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ABSTRACT: The energetics of the spin states of transition metal
complexes have been explored with a variety of electronic structure
methods, but the calculations require a compromise between
accuracy and affordability. In this work, the spin splittings of several
iron complexes are studied with multiconfiguration pair-density
functional theory (MC-PDFT). The results are compared to
previously published results obtained by complete active space
second-order perturbation theory (CASPT2) and CASPT2 with
coupled-cluster semicore correlation (CASPT2/CC). In contrast to
CASPT2’s systematic overstabilization of high-spin states with
respect to the CASPT2/CC reference, MC-PDFT with the tPBE
on-top functional understabilizes high-spin states. This systematic
understabilization is largely corrected by revising the exchange and correlation contributions to the on-top functional using the high
local-exchange approximation (tPBE-HLE). Moreover, tPBE-HLE correctly predicts the spin of the ground state in most cases, while
CASPT2 incorrectly predicts high-spin ground states in all cases. This is encouraging for practical work because tPBE and tPBE-HLE
are faster than CASPT2 by a factor of 50 even in a moderately sized example.

1. INTRODUCTION
Understanding the spin-state energetics of transition metal
complexes is important for applications such as catalysis1−3

and magnetic property investigations.4,5 In this regard, iron
complexes such as porphyrins have been extensively studied
with theory5−26 and are also often chosen as model systems for
testing electronic structure methods,14,24,25,27−40 in part due to
an abundance of experimental results.4,5,41−49

The most widely used electronic structure method for
studying this problem is Kohn−Sham density functional theory
(KS-DFT),50 which is often the only available high-level choice
with an affordable cost.51 However, the strong correlation of
many transition metal complexes presents difficulties for KS-
DFT, where “strong correlation” denotes the need to include
more than one configuration in the electronic structure even
for a good zero-order representation, where a configuration is a
specific way of assigning electrons to orbitals. In particular, the
Slater determinant of KS-DFT is not necessarily a spin
eigenfunction, which is an issue that is sometimes called spin
contamination.28,52−54 Moreover, local exchange−correlation
functionals are known to understabilize high-spin states,55−60

which is due in part to overdelocalization58−64 as well as spin
contamination; however, some recent local functionals seem to
be less afflicted with these deficiencies.65,66 In the context of
iron porphyrins, strong dependence of spin-state energetics on
the choice of the exchange−correlation functional has been
observed.9−11,13−17 For example, Ghosh found that local
exchange−correlation density functionals failed to properly

describe the spin-state energetics and that the calculated spin
densities vary widely among the tested functionals.9 Pierloot
and co-workers also found significant variation.10,11,15

Wave function theory (WFT) provides many options for
cases where KS-DFT results are unreliable, but these options
present other challenges. For reliable calculations on weakly
correlated systems, the coupled-cluster method with singles,
doubles, and quasiperturbative triples (CCSD(T))67 is widely
preferred; however, the common practice of using restricted-
spin open-shell KS-DFT to generate input orbitals for
restricted-spin CCSD(T) has recently been called into
question.68 More serious problems for treating transition
metal complexes by CCSD(T), however, are cost and strong
correlation. Radon ́17 provided CCSD(T) calculations for a
variety of iron porhyrin model systems, including the
undecorated porphyrin FeP, but due to computational cost,
this method is primarily for small model systems. Several
exchange−correlation functionals were also employed; Radon ́
then estimated spin splittings for larger systems by combining
CCSD(T) energetics of a small model with an estimate of the
difference between the full system and the model system. The
estimate was based on a trend line obtained by KS-DFT

Received: November 18, 2019
Revised: January 4, 2020
Published: January 21, 2020

Articlepubs.acs.org/JPCA

© 2020 American Chemical Society
1187

https://dx.doi.org/10.1021/acs.jpca.9b10772
J. Phys. Chem. A 2020, 124, 1187−1195

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
M

IN
N

ES
O

TA
 o

n 
Ju

ly
 5

, 2
02

0 
at

 2
0:

57
:5

2 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samuel+J.+Stoneburner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Donald+G.+Truhlar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Laura+Gagliardi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.9b10772&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.9b10772?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.9b10772?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.9b10772?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.9b10772?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.9b10772?fig=tgr1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.9b10772?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf


calculations for both systems.17 The accuracy of the CCSD(T)
methods is questionable for strongly correlated cases; several
diagnostic measures have been applied to these systems to
provide indications of when the results can be considered
reliable.17,34,37

Strongly correlated systems can be treated more reliably by
using methods with a multiconfiguration zero-order wave
function that may be provided by multiconfigurational self-
consistent field (MCSCF) methods such as complete active
space self-consistent field theory (CASSCF).69 In CASSCF, all
correct-spin configuration state functions are included for a
user-specified number of electrons n in a selected set of N
active orbitals. Optionally one may also enforce spatial
symmetry. For singlets with n = N, so that every active orbital
occupied in the dominant configuration has a correlating
orbital; the current practical limit on the active space size that
can be treated with conventional configuration interaction
solvers is 18 electrons in 18 orbitals, or (n,N) = (18,18).70

Larger CASSCF active spaces are possible with other solvers,
for example as large as (40,38)39 with quantum Monte Carlo
CASSCF (FCIQMC-CASSCF, also referred to as Stochastic-
CASSCF)32 or as large as (84,84)71 with density matrix
renormalization group (DMRG).72−76 Another way to treat a
larger number of active orbitals is the restricted active space
self-consistent field (RASSCF)77 method, in which one
includes only a subset of the active space CSFs, or with
RASCI,78 where the orbitals are optimized with fewer CSFs
than are used in the final configuration interaction step.
MCSCF methods include only a small portion of the

dynamic correlation79 and are not quantitatively accurate on
their own, but rather, they serve as zero-order wave functions
for post-SCF steps to obtain better energies. The correlation
energy not contained in a CASSCF calculation is called the
external correlation energy, and one widely employed post-
SCF method is the second-order perturbation theory, as in
CASPT2,80−82 MRMP2,83 RASPT2,84 and DMRG-
CASPT2,85 which includes an external correlation by
perturbatively adding single and double excitations. A
disadvantage of these methods is their high computational
cost86,87 (in terms of both computer time and memory), and it
has been observed that CASPT2 overstabilizes high-spin states
by as much as 10 kcal/mol for first-row transition metal
complexes.34,60 Pierloot et al. studied this systematic error in
first-row transition metal complexes and concluded that it is
due to the inconsistent treatment of semicore correlation
(sometimes called subvalence correlation,88−90 which in the
present case is correlation associated with excitations from 3s
and 3p orbitals).34 Phung et al.37 (henceforth denoted PHFP)
then proposed a combined CASPT2/CC method featuring
CASPT2 for the valence correlation and CCSD(T) or CCSD91

for the semicore correlation and concluded that the high-spin
overstabilization, while not completely eliminated, was reduced
to about 2 kcal/mol. The authors also noted that the
application of CASPT2/CC is expected to be restricted to
weakly correlated cases.37 A recent study by Radon ́ on a
different set of iron systems again concluded that CASPT2/
CC reduces the error in CASPT2.92

An economical alternative to CASPT2 is multiconfiguration
pair-density functional theory (MC-PDFT),93,94 which takes
the electron density and pair density from a preceding MCSCF
calculation and applies an on-top functional analogous to the
exchange-correlation functional of KS-DFT. Because the
MCSCF wave function is a spin eigenfunction, spin

contamination is completely avoided.95 Furthermore, MC-
PDFT automatically includes semicore correlation (and even
core correlation, to the extent allowed by the basis set). MC-
PDFT has been used with CASSCF, RASSCF, RASCI, and
CASSCF-DMRG wave functions in applications to a variety of
transition metal complexes,64,86,87,96−102 including unmodified
iron porphyrin (FeP).40

The first generation of on-top functionals are translations of
KS-DFT functionals, e.g., tPBE93 from PBE.103 Recently in KS-
DFT, more accurate band gaps and molecular Rydberg
excitations were obtained by multiplying the exchange
contribution by a factor of 1.25 and the correlation by a
factor of 0.5 (labeled “high local exchange” or HLE65,66). In
the context of MC-PDFT, Sharma et al.104 found that
translating the PBE functional with HLE, yielding an on-top
functional called tPBE-HLE, improved the calculated ex-
citation energies of benzene, but Presti et al.105 found that
tPBE-HLE offered at best slight improvement in calculated
excitation energies when tested more broadly. One may
conclude that HLE is not a prescription for universal
improvement in either KS-DFT or MC-PDFT, but it may
have advantages and practical usefulness for certain types of
applications. In the present work, we examine the performance
of tPBE and tPBE-HLE for spin-changing excitation energies
of iron complexes.
As our calculations are for electronic energies without

including vibrational contributions, they cannot be compared
directly to experiments (and, anyway, the experimental
numbers are often unavailable or uncertain). In light of the
demonstrated high-spin overstabilization of CASPT2 for
transition metal excitation energies, we choose to use the
CASPT2/CC values of PHFP as the best available “bench-
mark”; however, we should keep in mind the possible
unreliability of the CC correction for strongly correlated
systems. With this choice of benchmark, our target molecules
(Figure 1) consist of unsubstituted iron porphyrins (FeP), iron

porphyrins substituted with additional ligands (FePXH and
FeP(NH3)OH), and their respective small model compounds
with two amidine ligands (FeL2, FeL2XH, and Fe L2(NH3)-
OH)). A model of a synthetic nonheme oxidant, [Fe-
(NH3)5O]

2+,106,107 is also included.

Figure 1. Iron complexes considered in this work. Reprinted with
permission from ref 37. Copyright 2018 American Chemical Society.
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2. COMPUTATIONAL METHODS

We used MC-PDFT93 with several on-top functionals, namely
tPBE93 translated from PBE,103 trevPBE108 translated from
revPBE,109 tBLYP93 translated from BLYP,110,111 and tPBE-
HLE104 translated from PBE-HLE.104

Spin-splittings (ΔE) are defined as

Δ = −E E EIS,LS HS (1)

where IS and LS indicate either intermediate spin and low spin,
respectively, HS indicates high spin, and E is the energy. Note
that a negative ΔE value indicates the intermediate or low spin
is favored.
The CASPT280,81 and CASPT2/CC results from PHFP

include both the valence and semicore correlation energy
(these results are labeled ΔE(+sp) in refs 34 and 37).
Additional CASPT2 calculations were performed in the
present work in order to facilitate timing comparisons with
MC-PDFT. All CASPT2 calculations had the default
ionization potential electron affinity (IPEA) shift112 of 0.25
au, designed to correct systematic errors, and an imaginary
shift113 of 0.1 au to reduce problems with intruder states; these
options are the same as in PHFP. However, while PHFP used
Molcas 8.1,70 we used Molcas 8.270 because of its more
complete implementation of MC-PDFT.
Input and orbital files were obtained from the authors of

PHFP to ensure the same orbitals would be used for the
CASSCF,114 CASPT2, and MC-PDFT calculations in the
present work. The active spaces for all systems other than
[Fe(NH3)5O]

2+ were the same as those selected in ref 34 and
include all 3d and 3d′ orbitals of the Fe plus ligand orbitals
judged to have important covalent interactions with the 3d
orbitals of Fe. For some low-spin states, the 3d′ orbitals
corresponding to unoccupied 3d orbitals were omitted from

the active space to prevent mixing or rotation into other virtual
orbitals. The active spaces for [Fe(NH3)5O]

2+ are the same as
those in PHFP, where the 3d′ orbitals are included in the
active space only for occupied 3d orbitals.
In PHFP, a variety of correlation consistent (cc) basis sets

were used in order to extrapolate to the complete basis set
(CBS) limit. In order to minimize questions of basis set
dependency, our calculations used awC5Z/aTZ, which is the
basis set found to be closest to the CBS limit; awC5Z/aTZ is a
shorthand notation used in PHFP for aug-cc-pwCV5Z-DK115

on Fe, cc-pVTZ-DK on H, and aug-cc-pVTZ- DK116−118 on all
other atoms, where wCV denotes weighted core−valence and
means that the basis functions capable of treating both valence
and core−valence correlation are included (without core−core
correlation), aug means that the basis set is augmented with
diffuse functions to describe weak interactions, and DK means
that the basis sets are designed for use with the Douglas−
Kroll−Hess treatment of scalar relativistic effects. Cholesky
decomposition119 was used with a threshold of 10−6 au to
reduce the memory and storage requirements of the two-
electron integrals. A second-order Douglas−Kroll−Hess
Hamiltonian120−122 was employed to account for scalar
relativity. The CASPT2/CC results from PHFP presented
throughout this work are taken from Table 3 (their CCSD(T)
Δsp) and from Tables S2 and S5−S9 in the Supporting
Information (their CASPT2 ΔE(nosp) and Δsp using awC5z/
aTZ).
Results for tBLYP are reported in Table S1. Results for

tPBE, tPBE-HLE, trevPBE, and trevPBE-HLE are reported
below.

3. RESULTS AND DISCUSSION
Our primary results are presented in Table 1, where the HS
states are quintets or sextets, the IS states are triplets or

Table 1. ΔE and Mean Unsigned Deviations (MUDs) from PT2/CC (kcal/mol)

complex HS term (n,N)a term tPBE tPBE-HLE trevPBE trevPBE-HLE CASPT237 CASPT2/CC37

FeL2
5Ag

1Ag 14.25 24.83 15.41 26.28 37.84 31.92

(8,11/10) 3B1g −13.46 0.51 −10.44 4.27 −2.28 −4.80
3B3g −16.67 −4.04 −13.49 −0.07 −4.63 −6.83

FeL2OH
6A′ 2A″ −17.59 0.98 −13.64 5.92 10.25 6.55

(11,15/13) 4A″ −13.03 −0.23 −10.07 3.47 6.90 4.68

FeL2SH
6A′ 2A″ −29.86 −15.95 −25.01 −9.90 −9.21 −11.61
(11,13/11) 4A″ −17.26 −5.64 −14.26 −1.89 0.31 −1.78

FeL2(NH3)OH
6A′ 2A″ −31.09 −10.94 −26.26 −4.91 −4.63 −8.58
(11,15/13) 4A″ −6.95 5.42 −3.89 9.25 12.12 9.69

FeP 5A1g
1A1g 15.31 23.84 15.82 24.49 38.03 32.41

(8,11) 3A2g −8.43 1.09 −6.57 3.42 3.74 0.34
3Eg −7.28 0.25 −5.56 2.40 5.65 2.29

FePOH 6A′ 2A″ −9.25 5.67 −6.63 8.94 18.81 14.27

(11,15/13) 4A″ −8.20 3.34 −6.06 6.02 12.40 9.85

FePSH 6A′ 2A″ −16.41 −7.85 −12.88 −3.43 2.13 −1.03
(11,13/11) 4A″ −11.13 −1.81 −8.85 1.03 6.53 4.05

FeP(NH3)OH
6A′ 2A″ −28.73 −12.32 −26.09 −9.02 1.31 −3.59
(11,15/13) 4A″ −6.50 4.69 −4.89 6.71 14.88 11.88

[Fe(NH3)5O]
2+ 5A′ 3A″ −9.97 −1.23 −7.00 2.49 2.50 −0.42

(12,16/15)
MUD, low- and intermediate-spin 16.3 5.0 13.6 3.7 4.2
MUD, low-spin only 20.5 6.5 17.5 4.1 6.0
MUD, intermediate-spin only 13.3 3.9 10.8 3.4 3.0

aActive spaces were smaller for the low-spin states except for FeP. See also Tables S5−S7.
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quartets, and the LS states are singlets or doublets. The
CASPT2 and CASPT2/CC results are from PHFP and we use
CASPT2/CC as our benchmark.
Table 1 shows that the CASPT2 results are consistently

more positive or less negative than CASPT2/CC, as discussed
in ref 34 and PHFP. In contrast, tPBE and trevPBE results are
consistently more negative or less positive than CASPT2/CC,
similar to the high-spin understabilization that is expected in
KS-DFT with a local exchange−correlation functional like
PBE. Furthermore, the mean unsigned deviations (MUDs) of
tPBE and trevPBE from the benchmark are much larger than
for CASPT2 (16.3 and 13.6 vs 4.2 kcal/mol, respectively).
However, MC-PDFT with tPBE-HLE and trevPBE-HLE
performs much better than KS-DFT with PBE and better
than MC-PDFT with tPBE and trevPBE; tPBE-HLE and
trevPBE-HLE have MUDs of only 5.0 and 3.7 kcal/mol,
respectively. The MUD for trevPBE-HLE is particularly
noteworthy for being smaller than the 4.2 kcal/mol MUD of
CASPT2. The individual unsigned deviations for tPBE-HLE
and trevPBE-HLE are all smaller than for their respective
unmodified functionals, usually by at least a factor of 2. With
only a few exceptions, the tPBE-HLE and trevPBE-HLE
deviations are negative, indicating that for the most part the
adjustments to the exchange and correlation do not over-
compensate for the high-spin understabilization in tPBE and
trevPBE. The negative deviations are also encouraging in light
of PFHP’s comment that CASPT2/CC likely overestimates
the stability of high-spin states by about 2 kcal/mol, implying
that the true spin splittings may be slightly more negative than
the CASPT2/CC reference, and hence, the error in the tPBE-
HLE and trevPBE calculations may be even smaller than the
MUD in the table.
The systematic nature of the deviations in Table 1 is more

manifest when we examine LS−HS versus IS−HS splittings
separately. The deviations for IS−HS splittings are almost
always of a smaller magnitude than the LS−HS deviations for
the same system. The trend does not depend on whether the
LS−HS case or the IS−HS case(s) have larger magnitudes in
the CASPT2/CC reference values.
An analysis of the differences in the absolute energies

between tPBE and tPBE-HLE shows that HLE accomplishes
its correction of tPBE’s high-spin understabilization primarily
by changing the calculated energy of the high-spin state, for
which the energy is always decreased by 7−20 kcal/mol more
than the low-spin states (specific values are presented in
section S4). The same trend holds for trevPBE and trevPBE-
HLE.
We also note that tBLYP-HLE yields the same good MUD

of 5.1 kcal/mol as tPBE-HLE. See Table S1 for more details.

3.1. Ground Spin States. PHFP discussed some cases for
which their CBS-extrapolated CASPT2 and CASPT2/CC
results disagreed regarding the ground state compared to
experimental ground states. We make some similar compar-
isons in Table 2. Note that the experimental ground states
were determined for larger systems than these model
complexes and that neither our work nor the work in PHFP
accounts for factors such as vibrational corrections or solvent
effects. The agreement with experiments for the ground spin
states is quite better for both tPBE and TPBE-HLE than for
CASPT2. Note that CASPT2 erroneously predicts a high-spin
ground state in all four cases, while tPBE and tPBE-HLE
correctly identify the low- or intermediate-spin (as appro-
priate) states as the ground state with the exception of tPBE-
HLE with FeP.

3.2. Active Space Dependency for FeP. In the present
work we have constrained ourselves to using the active spaces
used by PHFP to enable a direct comparison with the
CASPT2/CC reference values. However, the effect of active
space selection for FeP has been noted on multiple occasions
(e.g., refs 34, 39, and 40) and deserves some comment here.
CASPT2 incorrectly predicts the quintet 5A1g state to be

below the triplet 3Eg and
3A2g states in energy with both (8,11)

and (16,15) active spaces.34 However, Li Manni et al. recently
demonstrated with stochastic-CASSCF that the ordering of the
3Eg and

5A1g states can be corrected with an active space of
(32,34) or (40,38), even with no post-MCSCF step.39 To the
best of our knowledge, CASPT2 has not yet been attempted
with active spaces that large; RASPT2 with a (34,35) active
space was reported in ref 27, but some of these same authors
noted in ref 34 that there was a basis set error that significantly
affected the results. However, Zhou et al. tested tPBE with a
variety of active spaces and found that tPBE triplet−quintet
gaps (with both triplet states) retained the same signs and
varied by less than 2.2 kcal/mol between CASSCF-(8,11) and
DMRG-CASSCF-(34,35),40 demonstrating that MC-PDFT is
quite stable in regard to active space selection for FeP.
Additionally, their (8,11) results are within 0.15 kcal/mol of
the tPBE results presented here, despite the different basis sets
used. Given that HLE involves only a rescaling of the exchange
and correlation, it is expected that the stability in regard to the
active space would apply to tPBE-HLE as well. We tested this
hypothesis by applying the HLE adjustments to the tPBE
calculations from Zhou et al.40 and confirmed that the stability
with regard to the active space observed for tPBE carries
forward to tPBE-HLE (see section S2 for more detail).

3.3. Timing Comparisons. One of the primary advantages
of MC-PDFT over second-order perturbation theory is that it
can be performed at a much lower computational cost, as
shown in Table 3, where the costs correspond to computa-

Table 2. Ground States of Complexes. For Convenience, Correct Predictions are Bold

system (n,N)a experimentalb tPBE tPBE-HLE CASPT237,b CASPT2/CC37,b

FeP (8,11) tripletd triplet quintet quintet quintet
FePSH (11,11/13) doublete doublet doublet sextet doublet
FeP(NH3)OH (11,11/13) doubletf doublet doublet sextet doublet
[Fe(NH3)5O]

2+ (12,15/16) tripletg triplet triplet quintet triplet
aActive spaces were smaller for the low-spin states except for FeP. See also Tables S5−S7. bExperimental work was conducted on more
complicated systems, of which the systems studied here can be understood as models. For more detail see PHFP. cWhile CASPT2/CC incorrectly
predicts a high-spin ground state for FeP with the awC5Z/aTZ basis set, it correctly predicts all of the experimental ground spin states in the CBS-
extrapolated results presented in Table 3 of PHFP. In contrast, the entirely incorrect CASPT2 awC5Z/aTZ predictions shown here are unchanged
from the CASPT2 CBS results of PHFP. dRefs 41, 42, and 46. eRef 43. fRefs 49 and 123. gRef 124.
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tional time requirements for serial calculations on Haswell E5-
2680v3 processors. Note that as the CASPT2 calculation time
increases, it eventually becomes larger than the CASSCF step,
which is dominated by the integral evaluation time for the
calculations in this table because of the large basis sets. In the
most extreme case shown, which is the last row of Table 3,
CASPT2 takes over 70% of the combined time for CASSCF
and CASPT2, whereas the tPBE step requires only 5% of the
time of the CASSCF step; therefore, the MC-PDFT post-SCF
step is faster than the CASPT2 post-SCF step by a factor of 50.
Several larger calculations are not shown in Table 3 because
they were run only in parallel. Our previous work on organic
diradicals95 leads us to expect the relative cost benefit of MC-
PDFT over CASPT2 to be greater for these larger calculations.
The MC-PDFT calculations also require less memory.

4. CONCLUSIONS
While CASPT2 demonstrates a consistent overstabilization of
high-spin states and the tPBE on-top functional demonstrates
an even stronger systematic understabilization of high-spin
states, tPBE with high local exchange (tPBE-HLE) yields
deviations from CASPT2/CC reference values that are only
slightly larger than CASPT2 (5.0 vs 4.2 kcal/mol, respectively),
and trevPBE-HLE yields deviations that are smaller than
CASPT2 (3.7 vs 4.2 kcal/mol, respectively). Furthermore,
tPBE-HLE correctly identifies most of the ground states
inferred from the experiments on smaller models, while
CASPT2 incorrectly predicts high-spin ground states in all
cases. Similar improvements were observed with other MC-
PDFT functionals, and future functional development may
yield additional advantages. Further comparisons with
CASPT2/CC will require a more diverse test set and a better
understanding of the limits of the CASPT2/CC method, but
the results in this work show that HLE significantly improves
MC-PDFT’s description of spin-state energetics in iron
complexes.
MC-PDFT provides significant cost advantages over

CASPT2 as well. The systems in this study were treated

with small active spaces, but for systems requiring larger active
spaces, the cost considerations will be determinative in the
choice of methods, and the computational-cost advantages of
MC-PDFT will be critical. Moreover, the recent development
of DMRG-PDFT125 enables the use of tPBE-HLE (or tPBE)
even for very large active spaces, which may be necessary, for
example, for treating systems with multiple transition metal
centers.
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system (n,N) state BFsa CSFsb CASSCFc CASPT2 MC-PDFTd

FeL2
e (8,11) 5Ag 860 5476 0:39 0:18 0:02

FeL2 (8,10) 1Ag 860 3540 0:41 0:17 0:02

FeL2 (8,11) 3B1g 860 12720 0:42 0:19 0:02

FeL2 (8,11) 3B3g 860 12740 0:50 0:17 0:02

FePf (8,11) 5A1g 1532 5476 3:32 3:18 0:10

FeL2SH (11,11) 2A″ 924 52272 4:22 2:31 0:16

FeP (8,11) 1A1g 1532 8290 3:40 3:30 0:11

FeL2SH (11,13) 6A′ 924 156156 4:23 2:53 0:16

FeP (8,11) 3Eg 1532 12740 3:40 3:46 0:11

FeP (8,11) 3A2g 1532 12720 3:45 3:46 0:11

FeL2SH (11,13) 4A″ 924 429534 4:27 3:09 0:16

FeL2OH (11,13) 2A″ 920 490776 4:30 3:17 0:16
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2+ (12,15) 3A″ 746 5271210 3:44 4:23 0:10

FeL2OH (11,15) 4A″ 920 2928170 4:42 5:10 0:17

[Fe(NH3)5O]
2+ (12,16) 5A′ 746 8509200 2:59 8:03 0:09

aNumber of contracted basis functions. bNumber of configuration state functions. cThe time for CASSCF includes the time for calculating the one-
and two-electron integrals. dThis time is the same for tPBE and tPBE-HLE. eL denotes an amidine ligand, as explained in the Introduction. See
Figure 1. fP denotes porphyrin, as explained in the Introduction. See Figure 1.
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