refer to ST for a review and derivation, and
summarize only the most important results here.

We start by distinguishing between subsonic and transonic
solutions. Subsonic solutions, for which u < a everywhere, can
have arbitrary accretion rates Ṁ up to a certain maximum value
Ṁ0, which will be given by the transonic accretion rate discussed
below. We can express this accretion rate as

Ṁ = 4πλρ∞a∞

(
GM

a2∞

)2

(37)

with λ < λs, where the maximum value λs is given by (39) below.
For a given accretion rate, equations (28) and (35) together with
(10) then provide three equations for the three unknowns u, ρ, and
a as a function of radius r. Solving these three equations provides
algebraic equations that describe the fluid profiles everywhere.
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For transonic solutions we must have u = a at some sonic
radius rs, implying that the coefficient D vanishes at this point (see
equation 26). This, in turn, implies that D1 and D2, which become
identical when u = a, also have to vanish at rs, since otherwise the
solutions u and ρ to (22) and (23) cannot be regular. The conditions
D1 = 0 and u = a together with equations (10), (28), (35) evaluated
at r = rs provide five equations that can now be solved for rs, us, ρs,
as, and Ṁ . Requiring regularity determines the sonic radius, given
by

rs =
(

5 − 3γ

4

)
GM

a2∞
(38)

(see equation 14.3.14 in ST) and yields a unique accretion rate Ṁ0,
given by (37) with

λ = λs =
(

1

2

)(γ+1)/2(γ−1) (5 − 3γ

4

)−(5−3γ )/2(γ−1)

(39)

and λs = 1/4 in the limit of γ = 5/3 (see equation 14.3.17 in ST).
As we discussed above, this accretion rate Ṁ0 also determines the
maximum possible accretion rate for subsonic flows.

While a Newtonian treatment allows both subsonic and super-
sonic flows, i.e. all accretion rates (37) with λ ≤ λs, a relativistic
treatment allows only the transonic solution with λ = λs for
regularity everywhere outside the black hole (see Appendix G
in ST). Since we expect that a similar treatment carries over to
heated Bondi accretion, we will be primarily interested in transonic
solutions whenever they exist for smooth steady-state flow. We also
note that, for γ = 5/3, equation (59) indicates that the sonic radius
vanishes, rs = 0. This is an artefact of our Newtonian treatment; in
a relativistic treatment the sonic radius for γ = 5/3 is instead given
by

rs ≈ 3

4

GM

a2∞
(40)

(see exercise G.1 in ST). For non-relativistic thermal speeds at
large distances, rs � GM/c2, so that relativistic corrections to the
Newtonian accretion rate are small.

3.3 Non-dimensional equations

Before proceeding it is useful to cast the key equations in non-
dimensional form. To do so, we express the fluid variables in terms
of asymptotic values

a = a∞ā, u = a∞ū, ρ = ρ∞ρ̄, (41)

where the ‘barred’ variables are now dimensionless. The radius

ra ≡ GM

a2∞
(42)

then defines a natural length-scale, motivating the rescaling

r = ra r̄. (43)

In particular we have r̄ann = rann/ra � 0.0507, where we adopted
rann � 3.1 × 10−3 pc and ra � rs � 0.061 pc as discussed in
Section 2.

We similarly write

P = P∞P̄ , K = K∞K̄ (44)

and identify from (10)

P∞ = a2
∞ρ∞
γ

, K∞ = a2
∞

γρ
γ−1
∞

. (45)

In terms of these quantities equation (10) yields

ā2 = K̄ρ̄γ−1 = P̄

ρ̄
. (46)

Finally we rescale A∗ according to

A∗ = a2
∞
ra

Ā∗. (47)

In terms of our non-dimensional variables, equations (22) and
(23) become

ū′ = ū
D̄1 + H̄

D̄
(48)

and

ρ̄ ′ = −ρ̄
D̄2 + H̄

D̄
, (49)

where the primes now denote a derivative with respect to r̄ , and
where the coefficients are now given by

D̄1 ≡ 2ā2

r̄
− 1

r̄2
(50)

D̄2 ≡ 2ū2

r̄
− 1

r̄2
(51)

D̄ ≡ ū2 − ā2 (52)

H̄ ≡ (γ − 1)Ā∗
(

r̄ann

r̄

)α

(53)

equation (36) becomes

K̄ ′ = −γ (γ − 1)
Ā∗

ρ̄γ−1

(
r̄ann

r̄

)α

, (54)

where we note the appearance of an extra factor of γ , which arises
due to the definition of K̄ in (44).

We also write the integrated continuity equation (28) as

Ṁ = 4πρ̄ūr̄2ρ∞a∞

(
GM

a2∞

)2

= ρ̄ūr̄2

λs
Ṁ0 = ˙̄MṀ0, (55)

where we have used (37) with λ = λs for Ṁ0, and where we identify

˙̄M = ρ̄ūr̄2

λs
. (56)

Finally, the Bernoulli equation (35) now takes the form

ū2

2
+ ā2

γ − 1
− 1

r̄
− Ā∗

α − 1

r̄α
ann

r̄α−1
= 1

γ − 1
. (57)

4 HEATED TRANSONIC FLOW

4.1 Computational strategy

Before discussing results for heated transonic flow we first outline
our computational strategy.

For transonic flow there exists (at least) one sonic radius r̄s at
which ū = ā. In the following we will denote physical quantities
evaluated at this radius with a subscript s, e.g. ūs = ās. At r̄s, the
denominator D̄ in equations (48) and (49) vanishes, so that, for
regular solutions to exist, the numerators have to vanish as well.
This implies

ā2
s = 1

2r̄s
− γ − 1

2
Ā∗ r̄α

ann

r̄α−1
s

. (58)
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Inserting this expression into the Bernoulli equation (57), evaluated
at r̄ = r̄s, yields

f (r̄s) ≡ 5 − 3γ

4
r̄α−2

s − βĀ∗r̄α
ann − r̄α−1

s = 0 (59)

where we have abbreviated

β ≡ (γ − 1)

(
1

4
(γ + 1) + 1

α − 1

)
. (60)

We note that β > 0 for all values of γ > 1 and α > 1. Equation (59)
now determines the sonic radius r̄s; in the adiabatic limit Ā∗ = 0
we recover (38) in non-dimensional form. In general, when α is
not an integer, we have to solve equation (59) numerically with a
root-finding method. Given r̄s, we can then find ās = ūs from (58).

Since, in the presence of heating, we cannot integrate (54)
analytically, we cannot obtain a closed-form expression for K̄s.
We instead employ an iterative ‘shooting’ method, by which we
guess a value of K̄s, and then integrate (54) together with (48)
and (49) from r̄ = r̄s to some large value r̄out � r̄a . At r̄out we
compare the integrated values of K̄ , ū, and ρ̄ with the boundary
conditions ū∞ = 0 and K̄∞ = ρ̄∞ = 1, and adjust K̄s to obtain
better agreement.

We employ l’Hôpital’s rule to evaluate equations (48) and (49)
directly at r̄s. Specifically, we take derivatives with respect to r̄

of both the numerator and denominator of equation (48), using
(46) to express derivatives of ā in terms of ρ̄, and the continuity
equation to express the latter in terms derivatives of ū. The result is a
quadratic equation for ū′. When this equation has two real solutions,
one solution describes inflow whereas the other solution describes
outflow (wind) solutions. We pick the former, in practice choosing
that solution for which ū′ is smaller than ā′, so that our solutions
are subsonic outside r̄s.

Once K̄s has been found, we can also find ρ̄s from (46), and
then the accretion rate ˙̄M from (56), evaluated at r̄s. Finally,
equations (54) together with (48) and (49) can also be integrated
inwards, thereby providing fluid flow profiles inside the sonic radius.

In the following sections we will discuss the individual steps in
this procedure for specific choices of the parameters α and γ .

4.2 Finding the sonic radius

As a first step we will discuss solutions for the sonic radius for
different parameter choices. We note that smooth and steady-state
heated transonic Bondi solutions do not exist for γ = 5/3, at least
in our Newtonian treatment of the problem. This can be seen from
equation (57), where the first term vanishes for γ = 5/3, leaving us
with

r̄α−1
s = −βĀ∗r̄α

ann. (61)

As we discussed above, β > 0 for α > 1, so that this equation
will not allow real and positive solutions. We therefore conclude
that heated transonic solutions are possible only for γ < 5/3, which
we will consider in the following. We also find that the behaviour
depends on the values of α, and we therefore distinguish between
three different cases, which are illustrated in Fig. 1.

4.2.1 Case 1: 1 < α < 2

In the regime 1 < α < 2 we find one single real value for r̄s

for suitable combinations of Ā∗ and γ < 5/3. An example, for
γ = 1.4, is shown in the left-hand panel of Fig. 1, where the
cross denotes the sonic radius r̄s = 0.2 in the adiabatic limit (see

equation 38). Note that the sonic radius decreases with increasing
heating parameter Ā∗, indicating that heating prevents the flow from
becoming transonic until it gets closer to the black hole. We also
show r̄s as a function of Ā∗ in the left-hand panel of Fig. 2.

4.2.2 Case 2: α = 2

In the special case of α = 2, equation (59) reduces to the linear
equation

r̄s = 5 − 3γ

4
− βĀ∗r̄2

ann (α = 2) (62)

providing us with a unique value of r̄s (see also the middle panels in
Figs 1 and 2). Evidently, we can find positive solutions for r̄s only
for

Ā∗ < Ā∗
crit = 5 − 3γ

4

1

βr̄2
ann

. (α = 2) (63)

In particular, we find Ā∗
crit = 0 for γ = 5/3, consistent with our

discussion above. As in case 1, increasing the heating rate will
decrease the sonic radius.

4.2.3 Case 3: α > 2

An example for the case α > 2, for α = 8/3, is shown in the right-
hand panel of Fig. 1. The cross again marks the sonic radius r̄s = 0.2
in the adiabatic limit with Ā∗ = 0. For Ā∗ > 0 an inner sonic point
emerges, suggesting that, as the gas accretes, it becomes supersonic
at the outer sonic point, but does not remain supersonic.

To find the critical value Ā∗
crit above which no transonic radius

exists we consider equation (59) an equation for Ā∗ as a function
of r̄s rather than the other way around (effectively flipping the axes
in the right-hand panel of Fig. 2). The critical value Ā∗

crit is then
given by the point at which the derivative dĀ∗/dr̄s vanishes, which
yields

r̄crit
s = α − 2

α − 1

5 − 3γ

4
. (α > 2) (64)

Inserting this into (59) and solving for Ā∗
crit yields

Ā∗
crit = 1

α − 1

(
r̄crit

s

)α−1

β

1

r̄α
ann

. (α > 2) (65)

We again find that Ā∗
crit = 0 for γ = 5/3, consistent with our dis-

cussion above. For other suitable values of γ < 5/3 and Ā∗ < Ā∗
crit,

however, we find two solutions for the sonic radius r̄s.
As described in Section 4.1, constructing fluid flow profiles

requires an expansion about the sonic radii r̄s, since the differential
equations (48) and (49) cannot be evaluated directly at those points.
Applying l’Hôpital’s rule results in a quadratic equation for ū′. In
all cases that we have considered, this equation had real solutions
at the outer sonic point, allowing for smooth flow there, but only
imaginary solutions at the inner sonic point. This is an indication
that it is impossible to construct smooth solutions across the inner
sonic point, where the fluid’s speed drops from being supersonic
to subsonic. Instead, we might expect that shocks, and hence
discontinuities in the fluid’s flow, develop at this point (see also
Chang & Ostriker 1985; Park & Ostriker 1998). As a result, we
conclude that in the regime considered, for α > 2, no smooth,
steady-state transonic solutions describing spherical accretion exist.

For α ≥ 3 we might find even more solutions for r̄s, but we
do not pursue this possibility in greater detail, since this range of
parameters appears less relevant astrophysically.
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Figure 1. Solutions for r̄s for three examples for cases 1, 2, and 3. In each panel we plot f (r̄s), as defined in equation (59), for γ = 1.4, and for different values
of the non-dimensional heating rate parameter Ā∗ (the labelling is the same in all three panels). Solutions for r̄s correspond to zero-crossings of the functions
f (r̄s). In case 1, with 1 < α < 2, we find one solution for r̄s (see the left-hand panel for α = 1.5). In case 2, with α = 2 (middle panel), we find one solution but
only up to a maximum heating rate Ā∗

crit = 121.6 (marked by the dashed black line), beyond which the solution r̄s becomes negative. Finally, in case 3, for α

> 2, the number of solutions again depends on Ā∗. For the example of α = 8/3 (shown in the right-hand panel) we find two solutions for r̄s up to a maximum
value Ā∗

crit = 131.8 (marked by the dashed black line), and none beyond that value. In all three panels the cross marks the sonic radius r̄s = 0.2 in the adiabatic
limit (see equation 38). In all three cases the (outer) sonic radius decreases as the heating rate increases. In case 3 an additional inner sonic radius appears for
Ā∗ > 0 and increases for increasing heating rate, until both sonic points merge and disappear for the critical value Ā∗ = Ā∗

crit.

Figure 2. Values of r̄s as a function of Ā∗ for the same three examples as shown in Fig. 1, namely for α = 1.5 (left-hand panel), α = 2 (middle panel), and α =
8/3 (right-hand panel), and all for γ = 1.4. Note that (i) a solution for r̄s exists for all values of Ā∗ for α < 2 (case 1; left-hand panel), (ii) the linear behaviour
for α = 2 (case 2; middle panel), and (iii) the existence of two solutions for Ā∗ < Ā∗

crit for α = 8/3 (case 3; right-hand panel).

4.3 Finding fluid profiles and the accretion rate

As outlined in Section 4.1, finding the accretion rate involves an
iterative ‘shooting method’ to match to the boundary conditions at
r̄ → ∞. This involves integrating the differential equations (48),
(49), and (54), which, in turn, involves applying l’Hôpital’s rule at
the (outer) sonic radius r̄s. Once K̄s has been found, the equations
can be integrated both outwards and inwards in order to find the
profiles of the fluid flow. We show examples for the three different
cases with α < 2, α = 2, and α > 2 in Figs 3 and 4.

As we discussed above, α > 2 leads to the existence of a second
inner sonic point, across which we cannot find smooth solutions
(see also the right-hand panel in Fig. 3). We therefore focus on α <

2 here. We show examples for different values of 1 < α < 2 and γ =
1.4, which we have previously considered in the left-hand panels of
Figs 1 through 4, and show a graph of Ṁ/Ṁ0 as a function of Ā∗

in the upper panel of Fig. 5. We also show a graph for Ṁ/Ṁ0 as
a function of Ā∗ for different values of 1 < γ < 5/3 and α = 1.5
in the lower panel of Fig. 5. As anticipated, the heating due to DM
annihilation reduces the accretion rate.

5 HEATED SUBSONIC FLOW

While we believe that, when it exists, supersonic accretion on to
black holes is the most likely astrophysically (see e.g. appendix G
in Shapiro & Teukolsky 1983, which shows that subsonic flow as
gas approaches a black hole is ruled out in a general relativistic
treatment of the adiabatic problem and that the flow will be driven

supersonic), we also consider effects of heating on subsonic flows
in this section. As before, we will treat the cases α < 2, α = 2, and
α > 2 separately.

To construct subsonic solutions, we pick an accretion rate less
than the corresponding transonic accretion rate, ˙̄M < ˙̄Ms. We also
pick a large radius r̄init � r̄0 and assume K̄ � 1 there. We express ū

in terms of (56), ā in terms of (46) and insert these into the Bernoulli
equation (57), yielding an equation for ρ̄ at r̄init. With these initial
values, we then integrate (48), (49), and (54) inwards from r̄init.

5.1 Case 1: α < 2

We show an example for subsonic flow with α < 2 in the left-hand
panel of Fig. 6. In this case, the fluid profiles appear to approach
the same power-law behaviour for r̄ → 0 as in the adiabatic case.
This behaviour can be understood from the following arguments.
Starting with the Bernoulli equation (57), we assume subsonic flow
with ū � ā as well as ā � 1 (i.e. a � a∞). The equation will be
dominated by the gravitational term at small r̄ when α < 2, and the
heating term can be neglected. We therefore have

ā2 � γ − 1

r̄
, (r̄ → 0, α < 2) (66)

just like in the adiabatic case (see equation 14.3.28 in ST). Inserting
this into (46) we obtain

ρ̄ =
(

ā2

K̄

)1/(γ−1)

�
(

γ − 1

K̄r̄

)1/(γ−1)

, (r̄ → 0, α < 2) (67)
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Figure 3. Examples of fluid profiles with γ = 1.4 for the same three examples as shown in Figs 1 and 2. The left-hand panel shows the fluid velocity u for
α = 1.5, the middle panel for α = 2.0, and the right-hand panel for α = 8/3. The (outer) sonic points, at which u = a, are marked by dots. For α = 2.0, the
sonic radius r̄s goes to zero as Ā∗ approaches Ā∗

crit. For α = 8/3, the fluid approaches a singular inner sonic point.

Figure 4. Same as Fig. 3, but for density profiles.

(compare equation 14.3.29 in ST). In order to find an asymptotic
scaling for K̄ we now insert (67) into (54) to find

K̄ ′ � −γ
Ā∗r̄α

annK̄

r̄α−1
. (r̄ → 0, α < 2) (68)

Integration yields

K̄ ∝ exp
(−γ Ā∗r̄α

annr̄
2−α/(2 − α)

)
, (r̄ → 0, α < 2) (69)

so that K̄ approaches a (finite) constant as r̄ → 0. Inserting this
result back into (67) we now have

ρ̄ ∝ r̄−1/(γ−1), (r̄ → 0, α < 2) (70)

and, using the accretion rate (56),

ū ∝ r̄−(2γ−3)/(γ−1), (r̄ → 0, α < 2) (71)

(see equation 14.3.30 in ST). For α < 2 we therefore expect the exact
same power-law behaviour for r̄ → 0 as in the adiabatic case. For
γ = 5/3, in particular, we recover the free-fall behaviour ū ∝ r̄−1/2

and ρ̄ ∝ r̄−3/2. Even in this case, ū and ā increase with the same
power law, meaning that a solution with ū < ā will remain subsonic.
We show examples of this behaviour in the left-hand panels in Figs 6
and 7, where the expected power laws are marked by the black
lines.

5.2 Case 2: α = 2

We find very different asymptotic behaviour in the special case
α = 2. In this case, the heating term scales with the same power
as the gravitational term in the Bernoulli equation (57), so that,
considering the same limit as before, we now obtain

ā2 � (γ − 1)
1 + Ā∗r̄2

ann

r̄
(r̄ → 0, α = 2) (72)

instead of (66). From (46) we now have

ρ̄ ≈
(

(γ − 1)
1 + Ā∗r̄2

ann

K̄r̄

)1/(γ−1)

, (r̄ → 0, α = 2) (73)

which we insert into (54)

K̄ ′ � −γ
Ā∗r̄2

ann

1 + Ā∗r̄2
ann

K̄

r̄
. (r̄ → 0, α = 2) (74)

Integration now yields

K̄ ∝ r̄−γ δ, (r̄ → 0, α = 2) (75)

where we have abbreviated

δ ≡ Ā∗r̄2
ann

1 + Ā∗r̄2
ann

. (76)

Inserting (75) into (73) now yields

ρ̄ ∝ r̄−(1−γ δ)/(γ−1), (r̄ → 0, α = 2) (77)

and, using (56) again,

ū ∝ r̄−(2γ−3+γ δ)/(γ−1). (r̄ → 0, α = 2) (78)

Interestingly, the power-law scaling now depends on the heating rate
Ā∗ through δ. We show examples for this behaviour in the middle
panels of Figs 6 and 7, where we again find excellent agreement
between our numerical result and the power-law behaviour expected
from the above arguments. Note that we have δ → 0 in the adiabatic
limit, in which case our results above reduce to those of Case 1
in Section 5.1, as expected. For sufficiently small heating rate, and
hence sufficiently small δ, the fluid velocity ū still grows more
slowly than the sound speed ā as r̄ → 0, so that a subsonic solution
will remain subsonic. For

δ > δcrit = 5 − 3γ

2γ
, (79)
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Figure 5. The accretion rate Ṁs/Ṁ0 for transonic flow as a function of Ā∗
for different sets of parameters. The upper panel shows results for fixed γ =
1.4 and varying values of 1 < α < 2 while the lower panel shows results
for a fixed α = 1.5 and varying values of 1 < γ < 5/3. As expected, the
accretion rate decreases with increasing heating parameter Ā∗. We find that
the accretion rate decreases more rapidly as the DM power law heating α

approaches 1 and the adiabatic index γ approaches 5/3.

corresponding to a heating rate

Ā∗ > Ā∗
crit = 5 − 3γ

5(γ − 1)
r̄−2

ann, (80)

however, ū increases more rapidly than ā as r̄ → 0, suggesting
that this solution will not remain subsonic for arbitrarily small
r̄ . This contradicts our assumption ū � ā, of course, so that our
approximations will no longer remain accurate. We also caution that,
for DM heating, the exponent α would probably drop to a smaller
value at r̄ ∼ r̄ann (see Section 2), which we ignored in our treatment
here. The appearance of a critical heating rate is reminiscent of that
for transonic flow with α = 2 in Section 4.2.2.

5.3 Case 3: α > 2

Finally we consider the case α > 2. Making the same assumptions
of ū � ā and ā � 1 as before in the Bernoulli equation (57), we
now see that the heating term dominates at small r̄ , so that we may
approximate

ā2

γ − 1
≈ Ā∗

α − 1

r̄α
ann

r̄α−1
(r̄ → 0, α > 2) (81)

(instead of 66 and 72). From (46) we then have

ρ̄ ≈
(

γ − 1

α − 1

Ā∗

K̄

r̄α
ann

r̄α−1

)1/(γ−1)

. (r̄ → 0, α > 2) (82)

Inserting (82) into (54) yields

K̄ ′ ≈ −γ (α − 1)
K̄

r̄
, (r̄ → 0, α > 2) (83)

which we can integrate to obtain

K̄ ∝ r̄−γ (α−1). (r̄ → 0, α > 2) (84)

As before, we now insert (84) back into (82) to find

ρ̄ ∝ r̄α−1, (r̄ → 0, α > 2) (85)

and combine this with the accretion rate (56) to find

ū ∝ r̄−(α+1). (r̄ → 0, α > 2) (86)

Note that the power-law exponents for the fluid variables ā, ρ̄, and
ū are independent of both γ and the heating rate in this case, and
instead depend on α only. Also note that, for all α > 2, ū increases
more rapidly than

ā ∝ r̄−(α−1)/2 (r̄ → 0, α > 2) (87)

with decreasing r̄ . While our estimates assume that ū � ā, they
again suggest that this assumption will break down at some
sufficiently small r̄ , once the heating term dominates. In fact, these
results suggest that ‘subsonic’ solutions may not remain subsonic
to arbitrarily small radii, instead they may encounter a sonic point
at some radius r̄ , where ū = ā. This is exactly what our numerical
explorations of this regime suggest. We show examples in the right-
hand panels of Figs 6 and 7, where we have also included the
expected power-law behaviour. As one might expect, for larger
values of Ā∗ the flow will deviate from the adiabatic flow, and be
dominated by the heating term, starting at larger values of r̄ . For
small heating we find very good agreement between the numerical
results and the expected power law, while for larger heating the
assumption ū � ā appears to be violated before ū can approach the
heating-dominated power law.

For generic accretion rate, the sonic point found in this process
will not satisfy the conditions laid out in Section 4.1; in particular
the numerators and denominators on the right-hand sides of equa-
tions (48) and (49) will not have simultaneous roots, so that these
solutions will not describe smooth fluid flow.

Combining this finding with that of Section 4.2.3 we conclude
that, for α > 2, we can find neither supersonic nor subsonic solutions
that describe smooth, steady-state spherical accretion for all radii.
We will comment on this result, as well as its limitations, in more
detail in Section 7. In particular, we remind the reader that we have
assumed a constant γ sp for all r in the DM density distribution (2),
whereas we would expect γ sp to switch to γ ann at rann ∼ ra/20.
Clearly, relaxing this assumption will affect the findings for very
small r in this section.

6 APPLICATIONS TO SGR A ∗

In this section we explore whether, for reasonable choices of DM
parameters, heating by DM annihilation could explain the low
accretion rates observed for Sgr A∗ in the GC, with Ṁ/Ṁ0 ∼ 10−3.
Our estimates in Section 2 suggest that DM annihilation may have
an order unity effect, and we will now re-examine these effects in
the context of transonic solutions for simple Bondi accretion.
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Figure 6. Subsonic flow profiles for γ = 1.4, with α = 1.5 in the left-hand panel, α = 2 in the middle panel, and α = 8/3 in the right-hand panel. We show
results for selected values of Ā∗ in all three cases, with the lower (blue) lines showing the fluid velocity u, and the upper (red) lines showing the sound speed a.
Also included are the expected power laws for the fluid velocity u, as given by equations (71), (78), and (86). In case 1 (left-hand panel, Section 5.1) the scaling
of the fluid profiles approach the same power laws as their adiabatic counterparts, in case 2 (middle panel, Section 5.2) the power-law exponent depends on the
heating rate, and in case 3 (left-hand panel, Section 5.3) heating results in the appearance of a singular sonic point at small radii.

Figure 7. Same as Fig. 6, but for density profiles.

In order to evaluate our results quantitatively for DM parameters
considered realistic for the environment of Sgr A∗ in the GC, we
first need to express the heating parameter Ā∗ in terms of the DM
parameters. This is complicated by the fact that A∗, and hence the
non-dimensional version Ā∗, depends on the accretion rate Ṁ (see
equation 34), which, in turn, is a result of a calculation for a given
value of Ā∗. In order to disentangle these dependencies we use (47)
and (34) to write

Ā∗ = ra

a2∞
A∗ = 4π�0r

2
annra

a2∞Ṁ
= 4π�0r

2
annra

a2∞Ṁ0

(
Ṁ0

Ṁ

)
. (88)

We now define the dimensionless quantity

C = 4π�0r
2
annra

a2∞Ṁ0
(89)

and evaluate, for the canonical parameters of Section 2, C ∼ ε ×
3.8 × 103. We can then solve (88) for Ṁ/Ṁ0 to find

Ṁ

Ṁ0
= C

Ā∗ . (90)

For a given value of C, the computed accretion rate Ṁ/Ṁ0 has
to agree with that found from (90). In practice, we look for
intersections of the hyperbolae (90) with our computed accretion
rates, as shown in Fig. 8. Given our findings in Section 4 we focus
on 1 < α < 2 and 1 < γ < 5/3 in Fig. 8.

As an aside, we note that we can also express C as

C = 4π�0r
3
a

a2∞Ṁ0

(
rann

ra

)2

= 4π�0r
3
a

a2∞Ṁ0

(
rann

ra

)2γsp
(

rann

ra

)−α

(91)

and, up to a difference between a(ra) and a∞, recognize the first
two terms on the right-hand side as the ratio between the heating
rate and the rate of thermal energy flow (see equation 5) evaluated

Figure 8. The accretion rate Ṁ/Ṁ0 as a function of the heating parameter
Ā∗, for α = 1.5 and γ = 1.4. The solid (purple) line represents numerical
results for transonic solutions (see Section 4), while the straight lines
represent the hyperbolae (90) for efficiencies ε = 0.01, 0.001, 0.003 327, and
0.0001. Intersections of the solid line with the hyperbolae represent viable
solutions for the DM parameters assumed in (89), and identify the associated
accretion rates Ṁ/Ṁ0. The solutions identified by the solid square and the
cross, for example, represent spherically symmetric, steady-state accretion
for which the heating by DM annihilation has reduced the accretion rate by
a factor of about 0.37 and about 1 × 10−3, respectively. For the solution
marked by the open square, which corresponds to the same heating efficiency
as that marked by the cross, the accretion rate is reduced by a factor of 0.988
only (see text for a discussion). We show flow profiles for the solutions
represented by the cross and the two squares in Fig. 9.

at r = ra, so that

C ∼ R(ra)r̄−α
ann . (92)
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Figure 9. Fluid flow profiles for the heated, transonic accretion solutions for
γ = 1.4 and α = 1.5 and marked by the cross, and the solid and open squares
in Fig. 8. For the solution denoted by the cross in Fig. 8 the accretion rate is
reduced by a factor of about 1 × 10−3 below the adiabatic Bondi accretion
rate. For this solution, displayed as the lightest solid line, Ā∗ = 353.21.
For the solution denoted by the solid (open) square in Fig. 8, for which
Ā∗ = 33.7 (Ā∗ = 0.3869), the accretion rate is reduced by a factor of about
0.37 (0.988) below the corresponding adiabatic Bondi accretion rate. For
Sgr A∗, ρ∞ ≈ 3 × 10−23 g cm−3, and rs ≈ 0.06 pc. Included in the fluid
profiles are the expected power laws for the transonic fluid velocity, u ≈
r−1/2, and fluid density, ρ ≈ r−3/2 (see equations 14.3.24 and 14.3.26 in ST).

Accordingly, we may also write (90) as

Ṁ

Ṁ0
∼ R(ra)

Ā∗r̄α
ann

. (93)

Returning to Fig. 8, we note that there do indeed exist viable
transonic solutions for which DM heating reduces spherical Bondi
accretion to small values. A specific example for which the accretion
rate is reduced by three orders of magnitude below the correspond-
ing Bondi value is marked by the cross in Fig. 8. In Fig. 9 we explore
this solution in more detail, and show the fluid flow profiles as a
function of radius.

We caution, however, that our solutions represent equilibrium
solutions that may or may not be stable. In Fig. 8 we see that, if the
hyperbolae (90) intersect the computed accretion rate for a given
efficiency ε, then there are two intersections corresponding to two
viable equilibrium solutions. For ε = 10−4, for example, we have
marked these two intersections with an open square and a cross in
Fig. 8. While this figure shows results for α = 1.5 and γ = 1.4
only, we have found similar behaviour for all parameters that we
have considered. It is possible that these two solutions represent

members of a stable and an unstable branch of solutions, separated
by the point at which the computed accretion rate curve is tangent
to the hyperbolae (90). In Fig. 8 we marked this point with the
solid square. The two branches behave differently as we reduce
the heating efficiency. For the upper branch (on which the open
square is located) the accretion rate approaches the Bondi rate when
the efficiency is lowered (and hence the heating rate decreases),
while for the lower branch (on which the cross is located) the
accretion rate decreases. This suggests that the upper branch may
represent stable equilibria, while the lower branch may represent
unstable equilibria. Establishing the stability properties of these
branches would require either a perturbative treatment or dynamical
numerical simulations, both of which are beyond the scope of this
paper. If indeed only the upper branch of solutions in Fig. 8 were
stable, then this stable branch would end with the marginally stable,
critical solution marked by the solid square. We have included fluid
flow profiles for this (possibly) critical solution in Fig. 9.

We also note that even equilibrium solutions, irrespective of
their stability, exist only for a limited range of parameters, and not
necessarily for those parameters that are favoured on astrophysical
grounds. In particular, no such solutions exist for γ = 5/3 (even
though the lack of solutions for γ = 5/3 might be an artefact of
our Newtonian treatment of the problem, cf. appendix G in ST),
nor can we find regular solutions for α > 2 (γ sp > 2). Our results
nevertheless confirm our expectation, based on the estimates in
Section 2, that heating by DM annihilation may play an important
role in other more detailed accretion flows.

7 SUMMARY AND DISCUSSION

We examined effects of heating by DM annihilation on spherical
accretion on to black holes. Adopting plausible values for DM
densities, as well as DM masses and annihilation cross-sections
within the WIMP model, we estimate that such heating may have
an order unity effect on accretion on to Sgr A∗ in the GC. If indeed
present, such heating may therefore play an important role for these
accretion processes, and may, in fact, help explain the low accretion
rate observed for Sgr A∗.

Motivated by this observation we studied the effects of heating
on the simplest possible accretion model, namely spherically
symmetric, steady-state Bondi flow of a gas with adiabatic index γ .
For many choices of the DM density spike power-law parameter α

and the parameter γ , including those that are probably favoured on
astrophysical grounds, we do not find smooth transonic solutions.
For other parameters, however, we do find such solutions. In
particular, we present in Section 6 as an ‘existence proof’ some
viable solutions with low accretion rates that may model accretion
flow on to Sgr A∗.

Evidently, our discussion is affected by many assumptions, and
therefore comes with many caveats. For starters, we have assumed
certain canonical values for DM and Galactic parameters. Some of
these parameters are based on observational data, but others are very
uncertain – including the DM particle mass and cross-sections and
the efficiency ε with which energy generated by particle annihilation
ends up heating the accreting gas.

Moreover, our treatment of accretion within the Bondi model
assumes smooth, spherically symmetric and steady-state flow on
to the black hole, which presumably is also not realistic. While
we believe that it is useful to explore the effects of heating by
DM annihilation within this simple model, its predictability for
the GC is, of course, limited. Conservation of angular momentum
may change the flow from near-radial infall to disc-like accretion
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at small radii, so that the singular behaviour that we find for radial
flow at small radii may not be realized in more realistic situations.
On the other hand, our results suggest that, for many values of
α and γ , strictly spherical, smooth steady-state accretion in the
presence of heating (described by a single power law) does not
exist. Even in these cases, accretion might still be possible, but
it would have to violate at least one of the assumptions made: it
could be episodic rather than steady-state, it could feature shocks
(especially at the inner sonic radius) rather than being smooth, or
it may break spherical symmetry. In any case, our results already
suggest that the effects of heating by DM annihilation should be
considered in future, more detailed hydrodynamic simulations of
gas flow on to Sgr A∗.
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