
Shouts and Murmurs: Combining Individual Gravitational-wave Sources with the
Stochastic Background to Measure the History of Binary Black Hole Mergers

Tom Callister1 , Maya Fishbach2 , Daniel E. Holz3 , and Will M. Farr1,4
1 Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA; tcallister@flatironinstitute.org

2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
3 Enrico Fermi Institute, Department of Physics, Department of Astronomy and Astrophysics, and Kavli Institute for Cosmological Physics, University of Chicago,

Chicago, IL 60637, USA
4 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Received 2020 March 26; revised 2020 May 24; accepted 2020 May 28; published 2020 June 17

Abstract

One of the goals of gravitational-wave astronomy is to quantify the evolution of the compact binary merger rate
with redshift. The redshift distribution of black hole mergers would offer considerable information about their
evolutionary history, including their progenitor formation rate, the dependence of black hole formation on stellar
metallicity, and the time delay distribution between formation and merger. Efforts to measure the binary redshift
distribution are currently limited, however, by the detection range of existing instruments, which can individually
resolve compact binary merger events only out to z 1. We present a novel strategy with which to measure the
redshift distribution of binary black hole mergers well beyond the detection range of current instruments. By
synthesizing direct detections of individually resolved mergers with indirect searches for the stochastic
gravitational-wave background due to unresolved distant sources, we can glean information about the peak
redshift, zp, at which the binary black hole merger rate attains its maximum, even when this redshift is beyond the
detection horizon. Using data from Advanced LIGO and Virgo’s first and second observing runs, we employ this
strategy to place joint constraints on zp and the slope α with which the binary merger rate increases at low redshifts,
ruling out merger rates that grow faster than a  7 and peak beyond z 1.5p . Looking ahead, we project that
approximately one year of observation with design-sensitivity Advanced LIGO will further break remaining
degeneracies, enabling a direct measurement of the peak redshift of the binary black hole merger history.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Black holes (162); Compact binary stars (283);
LIGO (920); Gravitational wave sources (677)

1. Introduction

The Advanced LIGO(Aasi et al. 2015) and Advanced
Virgo(Acernese et al. 2015) gravitational-wave experiments
are rapidly transitioning between low- and high-statistics
regimes. With the LIGO–Virgo detections of eleven compact
binary mergers during the past O1 and O2 observing
runs(Abbott et al. 2019b) and tens more anticipated in the
present O3 run(Abbott et al. 2019c), we can now begin to
understand the ensemble properties of compact binaries,
including the distributions of their component masses and
spins(Farr et al. 2017; Fishbach & Holz 2017, 2020; Talbot &
Thrane 2017, 2018; Abbott et al. 2019a; Wysocki et al. 2019).
Beyond the distributions of these intrinsic binary parameters,
we might also seek to understand the redshift distribution of
binary black hole mergers—how the merger rate evolves as we
look back to earlier times in the universe’s history. If measured,
the redshift distribution of compact binary mergers would offer
substantial insight into the birth and evolution of compact
binaries, encoding such properties as the time delay distribution
between black hole formation and merger(see, e.g., Adhikari
et al. 2020), the dependence of black hole production on stellar
metallicity(e.g., Belczynski et al. 2016), and perhaps even the
relative contributions from competing binary formation
channels, including field binaries, hierarchical triples, dynami-
cal capture, or primordial black holes(Dominik et al. 2015;
Mandic et al. 2016; Mandel & Farmer 2018; Rodriguez &
Loeb 2018).

Study of the binary black hole redshift distribution, however, is
made difficult by the limited range of existing gravitational-wave

detectors. Figure 1, for example, shows a typical model for the
source-frame rate of binary black hole mergers as a function of
redshift. To obtain this figure, we assume progenitor formation
following the star formation rate of Madau & Dickinson (2014)
weighted by the fraction of stellar formation occurring at
metallicities Z Z0.3  (Langer & Norman 2006). We further
adopt a µ -p t td d

1( ) probability distribution for the time delay td
between binary formation and merger, with 50 Myr
t 13.5 Gyrd . Within this simple model, the binary black hole

merger rate peaks at ~z 2, while more sophisticated models
generally predict merger rates peaking between redshifts ~z 2 to
4, depending on the specific formation channel presumed(Do-
minik et al. 2013; Mapelli et al. 2017; Rodriguez & Loeb 2018;
Baibhav et al. 2019; Santoliquido et al. 2020).
In contrast, design-sensitivity Advanced LIGO is expected to

successfully detect optimally oriented + M30 30  binary
black holes only out to redshifts z 1.2 (Chen et al. 2017;
Abbott et al. 2019c). Current efforts to study the redshift
distribution of compact binary mergers therefore attempt only
to measure the leading-order, low-redshift evolution of the
binary merger rate (Fishbach et al. 2018; Abbott et al. 2019a);
observation of the peak and subsequent turnover of the black
hole redshift distribution is a challenge left to future third-
generation detectors(Vitale et al. 2019).
In this Letter we demonstrate that present-day gravitational-

wave observatories can provide meaningful measurements of
the high-redshift evolution of the compact binary merger rate.
We achieve these measurements by synthesizing the direct
detections of compact binaries in the local universe with an
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additional piece of information: the astrophysical stochastic
gravitational-wave background(Romano & Cornish 2017;
Christensen 2019). Arising from the superposition of all distant
individually undetectable compact binaries, the stochastic
gravitational-wave background manifests as excess correlated
noise shared among a network of gravitational-wave detectors
(Allen & Romano 1999). The strength of the present-day
gravitational-wave background is determined by the cumula-
tive merger history of binary black holes, integrated across all
redshifts(Phinney 2001). The observation of (or even upper
limits on) the gravitational-wave background can therefore be
leveraged to place powerful constraints on the redshift
distribution of binary mergers, complementary to those
constraints gleaned from the direct detection of binaries in
the local universe (Section 2).

We apply our approach to existing data, finding that the
synthesis of binary black hole detections (Abbott et al. 2019b)
and gravitational-wave background constraints(Abbott et al.
2016a, 2017a, 2017b, 2018, 2019d, 2019e) from Advanced
LIGO and Advanced Virgo’s first two observing runs already
yields nontrivial constraints on the peak of the binary black
hole redshift distribution (Section 3). With additional data
gathered from future observing runs, our method may enable a
measurement of this peak redshift within the next five years
(Section 4).

2. High-redshift Constraints from the Gravitational-wave
Background

In their O1 and O2 observing runs, Advanced LIGO and
Virgo confidently detected 10 binary black hole mergers, the
most distant of which (GW170729) may have occurred at
»z 0.5 (Abbott et al. 2019b; Chatziioannou et al. 2019).

Together, these 10 events have recently allowed for the first
exploration of the binary black hole merger rate’s evolution

with redshift. Adopting a model

= + a z z1 , 10( ) ( ) ( )

for the source-frame merger rate per comoving volume
(Fishbach et al. 2018), Abbott et al. (2019a) find a = -

+6.5 9.3
9.1

at 90% credibility. Thus, in the local universe, the binary black
hole merger rate (probably) increases with redshift.
If the binary black holes observed with LIGO and Virgo are

born from stellar progenitors, then the black hole merger rate
cannot continue to increase out to arbitrarily high redshifts.
Instead, it must reach a maximum at some peak redshift, zp, and
then decay to zero as star formation ceases in the very early
universe. Generically, we can describe this complete merger
history with a phenomenological model of the form(Madau &
Dickinson 2014; Madau & Fragos 2017)

a b=
+

+

a

a b+
+

+ 


z z
z

, ,
1

1
, 2p

z

z

0

1

1 p( )
( ) ( ) ( ) ( )

allowing a source-frame merger rate that initially evolves as
µ + a z z1( ) ( ) , reaches a maximum near zp, and subse-

quently falls as µ + b- z z1( ) ( ) . The example binary black
hole merger rate shown in Figure 1, for example, is well fit by
this phenomenological model using α=1.9, β=3.4, and
zp=2.4, shown via a dashed gray curve. The normalization
constant a b = + + a b- - z z, , 1 1p p( ) ( ) ensures that = 0( )
0.

At present the direct detection of binary black holes with
Advanced LIGO and Virgo can offer no meaningful constraints
on zp or β. In O2, the range within which Advanced LIGO
could detect a typical + M30 30  binary black hole (averaging
over sky location and binary orientation; see Chen et al. 2017)
was z 0.5; in the future O5 observing run this range may be
pushed to z 1.2 (Abbott et al. 2019c). Meanwhile, if the
black hole merger rate roughly follows the star formation rate,
it should peak at z 2p , well beyond our ability to probe with
direct detections.
We have another piece of information at our disposal,

however. Although individually undetectable, the superposition
of all distant binary black holes gives rise to a stochastic
gravitational-wave background, detectable in the form of
excess cross-power between widely separated detectors
(Romano & Cornish 2017; Christensen 2019). The stochastic
gravitational-wave background is conventionally described by
a dimensionless energy–density spectrum (Allen & Romano
1999)

r
r

W =f
d

d f

1

ln
, 3

c

GW( ) ( )

where
rd
d fln

GW is the present-day energy density in gravitational-

waves per logarithmic frequency interval and r =
pc
H c

G

3

8
0
2 2

is the
universe’s critical energy density. Here, c is the speed of light,
G is Newton’s constant, and H0 is Hubble’s constant; we
adopt = - -H 70 km s Mpc0

1 1.
The energy density arising from the population of binary

black hole mergers is given by (Phinney 2001)
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Figure 1. Example prediction of the source-frame rate density of binary black
hole mergers (solid blue), assuming progenitor formation that follows the rate
of stellar formation at metallicities Z Z0.3  (Langer & Norman 2006;
Madau & Dickinson 2014), and time delays td between binary formation and
merger distributed as µ -p t td d

1( ) , with 0.05 Gyr 13.5 Gyr . In this work, we
will adopt a phenomenological model for the binary black hole merger rate
(Equation (2)) that allows for the same qualitative behavior as the prediction
shown here, rising as µ + a z z1( ) ( ) at z zp and falling as

µ + b- z z1( ) ( ) at redshifts z zp. The specific prediction plotted here,
for instance, is well fit by Equation (2) using α=1.9, β=3.4, and zp=2.4
(the dashed gray curve).
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Here, á ñdE dfs s is the source-frame energy spectrum radiated by
a single binary(Ajith et al. 2008), averaged over the binary
black hole population. If the intrinsic parameters of individual
binary black holes (e.g., their masses and spins) are denoted by
f and have distribution fp( ), then

ò f f f=
dE

df
d p

dE

df
. 5s

s

s

s

( ) ( ) ( )

Note that in Equation (4) we evaluate á ñdE dfs s at the
source-frame frequency +f z1( ). Meanwhile, =H z( )

W + + WLH z10 M
3( ) is the Hubble parameter at redshift z

(neglecting radiation density). We take the energy densities of
matter and dark energy to be W = 0.3M and W =L 0.7,
respectively. Finally, the integral in Equation (4) is taken up
to a cutoff redshift zmax; we fix =z 10max , beyond which we
expect virtually no star formation and hence no black hole
mergers (assuming stellar progenitors). Alternatively, allowing
zmax itself to vary as another free parameter may help to provide
constraints on binary black holes of non-stellar origin, like the
mergers of primordial black holes(Mandic et al. 2016; Wang
et al. 2018; Koushiappas & Loeb 2017).

The energy density, W f( ), measured by stochastic searches
is, in essence, a weighted integral over the binary black hole
merger history  z( ), sensitive to the total number of past
mergers. Thus, if the local rate 0 is independently fixed by
direct detections, then knowledge ofW f( ) provides strong bounds
on the possible values of α, β, and zp. This is true even given a
nondetection of the gravitational-wave background. To illustrate
this, we can consider how the signal-to-noise ratio (S/N) of the
gravitational-wave background varies with α and zp.

Given a model W fM ( ) for the true energy–density spectrum,
the S/N of the gravitational-wave background is(Allen &
Romano 1999)

g
g g

=
W

W W
C

S N . 6M

M M

( ˆ∣ )
( ∣ )

( )

Here,

p
=C f
T H

f s f s f
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3
7

2
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2

3
1 2*ˆ ( ) ˜ ( ) ˜ ( ) ( )

is the cross-correlation statistic between the strains s f1̃( ) and
s f2˜ ( ) measured by two gravitational-wave detectors(Callister
et al. 2017; Romano & Cornish 2017), and we have defined an
inner product
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where Pi( f ) is the one-sided noise power spectral density of
detector i and T is the total observation time. In the presence
of a gravitational-wave background, the expectation value of
C fˆ ( ) is

gá ñ = WC f f f 9ˆ ( ) ( ) ( ) ( )

and its variance is d sá ¢ ñ = - ¢C f C f f f f2ˆ ( ) ˆ ( ) ( ) ( ), with
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The factor g f( ) in Equations (6) and (9), known as the overlap
reduction function, quantifies the geometrical sensitivity of a
given detector pair to an isotropic gravitational-wave back-
ground(Christensen 1992; Flanagan 1993). The optimal S/N
occurs when we choose a model W = Wf fM ( ) ( ) matching the
true energy density; the expected S/N in this case is(Allen &
Romano 1999)

g gá ñ = W WS N . 11opt ( ∣ ) ( )

In Figure 2 we plot the optimal S/N with which the
gravitational-wave background would have appeared in O1 and
O2 as a function of possible values for α and zp. In this
example we fix = - - 30 Gpc yr0

3 1 and β=3, and assume
a population of equal mass binaries with chirp mass

= M30c . If a  5, virtually no stochastic signal is
expected, consistent with the nondetection of the gravita-
tional-wave background in O1(Abbott et al. 2017b) and
O2(Abbott et al. 2019e; Renzini & Contaldi 2019). However,
the expected S/N rises sharply towards the upper right corner
of Figure 2. In particular, if a  5 and z 1p , we should have
seen an extraordinarily loud stochastic gravitational-wave
signal. The fact that no such background was detected means
that we can already reject this portion of parameter space,
ruling out binary black hole backgrounds rising faster than
a ~ 5 and peaking beyond ~z 1p . We note, though, that these
exact limits depend strongly on the assumed local merger rate
0 and black hole mass distribution (and to a lesser extent on
β), and so the results in Figure 2 should be taken as an example
only. In Section 3 below, we will instead seek to simulta-
neously measure these different properties, leveraging both the
observational limits on the stochastic gravitational-wave back-
ground and the current catalog of direct binary black hole
detections.

Figure 2. Optimal signal-to-noise ratio with which the binary black hole
stochastic background should be visible in Advanced LIGO’s O1 and O2
observing runs, as a function of the leading slope, α, and peak redshift, zp, of
the merger rate  z ;( ) see Equation (2). For purposes of illustration, we have
fixed = - - 30 Gpc yr0

3 1 and β=3, and assumed equal mass binaries with
chirp masses = M30c . The two black curves trace contours of constant
signal-to-noise ratios, at á ñ =S N 3opt and 10. Given our choices of0, β, and
binary mass distribution, the nondetection of a stochastic gravitational-wave
background in O1 and O2(Abbott et al. 2017b, 2019e; Renzini &
Contaldi 2019) excludes values of α and zp at which S N 3opt , ruling out
a large fraction of the α–zp parameter space.
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So far, our argument has implicitly assumed that the
distribution of binary black hole parameters is independent of
redshift, such that the average energy radiated by a given
binary (Equation (5)) does not vary with z. This is not
necessarily the case. It is possible, for instance, that black holes
born at high redshifts are preferentially more massive, due to
the increased stellar masses predicted to occur at low
metallicities(Belczynski et al. 2010; Spera et al. 2015; Abbott
et al. 2016b), although more recent work suggests that the mass
distribution of merging binaries may be approximately
constant(Mapelli et al. 2019). By neglecting the possibility
increased masses at higher redshifts, the constraints we obtain
on α and zp are conservative. Given a fixed observational limit
on W f( ), any presumed increase in the average radiated energy
á ñdE dfs s must be balanced by a decrease in the merger rate
 z( ) at high redshifts, yielding stricter limits than those shown
in Figure 2. Nevertheless, one could incorporate effects like
metallicity-dependent masses in this analysis by amending
Equation (5) to additionally include integration over distribu-
tions of formation redshifts or progenitor metallicities(Abbott
et al. 2016a, 2017b).

3. Peak Redshift Constraints from O1 and O2

The best constraints on  z( ) will come from neither the
direct detection of binary black holes nor the gravitational-
wave background searches considered separately, but instead
from a joint analysis that self-consistently synthesizes both
sources of information. In this Letter we perform the first such
joint analysis, synthesizing stochastic data and direct black hole
observations to hierarchically measure the redshift distribution
of binary black hole mergers. We take as inputs the integrated
cross-correlation spectrum C fˆ ( ) measured between the LIGO
Hanford and Livingston detectors(Abbott et al. 2017b, 2019e)
during O1 and O2, as well as parameter estimation results for
each of the 10 binary black hole mergers comprising the LIGO
and Virgo GWTC-1 catalog(Abbott et al. 2019b).

In order to robustly constrain  z( ), it will also be important
to simultaneously fit for the mass distribution of binary black
holes. In Figure 2, for instance, the exact exclusion region
depends on our presumed black hole mass distribution: heavier
or lighter black holes would increase or decrease the expected
energy density W f( ), leading us to draw different conclusions
about  z( ) in the case of a stochastic nondetection. Strong
degeneracies also exist between the inferred mass and redshift
distributions of directly detected black hole mergers(Fishbach
et al. 2018). A dearth of detections at large redshifts, for
example, simply implies a low merger rate for high-mass
binaries, since low-mass binaries go undetected at large
distances. This can be explained either by a low overall rate
at high redshifts, or by a mass distribution that prefers low-
mass binaries.

Consider a population of binary black hole mergers, with a
local merger rate per unit comoving volume 0 and whose
mass and redshift distributions are characterized by parameters
Λ. The likelihood of obtaining data =di i

N
1

obs{ } from Nobs direct
detections, as well as a stochastic cross-correlation spectrum
C fˆ ( ), is

L = L L  p C d p d p C, , , , , 12i i0 BBH 0 stoch 0( ˆ { }∣ ) ({ }∣ ) ( ˆ∣ ) ( )

which has been factored into a direct-detection and a
stochastic term.

The likelihood, L p d ,iBBH 0({ }∣ ), of our direct binary black
hole detections is given by (Loredo 2004; Taylor &
Gerosa 2018; Mandel et al. 2019)

ò


x

f f f

x

L µ L L

´
L

L

x- L L

=

  p d N e

p d p d

, ,

. 13

i
N N

i

N i

BBH 0 0
,

1

obs 0

obs

({ }∣ ) [ ( ) ( )]

( ∣ ) ( ∣ )

( )
( )

( ) ( )

Here, fp di( ∣ ) is the likelihood for event i given its component
masses m1 and m2 and redshift z, together abbreviated as
f = m m z, ,1 2{ }. Meanwhile, f Lp( ∣ ) is the ensemble distribu-
tion of these source parameters. The quantity L N , 0( ) is the
total number of binary black hole mergers (both observed and
unobserved) expected to occur during our observation time; see
Equation (18). Observational selection effects are captured by
the factor x L( ), the fraction of all binary black holes that we
expect to successfully detect. If fPdet ( ) is the probability of
successfully detecting an event with parameters f, then

òx f f fL = LP p d . 14det( ) ( ) ( ∣ ) ( )

In our analysis we precompute fPdet ( ) over a grid of masses
and redshifts, using the semi-analytic prescription of Finn &
Chernoff (1993), and requiring detections to have a matched
filter S/N of r > 8 in a single detector.
In practice, we do not have direct access to the likelihoods,
fp di( ∣ ), needed to compute Equation (13). Instead, we have

discrete samples fi{ } drawn from each event’s posterior
distribution fp di( ∣ ), obtained via parameter estimation with
Monte Carlo integration or nested sampling(Veitch et al.
2015). Parameter estimation itself is performed while assuming
some default prior, fppe ( ), that is generally not equal to the
population prior f Lp( ∣ ) appearing in Equation (13). To
evaluate Equation (13), we must therefore replace the integral
with an average over discrete samples, weighting each sample
with f-ppe

1( ) to undo the influence of the prior used in
parameter estimation:



x

x
f
f

L µ L L

´
L

L

x- L L

=

  p d N e
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1
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( )
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The stochastic cross-correlation spectrum C fˆ ( ), mean-
while, is generally obtained through the weighted combina-
tion of a large number of measurements performed over short
 100 s( ) time segments(Allen & Romano 1999; Romano &
Cornish 2017), and so the likelihood L p C ,stoch 0( ˆ∣ ) is
well approximated as a Gaussian(Mandic et al. 2012;
Callister et al. 2017):

g g

L

µ - - W L - W L



 

p C

C C

,

exp
1

2
, , ,

16

M M

stoch 0

0 0
⎡
⎣⎢

⎤
⎦⎥

( ˆ∣ )

( ˆ ( )∣ ˆ ( )

( )

where W L  f, ;M 0( ) is our model energy–density spectrum
and we have used the inner product defined in Equation (8).
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We model the intrinsic redshift distribution of binary black
hole mergers as

a b a bµ
+

p z z
z

z z
dV

dz
, ,

1

1
, , ; , 17p p

c( ∣ ) ( ) ( )

where a b z z, , ;p( ) is given in Equation (2) and dV

dz
c is the

comoving volume per unit redshift; note that Equation (17),
once normalized, is independent of the local merger rate 0.
The leading factor of + -z1 1( ) transforms between source-
frame and detector-frame times. Correspondingly, the total
number N of mergers expected to occur during our observation
time T is

òa b a b=
+

  

18

N z T dz
z

z z
dV

dz
, , ,

1

1
, , , ; .p

z
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0
0

0
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( )

( ) ( )

Following Fishbach et al. (2018) and Abbott et al. (2019a),
we model the ensemble distribution of primary black hole
masses as a power law

k µ
k-  

p m M M
m M m M

, ,
0 else

191 min max
1 min 1 max⎧⎨⎩( ∣ ) ( )

( )
( )

and assume a flat distribution

= -
 

p m m M
M m m

,
0 else

20m M2 1 min

1
min 2 1

1 min
⎪

⎪

⎧
⎨
⎩

( ∣ )
( )

( )
( )

of secondary masses.
In our analysis we fix =M M5min , while hierarchically

inferring the parameters a b kz M, , , , ,p 0 max{ } of the binary
black hole redshift and mass distributions. We adopt the priors
listed in Table 1, and perform inference using emcee
(Foreman-Mackey et al. 2013). For every iteration of our
sampler, we evaluate the direct-detection likelihood in
Equation (15), using Equation (18) to convert the proposed
event rate density 0 to a total number of mergers N. We then
compute a model stochastic energy–density spectrum, integrat-
ing over the proposed mass and redshift distributions (in
Equations (5) and (4), respectively) of the binary black hole

population, thereby evaluating the stochastic contribution
(Equation (16)) to the overall likelihood.
Figure 3 shows our resulting posterior on the rate evolution

of binary black hole mergers, using the direct GWTC-1
detections alone (left) and combining direct detections with
existing stochastic search results (right). Each trace in these
figures represents a draw from our a b z, , ,p 0{ } posterior.
The left panel of Figure 3 is directly comparable to Figure 6 of
Abbott et al. (2019a). Figures 4 and 5 show the corresponding
posteriors on these parameters, marginalized over κ and Mmax.
Full parameter estimation results are listed in Table 2.
Direct detections alone allow a measurement of the local

merger rate to = -
+ - - 30.1 Gpc yr0 24.9
88.9 3 1 at 95% credibility

(the most precise measurement actually occurs at the “waist”
seen at ~z 0.1). This is consistent with the results of Abbott
et al. (2019a). Direct observations also allow us to roughly
constrain α, with a moderate preference for a ~ 5 shown in
Figure 4. Significant uncertainties remain, however. At 95%
credibility, we find a = -

+2.3 24.7
13.5, and, since the α posterior

extends all the way to our lower prior bound, we can only
robustly constrain a  13.7. Direct detections offer no
information about β or zp. Correspondingly, in Figure 3 we
have virtually no constraints on the merger rate beyond ~z 1.
At z= 1.5, for example, the local merger rate could plausibly
lie anywhere between 10−4 and - -10 Gpc yr8 3 1, a range
spanning 12 orders of magnitude.
In contrast, the inclusion of O1 and O2 stochastic search data

provides a hard upper bound on the high-redshift merger rate;

Figure 3. Posterior on the rate density z( ) of binary black hole mergers as a function of redshift, given the 10 binary black holes comprising GWTC-1 (left), and the
joint analysis of these 10 detections with O1 and O2 searches for the stochastic gravitational-wave background (right). The rate density is parameterized as in
Equation (2), and the dashed and solid gray curves show the central 68% and 95% credible bounds on z( ) at each redshift. The direct GWTC-1 detections alone yield
a measurement of the local merger rate and marginally constrain the slope α with which the rate evolves at low redshift (see also Figure 4), but give no constraints on
the high-redshift behavior of  z( ). The nondetection of a stochastic gravitational-wave background in Advanced LIGO’s O1 and O2 observing runs, meanwhile,
imposes an upper limit on the net merger rate across all redshifts. The joint analysis of direct detections and stochastic data can therefore exclude rate densities rising
above - -  10 Gpc yr4 3 1, placing joint constraints on α and the peak redshift zp at which  z( ) reaches its maximum (see Figure 5).

Table 1
Priors Placed on the Hyperparameters Describing the Binary Black Hole Mass

and Redshift Distributions; See Equations (17)–(20)

Parameter Prior Minimum Maximum

α Uniform −25 25
β Uniform 0 10
zp Uniform 0 4
0 Log-uniform 10−1 103

κ Uniform −4 12
M Mmax  Uniform 30 100
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Figure 4. Posterior distribution on the local density0, leading slope α, trailing slope β, and peak redshift zp of the binary black hole merger rate z( ) (Equation (2)),
given the 10 binary black hole mergers comprising GWTC-1. We have marginalized over the parameters κ and Mmax governing the black hole mass distribution
(Equation (19)). The GWTC-1 detections yield marginal constraints on α, but offer no information about zp or β. This posterior is used to construct the z( ) samples
on the left side of Figure 3. Full parameter estimation results, including bounds on κ and Mmax, are given in Table 2.

Figure 5. As in Figure 4, but incorporating a joint analysis using the GWTC-1 binary black holes as well as Advanced LIGO limits on the stochastic gravitational-
wave background from O1 and O2. Although the inclusion of stochastic measurements does not affect the marginalized one-dimensional posteriors, the nondetection
of a gravitational-wave background by Advanced LIGO imposes a joint constraint on α and zp, ruling out rate densities that evolve faster than a  7 and reach
maxima at redshifts beyond z 1p . Draws from this posterior are used to generate the rate evolution constraints on the right side of Figure 3.

6
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our nondetection of the gravitational-wave background effec-
tively excludes rate densities that rise above  z( )

- -10 Gpc yr4 3 1. This additional constraint is reflected in
Figure 5. While the inclusion of O1 and O2 stochastic data
does not notably alter the one-dimensional marginal posteriors,
it does significantly alter our joint posterior on α and zp. As
argued in Section 2, the nondetection of a stochastic
gravitational-wave signal provides a joint constraint on these
two parameters, rejecting a large portion of the a - zp
parameter space. When this stochastic exclusion region is
combined with the constraint on α from direct GWTC-1
detections, we can already see hints of a preferred contour in
the α–zp plane.

Although the primary goal of this analysis is to measure the
evolution of the binary black hole merger rate, it additionally
provides a self-consistent framework for predicting the energy
density W f( ) of the binary black hole background using both
the known population properties of local binary black holes and
upper limits from Advanced LIGO and Advanced Virgo
stochastic searches(Abbott et al. 2017b, 2019e). For every
posterior sample in Figure 5 (including the mass parameters
Mmax and κ not shown there) we compute the corresponding
binary black hole energy density using Equation (4). The result,
shown in Figure 6, is a prediction for the binary black hole
stochastic background that is marginalized over our uncertainty
in both the mass distribution and rate evolution of binary black
holes, and subject to the measured upper limits from
Advanced LIGO.

Within Figure 6, the dashed black curve traces the 95%
credible upper limit on W f( ) at each frequency. For
comparison, the dashed blue curve shows the 2σ “power-law
integrated (PI) curve” (Thrane & Romano 2013) quantifying
Advanced LIGO’s integrated sensitivity to the gravitational-
wave background following O1 and O2; energy–density
spectra lying above this curve will generally be observed with

S N 2. As expected, the 95% credible limit on W f( ) lies
nearly tangent to the PI curve. The solid black curve,
meanwhile, marks the median predicted energy density.
At 25 Hz, this median prediction gives W =25 Hz( )

´ -8.8 10 10, comparable to the prediction made by Abbott
et al. (2019e): W = ´ -25 Hz 5.3 10 10( ) . The uncertainty on
our predicted energy–density spectrum, though, is considerably
larger. While the Abbott et al. (2019e) model includes
uncertainty on the local rate density 0 of binary black hole
mergers, it makes stringent assumptions concerning the

subsequent evolution of the merger rate with redshift,
assumptions that carry considerable systematic uncertainty. In
contrast, Figure 6 includes marginalization over all possible
redshift distributions, making this systematic uncertainty
explicit.

4. Advanced LIGO at Design Sensitivity

The continued synthesis of direct detections with stochastic
search results will offer increasingly strong information
regarding the leading slope, α, and peak, zp, of the binary
black hole merger history. Additional binary black holes
detected in the local universe will yield ever tighter posteriors
on α, while continued time integration by stochastic searches
will reject a growing fraction of the joint α–zp posterior space.
Eventually these two effects will meet, converging to produce a
true measurement of both α and zp.
To illustrate this, here we anticipate the results that will soon

be possible with design-sensitivity Advanced LIGO. We
simulate a mock catalog of 500 binary black hole detections,
drawn from a population whose mass distribution is character-
ized by k = 1.2, =M M45max , and =M M5min . We
assume a redshift distribution given by α=3, β=3,
zp=2, and = - - 30 Gpc yr0

3 1. With this choice of local
merger rate, we would expect to detect these 500 binary black
holes after ~T 1.2 yr of observation with design-sensitivity
Advanced LIGO.
We construct our mock catalog following Fishbach et al.

(2018). For each event, we draw an “observed” S/N

r r~  , 1 21obs ( ) ( )

from a Gaussian distribution about the event’s true S/N ρ,
calculated in a detector with a noise power spectral density
given by the Advanced LIGO “design sensitivity” curve of
Abbott et al. (2019c). We require our detected events to have
r > 8obs in a single detector. For each detected event, we draw
an observed maximum-likelihood chirp mass

s
r

~   log log ,
8

22obs
obs

⎛
⎝⎜

⎞
⎠⎟ ( )

and symmetric mass ratio

h h s
r

~ h ,
8

, 23obs
obs

⎛
⎝⎜

⎞
⎠⎟ ( )

Table 2
95% Credible Constraints on Parameters Governing the Mass and Redshift Distribution of Binary Black Hole Mergers

Run M Mmax ( ) κ α zp - - Gpc yr0
3 1( )

O1–O2: Direct -
+42.7 6.4
18.6

-
+1.1 2.3
1.9 13.7 L -

+30.1 24.9
88.9

O1–O2: Direct/Stochastic -
+42.8 6.3
20.1

-
+1.0 2.5
1.7 10.1 L -

+33.6 27.5
90.1

Design (Mock): Direct -
+44.9 1.2
1.2

-
+1.3 0.3
0.3

-
+3.2 0.6
0.8 1.7 -

+29.2 6.4
7.2

Design (Mock): Direct/Stochastic -
+45.1 1.0
1.7

-
+1.2 0.3
0.3

-
+3.2 0.9
1.8

-
+1.9 1.1
1.6

-
+28.9 7.5
8.5

Note. The second and third lines show true results given data from Advanced LIGO’s O1 and O2 observing runs, using direct observations of binary mergers alone, as
well as the synthesis of direct detections with constraints on the stochastic gravitational-wave background. While both the “Direct” and “Direct/Stochastic” O1 and
O2 analyses give similar one-dimensional results, the inclusion of stochastic data excludes a nontrivial portion of the joint a - zp space; see Figure 5. In neither case
can we measure α; instead we place an upper limit. The fourth and fifth lines give parameter estimation results from our mock catalog corresponding to one year of
Advanced LIGO observation at design sensitivity. When analyzing mock direct detections alone, we can at best place a lower limit on the peak redshift zp, while the
inclusion of simulated stochastic data allows us to directly measure zp. None of the four cases give informative marginalized measurements of β, and so this parameter
is excluded from the table.

7

The Astrophysical Journal Letters, 896:L32 (10pp), 2020 June 20 Callister et al.



where and η are the event’s true parameters and we adopt
characteristic uncertainties s = 0.08 and s =h 0.022. We
then draw synthetic likelihood samples about log obs and
hobs, with variances consistent with the above distributions.
This prescription gives realistic uncertainties on the measured
component masses and distances of binary black hole
detections, matching the typical uncertainties reported in Vitale
et al. (2017).

We encapsulate a binary’s inclination angle and sky location
in a single Finn & Chernoff (1993) projection factor Θ, which
quantifies a signal’s amplitude reduction due to suboptimal
viewing angles and/or sky placement. If ropt is a binary’s
optimal S/N (i.e., face-on and directly overhead), then rQ opt is
the event’s actual S/N. For each mock event, we draw a
maximum-likelihood projection factor from

s
r

Q ~ Q Q ,
8

, 24obs
obs

⎛
⎝⎜

⎞
⎠⎟ ( )

where s =Q 0.15, about which we draw likelihood sam-
ples Q{ }.

Realistic redshift samples will be strongly correlated with an
event’s recovered S/N as well as its projection factor Θ. To
capture these correlations, we first draw S/N samples

r r~  , 1 . 25obs{ } ( ) ( )

Then, noting that ρ is inversely proportional to an event’s
luminosity distance DL, we convert r{ } and Q{ } into
luminosity distance samples via

r
r

=
QD

1 Gpc
1 Gpc , 26L

opt
{ } ( ) { }

{ }
( )

where r 1 Gpcopt ( ) is the binary’s optimal S/N at 1 Gpc.
We additionally simulate cross-correlation measurements of

the corresponding stochastic gravitational-wave background,

assuming T=1.2 yr of integration with Advanced LIGO’s
Hanford–Livingston baseline. Our simulated cross-correlation
spectra are drawn from

g s~ WC f f f f, , 27^ )(( ) ( ) ( ) ( ) ( )
where the gravitational-wave background’s energy density
W f( ) is calculated using Equation (4) and s f( ) is given by
Equation (10). Given the binary black hole mass and
redshift distributions assumed above and a 1.2 yr integration
time, the gravitational-wave background has amplitude W =0

´ -2.2 10 9 at =f 25 Hz and á ñ =S N 4.2opt . In our particular
noise realization, the binary black hole background is observed
with S/N=3.6, representing a marginal detection.
Figure 7 illustrates the posterior we obtain on z( ) using our

simulated direct detections (left) and direct detections plus
stochastic data (right). Figure 8 shows the posterior on 0, α,
β, and zp for this latter case; as before, we have marginalized
over the parameters governing the black hole mass distribution.
For reference, Figure 8 also includes the one-dimensional
marginalized posteriors obtained by direct detections alone (in
green). Full parameter estimation results for each case are given
in Table 2.
With 500 direct detections we can very precisely measure

a = -
+3.2 0.6
0.8 at 95% credibility, yielding a tight fit to  z( ) out

to ~z 1. By virtue of not directly observing a turnover of z( ),
we can now place a lower limit z 1.7p . Otherwise, we are
again limited by Advanced LIGO’s finite detection range. The
joint analysis of our direct detections and stochastic data,
meanwhile, yields a qualitatively different picture. Although
the S/N of our simulated detection of the gravitational-wave
background is somewhat marginal, it provides enough
complementary information to rule out large zp. While the
absolute merger rate remains uncertain at large redshifts, this
future data would yield a confident measurement of =zp

-
+1.9 1.1
1.6.

5. Conclusions

We present a powerful new constraint on the binary black
hole redshift distribution, with implications for stellar evol-
ution, and binary black hole formation and evolution. By
combining detections of compact binaries in the local universe
with measurements of (or upper limits on) the stochastic
gravitational-wave background, we demonstrate that it is
possible to explore the binary black hole redshift distribution
at redshifts .well beyond the present horizon of direct
detections. Using existing observations from the Advanced
LIGO/Virgo O1 and O2 observing runs, we have obtained
novel joint constraints on the low-redshift slope α and peak zp
of the binary black hole merger rate (see Equation (2)). In
particular, we can reject merger rates that grow faster than
a  7 and peak beyond z 1.5p . These constraints will
significantly improve with continued observation. Given an
approximately year-long observation period with design-
sensitivity Advanced LIGO, we have demonstrated the
possibility of directly measuring zp.
Although we have taken adopted a decidedly phenomen-

ological model for the merger rate  z( ) in this work, this is
not the only possible approach. If, for instance, one were
willing to assume that binary black hole formation is tied
directly to the (potentially metallicity-dependent) star
formation rate, as in Figure 1, one could instead seek to

Figure 6. Posterior on the energy–density spectrum W f( ) (see Equation (4)) of
the binary black hole stochastic background, given the stochastic upper limits
and direct binary black hole detections made by Advanced LIGO and Virgo
during O1 and O2. Each red trace corresponds to a posterior sample drawn
from Figure 5; the range of predictions shown here therefore incorporates our
uncertainty in the mass and redshift distributions of binary black holes. The
solid and dashed black curves mark the median and 95% credible upper limit
on W f( ), respectively. For comparison, the dashed blue curve shows Advanced
LIGO’s 2σ power-law integrated curve(Thrane & Romano 2013) illustrating
its sensitivity to the stochastic background following O2.
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Figure 7. Expected posterior on the rate density z( ) of binary black hole mergers, given 1.2 yr of observation with design-sensitivity Advanced LIGO. We analyze a
catalog of 500 mock detections as well as simulated measurements of the stochastic gravitational-wave background. The left subplot (green) shows results obtained
from mock detections alone, while the right subplot shows results given by the synthesis of mock detections with gravitational-wave background measurements. In
each case, the dashed and solid gray curves show our 68% and 95% credible symmetric bounds on the merger rate evolution, and the black trace shows the “true”
injected merger rate. Although the peak of this merger rate occurs at zp=2, well beyond Advanced LIGO’s horizon, the joint analysis of direct detections with
stochastic data allows us to reconstruct  z( ), yielding the posteriors shown in Figure 8.

Figure 8. Expected posteriors on the local density 0, leading slope α, trailing slope β, and peak redshift zp of the binary black hole merger rate after 1.2 yr of
Advanced LIGO observation at design sensitivity. The green marginal distributions correspond to the left-hand side of Figure 7, obtained using a mock catalog of
direct BBH detections; blue distributions (both one- and two-dimensional) correspond to the right-hand side of Figure 7, given by the synthesis of the BBH catalog
with simulated stochastic measurements. We have marginalized over the parameters κ and Mmax characterizing the black hole mass distribution. The catalog of
synthetic detections provides reasonable measurements of 0 and α, but offers only a lower bound on zp. The addition of stochastic search results imposes an upper
bound on zp; taken together, we bound = -

+z 1.9p 1.1
1.6 at 95% credibility.
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parameterize and measure the metallicity distribution of
binary progenitors and the time delay distribution between
binary formation and merger.

Looking ahead, future proposed ground-based gravitational-
wave detectors like Cosmic Explorer and Voyager may be able
to directly measure the rate of binary black hole mergers out to
z 10 (Vitale et al. 2019). However, even a more limited

ability to explore the history of binary black hole mergers with
present-day instruments will allow us to ask, sooner rather than
later, questions of considerable astrophysical importance: What
are the progenitors of compact binary mergers, and when did
they form? What is the mean time delay between binary
formation and merger? How do black hole mergers across
cosmic time connect to the evolution of stars and galaxies in
the universe? The combination of individually resolved sources
and the unresolved stochastic gravitational-wave background
may soon provide answers.
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