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Abstract

Multiconfiguration pair-density functional (MC-PDFT) theory provides an economical way to calculate the ground-state
and excited-state energetics of strongly correlated systems. The energy is calculated from the kinetic energy, density, and
on-top pair-density of a multiconfiguration wave function as the sum of kinetic energy, classical Coulomb energy, and on-top
density functional energy. We have usually found good results with the translated Perdew—Burke—Ernzerhof (tPBE) on-top
density functional, and in this article, we examine whether the results can be systematically improved by introducing scaling
constants into the exchange and correlation terms. We find that only a small improvement is possible for electronic excitation
energies and that no improvement is possible for bond energies.
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1 Introduction

Electronically excited states play a key role in many branches
of chemistry, including photochemistry [1], photosynthesis
[2], and optoelectronic material function [3—-6]. Modeling
electronically excited states remains a major challenge for
modern electronic structure theories because they are usu-
ally strongly correlated due to near degeneracy effects.
Kohn—Sham density functional theory (KS-DFT) is widely
used for ground-state properties, and time-dependent
Kohn—-Sham density functional theory (TD-KS-DFT) is
widely used to determine excitation energies. This approach
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works more satisfactorily for valence excited states than for
charge transfer and Rydberg excitations [7—12]. Moreover,
even modern functionals do not always provide satisfactory
performance in describing multiconfigurational systems.
Multiconfiguration pair-density functional theory (MC-
PDFT) [13, 14] is an alternative to KS-DFT for excited
states and multiconfigurational systems in general, and it
has been shown to give promising results for atomic [13],
organic [15-20], and inorganic systems [21], including
transition metal species [22, 23] and heavy atoms [24, 25].
Unlike complete active space second-order perturbation
theory (CASPT?2) [26, 27] and multireference configuration
interaction (MRCI), the cost of an MC-PDFT calculation
is dominated by the cost of the parent multiconfigurational
self-consistent field (MCSCF) calculation. MC-PDFT usu-
ally provides results comparable in accuracy to those of
CASPT2, and therefore it is an appealing alternative to
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CASPT2 because of the significantly reduced computational
costs, in terms of both memory and time requirements.

In MC-PDFT, the energy is computed from the kinetic
energy and the classical Coulomb energy of an MCSCF
wave function (third and fourth terms of Eq. 1) and from an
on-top density functional (last term of Eq. 1) depending on
the total electronic density p(r), its gradient, and the on-top
pair-density I7(r) [28, 29], where r denotes a point in space

EMC—PDFT — VNN + VNe(p(r)) + <¥/MCSCF|T|¥/MCSCF>
+ V(o) + Eylo(r), [Vpl, IT(r)] (1)

where Vyy and Vi (p(r)) denote the nuclear repulsion and
the electron—nucleus attraction, respectively.

The currently used on-top density functionals are transla-
tions of existing KS-DFT functionals. The most widely stud-
ied functional is the translated PBE (tPBE [13, 14]) func-
tional, which has a translated exchange term and a translated
correlation term (see Ref. [13] for details on “translation” of
density functionals). In this study, we explore the effect of
multiplying the exchange term by a constant Sy and multi-
plying the correlation term by a constant S... The tPBE func-
tional with this scaling will be abbreviated tPBE (Sx, S¢),
where the standard tPBE energy corresponds to EMC—PPFT —
tPBE (1.0, 1.0). The functional scaling is motivated by
recent work in the context of KS-DFT, where it was shown
that using Sy =1.25 and S-=0.5 [30, 31] for PBE (this scal-
ing being labeled “HLE”: high local exchange) provides an
improved description of molecular electronic excitations,
including those of Rydberg type, and of semiconductor band
gaps. A main advantage of KS-DFT local functionals (such
as PBE and HLE-type functionals) is the absence of static
correlation error caused by the presence of HF exchange

[32—-34]. On the other hand, the MCSCF wave function in
MC-PDFT includes nonlocal MCSCF exchange; thus, only
local on-top functionals are used (in their translated form),
although these functionals have not been optimized for MC-
PDFT. However, given the similarities between local KS-
DFT functionals and local translated on-top functionals, the
study of functional scaling in MC-PDFT helps to under-
stand how electronic properties are affected by changes in
the functional. For example, it was observed that increasing
the exchange contribution improves the valence singlet and
triplet zz* excitation energies for benzene at the MC-PDFT
level [20]. Calculations with these special values of Sy and
Sc were previously labeled HLE in the context of KS-DFT,
and so, we also use that label in the context of MC-PDFT,
i.e., tPBE (1.25, 0.5)=tPBE-HLE.

We considered wide ranges of values for Sy and S, and
we report the mean signed and unsigned errors (MSEs
and MUEs) with respect to the experimental or accurate
theoretical data available in the literature. For electronic
excitations (Tables 1 and 2), we report the results obtained
with tPBE (1.1, 0.5), which we found to be perform best
of all examined scalings, although no significant improve-
ment on average is obtained with respect to tPBE. Note
that, as compared to previous work, we updated many of
the reference values to which we compare with the FCI/
CBS estimates from the recent work of Loos et al. [35]
that are reported for some of the electronic excitations.
(The retained old reference values and the new ones are
reported in Table S4 of ESM.) We also count the number
of cases with an error below 0.28 eV—which was chosen
(somewhat arbitrarily) as the borderline between reason-
ably successful and unsuccessful.

Table 1 Spin-forbidden atomic AS?

e : CASSCF  CASPT2 PBE (PBE-HLE (PBE (1.1,0.5) Refer-

excitation energies (eV). The ences

reference values are taken from

the experimental data Be ISP (24) 286 2.78 2.55 2.48 2.47 2.73 [55]
C D @44) 156 1.27 1.06 1.59 1.33 1.26 [56]
Nt Ppo'D @44 219 1.91 1.51 2.18 1.85 1.89 [56]
N S 54 279 2.51 2.05 2.99 2.53 2.38 [56]
o - (54) 378 3.44 278 3.94 3.36 3.32[57]
0 D (64) 223 1.99 1.27 1.83 1.55 1.96 [56]
Sct D—'D  (26) 037 0.32 0.47 0.55 0.53 0.30 [58]
Mn °S—%P (7,90 219 238 2.15 1.76 1.92 2.15 [58]
Co “F-%  (96) 229 0.40 0.89 -0.01° 0.71 0.89 [58]
Mo S-S  (6,6) 1.66 1.67 2.00 2.52 2.28 1.34 [59]
Ru °F-%F  (8,6) 0.97 0.95 1.08 1.37 1.23 0.78 [60]

MUE® 0.35 0.15 0.31 0.50 0.27

4 Active space (see pages S2-S3 of ESM to see how active spaces are defined). The numbers (i, n) indicate

m active electrons in n active orbitals

The tPBE-HLE functional gives the wrong sign

“Mean unsigned error
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Table 2 Spin-conserving molecular excitation energies (eV) of the EE27/19 database)

N ASP CASSCF CASPT2 tPBE tPBE-HLE tPBE (1.1,0.5) References

n— n* valence
Acetaldehyde A" 2 (12,12) 4.56 4.27 4.28 4.21 4.22 4.31 [35]°
Acetone A, 2 (12,12) 4.71 4.44 4.47 4.38 4.40 443 [61]
Formaldehyde A, 2 (12,10) 4.73 3.89 3.89 3.85 3.86 3.97 [35]
Pyrazine 'B,, 3 (10,10) 5.08 4.04 3.96 4.16 4.06 3.97 [62, 63]
Pyridazine B, 2 (10,10) 4.63 3.67 3.50 3.71 3.60 3.60 [61]
Pyridine 'B, 3 (8.8) 5.64 5.06 5.06 4.95 5.00 4.74 (64, 65]
Pyrimidine 'B, 2 (10,10) 497 4.39 4.34 4.40 4.36 4.18 [66]
s-tetrazine 'B,, 2 (14,14) 3.65 2.56 2.54 2.82 2.68 2.25[61]
z— ¥ valence
N, DN 1 (6,6) 10.90 9.88 9.58 9.91 9.73 9.91 [35]
Ethylene By, 5 (4,10) 7.72 8.16 6.93 8.12 7.19 7.91 [35]
Butadiene 'B, 4 (10,15) 6.38 6.51 6.18 6.58 6.22 6.21 [67]
Cyclopentadiene 'B, 1 4.4) 7.35 5.51 4.12 4.68 4.37 5.26 [68, 69]
Benzene 'B,, 2 (6,13) 4.99 4.83 5.04 4.72 4.88 4.90 [70]
? By, 1 (6,13) 3.94 3.99 4.28 391 4.09 4.12 [71]
Naphthalene 'B,, 2 (10,10) 4.24 4.21 4.38 4.07 4.23 4.00 [72]
? *B,, 1 (10,10) 3.04 3.18 332 3.05 3.18 3.11[71]
Furan 'B, 2 (6,10) 6.69 6.32 6.47 6.26 6.33 6.06 [73]
? ’B, 1 (6,10) 3.93 4.07 421 3.78 3.99 4.17 [71]
Hexatriene 'B, 2 6,12) 5.78 5.31 5.46 5.25 5.34 4.93 [74]

3B, 1 6,12) 2.88 2.66 2.74 2.64 2.69 2.69 [71]
Other valence
Be 'p 1 2.4) 6.19 5.71 4.36 5.20 4.75 5.28 [55]
N, 11'[g 1 (6,6) 11.87 9.40 8.64 9.13 8.86 9.33 [35]
Rydberg
Water 'B, 2 8,9 7.69 7.61 7.45 8.44 7.62 7.70 [35]
” 3B, 1 8,9 7.16 7.19 7.09 7.86 7.18 7.33 [35]
n— ¥ charge transfer
pNAY A, 3 12,12) 6.09 4.64 3.95 3.89 3.94 4.30°
DMABN' 'A, 3 (12,12) 6.18 4.87 4.28 4.44 4.36 4.57 [75]
B-TCNE#® A, 2 4,4) 4.48 3.84 3.63 3.48 3.58 3.59 [76]
Valence MUE 0.72 0.17 0.32 0.20 0.24
Rydberg MUE 0.09 0.12 0.24 0.64 0.11
Charge transfer MUE 1.43 0.30 0.22 0.22 0.19
Total MUE 0.75 0.18 0.30 0.24 0.22

4N is the number of states whose energies are averaged in the CASSCF and is also the number of states in the model space in MS-CASPT?2 cal-
culations

®The numbers (m, n) indicate m active electrons in 1 active orbitals (see pages S2—-S3 of ESM to see how active spaces are defined)
“Theoretical FCI/CBS estimates from Loos et al. (see Table 6 of Ref. [35]) are highlighted in bold

YIntramolecular charge transfer in pNA

¢6-CR-EOMCC(2,3), D, see Refs. [77, 78]

fDMABN is a case with intramolecular charge transfer

£There is intermolecular charge transfer in the B-TCNE complex

Although the present work is concerned only with 2 Databases
MC-PDFT, we note that some previous work [36-38]

employed range-separated on-top density functionals in ~ We consider three databases: SFAEE11, EE27/19, and
other kinds of hybrid multiconfigurational theories. DBES6.
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SFAEEI1 contains eleven spin-changing excitations of
atomic systems (investigated previously with MC-PDFT in
Ref. [13]), including both light atoms and transition metals.
We do not include spin—orbit coupling in any of the calcula-
tions. For atomic excitation energies, we removed spin—orbit
coupling from the experimental values by considering for
each state the weighted average of the multiplet’s energy.

EE27 includes the 27 spin-conserving excitation ener-
gies: the 23 in the previously defined EE23 database [16,
39] containing valence, Rydberg, and intramolecular and
intermolecular charge transfer transitions of organic mol-
ecules plus the Be valence s — p excitation, the N, valence
o— ¥ and © — ¥ excitations, and the cyclopentadiene
'B, valence 7 — 7* excitation. We updated the database
from the values used previously by using the more accu-
rate data of Loos et al. [35] where available. The updated
database is called EE27/19, and full details of the update
are given in electronic supplementary material (ESM).

DBES6 contains six bond energies (investigated previ-
ously with MC-PDFT in Ref. [13]) that are examples of
strongly correlated systems.

The values we report for MUE in the article are based
on deviations from the reference data. Electronic supple-
mentary material contains MSEs.

3 Methods
3.1 General

We report results for CASSCF, CASPT2, and MC-PDFT.
All MC-PDFT [13] calculations employed the tPBE,
tPBE-HLE, or tPBE (S,, S.) on-top density functionals.
All calculations are gas-phase calculations performed using
Molcas 8.2 [40].

CASSCEF [41] calculations employed a level shift of 1.0 E},
(1 E,,=1 hartree=27.211 eV). The Cholesky decomposition

[42] algorithm is used throughout with a threshold of 1078
E,. The numbers of active electrons and active orbitals in
each active space (AS) are given in the tables of the main
text, and further details are given in Table S1. (Tables and
figures with the prefix S are in ESM.)

CASPT?2 calculations were performed for comparison,
using an imaginary shift of 0.2 E;, and the default value (0.25
E, [43]) for the IPEA shift. The state average (SA) method
[44] was applied to organic molecules’ excitations as indi-
cated in Table 2 of the manuscript considering N states. For
these systems, the multistate (MS) method [45] was used for
CASPT?2 [26, 27] calculations.

The keywords “Atom” and “Linear” were employed to
impose spherical and linear symmetry in the case of atoms
and linear molecules, respectively. The highest spatial sym-
metry operator (D,,) was employed for the excitation ener-
gies of Be, N, N, O™, Co, Mn, and Ru (see Table 1). For all
the organic molecules and diatomic molecules reported in
Tables 2 and 3, no spatial symmetry was imposed, except
for cyclopentadiene and NiCl. (The C,, symmetry operator
was applied in both of those cases.)

For Cr,, NiCl, and the transition metal atoms, the second-
order Douglas—Kroll-Hess Hamiltonian [46, 47] was used;
all the other calculations are nonrelativistic.

For calculating bond energies, in every case the geom-
etry is optimized with the method under consideration.
(Sometimes, this is called using “consistently optimized
geometries.”)

3.2 Basis sets

The cc-pVTZ basis set [48] was used for main group atoms,
for CaO, and for the singlet-to-singlet Be excitation energy.
The aug-cc-pVTZ basis set [49] was used for the excitation
energies of N,.

Table 3 Bond energies (in eV) AS?

CASSCF CASPT2 tPBE tPBE-HLE References
H, (2,2) 4.13 4.59 4.68 4.74 4.75 [79]
N, (6,6) 8.84 9.39 9.78 9.36 9.74 [80]
F, (2,2) 0.71 1.49 2.12 2.14 1.66 [81]
Cr, (12,12) 0.00° 0.99¢ 0.59 - 1.78¢ 1.47 [82]
CaO (8,8) 3.99 3.59 4.44 5.99 4.22 [83]
NiCl (11,12) 271 3.94 4.10 5.67 3.97 [84, 85]
MUE 0.91 0.30 0.30 1.27

4 Active space (please refer to pages S2-S3 of ESM to see how active spaces are defined)
5The CASSCEF dissociation curve of Cr, (Figure S7 of ESM) does not have a minimum at R, (Ref. 1.68 A

[82D

“The CASPT2 minimum energy is erroneously located at 2.65 A

4The tPBE-HLE functional gives the wrong sign
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Fig. 1 (Top) Mean unsigned [ tPBE-HLE | [tPBE]
error (MUE in eV) for the
SFAEE11 database (see 1.8 | 154 153 151 150 148 147 145 144 142 141 1.39
Table 1) with respect to the 135 133 132 130 129 127 126 124 123 121 120
amount of exchange and cor- 16 115 114 1143 111 110 108 107 105 1.04 102 1.01
relation for the tPBE functional. 096 095 093 092 090 089 087 086 084 083 081
The tPBE and (PBE_HLE @ 14 077 075 074 072 071 070 068 067 065 064 063
MUESs are highlighted. (Bot- £ 058 057 056 055 054 052 051 050 049 048 047 1.54
tom) Number of systems that c 125 049 048 047 046 045 043 042 041 040 039
. e 042 041 040 039 038 037 035 034 033 033 032
have, for each combination W 414 027 027 027 027 027 028 029 030 031 032 033
of exchange and correlation, 032 032 032 032 032 033 034 036 037 0.39 0.27
a maximum absolute devia- 09 044 044 045 045 045 046 046 047 047 047 048
tion (from the benchmark) less 058 059 059 060 060 060 061 061 061 062 062
than or equal to 0.28 eV, out 07 073 073 074 074 074 075 075 076 076 077 077
of a total of 11 spin-forbidden 0.88 089 089 090 090 091 092 093 094 095 096
atomic excitations. The tPBE 05 105 106 107 108 109 110 111 112 113 114 1.15
and tPBE-HLE results are high- 05 06 07 08 09 1 11 12 13 14 15
lighted with numerical values Correlation
| tPBE-HLE | |tPBE]
1.8
1.6
8
o 14
2 6
S 125
g 4
w 11 |
5] 2
0.9
0
0.7
0.5
05 06 07 08 09 1 11 12 13 14 15
Correlation

The cc-pVTZ-DK basis set [50] was used for Cr,. The
ANO-RCC-VTZP basis set [51] was used for NiCl and tran-
sition metals in SFAEE11.

The jul-cc-pVTZ basis set [52] was used for molecules
in EE27/19 with valence excitations, except for cyclopenta-
diene, for which the cc-pVTZ basis set was used. The aug-
cc-pVTZ basis set was employed for water, the 6-31 + G**
basis set [53, 54] was employed for para-nitroaniline (pNA)
and 4-(dimethylamino)-benzonitrile (DMABN), and the
aug-cc-pVTZ basis set was used for the benzene—tetracya-
noethylene (B-TCNE) complex.

4 Results and discussion for excitation
energies

The results for the SFAEE11 database of spin-forbidden
atomic excitation energies are reported in Table 1. The
table shows that CASSCF overestimates the atomic excita-
tion energies by an average of 0.35 eV. CASPT2 provides
the smallest errors with respect to the reference data, with an

MUE of 0.15 eV. The tPBE functional performs fairly well
for atomic excitations (MUE of 0.31 eV), though still giving
larger errors than CASPT2. The tPBE-HLE functional gives
a larger MUE (0.50 eV) than tPBE and in general overes-
timates the excitation energies; the error is especially large
for Mo and Ru atoms, whereas the Co *F — °F excitation
is underestimated by tPBE-HLE by 0.9 eV, resulting in an
erroneous negative sign.

Figure 1 shows that errors can be reduced if the exchange
is scaled by 1.1 and correlation by any factor in the range
0.5-0.9. Figure 1 also shows that one obtains the most accu-
rate predictions with Sy =1.1 and S-=0.5-0.6, but this does
not markedly improve the results obtained with the unscaled
tPBE pair-density functional (MUE of 0.27 eV for tPBE
(1.1, 0.5) vs. 0.31 eV for tPBE). It is perhaps significant
though that the tPBE (1.1, 0.5) functional, which is much
more similar to tPBE-HLE than to tPBE, gives a reasonable
Co *F — °F excitation energy.

The results for the EE27/19 database of spin-conserving
excitations energies are reported in Table 2. The EE27/19
database contains 22 valence excitations, two Rydberg

@ Springer
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transitions, and three charge transfer transitions. CASSCF
gives the largest deviations with respect to the reference
data, especially for valence excitations (MUE 0.72 eV) and
charge transfer excitations (MUE 1.43 eV). CASPT?2 give
better results, although charge transfer excitations are still
overestimated (MUE 0.30 eV).

The cyclopentadiene valence z — z* excitation, which is
well predicted by CASPT2 (5.51 eV) with respect to exper-
iment (5.26 eV), remains problematic for both tPBE and
tPBE-HLE (underestimated by more than 0.5 eV). Overall,
tPBE-HLE is better than tPBE for valence excitations, but
less accurate for Rydberg excitations. The top panel of Fig. 2
shows that again one gets the best results with tPBE (1.1,
0.5), with the MUE being reduced from 0.30 to 0.22 eV.
The bottom panel of Fig. 2 shows the number of systems,
out of 27, that have an absolute deviation lower than or
equal to 0.28 eV; this value is the largest for Sxy=1.1-1.2
and S-=0.5-0.7 (for tPBE (1.1, 0.5) there are 20 systems
with this accuracy), whereas it corresponds to 15 and 18
systems for tPBE and tPBE-HLE, respectively. However,
the improvement given by tPBE (1.1, 0.5) over tPBE and

tPBE-HLE is modest and involves mostly the two Rydberg
excitations.

5 Results and discussion for bond energies

Table 3 presents the results for six bond energies. These
include the Cr, molecule, whose ground-state dissocia-
tion is particularly difficult to describe. The tPBE-HLE
bond energy has the wrong sign, and its MUE is there-
fore increased to 1.27 eV, higher even than for CASSCF
(MUE 0.90 eV). Figure 3 shows that the original tPBE
exchange—correlation scaling provides the most reliable
results for bond energies. It also shows, somewhat amaz-
ingly, that no improvement can be gained on average by
scaling exchange and/or correlation. The original tPBE
functional slightly outperforms CASPT2 for both energy
values and the qualitatively correct behavior of dissocia-
tion curves, which are shown in ESM.

Bond energies appear to be very sensitive to param-
eter scaling, especially the exchange term. In contrast to

Fig.2 Results for EE27/19
database statistics of spin-

[ tPBE-HLE | [tPBE]

conserving atomic excitation 18 089 089 090 090 091 091 092 093 093 094 094
energies. (Top) MUEs (in eV) 075 076 077 077 078 078 079 079 080 081 0.81
reported for cach combination 16 062 063 063 064 064 065 066 066 067 068 068
of exchange and correlation, 049 050 051 051 052 052 053 054 055 055 056
(Bottom) Heat map showing g 14 038 039 039 040 041 041 042 043 043 044 045
the number of systems (out of g 028 029 029 030 031 032 033 034 035 036 037 0.99
27) with maximum absolute £ 125 025 026 027 028 029 030 031 032 033 034
deviation less than or equal to 2 022 022 023 024 025 026 027 028 029 030 0.32
0.28 eV The (PBE and tPBE.. W 41 022 022 022 023 023 024 025 026 027 028 028
: : oo 033 033 032 031 0.31 030 030 030 031 0.32 0.22
HLE values are highlighted 0.9 046 045 045 044 044 044 043 043 042 042 042
059 058 058 057 057 057 056 056 055 055 055
07 072 071 071 070 070 070 069 069 069 068 0.68
085 0.85 084 084 083 083 083 083 082 082 082
05 099 098 098 098 097 097 097 096 096 096 0.96
05 06 07 08 09 1 11 12 13 14 15
Correlation
[ tPBE-HLE | [tPBE]|
1.8
20
1.6
17
o 14
g 15
S 125
] 13
w q1
=) 2
0.9
9
0.7
7
0.5
05 06 07 08 09 1 11 12 13 14 15
Correlation
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Fig.3 (Top) Mean unsigned | tPBE-HLE | | tPBEl
error (MUE) in eV for six
bond energies (see Table 3) 1.8

339 347 J
1.6 289 297 305

the tPBE functional. The tPBE Zoil e

with respect to the amount of
exchange and correlation for

and tPBE-HLE MUESs are 14

313 321 329 337 345 353 361 368
263 271 279 287 294 302 310 3.18
213 221 228 236 244 252 260 268
162 170 178 1.86 194 202 210 218 4.69
137 145 153 161 169 177 185 193
112 120 128 136 144 152 160 168
068 070 078 086 094 102 110 117
041 031 0.36 043 051 059 071 0.30
068 056 044 032 029 031 034 042
095 083 078 072 067 066 068 070
139 131 123 147 1412 106 104 1.06
189 181 173 165 157 151 146 141
239 231 223 215 208 200 192 185

08 09 1 1.1 1.2 13 14 15
Correlation

o o 147 147 154
- o
highlighted. (Bottom) Num £ 125 197 129
ber of systems that have, for 8 109 107 107
each combination of exchange g 11 074 072 070
and correlation, a maximum w - 008 066 053
absolute deviation (from the 0.9 1:07 0:92 0:80
benchmark) less than or equal 139 124 1.09
to 0.28 eV, out of a total of six 07 171 156 147
bond energies (see Table 3). 213 205 197
The tPBE and tPBE-HLE 0.5 263 255 247
results are highlighted with 05 06 07
numerical values
tPBE-HLE [tPBE]
1.8
1.6
o 14
=]
<
£ 125 1]
x5

1 2

excitation energies, which are discussed above, the best
combination is given by Sx=1.0 and S-=0.9-1.1, yet this
suffices to suitably describe only 4 systems out of 6. This
suggests that a simple functional scaling is not sufficient
to obtain on-top density functionals that perform broadly
and significantly better than the ones we have been using.

6 Conclusions

We investigated how the scaling of exchange and correlation
contributions of on-top density functionals in MC-PDFT
affects properties such as atomic and molecular excitation
energies and bond dissociation energies. A new combina-
tion of excitation energies for spin-conserving excitation
energies including valence, Rydberg and CT excitation was
introduced as database EE27/19 for this study, and we also
compared to spin-forbidden atomic excitation energies and
to bond energies.

The results are that only a small improvement in excita-
tion energies over those obtained with the original tPBE

09 1 1.1 1.2 1.3 14 15
Correlation

functional can be obtained by scaling the exchange and cor-
relation components of the tPBE on-top density functional
(with Sx=1.1 and S-=0.5), and no improvement at all can
be obtained for the mean unsigned error in bond energies.
We thus conclude that the development of significantly
improved on-top density functionals will require either new
or more flexible functional forms rather than just scaling
parameters.

7 Electronic supplementary information

Further information about the computational details, basis
sets, active spaces and dissociation curves; Cartesian coordi-
nates for the EE27/19 database. (PDF) CASSCEF orbital files
in Molcas format (.RasOrb) in compressed archive (RAR).
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