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Abstract: A simulation of the resilience of lifeline systems in a test bed subjected to a series of seismic events is presented in this paper.
The simulation framework is comprised of a group of independent simulators that interact through a publish–subscribe pattern for data
management. The framework addresses the spatial and time-dependent interactions that arise between lifeline systems as a hazard and
subsequent restoration processes unfold. The simulation results quantify how operability loss and recovery time may be underestimated
if the interdependencies between lifeline systems are not properly taken into account. The effect of insufficient resources on recovery was
investigated, and it was demonstrated that among the six resource allocation strategies studied, the time-varying strategies that are responsive
to actual conditions on the ground had a better effect on resilience. This paper demonstrates the power of connecting simulators using
the publish–subscribe method in order to account for multiscale interdependency and time-dependent effects on community resilience.
DOI: 10.1061/(ASCE)IS.1943-555X.0000522. © 2019 American Society of Civil Engineers.

Motivation and Objectives for the Study

Modeling a disaster and subsequent recovery efforts is complicated
by the differing time scales for the various phases of the process,
that is, seconds or minutes as a hazard unfolds versus days or
months as emergency efforts and recovery take place. As a result,
studies that model the multiple phases of a disaster within one
overarching simulation are rare due to the challenge of integrating
different simulation models with disparate temporal and spatial
scales.

A common assumption in resilience studies is that a hazard
occurs during one analysis step, that is, virtually instantaneously.
In reality, hazards unfold in a finite amount of time. Accounting for
how a hazard unfolds and affects infrastructure systems that interact
with one other can yield new insights into how interdependencies
affect community resilience. This is especially important for sit-
uations such as long-period disasters that overlap with short-term
recovery efforts [e.g., the emergency response to a hurricane
(Schmeltz et al. 2013)], short-period disasters that interact with
an ongoing recovery efforts (e.g., an aftershock affecting the re-
covery effort associated with a main shock), or multiple disasters
occurring in a specific locale [e.g., an earthquake followed by a
tsunami (Moreno and Shaw 2019)].

Given the paucity of studies in this area, the objective of this
research was to conduct an analysis that explicitly addressed the
spatial and temporal progression of earthquake-induced damage
and the postdisaster restoration effort. After a review of the liter-
ature, the methodology and framework are introduced and a case

study of three interdependent lifeline systems subjected to two
successive earthquakes is presented. Last, the applicability and
limitations of the framework are discussed.

Background

There is broad consensus that the interdependencies that exist be-
tween the lifeline systems of a society can significantly impact the
resilience of communities facing natural and man-made hazards
(Cutter et al. 2003; NER 2011; Cimellaro et al. 2016).

Various methods for classifying interdependencies have been
proposed (Zimmerman 2001; Rinaldi et al. 2001; Dudenhoeffer
et al. 2006; Zhang and Peeta 2011), and different computational
modeling approaches have been used to study the effects of
interdependencies on community resilience. Eusgeld et al. (2008)
and Ouyang (2014) categorized these approaches into several
types: empirical, agent-based, system dynamics, economic theory,
network-based approaches, and other techniques. The two most
often-used approaches for modeling community resilience are
agent-based models and network-based methods. Agent-based
models are powerful because they can capture pertinent behavior
at the component level (Barton et al. 2000; Schoenwald et al. 2004;
Reilly et al. 2017). Their versatility is, however, marred by their
computational expense. Network-based approaches are computa-
tionally expedient. They are widely used in lifeline system model-
ing because these types of systems can typically be represented
as a network graph with nodes and links (Hernandez-Fajardo and
Dueñas-Osorio 2013; Guidotti et al. 2016). A more detailed discus-
sion of the various modeling techniques can be found in Eusgeld
et al. (2008), Ouyang (2014), and Lin et al. (2019).

Numerous studies have been conducted to evaluate the
resilience of communities subjected to hazards. The PEOPLES
resilience framework (Renschler et al. 2010; Cimellaro et al. 2016)
includes seven dimensions for assessing community resilience:
population and demographics, environmental and ecosystem,
organized governmental services, physical infrastructures, lifestyle
and community competence, economic development, and social-
cultural capital. Miles and Chang (2011) introduced a simulation
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model named ResilUS that was built on their previous efforts
(Chang and Miles 2004; Miles and Chang 2007) and provided an
implementation of the 1994 Northridge earthquake. The NIST-
funded Center for Risk-Based Community Resilience Planning
has developed the Interdependent Networked Community Resil-
ience Modeling Environment (IN-CORE), which some studies
have demonstrated on a virtual test bed community called Center-
ville (Ellingwood et al. 2016; Guidotti et al. 2016; Lin and Wang
2016; Cutler et al. 2016). The Civil Restoration with Interdepend-
ent Social Infrastructure Systems (CRISIS) model (Loggins et al.
2019) mapped services provided by civil infrastructure to the
performance of social infrastructure systems and aimed to find re-
storation schemes that optimize the performance of social systems.
As Koliou et al. (2018) concluded, there are only a handful of
frameworks that can account for the multidisciplinary and multi-
scale nature of community resilience in time-varying resilience
analyses. The methodology employed in this research is geared
toward addressing these gaps in the literature.

Computational Framework

Lin et al. (2019) provides a detailed description of the modeling
environment and publish–subscribe data transmission pattern used
in this work. Fig. 1 shows how the various simulators employed
herein interact together, and Fig. 2 illustrates the publish–subscribe
relationship between the simulators. Each simulator publishes its
results (in a “message”) to a corresponding “channel.” Other sim-
ulators, which need the information, subscribe to the channels
and receive published messages from them. This method of data
management is used in computer science to compose complex sim-
ulations from a set of individual, interacting simulators (Lin et al.
2019). Modifiability and scalability are the key advantages of this

methodology. In particular, it allows simulators to be replaced
based on different theories or algorithms and permits new simula-
tors to be added to existing simulation frameworks, allowing for
increasing levels of complexity.

The messages published during a disaster event are described in
Table 1 and the corresponding publishers and subscribers are listed
in Table 2. The run-time interface shown in Fig. 2 manages the flow
of messages, permitting the analysis to proceed in a decentralized
and scalable manner. Although Figs. 1 and 2 show the framework
for the case study considered herein, which contains three inter-
dependent systems, it can be extended in a straightforward manner
to handle other situations with more interacting systems and
simulators.

The scenario simulator in Fig. 1 describes the basic configura-
tion information, specifically the location and characteristics of

Fig. 1. Simulation framework and message flow.

Fig. 2. Publish–subscribe concept for data exchange.
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utility facilities and the connectivity between them. Such informa-
tion is published at the beginning of simulations and assumed not to
change with time. Once a disaster occurs (in the disaster phase), the
hazard intensity simulator provides information about the hazard,
such as the magnitude and epicenter of an earthquake in a seismic
disaster. Although this paper only focuses on seismic events, the
hazard intensity simulator could also provide information about
storm track and intensity if a hurricane hazard were of concern.
The simulator provides specific hazard information at all locations
of interest to other simulators—for example, ground motions at a
given location.

The direct damage simulator calculates the physical damage of
components directly induced by a hazard regardless of the influ-
ence of other infrastructure systems. Damage can be evaluated us-
ing empirical models, fragility curves, or detailed finite-element
models. The fact that the simulation framework does not care about
the specific method by which damage is assessed is a key strength
of the methodology. The interdependent damage simulator ad-
dresses the effects of interdependencies on damage occurrence.
Interdependencies come in many varieties. They can be functional,
spatial, or both (Zimmerman 2001); cyber, geographic, and logical
(Rinaldi et al. 2001); physical, geospatial, policy, and informational
(Dudenhoeffer et al. 2006); functional, physical, budgetary, market,
and economic (Zhang and Peeta 2011). The performance assess-
ment simulator assesses system performance and is a key determi-
nant for formulating a recovery strategy.

In the recovery phase, the recovery resource simulator estimates
the amount of resources, such as labor, equipment, materials, and

budget, that can be used for lifeline restoration. The recovery strat-
egy simulator allocates limited recovery resources to the systems
based on a given recovery strategy, which may depend on the dam-
age status and performance of the systems. The influencing factors
and strategy for the allocation of recovery resources may change
during the recovery process. Such time-dependent effects are a
key focus of this research; the study of such effects is enabled
by the distributed simulation methodology adopted in this work.
Once damage occurs, the physical recovery simulator determines
the reconstruction priority of damaged components based on their
damage situation and degree of importance in the system, and es-
timates the required time for restoration. During every recovery
period, the simulator further distributes recovery resources allo-
cated from the recovery strategy simulator to each damaged com-
ponent in order of priority, that is, system level to component level.
Then, within every recovery step, the physical recovery simulator
decides whether reconstruction progress advances forward or
pauses according to whether a component has enough allocated
resources.

The interdependencies between the various systems must be
considered not only as a hazard unfolds but also during the recov-
ery process. For example, one component in a network system may
have completely recovered from damage inflicted by a hazard but
still cannot function properly due to its dependency on another
still-damaged system. Therefore, like the interdependent damage
simulator, the interdependent recovery simulator considers inter-
dependent behaviors across systems and updates the recovery
status and functionality of components.

The simulators used in this work span different spatial scales:
whole community, infrastructure system, and structural component.
Community-level simulators affect large geographic areas (e.g., the
scenario simulator and hazard intensity simulator) or represent de-
cisions that address a large part of a community (e.g., the recovery
strategy simulator). System-level simulators address physical infra-
structure systems such as lifeline networks. The lowest spatial level
pertains to components of the various infrastructure systems, such
as residential buildings or pumping stations. The times scales
considered herein also vary widely. As illustrated in Fig. 1, the time
scale as the disaster phase unfolds Δthazard is several orders of
magnitude smaller than the time step during the recovery phase
Δtrecovery. The framework employed in this work allows for the
possibility of subsequent hazards to occur—for example, an after-
shock that occurs during an ongoing recovery progress.

Shifts between the disaster and recovery phases are controlled
by the performance assessment simulator, which is involved in both
phases. This simulator judges the beginning and end of a disaster
by interpreting the received damage messages and provides the
latest system performance to the recovery strategy simulator. As
shown in Fig. 1, in the disaster phase, the performance assessment
simulator calculates system performance based on damage status
provided by the interdependent damage simulator, and in the recov-
ery phase, it continues to update system performance according
to the recovery status from the interdependent recovery simulator.
The direct damage simulator also subscribes to the recovery status
provided by the interdependent recovery simulator, although it does
not publish anything during the recovery phase. This is because it
needs to know the latest recovery status in order to assess the capac-
ity reduction in components that are not yet fully repaired when the
next disaster occurs.

The computational framework handles several types of inter-
dependencies. Most importantly, the interdependencies between
system performances and community-level recovery strategy are
accounted for in a dynamic sense. In other words, recovery strategy
can evolve depending on system performance at a given time.

Table 1. Message types published during a disaster event

Code Message description

I Configuration of and information on test bed that does not
change with time

HðtÞ Hazard intensity measures at all locations of interest at time t
DDi (t) Damage status of components directly induced by a hazard at

time t
IDiðtÞ Damage status of components considering interdependency

effects at time t
Pi (t) System performance measures at time t
RSðtÞ Total available recovery resources and constraints at time t
SðtÞ Allocation strategy of recovery resources at time t
RiðtÞ Physical recovery status of components at time t
IRi (t) Recovery status of components considering interdependency

effects at time t

Note: Subscript i indicates messages produced by system i.

Table 2. Messages published or subscribed to by the simulators

Simulator
Message
published Messages subscribed to

Scenario simulator I —
Hazard intensity simulator HðtÞ I
Direct damage simulator i DDi (t) I, HðtÞ, IRj (t), j ¼ 1; 2; : : :
Interdependent damage
simulator i

IDiðtÞ I, DDj (t), j ¼ 1; 2; : : :

Performance assessment
simulator i

Pi (t) I, IDjðtÞ, IRj (t), j ¼ 1; 2; : : :

Recovery resource simulator RSðtÞ I
Recovery strategy simulator SðtÞ I, Pj (t), j ¼ 1; 2; : : :
Physical recovery simulator i RiðtÞ I, SðtÞ
Interdependent recovery
simulator i

IRi (t) I, RjðtÞ, j ¼ 1; 2; : : :

Note: Subscript i refers to system i.
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Second, because additional disruptions can occur during an on-
going recovery process, the ability of each component to resist new
demands caused by subsequent hazards may be affected by damage
from a previous event and unfinished rehabilitation efforts. Last,
interdependencies can occur between components of different life-
line systems and must be accounted for. These interdependent re-
lationships are shown in Fig. 1 by the interlaced lines joining the
direct damage simulator and the interdependent recovery simulator
or joining the physical recovery simulator and the interdependent
recovery simulator.

The extensibility and flexibility of the computational framework
for modeling various types of interdependencies between disparate
systems are the key strengths of the platform. For example, if new
interacting systems are added, the interdependent damage/recovery
simulators merely need to subscribe to the new direct damage
simulators or physical recovery simulators on which they depend.
No changes need to be made to other simulators in the system. The
publish–subscribe approach used in this work eliminates the need
for using interdependency matrices, which are commonly used to
specify the relationships between different pairs of networks. The
limitations associated with using interdependency matrices are
discussed in Lin et al. (2019).

Case Study: Seismic Damage and Recovery of
Lifeline Systems in Shelby County, Tennessee

Shelby County, Tennessee, which is close to the southwest
end of the New Madrid seismic zone (NMSZ) has been used as
a test bed in many studies. Dueñas-Osorio et al. (2007), Adachi and
Ellingwood (2008), and Hernandez-Fajardo and Dueñas-Osorio
(2013) studied the interdependent response of water and power
systems in Shelby County under earthquake demands. Adachi
and Ellingwood (2009) assessed the performance of its water
system under spatially correlated seismic intensities. Song and Ok
(2010) analyzed multiscale effects on system reliability of the gas
transmission network in Shelby County. González et al. (2016)
developed restoration strategies that took into account the interde-
pendencies between the water, power, and gas network systems in
Shelby County.

In a departure from previous studies, the computational frame-
work was applied to Shelby County, Tennessee in order to demon-
strate how it can be used to investigate earthquake-induced damage
and the subsequent recovery progress, which itself is interrupted
by an aftershock (first shock—short term recovery effort—second
shock—long term recovery effort). The framework was applied
to three interdependent lifeline systems in order to demonstrate
its scalability. Unlike the aforementioned studies, which merely
focused on one of the phases in a hazard event, that is, the disaster
process or the recovery period, this study presents an overall
simulation that addresses the disaster and postdisaster phases in
an integrated manner. Another key advantage of the framework
is that it naturally combines simulators that have disparate temporal
and spatial scales.

To capture the uncertainty in the seismic damage and the resto-
ration process, Monte Carlo simulations were performed, and the
means of the results are presented. Studies with 300, 500, and 1,000
simulations were conducted to select a reasonable number of sim-
ulations. The studies showed that the average relative differences
of the first to the last were 4.75% (300 runs versus 1,000 runs)
and 0.21% (500 runs versus 1,000 runs). Therefore, the number
of Monte Carlo runs was set to 500.

The following section describes the details of the simulators
shown in Fig. 1 and discussed previously.

Scenario Simulator

The scenario simulator provides configuration information about
the lifeline systems considered herein. The systems of interest in-
clude the electric power system (EPS), water distribution system
(WDS), and natural gas system (NGS), which are operated by the
Memphis Light, Gas, and Water (MLGW) division. The topologi-
cal configuration of the networks was adapted from Chang et al.
(1996), Dueñas-Osorio et al. (2007), and Song and Ok (2010).
Fig. 3 shows the topologies and critical components of the power,
water, and gas network systems in Shelby County. The gate stations
in EPS and NGS and the elevated tanks and pumping stations in
WDS are supply nodes. The 23 kV/12 kV substations in EPS, the
intersection nodes in WDS, and the regulator stations in NGS are
demand nodes. The intersection nodes in EPS and NGS and all
directed arcs represent the transmission components.

Hazard Intensity Simulator

The scenario earthquakes were assumed to have an epicenter at
35°18’N and 90°18’W; the same assumption was made in Adachi
and Ellingwood (2009). Ground motions designated RSN-5223
(designated EQ1) and RSN-6536 (designated EQ2) from PEER
(2018) were used in this study to represent feasible seismic activity.
The ground motion records, which have a 0.01-s time interval, were
scaled to peak ground acceleration (PGA) at the center of Memphis
(35°08’N and 89°59’W; i.e., 33 km from the epicenter). The PGA
values were 0.202 and 0.341 g for EQ1 and EQ2, respectively.
These values were chosen based on USGS (2018) for earthquakes
with a 10% probability of exceedance in 50 years (10/50) and a 5%
probability of exceedance in 50 years (5/50).

Ground motion attenuation was assumed to follow the model
proposed by Atkinson and Boore (1995). Although the attenuation
relationships were proposed only for the PGA, the model was as-
sumed to be applicable to the entire acceleration record as plotted in
Fig. 4 and to depend only on the distance to the epicenter. Although
the assumptions related to the hazard were made for convenience,
the hazard intensity simulator can be adjusted in the future once
more data or new models become available.

Direct Damage Simulator

Direct damage occurs if the hazard intensity, as computed by the
hazard intensity simulator, exceeds the capacity of a component.
Four damage states are considered: minor, moderate, extensive,
and complete. These states are irreversible and occur in sequential
order. The capacity of each component is determined at the begin-
ning of each realization in the Monte Carlo simulation. Lognormal
fragility functions were used to estimate the capacities associated
with different damage states for different types of utility facilities.
The fragility functions were adopted from the Hazards US Multi-
Hazard (HAZUS-MH) technical manual (FEMA 2003), and their
parameters are listed in Table 3. It was assumed that damage to EPS
can be assessed from the gate stations and substations, which are
the most critical equipment for the functionality of a power system
(Shinozuka et al. 2005). The intersection nodes in all networks
added for dividing the transmission lines and pipelines were
assumed to be not vulnerable to earthquakes (Fig. 3).

As discussed in FEMA (2003), the rate of occurrence of pipeline
failures per unit length is known as the repair rate and is computed
via Eq. (1), in which the unit for peak ground velocity (PGV) is
cm=s. The probability that the number of pipe breaks NB equals b
within a pipeline segment of length L can be expressed as shown in
Eq. (2), and the probability of pipeline breakage is shown in Eq. (3)

© ASCE 04019040-4 J. Infrastruct. Syst.
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Rrate½repairs=km� ≅ 0.0001 × PGV2.25 ð1Þ

PðNB ¼ bÞ ¼ ðRrate × LÞb
b!

e−Rrate×L ð2Þ

PðNB > 0Þ ¼ 1 − PðNB ¼ 0Þ ¼ 1 − e−Rrate×L ð3Þ

Each link in WDS and NGS is divided into several segments of
approximately one km length in order to consider the scale effect
(Song and Ok 2010). The PGV that corresponds with a 50%

Fig. 3. Topological configuration of the lifeline systems in Shelby County, Tennessee: (a) electric power; (b) water distribution; and (c) natural gas
system. [Adapted (a–c) from Chang et al. 1996; data for (a–b) from Dueñas-Osorio et al. 2007; data for (c) from Song and Ok 2010.]
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probability of pipeline breakage was used as the capacity of each
segment. Buried pipelines may also be damaged by ground failure,
for example, by liquefaction. Although such situations were not
considered in this case study, they could be considered in the future
by adding other specialized simulators.

Component capacities are determined at the beginning of each
realization based on the history of seismic activity. In the case of a
first seismic event, they are considered to be damage free. When
aftershocks occur during the recovery process, the integrity of the
segments has already been compromised by the previous event, and
component capacities are assumed to be a function of the previous
damage state. In this case, the capacities of discrete components
were assumed to be reduced by 40%, 20%, and 10% for extensive,
moderate, and minor damage states, respectively, and the reduction
ratios for broken pipelines was set to 40%, that is, an extensive
damage state. These numbers can be refined in the future if the time
between events is specified and the direct damage simulator and
interdependent recovery simulator are able to address sequential
damage effects.

Interdependent Damage Simulator

Two types of interdependencies are considered at the component-
level: functional interdependencies and spatial interdependencies.
A functional interdependency indicates the dependence of one sys-
tem (slave nodes) on the functionality or material flow of another
(master nodes). For example, pumping stations in water and gas
systems rely on electric power to operate pumping machines; elec-
tric power plants rely on the water distribution system for cooling
purposes and for controlling emissions of coal-based power gener-
ators. In this case study, part of the power grid depended on the
natural gas system to fuel generation units. Spatial interdependency
is a situation in which components from different infrastructure
systems are colocated within the same geographical environment,
that is, the components have spatial overlap. There is generally

mutual reliance rather than master-slave relationship of functional
interdependency; that is, the damage state of both nodes is the same
and is governed by the node that has more severe direct damage.

The conditional probability of a slave node being nonfunctional
given an inoperative master node can be seen as the degree of inter-
dependency or the coupling strength between the two nodes.
Herein, the conditional failure probability of any pair of slave and
master nodes is set to one, but it can be adjusted for other situations.
All these interdependent relationships and the nodes involved are
listed in Table 4. The interdependent damage simulator of each
system only needs to know which nodes are the master nodes of
its own components and subscribe to their damage conditions.

Performance Assessment Simulator

Ghosn et al. (2016) suggested that the performance measures of
a network system can be divided into two categories: flow-based

Table 3. Parameters of lognormal fragility functions for utility facilities

System Components Minor Moderate Extensive Complete

EPS Gate station 0.11 (0.50) 0.15 (0.45) 0.20 (0.35) 0.47 (0.40)
12 kV/23 kV substation 0.15 (0.70) 0.29 (0.55) 0.45 (0.45) 0.90 (0.45)

WDS Elevated tanks 0.18 (0.50) 0.55 (0.50) 1.15 (0.60) 1.50 (0.60)
Pumping station 0.15 (0.75) 0.36 (0.65) 0.77 (0.65) 1.50 (0.80)

NGS Gate station 0.15 (0.75) 0.34 (0.65) 0.77 (0.65) 1.50 (0.80)
Regulator station 0.15 (0.75) 0.34 (0.65) 0.77 (0.65) 1.50 (0.80)

Note: All fragility functions for utility facilities are lognormal distributions with peak ground acceleration (PGA) as the engineering demand parameter. The
corresponding median and lognormal standard deviation (β) are listed in the table, i.e., median (β); (unit: g).

Fig. 4. Assumed attenuation of ground acceleration (unit: g) for earthquake with (a) 5%; and (b) 10% probability of exceedance in 50 years.

Table 4. Interdependent relationships between EPS, WDS, and NGS

WDS*–EPS EPS*–WDS NGS*–EPS EPS*–NGS
NGS–WDS
(Mutual)

W2*–P28 P1*–W21 G6*–P18 P1*–G6 G3–W12
W3*–P29 P2*–W25 G10*–P24 P5*–G11 G14–W41
W4*–P14 P3*–W23 G12*–P44 P7*–G12 —
W5*–P17 P4*–W29 G13*–P26 — —
W6*–P33 P5*–W30 — — —
W8*–P36 P6*–W35 — — —
W9*–P38 P7*–W39 — — —
W11*–P40 P8*–W42 — — —
W12*–P26 P9*–W49 — — —

Note: The left four columns indicate functional interdependencies (slave
node*–master node), and the rightmost column indicates spatial
interdependencies.

© ASCE 04019040-6 J. Infrastruct. Syst.
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and topology-based measures. Flow-based performance measures
are represented by the amount of supplied flow and the propor-
tion of satisfied customer demand. Topology-based measures are
calculated based on graph theory. An abstract graph representing
a lifeline network consists of supply nodes, demand nodes, and sev-
eral directed links that indicate the connecting paths from supply
nodes to demand nodes.

Due to a lack of information pertaining to flow capacity and
demand, a topology-based metric, termed connectivity loss (CL),
was selected for performance assessment in this case study. CL
measures the average change in the connectivity of demand nodes
to supply nodes after perturbation and is often used to assess the
capability of a network system to withstand disruption (Albert et al.
2004; Dueñas-Osorio et al. 2007). At the beginning of a simulation,
each lifeline system is represented as a graph with nodes and links,
and the original connectivity is calculated. As the analysis pro-
gresses, inoperative components are removed from the graph, then
added back when they recover. CL of a network system with
Ndemand demand nodes can be computed by Eq. (4)

CL ¼ 1 − 1

Ndemand

XNdemand

i

�
Pi

P0;i

�
ð4Þ

where P0;i = original number of supply nodes that connect to the ith
demand node; and Pi = number of supply nodes connected to the
ith demand node after a perturbation. The remaining connectivity
(C) of a network is: C ¼ 1 − CL.

Recovery Resource Simulator

Recovery resources are quantified as a number of resource units.
A resource unit is defined as the amount of resources and budget
required for an 8-person crew with accompanying repair equipment
to work 12 hours (working time per day). In all of the case studies
discussed subsequently, the available number of resource units
Rtotal for the entire county was assumed to be a fixed value during
the recovery process. In general, it is assumed that all crews have
unlimited expertise, that is, they can work on all lifeline systems.
However, in last case study, the crews were assumed to have differ-
ent skills, and the maximum number of available crews specializing
in the ith lifeline system was denoted as Rmax;i. Clearly, the func-
tionality of the social infrastructure—for example, the availability
of able-bodied workers who were not injured or killed in the
event—affects Rmax;i. Although not accounted for here due to space
and scope limitations, in the future, such a limitation can be ac-
counted for through the addition of a social infrastructure simulator
that, for example, accounts for worker injuries and deaths and for
available funding needed to pay for repair crews.

Recovery Strategy Simulator

The recovery strategy simulator interprets the allocation strategy
for recovery resources. A feasible recovery strategy is to allocate

recovery resources to each system evenly regardless of their dam-
age conditions, as stated in Eq. (5), where Ns is the number of
systems and Rk is the amount of recovery resources allocated to
the kth system. This strategy (the EA strategy) could represent a
situation in which information about the extent of a disaster is
not known. In cases in which Rtotal and Ns are fixed values during
the recovery process, the EA strategy is time-independent

RkðtÞ ¼
RtotalðtÞ
Ns

ð5Þ

Another strategy (the LA strategy) is to assign resources de-
pending on the performance of the systems in terms of connectivity
loss. In this case, Rk is computed as

RkðtÞ ¼
CLkðtÞPNs
i CLiðtÞ

× RtotalðtÞ ð6Þ

where CLi = connectivity loss of the ith system. Alternatively, if
the number of damaged components in each system NDi is of con-
cern, then a feasible strategy (the DA strategy) could be as follows:

RkðtÞ ¼
NDkðtÞPNs
i NDiðtÞ

× RtotalðtÞ ð7Þ

The LA and DA strategies imply that the amount of recovery
resources allocated to each system is not constant and changes over
time t during the progress of recovery, reflecting the time-varying
characteristic of the recovery process.

The recovery strategies applied in the example assume that
systems that are more severely damaged and have worse system
performance will receive more recovery resources. However, deci-
sion making during an actual disaster may be much more involved
and may need to account for other factors, such as economics,
politics, and societal values. In such cases, users could refine the
algorithm in the recovery strategy simulator without influencing
other simulators.

Physical Recovery Simulator

After a system is allocated recovery resources, the physical recov-
ery simulator further distributes them to the damaged components.
Once new damage to a system is computed, a normal distributed
random variable is generated to estimate the required restoration
time for each damaged component based on the restoration func-
tions in the HAZUS-MH technical manual (FEMA 2003). Uncer-
tainty in the recovery process is considered. The parameters of
the restoration function used in the case study are summarized
in Table 5. The time step of the recovery process is taken as
one day, and the required resources for all types of components are
assumed to be one unit per day. If a damaged component has been
allocated enough resources in the recovery step (day), then its

Table 5. Parameters of restoration functions for different components

System Components Minor Moderate Extensive Complete

EPS Gate station 1.0 (0.5) 3.0 (1.5) 7.0 (3.5) 30.0 (15.0)
12 kV/23 kV substation 1.0 (0.5) 3.0 (1.5) 7.0 (3.5) 30.0 (15.0)

WDS Elevated tanks 1.2 (0.4) 3.1 (2.7) 93.0 (85.0) 155.0 (120.0)
Pumping station 0.9 (0.3) 3.1 (2.7) 13.5 (10.0) 35.0 (18.0)

NGS Gate station 0.9 (0.3) 3.1 (2.7) 13.5 (10.0) 35.0 (18.0)
Regulator station 0.9 (0.3) 3.1 (2.7) 13.5 (10.0) 35.0 (18.0)

Note: All restoration functions are normal distributions. The corresponding mean and standard deviation are listed in the table, i.e., median (standard
deviation); (unit: day).
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repair progress will advance forward one day. Otherwise, it remains
unrepaired.

The physical recovery simulator distributes allocated recovery
resources to damaged components using two different strategies:
randomly (the R strategy) or in order of their priority (the P strat-
egy). In the latter case, the recovery priority of the components in
each network is as follows: supply nodes, demand nodes, and links/
pipelines. To simplify the simulation, resources and work crew are
assumed available as soon as they are allocated, that is, the effect of
transportation on work crew routing (Morshedlou et al. 2018) is not
considered in this study, although it could be incorporated through
the addition of other simulators.

Interdependent Recovery Simulator

The same types of interdependencies, that is, functional interdepen-
dencies and spatial interdependencies, are considered during the
recovery process by the interdependent recovery simulator. The
interdependent relationships (master/slave) and involved nodes are

listed in Table 4. Although slave components may have completely
recovered from damage inflicted by a hazard, they may not function
until the master components they depend on have fully recovered.
For example, the functionality of pumping stations in the water
and gas systems depends both on their own repairs and on the avail-
ability of electric power. After simulation of the physical recovery,
the recovery status and functionality of components is updated
depending on the different interdependent behaviors across the
systems.

Results and Discussion

The simulators described in the previous section were connected
together using the computational framework described previously.
The computational platform was then used to investigate the effects
of system interdependencies, multiple shocks, recovery strategies,
and allocated recovery resources on the propagation of damage
during seismic events and short- and long-term recovery processes.

Fig. 5.Comparison of system performancewith and without considering interdependencies during the earthquake and recovery processes: (a) damage
curves of EPS; (b) recovery curves of EPS; (c) damage curves of WDS; (d) recovery curves of WDS; (e) damage curves of NGS; and (f) recovery
curves of NGS.
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Interdependencies between Lifeline Systems

First, a comparison of the performance of the three lifeline systems
with and without considering the interdependencies between the
systems is presented. Consider a seismic event with EQ2, Rtotal ¼
45 units=day, and crews with no limitation on their expertise. The
allocation of recovery resources is based on the LA and P strategies.
Fig. 5 shows the damage and recovery curves of the three lifeline
systems in terms of the average system connectivity performance.
The dotted lines in Fig. 5 reflect analyses that account for interde-
pendencies, while the solid lines reflect simulations that do not
account for interdependencies.

Figs. 5(a, c, and e) indicate that EPS is the system most signifi-
cantly affected by the earthquake out of the three lifeline systems
when interdependencies are not considered. Figs. 5(a and b) indi-
cate that the performance of EPS is not significantly affected by
interdependencies. Interdependencies are much more influential
for WDS and NGS, as shown in Figs. 5(c–e). The computational
results show that WDS and NGS are more dependent on EPS,
and the overall recovery time, in this case, is controlled by the re-
storation of EPS. It is clear that the operability loss and recovery
times may be significantly underestimated if the interdependencies
between lifeline systems are not adequately accounted for.

Fig. 6. Influence of foreshock on the lifeline system performance during (a) main shock without foreshock; (b) overall event without foreshock;
(c) main shock affected by foreshock; and (d) overall event with foreshock.

Fig. 7. Influence of foreshock on recovery after main shock: (a) EPS; (b) WDS; and (c) NGS.

© ASCE 04019040-9 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2020, 26(1): 04019040 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f M
ic

hi
ga

n 
on

 0
7/

05
/2

0.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



Influence of Foreshock

The influence of the foreshock is evaluated by considering a se-
quence of seismic events comprised of EQ1 followed by EQ2,
Rtotal ¼ 45 units=day, and crews with no limitation on their exper-
tise. The allocation of the recovery resources is based on the LA and
P strategies. The performance of the lifeline systems is indicated by
the connectivity ratio, as plotted in Fig. 6. Figs. 6(a and b) pertain
only to the main shock, while Figs. 6(c and d) illustrate the out-
comes of EQ1 (the foreshock) leading up to EQ2 (the main shock).
Figs. 6(a and c) indicate that the worst connectivity ratio of the life-
line systems is governed by the main shock, which is larger than the
foreshock. However, the damage inflicted by the foreshock makes
the lifeline systems more vulnerable to the later quake. As shown in
Fig. 7, the recovery slows down slightly in the long-term when the
foreshock is considered, because the final damage after the main
shock is more severe and there are more damaged components
in need of repair, which might not be fully reflected in the connec-
tivity loss.

Influence of Aftershock

Consider a seismic event with EQ2 (main shock) followed by EQ1
(aftershock), Rtotal ¼ 45 units=day, and crews with no limitation on
their expertise. The allocation of recovery resources is based on the
LA and P strategies. Fig. 8 shows the changes in system perfor-
mance with an aftershock compared to EQ1 by itself. As shown
in Figs. 8(a and b), the aftershock induces additional damage
and decelerates the speed of restoration despite being smaller than
the main shock. Moreover, by comparing Figs. 8(a and b) with
Figs. 8(c and d), it can be seen that the damage due to the aftershock
is much more serious than the damage due to a single earthquake
with the same magnitude. For example, in Fig. 8(d), the remaining
connectivity of EPS in the case with EQ1 by itself is about 0.64, but
in the case with the aftershock, the connectivity of EPS after EQ1
(aftershock) decreases to 0.42, as shown in Fig. 8(b).

Effect of Recovery Strategies

As discussed previously, two levels of recovery strategies are
proposed: community to system (EA, LA, and DA) and system
to component (R and P). As a result, there are six different combi-
nations of recovery strategies. The schemes are designated by their
names—for example, EA followed by R is EA-R and LA followed
by P is LA-P.

Consider a seismic sequence of events with EQ1 as a fore-
shock followed by EQ2 as the main shock. Resources Rtotal ¼
9 units=day, and repair crews have no limitations on their ex-
pertise. The focus is only on the connectivity performance of
EPS. It is clear from Fig. 9 that the three strategies that employ
the P allocation have steeper recovery curves in the early stages
of reconstruction. They also have better performance in the overall
resilience process. Among the six different recovery schemes,

Fig. 8. Influence of aftershock on the lifeline system performance during (a) aftershock following main shock; (b) overall event (main shock followed
by aftershock); (c) aftershock by itself (without considering the effect of the main shock); and (d) overall event involving only aftershock.

Fig. 9. Effect of different recovery strategies on the connectivity per-
formance of EPS.
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the EA-R scheme has the worst recovery performance. The best
is DA-P.

Effect of Amount and Type of Recovery Resources

To study the effect of the amount of recovery resources, consider
again a case with EQ1 as a foreshock followed by EQ2 as the
main shock. In this case Rtotal varies and equals 9, 15, 30, or
45 units=day, and crews have no limitation on their expertise.
Focusing again on EPS, the best (DA-P) and worst (EA-R) strat-
egies discussed previously are employed to maximize the contrast
between them, and the results are shown in Figs. 10(a and b), re-
spectively. As expected, recovery performance improves as more
recovery resources are allocated. Fig. 10 also shows that the effect
of limited resources is significantly more pronounced in the lower-
efficiency scheme. Fig. 11 compares the effect of the amount of
resources on recovery when different strategies are employed.

Again, the less efficient schemes suffer more pronounced effects
when fewer resources are available.

Consider a similar study with crews that have specific (not
general) expertise—for example, a crew is only able to service a
particular lifeline system. Consider a seismic sequence of events
with EQ1 as a foreshock, followed by EQ2 as the main shock. The
DA-P strategy is applied, and two different recovery resource con-
straints are considered. First, funding is available to pay up to 15
repair crews per day, that is, RtotalðtÞ ≤ 15 units=day (Constraint 1).
Second, the crews are specialized, with up to five crews spe-
cializing in each lifeline system, that is, RkðtÞ ≤ Rmax;k ¼ 5
(Constraint 2), where RkðtÞ is the amount of recovery resources
allocated to the kth system. Fig. 12 compares the performance of
EPS with different levels of recovery resource constraints. The fig-
ure shows that the resilience of the community is overestimated if
crew expertise is not account for, especially in the period between
25 and 60 days.

Fig. 10. Effect of recovery resources on EPS with recovery strategy: (a) DA-P; and (b) EA-R.

Fig. 11. The connectivity performance of EPS adopting different recovery strategies with different recovery resources with (a) 45; (b) 30; (c) 15; and
(d) 9 units=day.
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Summary and Conclusions

A distributed computational framework was employed to model the
interactions that occur between lifeline systems during earthquakes.
Various systems were modeled using simulators with disparate
temporal and spatial scales. The simulators were connected through
a computational platform. Shelby County, Tennessee, was used as a
case study for demonstrating the ability of the framework to model
the interactions between three lifeline systems. The effects of differ-
ent recovery strategies on system performance were examined
as the hazard unfolded and as the recovery process took place.
The computational results quantified the influence of the interde-
pendencies between the lifeline systems on the resilience of the
community.

Aside from the need to account for multiscale interdependen-
cies, the case study pointed out the necessity of time-varying analy-
sis as the hazard unfolded and during the recovery process. The
seismic hazard considered in this work occurred in just a few
seconds. Nevertheless, modeling the interactions that occurred be-
tween the lifeline systems during the event provided insights into
how interdependencies among infrastructure systems propagate
and provided clues as to how to improve their resilience. The ability
to handle differences in temporal scales between a hazard and
the recovery process is one of the key advantages of the analysis,
as evinced by its ability to handle aftershocks that interact with an
ongoing recovery effort.

The case study showed that not taking system interdependencies
into account will underestimate operability loss and recovery time.
It was also shown that that, within the constraints of this research,
the strategy of recovery resource allocation had a great impact on
community resilience. The impact was exacerbated when resources
were insufficient. Among the six resource allocation strategies
studied, the ones that adjusted based on damage/reconstruction
states enhanced resilience. This points to the necessity of maximiz-
ing a community’s ability to have good information flow after a
disaster. In other words, the hardening of monitoring and commu-
nications systems and making them more damage-tolerant is an
effective way to increase community resilience. This, of course,
can only be achieved by building, prior to the event, institutional
relationships that will foster cooperation between the various public
and private players that would be involved in response, restoration,
and recovery.

A limitation of this work lies in some of the assumptions and
simplifications made. For example, the effect of delays due to bad

weather conditions and traffic blockages or the effect of limited
construction materials on the available number of resource units
was not considered. Although these omissions and simplifications
may influence the specific results presented in this paper, the frame-
work’s flexibility and extensibility permit it to address them in the
future through the addition of new simulators or the modification of
the existing simulators.
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