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Characterizing Impacts of Model Uncertainties in Quantitative Photoacoustics*

Kui Ren® and Sarah Vallélian*

Abstract. This work is concerned with uncertainty quantification problems for image reconstructions in quan-
titative photoacoustic imaging (PAT), a recent hybrid imaging modality that utilizes the photoa-
coustic effect to achieve high-resolution imaging of optical properties of tissue-like heterogeneous
media. We quantify mathematically and computationally the impact of uncertainties in various
model parameters of PAT on the accuracy of reconstructed optical properties. We derive, via sensi-
tivity analysis, analytical bounds on error in image reconstructions in some simplified settings and
develop a computational procedure, based on the method of polynomial chaos expansion, for such
error characterization in more general settings. Numerical simulations based on synthetic data are
presented to illustrate the main ideas.
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1. Introduction. The field of uncertainty quantification has experienced tremendous
growth in the past decade, with many efficient general-purpose computational algorithms de-
veloped and some specific theoretical issues mathematically understood; see, for instance, [8,
17,18, 21, 27, 28, 32, 33, 34, 39, 46, 47, 48, 49, 58, 59, 62, 73, 78, 82, 86] and references therein
for some recent developments in the field. In this work, we investigate uncertainty quan-
tification issues in image reconstruction problems in quantitative photoacoustic tomography
(PAT), one of the recent hybrid imaging modalities that combines the advantages of classical
ultrasound imaging and optical tomography [16, 81, 83]. Our main focus is to characterize
the impact of model uncertainties on the quality of the images reconstructed.

PAT is a coupled-physics imaging method that utilizes the photoacoustic effect to construct
high-resolution images of optical properties of tissue-like heterogeneous media. In a typical
experiment of PAT, we send a short pulse of near-infrared light into an optically heterogeneous
medium, such as a piece of biological tissue. The photons travel inside the medium following a
diffusion-type process. The medium absorbs a portion of the photons during the propagation
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process. The energy of the absorbed photons leads to a temperature rise inside the medium
which then results in thermal expansion of the medium. When the remaining photons exit,
the medium cools down and contracts due to this temperature drop. The thermal expansion
and contraction within the medium induces a pressure change which then propagates through
the medium in the form of ultrasound waves.

Let us denote by X C RY (d > 2) the medium of interest and dX its boundary and denote
by u(x) the density of photons at position x € X, integrated over the lifetime of the short
light pulse sent into the medium. It is then well-known that u(x) solves the following elliptic
boundary value problem [9, 10, 12, 15]:

(1) —V -y (x)Vu(x) + o, (x)u(x) = 0 in X,
u(x) = g(x) on 0X,

where y(x) > 0 and o4(x) > 0 are the diffusion and absorption coefficients of the medium,

respectively, and ¢ is the model for the (time-integrated) illumination source. The initial
pressure field generated by the photoacoustic effect is given as [15]

(2) H(x) =T'(x)oq(x)u(x), x€e X,

where I', usually called the Griineisen coefficient, is a function that describes the photoacoustic
efficiency of the medium. The pressure field evolves, in the form of ultrasound, following the
acoustic wave equation [15, 31]:

1 82p . d
CQ(X)w—Apzo in Ry x R%,
(3) p(O,X) = Po in Rd’

op
e
where ¢ is the speed of the ultrasound and the initial pressure field pg := Hyxx with xx
the characteristic function of the domain X. It is generally believed that change of optical
properties in tissue-like media has a very small impact on the ultrasound speed field of the
media. Therefore, ¢(x) and the optical coefficients v(x) and o,(x) are treated as independent
functions [31].
In a PAT experiment, we measure the time-dependent ultrasound signal on the surface of
a device Y that holds the medium,

(0,x) = 0 in R%

(4) y(t, %) = pjo,1)xaY>

for a long enough time 7. The objective is then to reconstruct one or more coefficients in
the set (I'(x), 04(x),7(x)) from these measurements. In general, data collected from multiple
illumination sources are necessary when more than one coefficient are to be reconstructed.

Image reconstructions in PAT are often performed in two steps. In the first step, one
reconstructs H in the acoustic wave equation from measured ultrasound data [1, 2, 5, 6, 20,
23, 30, 37, 38, 40, 42, 43, 44, 56, 61, 64, 77, 79]. Theory on uniqueness and stability of the
inverse solutions, as well as analytical reconstruction strategies, has been developed in both
the case of constant ultrasound speed and the case of variable ultrasound speed.
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In the second step, one uses the functional H as available internal data and attempts
to reconstruct optical coefficients, mainly (T, 04,7) [4, 11, 13, 15, 24, 25, 35, 45, 51, 54, 63,
69, 74, 75, 87]. It has been shown that one can uniquely and stably reconstruct two of the
three coefficients (I, 04,7) if the third one is known [12, 15, 69]. When multispectral data are
available, one can simultaneously reconstruct all three coefficients uniquely and stably [14]
with additional assumption on the dependence of the coefficients on the wavelength.

All the aforementioned results in PAT rely on the assumption that the ultrasound speed
¢(x) is known. In practical applications, ultrasound speed inside the medium to be probed may
not be known exactly. For instance, in the imaging of biological tissues, it is often assumed
that the ultrasound speed in tissues is the same as that in water. However, it is well-known
now that ultrasound speed has about 15% variation from tissue to tissue [85]. Therefore, in
PAT imaging of tissues, if we use the ultrasound speed of water in image reconstructions, the
reconstructed images may not be the true images that we are interested in. They may contain
artifacts caused by the inaccuracy of ultrasound speed used.

The objective of this work is exactly to characterize the impact of such inaccuracies in
certain coefficients, which we will call uncertain coefficients (for instance, the ultrasound
speed ¢) and denote by u, in the mathematical model on the reconstruction of other model
coefficients, which we will call objective coefficients (for instance, the absorption coefficient
0,) and denote by o. To explain the main idea, let us write abstractly the map from physical
coefficients to the ultrasound data in PAT as

() y=f(o,u)

and denote by f_l [u] an inversion algorithm that reconstructs o with uncertainty coefficient u;
then we are interested in estimating the relation between f~'ui](f(o,u1)) — f~uz](f(0,u1))
and u; — uy. Whenever possible, we would like to derive stability results that bound errors
in the reconstructions of o with errors in the uncertainty coefficient u, that is, bounds of the

type

6)  |If M w] (f(o,u1)> — £ Hug] (f(o,ul)) = < ¢|jus — ugl|zr for some constant ¢ > 0,

with appropriately chosen function spaces Z and Z' (and the corresponding norms || - ||z and
|- ll=r). If such a bound cannot hold, the problem is unstable under change of the uncertainty
coefficient.

To take a closer look at the problem, let us assume that f is sufficiently smooth in a
neighborhood of some (0¢,1p). We can then simplify the problem by linearizing it at (09, 1),
when we know that the variation in u is small. The linearization at background ug leads us
to the system

(7) y = f(00,u0) + %[OOMOMO + %[anuo]fsu-

This gives the following relation, after some straightforward algebra:

0 (o0, wolo = 7 (F{uol (v~ (00, 1)) 10) — 2 fou, ol
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Therefore, in the linearized case, the uncertainty characterization that we intend to study boils

down to the estimation of the size of the operator (‘;—f [00, uo])_lg—ﬁ [00, Up], assuming again that

the linear operator %[oo,uo] is invertible. Note that the first term on the right is the error
in the datum caused by the inaccuracy of the reconstruction algorithm. It is not caused
by uncertainty in u and disappears when the reconstruction algorithm f_l gives exactly the
inverse of f at ug.

The rest of the paper is structured as follows. We first derive in section 2 various qualitative
bounds, in the form of (6), on errors in PAT reconstructions of the objective coefficients due
to errors in the uncertain coefficients. We then perform similar sensitivity analysis in section 3
for image reconstruction problems in fluorescence PAT (fPAT), that is, photoacoustic tomog-
raphy with fluorescent markers. To understand more quantitatively the uncertainty issues, we
develop, in section 4, a computational algorithm that would allow us to build, numerically, the
precise relation between ||~ [u1](f(0,u1)) — 1 [ua](f(0,u1))|lz and |Ju; — ug||z. Numerical
simulations based on synthetic ultrasound data are then presented, in section 5, to provide an
overview of the impact of model uncertainties on the quality of image reconstructions in PAT
and fPAT.

2. Impact of model inaccuracies in PAT. In this section, we study in detail some un-
certainty characterization problems for PAT reconstructions of optical coefficients. Following
the results in [12], we know that it is impossible to uniquely reconstruct all three coefficients
I', 04, and v simultaneously. We will therefore focus only on the cases of reconstructing one
or two coeflicients.

Throughout the rest of the paper, we denote by LP(X) (1 < p < oo0) the usual space
of Lebesgue integrable functions on X, W*P(X) the Sobolev space of functions whose jth
derivatives (0 < j < k) are in LP(X), and H*(X) := Wk2(X). We denote by C*(X) the
space of functions whose derivatives up to k are continuous in X. We will use | - ||z to denote
the standard norm of function space =, and we denote by F, the class of strictly positive
functions bounded between two constants o and @,

9) Fo={fx): X—»R:0<a< f(x)<a<ocoVxe X}

We make the following general assumptions on the optical and acoustic domains and the
illumination source: (i) the optical domain X is bounded with smooth boundary 0X; (ii) the
boundary source g is the restrictions of a C* function on 0.X, and g(x) is selected such that the
corresponding diffusion solution u > ¢ > 0 for some constant ¢; and (iii) the acoustic domain
Y is bounded with smooth boundary 0Y, and X is compactly contained in Y, X CC Y.

It will be clear that the strong regularity assumptions on X and ¢ can be relaxed signif-
icantly in the cases we consider. We made these assumptions simply to avoid the trouble of
having to state conditions on them every time they are involved in a theoretical result. We
emphasize that the assumption of having an illumination g such that v > ¢ > 0 in X is not
unreasonable. In fact, with mild regularity and bound assumptions on the coefficients, the
techniques developed in [3] allow us to show that when g > ¢/ > 0 for some constant ¢’ on
0X, the solution to the diffusion equation satisfies u > ¢ > 0 for some c; see [3, 70] for more
discussions on this issue.

A large portion of the theoretical and numerical development in the rest of the paper
is based on the study of the propagation of the uncertainty in ultrasound speed c¢ to the
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reconstructed initial pressure field pg := Hyxx. This is a topic that has been addressed
mathematically by Oksanen and Uhlmann in [60]. We now recall the main result of [60].
Interested readers are referred to the original paper for more technical details on the proof of
the result.

Let A. be the operator defined through the relation

(10) P|(0,1]x8y = Acpo,

where p is the solution to the acoustic wave equation (3) with initial condition pg := Hxx.
Let g be the solution to the time-reversed wave equation

c%x)gj;]_Aq =0 in (0,7) xY,
(11) aq(T,x) = A Mhl=r inY,
%(T,x) =0 inY,
g = h on Y

with A7 h|;—r defined as the solution to the elliptic boundary value problem:
Ap=0 in Y, ¢ =nh(T,x) on 0Y.
We then define the operators A. and K, through the relations, with I the identity operator,
K.=1- A, and A.h = q(0,x).

Stefanov and Uhlmann showed in [77] that py can be reconstructed by the following Neumann

series:
o

(12) po = ReAcpy, with R.:=> KJA..
§=0
Based on this reconstruction formula, Oksanen and Uhlmann proved the following result.

Theorem 2.1 (see [60, Theorem 1]). Let ¢ € C>®(R?) be strictly positive and suppose that
the Riemannian manifold (Y, c=2dx?) has a strictly conver function with no critical points and

that Y is strictly convex with respect to the Riemannian metric ¢~ 2dx?. Under Assumption
(i), let po € H3(R?) and ¢ € C°(RY) be such that

(13) ol 2y < ens [ellez(xy < ¢ey supp(po) C X, and ¢=c, in RNX.

Then there are constants ec, T, ¢ such that |[¢ — cl|¢1(x) < ec implies that

~ 1/2
(14) [(Re — Rz)Acpollzr vy < clle = cllpeo vy HAcpo||H/1((0,T}X3y)-

This conditional stability result basically says that, for relatively smooth ultrasound speed
(at least C? to be more precise), when the uncertainty in the ultrasound speed c is not too
big, the error it induced in the reconstruction of the initial pressure field py (and therefore
H) is also not big. This observation is, in some sense, confirmed by the numerical simulations
in [26], where it is shown that one can make a reasonable error in the reconstruction of the
ultrasound speed ¢ but still have a good reconstruction of the absorption coefficient o, when
simultaneous reconstruction of ¢ and o, was performed.
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Remark 2.2. In practical applications, acoustic detectors are often placed on a surface Y
that encloses the medium to be probed (that is, X) inside. Therefore, our assumption that
X CC Y is made here not only for technical reasons but also for a practical purpose. It is
also not unrealistic to assume that perturbations of the ultrasound speed only occur in the
medium, that is, ¢ = ¢ on the outside of the medium.

2.1. Impact of inaccurate ultrasound speed. We start with the impact of inaccurate
ultrasound speed on optical reconstructions. This problem can be analyzed in a two-step
fashion. The first step, analyzed in Theorem 2.1, characterizes the impact of uncertainty in
ultrasound speed on the reconstruction of the initial pressure field H. In the second step, we
analyze the impact of the uncertainty in H on the reconstruction of the optical coefficients.

The case of reconstructing I'. Let us first consider the (almost trivial) case of reconstructing
the single coefficient I', assuming that all the other coefficients, besides the ultrasound speed
¢, are known exactly. The following result is straightforward to verify.

Proposition 2.3. Let I € C3(X) N Fy and T € C3(X) N Fa be the Griineisen coefficient
reconstructed with ultrasound speeds ¢ and c respectively from ultrasound datum Ac.po (po :=
Hyxx ). Assume further that ||c[lc2(xy, l[clle2(x) < cc for some constant ¢, v € C2(X) N Fa,
and 0, € C*(X) N Fy. Then there exists €., T, and ¢ such that ||¢ — cll¢1(x) < ec implies

=4 ~ 1/2
(15) IT = Dllag ) < €llé = ell oo ) 1AePO ]300 77 o

Proof. With Assumptions (i)—(ii) on the regularity and boundedness of o4, v, X as well
as g, classical theory [29, 36] ensures that the diffusion equation (1) admits a unique bounded
solution in C3(X) such that 0 < ¢; < u(x) < ¢y for some constants ¢; and cz. Therefore H
and H satisfy the conditions in Theorem 2.1.

Moreover, we observe from the definition of H in (2) that

(16) H—H = (T —D)og(x)u(x).
This relation then implies that
(17) IT = Dllpx) < CllH = Hllp ()

for some constant ¢ that depends on the bounds of o, u as well as their gradients. The result
in (15) is then obtained by combining the bound (17) and the bound (14), taking into account
that X CCY. |

This simple exercise shows that the error, measured in H' norm, in the reconstruction
of the Griineisen coefficient I', grows at most linearly, asymptotically, with respect to the
maximal error we made in the ultrasound speed (which is again assumed to be relatively
smooth). Therefore, if we use a relatively accurate ultrasound speed in our reconstructions of
T', the errors in the reconstructions are relatively small.

The case of reconstructing o,. We can reproduce the result for the reconstruction of the
absorption coefficient, one of the most important quantities in practical applications. We have
the following stability result.
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Theorem 2.4. Let 7, € C3(X) N F, and 0, € C3(X) N F, be the absorption coefficients
reconstructed with ¢ and c, respectively, from datum Acpo (po := Hxx ). In addition, assume
that T € C3(X) N Fa, v € C3(X) N F, and that [ellc2(xys llellez(xy < e for some constant c..
Then there exists €., T, and ¢ such that ||¢ — c|lc1(x) < &c implies

(18) 150 = oalla ) < €lE = ell oo () AP0 |38 0170

Proof. Let u and u be the solution to the diffusion equation (1) with coefficients 7, and oy,
respectively. We define w = w — u. It is straightforward to verify that w solves the following
diffusion equation:

~V-4Vw = —(H - H)/T in X,

(19) w = 0 on 0X.

With the boundedness assumptions on the coefficients « and I', we deduce directly from
classical elliptic theory [29, 36] that

(20) [wll(x) < @llH — HI|r2(x)
for some constant ¢. Meanwhile, we observe directly from the definition of datum H that
(21) (H—H)/T = 5w+ (64 — 04)u.

This leads to the following bound, after using the fact that u is positive and bounded away
from zero:

(22) 150 — Gallarxy < c2(I1H — Hllpxy + 1wl x))-

We can now combine (22), (20), and (14) to obtain the bound in (18). [ ]

The case of reconstructing multiple coefficients. The case of simultaneous reconstruction
of more than one coefficient is significantly more complicated. The theory developed in [12]
states that one can reconstruct two of the three coefficients (I, 04, ) assuming that the third
one is known. Multispectral data are needed in order to simultaneously reconstruct all three
coefficients [14]. Let us define

(23) “:1:{2 and q:(A\?#w.

We then have the following stability result.

Theorem 2.5. Let (f,&aﬁ) and (T, 04,7) be the coefficient pairs reconstructed with ¢ and
c, respectively, using data AcH = (Ac(Hixx),Ac(H2xx)) generated from sources g1 and
g2 Assume further that Yjox = Yjox- Then, under the same conditions on (I',04,7,¢) and
(I';0a,7,¢) as in Theorem 2.4, there exists (g1, 92), €c, T, and ¢ such that [|c — c[le1( 3y < &c
implies

(24)  [lgd—qllrexy + iz = pllr2x)

< emax{[¢ = el oo () [ AHI [~ ell o A T

(HL((0,T)xdY))2" YxAY))2 2}
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Proof. Let uy and ug be the (positive) solutions to the diffusion equation (1) for sources
g1 and go, respectively. We multiply the equation for u; by us and multiply the equation for
ug by u1. We take the difference of the results to get the following equation:

—V-('yu%)vu— =0 in X,
25 w
(25) 2 _ 2 on 0X.
U g1

Using the fact that H; = T'o,u1, and the fact that us/u; = Hy/H;p, we can rewrite this
equation as
—V -1’8 =0 in X,

26
(26) ©? ,u|28X on 0X,

where 83 = H fv% and u%a x =V HQ‘ - . This is a transport equation for u? with known vector

field B. It is shown in [12] that there exists a set of boundary conditions (g1, g2) such that
this transport equation admits a unique solution. Moreover, this transport equation for the
unknown g allows us to derive the following stability result for some constant c;:

(27) 17— il < |- HITEE .

We now define v; = \/yu; (j = 1,2). It is well-known (and easy to verify) that v; solves
the following elliptic partial differential equation:

(28) Avj(x) + g(x)vj(x) = 0 in X,
vj = /Voxy; on 0X.

Let w; = v; — v; with v; the solution to the above equation with ¢; then w; solves

(29) Aw;(x) + ?JV(X)wj(z; - (;((? — q)vj ;I; )C;X

where the homogeneous boundary condition for w; comes from the assumption that 75x =
Yjox - Since 0 is not an eigenvalue of the operator A + ¢ (otherwise 0 would be an eigenvalue
of the operator —V -yV +0,), and u; (therefore v;) is positive and bounded away from zero,
we conclude that [29, 36]

(30) c2l|¢ — qllr2(x) < lwjllaex) < eslld — allr2(x)
for some constants ¢ and c3.
To bound w; by the data, we observe that under the transform v; = ,/qu;, we have
H; = v;/p. Therefore,
(31) pit(Hj — Hy) = pwj — (7 — p)vy.
This gives us the following bound for some constant cy:
(32) w22y < ea (M = Byl + i = pllacx) )

We can now combine (27), (30), (32), and (14) to obtain the stability bound in (24). [ ]
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Remark. Note that the error bound we have in (24) is for the variables p and ¢. This can
be easily transformed into bounds on two of the triple (', 0,,7) if the third is known (since
we cannot reconstruct simultaneously all three optical coefficients according to [12]). More
precisely, we can replace the left-hand side by [T, —T'04l[2(x) + G0 — 0allL2(x) when (', 04)
is to be reconstructed, by

Vi VA

Oq Oq

IAVE Ay

when (o4,7) is to be reconstructed, and by Hf\ﬁ— F\ﬁ”ﬂ(x) + ||\ﬁA\ﬁ— WA\ﬁHH(x)
when (I, ) is to be reconstructed.

L2(X)

2.2. Impact of inaccurate diffusion coefficient. We now study the impact of uncertainty
in the diffusion coefficient v on the reconstruction of the other optical coefficients. Since both
the uncertainty coefficient () and the objective coefficients (I" and o,) are only involved in
diffusion model (1), we do not need to deal with the reconstruction problem in the first step
of PAT. We therefore assume here that the internal datum H is given.

The case of reconstructing I'. We again start with the reconstruction of the Griineisen
coefficient I', assuming that o, is known but « is not known. We have the following sensitivity
result.

Theorem 2.6. Let T € CY(X) N Fy and T € C1(X) N Fy be the Grineisen coefficients
reconstructed from datum H € CY(X) with diffusion coefficients v € C1(X) N F, and 5 €
CYH(X) N F., respectively. We assume further that o, € C1(X) N F,. Then we have, for some
constant ¢,

(33) Hf_rqu(X) <c

W—WH
lo, Y HL(X)

Wheo(X)

Proof. Let u and u be solutions to the diffusion equation (1) with coefficients (v, 0,) and
(7, 04), respectively. Let us define w = @ — u. We then verify that w solves

(34) -V -AVw + o,w = OV-(’y—'y)Vu in X,

w = on 0X.

This gives, following standard elliptic theory [29, 36], the following bound:

(35) el x) < IV - (5 = )Vl 2.

Meanwhile, we observe, from the fact that the internal datum H does not change with -, that
(36) Togi —Togu =To,w+ (I — T)oqu = 0.

This, together with the fact that u is positive and is bounded away from zero, gives us

(37) IF = Dl ) < ealleollo .

We can then combine (35) and (37) to get
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(38) IT =Tl x) < eV - (5 = 7)YVl 2 )

We now check the following calculations:

(39) V-(?—fy)VUzV-%’yVU*TV YVu + yVu - V%
_Hy—~ 7=
=T + Vraa \V4 ot

where we have used the diffusion equation to replace V - yVu by o,u (which is simply H/T").
This implies that

2 H7-v)° H|*| 7=/
(F — < L LA
(40) /X (V-(—7)Vu) dx < C4/X [(Faa ; ) + ’VF% ‘V ; ]dx
B H |12 ~ 2 H |12 ~ 2
<y ny + HV HV7 7
Loallpeo () LQ(X) Lo, Loo(X) Yl x)
=~ H |? 5~
ol = O b O (e IS e PO
Loallpes (%) Loa||peo(x 7o llz(x)
This allows us to conclude that
H Y=
(a1) IV G =)Vl < 65| o [fnomi | 52 H
Ta H(x)
The stability bound in (33) then follows from (38) and (41). [ ]

The case of reconstructing o,. For the reconstruction of the absorption coefficient o, as-
suming I' known, we can prove a similar sensitivity result.

Theorem 2.7. Let 6, € CY(X) N F, and 0, € C1(X) N Fy be the absorption coefficients
reconstructed with 5 € C1(X) N Fo and vy € CYH(X) N Fy, respectively, from datum H € C*(X).
We assume further that T' € C*(X) N F,. Then, for some constant ¢, the following bound
holds:

(42) 15 — oallgx) < ¢

Lo, H?—Ll(X)'

WI,OO(X)

Proof. Let u and u be solutions to the diffusion equation (1) with (7,0,) and (v, 04),
respectively. Define w = u — u. Then w solves

-V-AVw = V-(¥—9)Vu in X,

(43) w = 0 on 0X,

where we have used the fact that H = I'g,u = T'o,u. This again gives us the same bound as
n (35), that is,

(44) [wliz ) < allV- (v =) Vel 2 x),
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by standard elliptic theory [29, 36]. Using (41), we have

Y=

(15) T I =

allwieex) Il 7 llni(x)

From the datum H = I'c,u = I'o,u, we check that

(46) I'o,u—Togu=T0,w+T(04 —0g)u =0,
which in turn gives us
(47) 100 = oallnix) < esllwllanx)-
The stability in (42) then follows from (45) and (47). [ |

Let us emphasize here that the difference between the right-hand side of (33) and that
of (42) is that the o, is known in (33) while I" is known in (42).

The case of reconstructing (I',0,). In the case of simultaneous reconstruction of I" and o,
we can prove the following stability result following similar arguments as in Theorem 2.5.

Theorem 2.8. Let (g1,92) be a set of boundary illuminations such that the data H =
(Hi, Ha) generated from it uniquely determine (I',04) as in Theorem 2.5. Let (I',o,) and
(T, 0,) be the coefficient pairs reconstructed with 5 € C*(X) N Fq and v € C*(X) N F,, respec-
tively, from data set H = (Hy, Hy). Then we have that, for some constants ¢ and ¢,

(48) cHﬁ - \ﬁHLQ(X) < Hbva - UaHLQ(X) + Hfga - 1ﬂUaHLQ(X)

AV Ay
Vi
Proof. From the proof of Theorem 2.5, we conclude that u is reconstructed independent
of the uncertain and objective coefficients. Therefore, we have

<oV =llr2x) +

L2(x)

f&a T'o,

(49) ﬁ—ﬁzo

This gives immediately the bound,

(50) VA = VAl < T80 — Toallzzcx) < GV = VAll2x)-
Let v; = \/yu; (j = 1,2) and w; = v; — vj. Then w; solves

- Aw;(x) + q)wy(x) = (@G- q)v; i X,
wj = 0 on 0X.
Meanwhile, H; = I'o,u; = % = f&aﬂj = % This implies that w; = 0. Equation (51) then
leads to ¢ = ¢, that is,
A7y O A
(52) ﬁJr@:—‘ﬁJr@.

vVi oo vy
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This translates directly to the following bound:

~ - A7y Ay
(53) 100 — oallze(xy < 2 | 17— ll2x) + \[ _ AV
ﬂ ﬁ LQ(X)
The stability estimate in (48) then follows from (50) and (52). [ |

It is important to note that the proof of Theorem 2.8 is mainly based on the relations (49)
and (52). Therefore, we can use the same procedure to study the impact of uncertainty
in one of the coefficients on the reconstruction of the other coefficients. For instance, it
is straightforward to derive the following results on the impact of the uncertainty of I' on
reconstructing (v, o,) and the impact of the uncertainty in o, on the reconstruction of (T', 7).

Corollary 2.9. Under the same assumptions in Theorem 2.8, let (7, 0a) and (7y,04) be the
coefficient pairs reconstructed with I € C?(X) N Fy and T' € C*(X) N F,, respectively. Then

we have that, for some constants ¢ and ¢y,
ViV ol

Oq

ff

(54)  allT = Tll2x

L2(X) ’ LQ(X)

<

Let (T',7) and (T,7) be the coefficient pairs reconstructed with &, € C2(X) N Fy and o, €
C%(X) N Fa, respectively. Then there exist constants ca and co such that

f sz H(Af Aﬁ)”@(a‘i)

< calloq — oallz2(x)

(85)  calloa — oallr2(x) <

L2(X)

3. Impact of model inaccuracies in fluorescence PAT. We now extend the sensitivity
analysis in the previous section to image reconstruction problems in quantitative photoacous-
tics for molecular imaging. In this setup, we are interested in imaging contrast agents inside
the medium of interests. For instance, in fPAT [19, 65, 66, 67, 72], fluorescent biochemical
markers are injected into the medium to be probed. The markers will then accumulate on
certain targeted heterogeneities, for instance, cancerous tissues, and emit near-infrared light
(at wavelength A,,) upon excitation by an external light source (at a different wavelength
which we denote by A;). In the propagation process, both the excitation photons and the
fluorescence photons can be absorbed by the medium. This absorption process then generates
ultrasound signals following the photoacoustic effect we described previously.

The densities of the excitation photons and emission photons, denoted by u;(x) and wy, (x),
respectively, solve the following system of coupled diffusion equations [7, 22, 72, 76]:

-V Yz (x)vul‘(x) + (aa,xi + Ua,xf)ux(x) =0 in X,

(56) _v'me(x)vum(x)+Ua,m(x)um(x) = naa,xfua:(x) in X,
Uz (X) = g2(x) Um(x) = 0, on 0X,
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where the subscripts x and m are used to label the quantities at the excitation and emission
wavelengths, respectively. The external excitation source is modeled by g.(x). The total
absorption coefficient at the excitation wavelength consists of two parts, the intrinsic part o, 4
that is due to the medium itself, and the fluorescence part o, .y that is due to the injected
fluorophores of the biochemical markers. The fluorescence absorption coefficient o, (%) is
proportional to the concentration p(x) and the extinction coefficient £(x) of the fluorophores,
ie., 042¢ = e(x)p(x). The coefficient 7(x) is called the fluorescence quantum efficiency of the
medium; it is nondimensionalized such that 0 < n < 1. The product of the quantum efficiency
and the fluorophores absorption coefficient, no, ; ¢, is called the quantum yield.

The initial pressure field generated by the photoacoustic effect in this case is given as [71,
72]

(57) H(x) = T(%) ((Gauni + (1= 1)0007)02(%) + amtim(x) )

This consists of a part from the excitation wavelength and a part from the emission wavelength
and the two parts cannot be separated. Note that the component 1o, , fu, is subtracted from
the excitation part in (57) since this component is the part of the energy used to generate the
emission light, as in the second equation of (56).

The initial pressure field generated from the fluorescence photoacoustic effect evolves ac-
cording to the same acoustic wave equation (3). The objective of fPAT is to determine the
fluorescence absorption coeflicient o, , ¢(x) (and therefore the spatial concentration of the flu-
orophores inside the medium, i.e., p(x)) and the quantum efficiency 7(x), whenever possible,
from measured ultrasound signals on the surface of the medium. It is generally assumed that
the coefficient pairs (yz,0q,2i) and (Ym, 0a,m) are known already, for instance, from a PAT
process at excitation wavelength and another PAT process at emission wavelength. We refer
the interested reader to [19, 65, 66, 67, 72] for more detailed discussions on fPAT.

The objective of this section is to translate the uncertainty characterization we developed
in the previous section to the case of fPAT. The main ideas of the derivation remain the
same. However, the calculations are slightly more lengthy since we have to deal with system
of diffusion equations as in (56) instead of a single diffusion equation as in (1). For more
details on the mathematical modeling, as well as uniqueness results on image reconstructions,
in fPAT, we refer to [71, 72]. We make the following regularity assumptions on the background
coefficients:

FeC(X)NFar (Yurym) € [CP(X)NFal?,  (GazisTam) € [C3(X) N Fal?

3.1. The ultrasound speed uncertainty. We start with the most important case, the
stability of reconstructing the fluorescence absorption coefficient o, ,¢ with respect to the
ultrasound speed uncertainty. As in section 2.1, we will first derive stability of the reconstruc-
tion with respect to uncertainty in H and then combine the result with the stability in (14).
We have the following result.

Theorem 3.1. Let 64,5 € C3(X)NFq and 0445 € C3(X)NF, be the fluorescence coefficient
reconstructed with ultrasound speeds ¢ and ¢, respectively, from datum Acpy (po == Hxx).
Assume that n € C3(X) and 0 < a < n <@ < 1 for some a and &@. Under the same
conditions as in Theorem 2.1, there exist €., T', and ¢ such that ||c — c[lc1(x) < e implies
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~ ~ 1/2
(58) H(Ua,évf - Ua,zf)ua:HL%X) <clle - CHLOO(X) HACPOHH/I((QT)Xayy

Proof. Let (ug,Um) and (ugz, un,) be the solution of the diffusion system (56) with coeffi-
cients 0, ¢ and o4 5, respectively. Define (wy, W) = (Uy — g, Um — ). We then check
that (wy,w,,) solves

—V % Vwe (%) + (0api + Oapf)We(X) = —(Capf — Oanf)ta in X,
(59> -V ’Ymvwm(x) + Ua’m(X)wm(X) = nga,xfwz + n(ga,xf - Ua,xf)ux in X,
wy(x) =0, Wy, = 0, on 0X.

From the datum (57), we deduce that

H-H - ~
(60) T = (Ua,mi + (1 - n)Ua,a:f)ww + (1 - n)(aa,xf - Ua,a:f)um + Oa,mWm-
This gives
(61) 1(Caws = Oaws)tiallzx) < t(lH — HI|r2(x) + lwall2(x) + lwmllz2(x))-
Using the relation (60), we can now rewrite the system (59) as
N0a,xi Oa, i7— .
—V eV, — ! jzzrwx(x) = 7 a_n;]wm — 1“}(11—1;;[) in X,

Oa,m _ N0a,zi (H-H) .

(62) -V Wmem -+ 1 nwm(x) = —ﬂww + nF(l—’r]) m X,
wy(x) =0, wy, = 0, on 0X,

where the function fln is well-defined with the assumptions we imposed on the quantum

efficiency n. This is a strongly elliptic system of equations. With the assumption on the
regularity of the coefficients, we have the classical bound [53]:

(63) lwallz2(xy + lwmllL2x) < e H — Hl[12(x)-
The stability bound (58) then follows from (61), (63), and (14). [ ]

Let us emphasize that the weight function u,, i.e., the density of the excitation photons, in
the sensitivity relation (58) is very important and cannot be removed. The appearance of u,
in the sensitivity analysis is consistent with the following fact. If u, vanishes in a region inside
the domain, the moleculars in the region would not be excited to emit new light. Therefore,
the acoustic data we measured contain no information on the medium in the region. Thus,
we cannot hope to reconstruct any information inside the region, which is demonstrated here
since in that case (G42f — Oauf)tz = 0 in the estimate.

3.2. Uncertainty due to quantum efficiency. In applications of fPAT, it is often assumed
that the quantum efficiency of the medium is known. This is true for some well-understood
medium, but not in general. In fact, in many cases of classical fluoresence optical tomography
(FOT), researchers are interested in reconstructing the quantum efficiency as well. However,
it is not possible to reconstruct both coefficients simultaneously because of the nonuniqueness
in the FOT inverse problem. We now assume that the quantum efficiency 7 is the uncertainty
coefficient and attempt to characterize the sensitivity of reconstructing o, ,y with respect to
changes in 7. In this case, we assume that the ultrasound speed c is known exactly so that
we have access to an accurate H directly.
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Theorem 3.2. Let 0q4f € Cl(X)_ﬂ Fao and oq.5 € CYHX) N Fy be reconstructed from
datum H with coefficients 1 € CY(X) and n € CY(X), respectively. Assume further that
0<a<nn<a<l for some a and &@. Then the following holds for some constant c:

(64) 1Caaf = Oaf)ullLzxy < ell(7 = n)uall L2 x)-

Proof. Let (Ug,Up,) and (uy, uy,) be the solution of the diffusion system (56) with coeffi-
cients (7, 0q4f) and (1,04 4f), respectively. Then (wy, wp) = (Uzy — Uz, Um — U ) solves

—V %V + (Cawi + Oapf)Wa(X) = —(Canf — Tapf)Ua in X,
(65) VvV, + O',Lm(X)wm(X) = ﬁaa,sza: + (ﬁaa,zf - naa,mf)ux in X,
wy(x) =0, wm(x) = 0, on 0X.

From the datum (57), we deduce that

(66)  (0api+ (1= 0)0aws)ws + (1= NTauxfte + (1 =) (Fass = Cans)tz + Tamwm = 0.
This gives

67)  NGanr = GawsItallrzx) < (I —nuallr2x) + 1wl L2 + llwmllzcx))-

Using the relation (66), we can now rewrite (65) as

(68)
—V 72 Vw, — (—ma’mﬁl(:ﬁ)g“’” Jw, = fa’m Wy, + 7717 S U in X,
.t _
—V - YV, + lzerﬁo_a T — (77 - U)U%,wf — NO0q,xi Wy — ~wu$ in X,
mow 1—n 1—n
we(x) =0,  wn(x) =0 on 0X.

This is again a strongly elliptic system of equation. With the bound and regularity assump-
tions on the coefficients, we deduce that [53]

(69) w2 (xy + lwmllL2(xy < el (7 — n)ual|L2(x)-
By combining the stability in (67), (69), we arrive at the stability bound in (64). [ ]

3.3. The impact of partial linearization. One of the main difficulties in imaging fluores-
cence is how to eliminate the strong background light. One way in practice is to take the
background out by simulating the background distribution with the diffusion model for the
propagation of excitation light inside the medium. However, due to the presence of o, ;¢ in
the first diffusion equation in (56), one cannot simply solve that equation for its solution since
Oazf is unknown. In many applications, it is simply assumed that o, ;¢ is small so that it
can be dropped from the equation for the excitation light. This is roughly speaking a partial
linearization of the original model.

We now characterize the impact of this partial linearization on the reconstruction of the
fluorescence absorption coefficient.
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Theorem 3.3. Let 04,5 € CL(X)NFy and G445 € CH(X)NTFy, be the absorption coefficients
reconstructed from the diffusion model (56) and its partial linearization (i.e., by setting oq »f =
0 in the z-component of the diffusion system) from a given data set. Assume that n € C'(X)
and 0 < a <np<a<1 for some a and a. Then there exists a constant ¢ such that

(70) H(Ea,mf - Ua,xf)umHLQ(X) < cHga,xfuxHLQ(X)

Proof. Let (ug,uy,) be the solution to the diffusion system (56) and (g, @) be the solu-
tion to the partially linearized system (with coefficient 7, 5 ¢). Then (W, W) = (Ug — Uz, U, —
Up,) solves the following system:

-V Vx (X)vwx (X) + Oa,xi (X)’ij (X) = OqzfUzg in X,
(71) =V Y (X) Vwm (X) + 0am (X)W (X) = 00azW0s +10(Capf — Oauf)z n X,
Wy (X) = 07 W = 07 on 0X.

From the datum (57), we find the relation

(72) (Gawi + (1 =M)Tazf)we + (1 =) (Gans — Tanf)ta + Camwm =0,
which leads immediately to the following bound for some constant ¢;:

(73) 1(Cazfr — Taws)ua)llL2(x) < ca(l|wellr2cx) + llwmllz2(x))-

Meanwhile, using the relation (72), we can rewrite the system (71) as

—V (X)) Vw,(X) + 04 piwz(X) = 04zfls in X,
Oa,m Ca.zi .
(74) —V - Y (X) Vw, (%) + T 77wm(x) = —%wx in X,
wg(x) =0, wy, = 0, on 0X.

The bound and regularity assumptions on its coefficient ensure that the solution to this
strongly elliptic system has the following stability bound:

(75) [wallr2(x) + lwmllr2(x) < €2lloaesuellrzx)
with ¢o a constant. The stability bound (70) then follows from (73) and (75). [ ]

4. Numerical uncertainty quantification. We now implement a computational procedure,
based on the computational uncertainty quantification machinery developed in the past, for a
more quantitative characterization of impact of uncertainties in quantitative photoacoustics.
Our main focus here is not on developing new computational techniques for general uncertainty
quantification problems but rather on the application of existing methods to PAT and fPAT
image reconstruction problems. In a nutshell, we model u as a random process, following
some given probability law. We then construct a large population of random samples of u
and evaluate the corresponding inverse solutions 0. Once we have these random samples of o,
we study their statistics, mainly average and variance since we do not have efficient ways to
visualize the sample distribution.

We assume here that we can collect ultrasound data from Ng > 2 optical illuminations
sources {gs}é\ﬁl for the inverse problems (to ensure that we have enough data for unique
reconstructions of the objective coefficients).
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4.1. Generalized polynomial chaos approximation. Let (2, 7, P) be an abstract proba-
bility space. We model our uncertainty coefficient by a random process u(x,w), (x,w) € X x€,
that satisfies 0 < u < u(x,w) < u < 400 for some u and u. To make the uncertainty quan-
tification problem computationally feasible, that is, to reduce the dimension of the space of
admissible uncertainty coefficients, we restrict ourselves to the class of random processes that
admit a simple spectral representation.

To be more precise, let {(w) : © +— R be a uniform random variable with density function
w(€) and {¢r} the family of probability Legendre polynomials, orthogonal with respect to
the weight p(€). We assume that the uncertainty coefficient u is well-approximated by the
following K, + 1 term truncated generalized polynomial chaos [55, 84]:

Ky
(76) u(x, §(w)) = > Wr(x)r(E(w)).
k=0

For the purpose of simplifying the presentation, we assume that the polynomial bases are
normalized in the sense that E{¢y(&)pr (€)} = dkis. Interested readers are referred to [46, 52,
55, 62, 84] for detailed discussions on representing random variables of different types using
appropriate orthogonal polynomials.

With the representation (76), we can generate random samples of u once we know the
coefficient functions {ﬁk}kK;O which do not depend on realizations.

Let us emphasize that the sample uncertainty coefficients we constructed from (76) has
to satisfy the regularity and bounds requirements we imposed on the uncertainty coefficients.
The regularity requirements in the space variable are satisfied by imposing smoothness on the
coefficient functions {u;}. To satisfy the bounds requirements, we perform a linear rescaling
on u. More precisely, assuming that u generated by (76) satisfies m < u(x,w) < m, we perform

——u(x,w) + ﬁ%:%ﬁ — u(x,w) to put u in the range [u, ul.

m—m

4.2. Constructing model predictions. Once we know how to construct samples of the
uncertainty coefficient, we need to solve inverse problems with these samples to compute the
corresponding objective coefficients. We do this in two steps, described in this section and
the next one, respectively.

For each sample of the uncertainty coefficient u(x, £), we need to evaluate the correspond-
ing acoustic data predicted by the mathematical models with this uncertainty coefficient and
the true objective coefficient which we denote by o;: y = f(u(x,&),0:). The most accurate
way of doing this is to solve the diffusion equation (1) (or the diffusion system (56) in fPAT))
and then the acoustic wave equation (3) for each realization of u(x, ) (and the true objective
coefficient 0;). However, this approach is computationally too expensive when a large number
of samples need to be constructed.

Here we take advantage of the fact that, under the regularity assumptions of the coefficients
involved, the solutions to the mathematical models in PAT and fPAT, therefore also the
acoustic data predicted, are sufficiently regular with respect to these coefficients; see, for
instance, [26, Lemma 2.1]. Therefore, when these coefficients are smooth with respect to the
random variable £, the solutions to the equations are also sufficiently smooth with respect to
the random variable.
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The smooth dependence of the solutions to the diffusion equation and the acoustic wave
equation on the random variable £ indicates that these solutions can be represented efficiently
using polynomial chaos representations. Let K, be a positive integer and

Ky
(77) u®(x,8) = Y (%) ¢r(€)
k=0

be the truncated polynomial chaos expansion (PCE) of the diffusion solution with source g*
(1 <5 < Ny). Using the standard projection procedure, we verify that @} solves the following
coupled diffusion system, 1 < k < K, 1 < s < Ng:

K., K.,
(78) —l;vﬁkk,vaz/(x)+k/§jlakk/az,<x> =0 i X
up(x) = gi(x) on 90X
where
Yiks (X Zwkk/ﬂj Ok (X Zwkk’ 7 ( and  gi(x) = wi g°(x)

with the weights defined as wyy; = E{¢rop¢;} and wi, = E{¢y}. The functions {%}ﬁo and
{o; }gK:Uo are the coefficients in the truncated polynomial chaos representation of v and o, in
the form of (76).
This system of diffusion equations allows us to solve for uj(x) as functions of the PCE
of the coefficients v and o,, which then allow us to construct random samples of u*(x,w)
following the PCE (77).
In the same manner, let K, be a positive integer and
KP
(79) Pt x,w) = ) Pi(t,x) ¢x(E)
k=0
be the truncated PCE of the ultrasound pressure field. We then verify that the functions
Dr(t,x) solve the following coupled system of acoustic wave equations:

Kp

821/5]8@ =5 : d
chk/ 52 —Ap; =0 in Ry x R%
(80) k=0 _
p5(0,x) = Hixx inR%
Pr(0,x) = 0 in R%,
where
Kc KF U u
= 3wty ond A= 3 3°3 wue

with {CJ}KCO and {FJ} o being the coefficients in the PCE of
the Welghts Wk ji = E{¢k¢k’¢]¢z}

r (x 3 and T, respectively, and
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The system of equations (78) and (80) now enable us to compute the PCE coefficients of
ultrasound data from given PCEKcoefﬁcients for the uncertainty coefficients involved, i.e., a
~ 1 K¢ - K = ~ Ko
subset of {¢x}2y, {Tk}tply, (Ve tply, and {o5 -

4.3. Evaluating uncertainty in objective coefficients. The next step is to study how the
uncertainty in the data caused by the inaccuracy in the uncertainty coefficient is propagated
into the objective coefficient that we are interested in reconstructing.

The most accurate way of doing this is to solve the inverse problem for each realization
of the uncertainty coefficient and study the distribution of the reconstructed coefficients. In
terms of the abstract formulation in (5), this means that we solve

flo,ur) = y(w) = flor, u(x,w))

for o for each w. This is computationally intractable for practical purposes. Bayesian types of
inversion methods, such as these developed in [41, 50, 78, 80], are alternative ways to study
such uncertainty quantification problems. The main issue here is that to apply these Bayesian
methods, we need to be able to evaluate the likelihood function for each given candidate
objective coefficient 0. This is again computationally very hard to do since we do not have
an explicit formula for the likelihood function which is the law of the “noise,” f(o0s, u(x,w)) —
f(og,u). We only have samples of the noise, as we constructed in the previous section.
Fitting these samples into a known parameterized distribution with an explicit expression,
for instance, the multidimensional Gaussian distribution, is possible but would require that
the exact form of the distribution is known a priori, which is hard to do here due to the high
nonlinearity of the map u+— o(u).

Here we propose a method that is again based on the polynomial chaos representation:
we represent the objective coefficient with polynomial chaos and reconstruct the coefficient
of the representation directly from the data represented by the polynomial chaos coefficients

Ssx Kp N
Uprr (%) b 2o s -

Step 1. The first step is to propagate the uncertainty from the acoustic data, {{pj(t,
x)}f:p O}é\g 1, into the initial pressure field under the true ultrasound speed cy. We perform this
using a time-reversal strategy [40]. Letting ' = T' — ¢, we solve the coupled wave equations,
0<k<K,1<s<N;,,

1 9%
—= A =0 in (0,7 x X
C(Q)(X) 8t/2 i lIl( 5 ]X ;
~s o .
(81) 7.(0,x) =0 in X,
9g; .
W(O,X) =0 m X,

(', x) = pi*(t',x) on 0X,

with true ultrasound speed cy until time ¢ = T' to reconstruct the coefficients of the PCE of
the initial pressure field H:

(%) = @(T,x), 0<k<K, 1<s<N,.

In our numerical simulations, we take measurement 7" long enough to ensure a faithful recon-
struction of the PCE coefficients of the initial pressure fields {{ H}*(x) f:p R
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Step I1. The next step is to propagate the uncertainty in reconstructed initial pressure field
H to the objective coefficients to be reconstructed. We solve this problem via a least-square
procedure. For instance, in the case where we are interested in reconstructing (I', 0, ), treating
v as the uncertainty coefficient, we reconstruct the coefficients {fk}kK:FO and {3k}kK§0 as the
solution to the following minimization problem:

| N K || K Ko K R R 2
(82) ~ Kinifi . 3 Z Z Z Z Z Wi L joxiy, — H*
T} 2010k 35% = s=1 i=0 ||j=0 k=0 k'=0 12(X)
subject to the constraints, 0 <7 < K, 1 < s < Ng:
Ky Ko
(3) —V - y0(x) Va3 (x) + %%wkka@k =0 in X,

ul(x) = gi(x) on 0X,

)

where 7 is the true diffusion coefficient and the weights w;z, and w;;ri are defined the same
way as before.

We solve the least-square minimization problem (82) with a quasi-Newton method based
on the Broyden—Fletcher—-Goldfarb—Shanno (BFGS) rule for the Hessian update that we im-
plemented in [68]. We will not describe in detail this classical optimization algorithm but refer
interested readers to [57] for in-depth discussions on theoretical and practical aspects of the

algorithm.
In Algorithm 1, we outline our implementation of the uncertainty quantification procedure
for the case where u = ~ is the uncertainty coefficient and o = (I',0,) is the objective

coefficient. We need to change the algorithm only slightly for other combinations of uncertainty
and objective coefficients.

5. Numerical simulations. We now present some numerical simulations, following the
computational procedure that we presented in section 4, to illustrate the main ideas of this
work. We focus on two-dimensional simulations and select the simulation domain to be the
square X = (0,2) x (0,2).

Algorithm 1 Numerical uncertainty characterization procedure
. ~ K
: Set the PCE coefficients for v(x,w), {7k},
: for s =1 to Ny do
: Solve the forward diffusion model (78) with illumination source g*

1
2
3
4 Construct PCE coefficients for the initial pressure field, i.e., {H}(x) ,I::”O
5: Solve the coupled system (80) with {Hﬁ(x)}fﬁo for {f)ﬁ*(t,x)}fﬁo

6 Reverse time for data {pj*(t, x)}fzp0

7 Solve the coupled wave equations (81) to reconstruct {H ,ﬁ*}f:po

8: end for

9: Solve the minimization problem (82) to reconstruct ({fj }JK:FO, {&\k}fz"o)

10: Perform statistics on I' and o, using their reconstructed PCE coeflicients
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To avoid solving the acoustic wave equation (3) in unbounded domain R?, we replace (3)
with the same equation in X with Neumann boundary condition. The measured data is now
the solution of the wave equation on dX. We discretize the wave equation with a standard
second-order finite difference scheme in both spatial and temporal variables.

For the diffusion equation (1), we use a first-order finite element method on an unstruc-
tured triangular mesh. The quantities on the triangular mesh are interpolated onto the uni-
form mesh, and vice versa, using a high-order interpolation scheme when needed. In all the
simulations we performed, we verified, through mesh refining, that the interpolation errors
are much smaller than the discretization error.

To construct samples of uncertainty coefficients, we observe from the polynomial chaos
representation (76) that the mean and variance of u are given respectively as

Ky
E{u} =1y and  Var{u}= Zﬁ%
k=1

This gives us simple ways to control the mean and the variance of the random uncertainty
coefficients. In our simulations, we take 1y as the true value of the uncertainty coefficient
and add randomness as perturbations to g, through the coefficient functions {ﬁk}sz“l. We
consider two types of random perturbations: the ones that are smooth in space and the ones
that are piecewise smooth (in a special way) in space.

Spatially smooth uncertainty coefficients. To construct spatially smooth perturbations to
the uncertainty coeflicients, we take the PCE coefficients {ﬁk}f::cl as linear combinations of
the Laplace-Neumann eigenfunctions on domain X. To be precise, let (An, ¢n) (n = (n,m) €
Ny x Np) be the eigenpair of the eigenvalue problem

—Ap=Ap in X, v-Vpo=0 on 0X.
Then \, = (%)2 + (%)2, and
nm mm
¢n(x,y) = cos <7x> cos (Ty) .

In our numerical simulations, we take

(84> ﬁk = Z Cn (pl‘l(x7y)7 1 S k S Kw
n+m=k

with {cn} uniform random variables in [—1,1]. Note that {cn} are fixed once they are gen-
erated. They do not change during the later stage of the uncertainty quantification process.
Once the coeflicients {ﬁk}f:“l are generated, we perform a linear scaling on them to get the
variance of u to the size that we need.

Piecewise smooth uncertainty coefficients. To construct piecewise smooth perturbations to
the uncertainty coefficients, we take the PCE coefficients {ﬁk}é(:cl as linear combinations of
the characteristic functions of J randomly placed disks in X. That is,

J
(85) U= cixn,(x),  Dj={x|lx-x<r}, 1<k<K,
j=1
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As in the previous case, the centers {xk}kK:“]L and the radii {r} € [0.1, 0.2]},CK:“1 of the disks, as
well as the weights {cy ;} (uniform random variables in [—1,1]) for the linear combinations,
are fixed once they are generated. They do not change during the later stage of the uncer-
tainty quantification process. We also rescale the amplitude of the perturbations to control
the size of the variance of the perturbations. Note that the theoretical analysis in the previous
sections needs the uncertainty coefficients to be sufficiently smooth. In our numerical simu-
lations, however, we try to neglect this smoothness requirement to see what would happen
if the uncertainty coefficients are discontinuous, as long as the equations involved are still
numerically solvable.

5.1. Ultrasound speed uncertainty. We first present some simulations on the reconstruc-
tion of optical coefficients under uncertain ultrasound speeds.

Experiment 1. Ultrasound speed uncertainty in PAT. In the first numerical experiment,
we attempt to reconstruct the optical coefficient pair o = (T',0,) from ultrasound data sets
generated from four different illumination sources. We set the true sound speed to be the
constant cp(x) = 1.0 and generate random realizations of the ultrasound speed around this
value by selecting appropriate PCE coefficients according to (84). The random perturbations
created are therefore smooth in space. We take K. = 12 PCE modes in the construction after
numerical tests showed that increasing K. does not change the simulation results significantly
anymore; see the top row of Figure 1 for some typical realizations of the ultrasound speed in
this setup.

In Figure 2 we show the true coefficients, the average of the reconstructed coefficients (that
is, (To, 30)), and two realizations of the reconstructed coefficients (that is, (T',0,) that we
formed from the reconstructed PCE coefficients using the approximation (76)). We observe
that the average of the reconstructions, (I'g, dy), is very close to the true coefficients as it
should be (see, for instance, previously published results in [26]), and the variance, as seen
from the two realizations on the right two columns in Figure 2, is fairly large. To quantitatively
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Figure 1. Typical realizations of (i) smooth (top row) and (ii) piecewise smooth (bottom row) ultrasound
speed function.
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Figure 2. The true optical coefficient pair o0 = (I',04.) (left), the mean of the reconstructed pair (fmao)
(second column), and two realizations of the reconstructions formed from the reconstructed PCE coefficients
(the two columns on the right).

measure the impact of the uncertainty in ultrasound speed on the reconstruction of the optical
coefficients, we look at the (relative) standard deviation of the reconstruction as a function of
the (relative) standard deviation of the uncertainty coefficients. More precisely, we define

Ko ~ e
H > gy [0k ]2 H >y [ugl?
£ = £2(x) - L2(X>
[o0lz2(x) [0l 2(x

for the objective coefficients (to be reconstructed) and the uncertainty coefficients, respectively.
Note that we have integrated all quantities over the domain to get numbers instead of functions
since we don’t have better ways to visualize the dependence.

In Figures 3, 4, and 5 we show the uncertainty level in the reconstructed objective coef-
ficients versus the uncertainty level in uncertainty coefficient (i.e. the ultrasound speed) in
the case of 0 = (I', 04), 0 = (7,04), and 0 = (I, y), respectively. We observe that in all three
cases, when the uncertainty level in the ultrasound speed, measured by &, is small, it has
roughly linear impact on the reconstructions. When the uncertainty level becomes larger,
its impact becomes superlinear, but still very controllable. We do not have sufficient com-
putational power to get enough data points to reliably fit an accurate curve between &, and
&y. However, the general relation between &, and &, is obvious enough to be observed in the
existing simulation data.
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Figure 3. Relative standard deviation of the objective coefficient pair o = (I',04), €, versus the relative
standard deviation of the uncertainty coefficient u = ¢, &, for Experiment 1.
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Figure 4. Relative standard deviation of the objective coefficient pair o = (v,04), Eo, versus the relative
standard deviation of the uncertainty coefficient u = ¢, &, for Experiment 1.
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Figure 5. Relative standard deviation of the objective coefficient pair o = (T,7), &, versus the relative
standard deviation of the uncertainty coefficient u = c, &y, for Experiment 1.

We repeat the numerical simulations in Experiment I with piecewise smooth ultrasound
speed constructed from (85). We use K, = 12 again in this simulation. In the bottom row
of Figure 1, we show four realizations of the ultrasound speed in this setup. In Figures 6,
7, and 8, we show the & — &, relations in the reconstructions of o = (I',0,), 0 = (7, 04)
and o = (I',7), respectively. We observe that even though the curves look like those in
Figures 3, 4, and 5 for smooth random ultrasound speed, they are significantly different in
the sense that piecewise smooth random ultrasound speed creates a much larger impact on
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Figure 6. Same as in Figure 3 but for piecewise smooth ultrasound speed constructed from (85).
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Figure 7. Same as in Figure 4 but for piecewise smooth ultrasound speed constructed from (85).

0.35

03

0 L L L L Y L L L L
002 003 0.04 005 006 007 008  0.09 0.1 002  0.03 004 005 006 007 008 0.9 0.1

Figure 8. Same as in Figure 5 but for piecewise smooth ultrasound speed constructed from (85).

the reconstructions of the optical coefficients. We performed another set of simulations where
the locations of the perturbations (i.e., the disks in (85)) are randomly changed. The same
increase in the uncertainty of the reconstructions is observed.

Ezxperiment 11. Ultrasound speed uncertainty in fPAT. In this numerical experiment, we
characterize uncertainty in the reconstruction of the fluorescence absorption coefficient 0 =
0acf in fPAT caused by uncertainty in the ultrasound speed. We collect ultrasound data
generated from two different illumination sources. We again perform simulations with both
smooth ultrasound speed from (84) and piecewise smooth ultrasound speed from (85). In
both cases, we take K. = 12. In Figure 9 we show the true absorption coefficient o, ¢,
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Figure 9. The true optical coefficient 0 = a5 (left), the mean of the reconstructions 6o (second column)
and two realizations of the reconstructions formed from the reconstructed PCE coefficients (the two columns on
the right) in fPAT.
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Figure 10. Relative standard deviation of the objective coefficient 0 = 04,55, Eo, versus the relative standard
deviation of the uncertainty coefficient u = ¢, &y, for Experiment II for smooth (left) and piecewise smooth
(right) random ultrasound speed.

the mean of the reconstruction of it, and two realizations of the reconstructions formed from
the reconstructed PCE coefficients. We observe again that the averaged reconstruction is
very accurate, comparable to the numerical simulations in [72, 71]. The uncertainty in the
reconstructions depends on the uncertainty in the ultrasound speed as in the PAT case in
Experiment I: piecewise smooth random ultrasound speed could produce larger uncertainty
in the reconstructions than smooth random ultrasound speed; see the top and bottom rows
of Figure 10 for a comparison.

5.2. Diffusion coefficient uncertainty. We now characterize the uncertainty in optical
reconstruction caused by uncertainty in the diffusion coefficient . In this case, the ultrasound
speed is fixed in the data generation and inversion process. To avoid mixing the impact of
errors in numerical wave propagation (and back-propagation) with impact of uncertainty
of the diffusion coefficient, we start directly from internal data. That is, we only consider
the uncertainty propagation from ~ to the internal datum H and then H to the objective
coefficients to be reconstructed.

Experiment I11. Diffusion coefficient uncertainty in PAT. We consider the reconstruction of
the coefficient pair o = (T', 0,,) using internal data generated from four different illuminations.
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Figure 11. Relative standard deviation of the objective coefficient pair o = (I',04), &, versus the relative
standard deviation of the uncertainty coefficient uw = vy, Ey, for Experiment 111 for smooth (left) and piecewise
smooth (right) random ~.

We again perform simulations for both smooth random diffusion coefficients and piecewise
smooth random diffusion coefficients, with K, = 8 and K, = 12, respectively. The &, and
&, relations are shown in Figure 11. In all the simulations, the true diffusion coefficient is
taken as the constant 5 = 0.02. We performed simulations also with other true diffusion
coefficients. The results are very similar to those presented in Figure 11.

The results demonstrate here again that uncertainty in piecewise smooth diffusion coeffi-
cients has a slightly larger impact on that in smooth diffusion coefficients. However, comparing
Figure 11 with Figures 3 and 6 shows that uncertainty in the diffusion coefficient has a much
smaller impact on the reconstruction of (I', o,) than that in the ultrasound speed.

5.3. Model uncertainty in fPAT. In the last numerical experiment, we quantify the error
in the reconstruction of the fluorescence absorption coefficient o, . caused by the partial
linearization, that is, dropping the coefficient o4, in the first equation, of the diffusion
model (56).

Ezxperiment IV. Model uncertainty in fPAT. In our numerical simulations, we fixed every
coefficient besides the fluorescence coefficient o, ,f. In this case, one well-chosen internal da-
tum (57) allows unique and stable reconstruction of o, ¢ [72]. We generate the synthetic data
from four different illuminations located on the four sides of the domain, respectively, using
the full diffusion model (56). We perform numerical reconstructions of ¢, ;¢ using both the
full diffusion model and the partially linearized diffusion model, i.e., the diffusion system (56)
without o, .5 in the first equation. Let us denote by O'Z’zf and agfxf the reconstructions
from the full diffusion model and the partially linearized model, respectively; we compute the
relative error caused by linearization as

& = ||O-Z,£xf - U(Z,zf”[ﬂ(X)

o pllzz(x)

We show in Figure 12 a true o, ¢, its reconstruction using the full diffusion model (56)
with noise-free data and noisy data, and its reconstruction with the partially linearized diffu-
sion model. The reconstruction with the full diffusion model is very accurate, even when data
is polluted with a little random noise, but the reconstruction with the partially linearized
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Figure 12. True a5 (first), its reconstruction with the full diffusion model (56) using noise-free data
(second) and data containing 2% uniformly distributed multiplicative noise (third), and its reconstruction with
partially linearized diffusion model with noise-free data (fourth).

model is much less accurate, despite the fact that the singularity in the coefficient is well-
reconstructed (since it is directly encoded in the internal data). We performed reconstructions
for four different true o .. The relative errors are respectively & = 0.08, &, = 0.09, &, = 0.08,
and & = 0.07. These results show that the impact of the partial linearization on the recon-
struction of the coefficient o, ;¢ is relatively large. Therefore, even the partial linearization
simplifies the solution of the diffusion model (56); for the sake of accuracy in reconstructions,
it is probably a simplification that should not be performed in fPAT.

6. Concluding remarks. In this work, we performed some analytical and numerical stud-
ies on the impact of uncertain model coefficients on the quality of the reconstructed images
in photoacoustic tomography and fluorescence photoacoustic tomography. Particularly, we
derived bounds on errors in the reconstruction of optical properties caused by errors in ul-
trasound speed used in the reconstructions, as well as bounds on error in the reconstruction
of the fluorescence absorption coefficient in fPAT due to inaccuracy in the light propagation
model caused by partial linearization. We presented a numerical procedure for the quantitative
evaluation of such errors and performed computational simulations following the numerical
procedure.

Our numerical simulations in PAT reconstructions show two phenomena that are promi-
nent. The first is that in general, uncertainties in rougher ultrasound speed can produce larger
uncertainty in reconstructed optical coefficients than what a smoother ultrasound speed can.
This agrees with the general belief among researchers that reconstruction of the internal da-
tum H is “stabler” when the underline ultrasound speed is smooth. The second phenomenon
is that in general, variations in ultrasound speed c(x) can have a much larger impact on the
reconstruction of optical coefficients than variations in the diffusion coefficient + in the sys-
tem. For the fPAT reconstructions, we observe numerically that the partial linearization by
setting the fluorescence absorption coefficient o, .5 = 0 in the x-component of the diffusion
model (56) can produce large error in the reconstruction of g 4.

It is obvious that the uncertainty in the reconstruction depends on both the uncertainty in
the model, which induces uncertainty in the data used for the reconstruction, and the method
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of the reconstructions as we explained in the introduction (right below (8)). Due to the fact
that we used the [? least-square optimization method for the reconstruction of the objective
coefficients, which means the reconstructions are likely made smoother than they should be,
the uncertainty numbers that we have seen might be actually slightly smaller than they should
be. However, this effect should not distort significantly the overall trends we have observed
numerically.

Characterization of errors in reconstructions caused by uncertainties in system parameters
is an important task for many inverse problems in hybrid imaging modalities, or more generally
any model-based imaging methods. The general methodology we developed in this work can
be generalized to these inverse problems in a straightforward manner. The results we have
can be generalized to deal with the situation when additional measurement noise is presented.
In that case, the general model (5) becomes y¢ = f(o0,u) + e, e being the measurement noise,
and the interplay between impact of u and that of e needs to be analyzed carefully. We plan
to investigate this direction in a future work.
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