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We present a topological multiple testing scheme for detecting peaks on the sphere under
isotropic Gaussian noise, where tests are performed at local maxima of the observed field fil-
tered by the spherical needlet transform. Our setting is different from the standard Euclidean
large domain asymptotic framework, yet highly relevant to realistic experimental circumstances
for some important areas of application in astronomy, namely point-source detection in cosmic
Microwave Background radiation (CMB) data. Motivated by this application, we shall focus on
cases where a single realization of a smooth isotropic Gaussian random field on the sphere is
observed, and a number of well-localized signals are superimposed on such background field.
The proposed algorithms, combined with the Benjamini-Hochberg procedure for thresholding
p-values, provide asymptotic control of the False Discovery Rate (FDR) and power consistency
as the signal strength and the frequency of the needlet transform get large.

Keywords: Gaussian random fields, Sphere, CMB, Height distribution, Overshoot distribution,
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1. Introduction

A classical problem of modern high-dimensional statistics is multiple testing in the pres-
ence of background noise. Applications are common in the areas of neuroimaging, ge-
nomic arrays and astronomy. These issues become particularly challenging when the
background noise is allowed to exhibit more realistic properties than the simple 7.i.d.
framework, in particular when noise is modeled as a stochastic process or a random field.
In this setting, important progresses have been recently obtained combining ideas from
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2 D. Cheng et al.

two different streams of research, namely techniques from the multiple testing literature,
such as False Discovery Rate (FDR) algorithms, and techniques to investigate excursion
probabilities and local maxima for random fields [29, 7, 8]. These works have covered
applications in a univariate and multivariate Euclidean setting; analytic properties have
been derived under a large sample asymptotic framework, i.e., under the assumption that
the domain of observations is growing steadily, together with the signals to be detected.

In this paper we introduce a related multiple testing procedure in a setting that is
different from the standard Euclidean large domain asymptotic framework, yet highly
relevant to realistic experimental circumstances for some important areas of application
in astronomy. More precisely, we focus on cases where a single realization of a smooth
isotropic Gaussian random field on the sphere is observed, and a number of well-localized
signals are superimposed on such background field. This is exactly the setting for the
so-called point-source detection issue in cosmic Microwave Background radiation (CMB)
data experiments [24, 25, 26]. As discussed now in any modern textbook in cosmology
[12], CMB data can be viewed as a single realization of an isotropic Gaussian random field,
which represents a “snapshot” of the Universe at the last scattering surface, i.e. the time
(approximately 4 x 10° years after the Big Bang, or 1.38 x 10! years ago) when photons
decoupled from electrons and protons and started to travel nearly without interactions
in space. As such, CMB has been repeatedly defined as a goldmine of information on
cosmology - two very successful satellite experiments, WMAP from NASA (http://
map.gsfc.nasa.gov/) and Planck from ESA ( http://www.esa.int/Our_Activities/
Space_Science/Planck) have now produced full-sky maps of CMB radiations, and these
data have been used in several thousand papers over the last few years to address a
number of fundamental questions on the dynamics of the Big Bang, the matter-energy
content of the Universe, the mechanisms of structure formation, and several others.

From the experimental point of view, it is very important to recall that, superim-
posed to CMB radiation, a number of foreground contaminants are present; as a first
approximation, we can view them as point-like objects (galaxies or clusters of galaxies,
typically). A major statistical challenge in the analysis of CMB data is the proper iden-
tification of such sources; on one hand this is important for the proper construction of
filtered CMB maps, on the other hand these sources are of great interest on their own
as proper astrophysical objects (in some cases they can be matched with existing cata-
logues, while in other cases they lead to new discoveries). A number of algorithms have
been proposed for these tasks and these solutions have all been shown to perform well
in practice, see i.e., 28] and the references therein. However, these procedures have all
avoided the specific challenges of multiple testing and none of them has been shown to
control in any proper statistical way any aggregate statistics such as the classical Family-
Wise Error Rate (FWER) (the probability of observing any false detections at all), False
Discovery Proportion (FDP) (the fraction of false detections among the detections in a
given sample) or False Discovery Rate (FDR) (the expected FDP in a population).

Our purpose in this paper is to develop in such a spherical framework a rigorous
statistical procedure to control error rates in a multiple testing framework. Our starting
idea is to extend to these circumstances the STEM procedure advocated in [29, 8], and
investigate rigorously its statistical properties. While our construction follows in several
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Multiple testing on the sphere 3

ways what was earlier done by these authors, we wish to stress that the new spherical
framework poses some major technical and foundational new challenges.

The first of these new challenges is the proper definition of filters and point-like sig-
nals in a spherical framework. Here, natural solutions can be found by exploiting recent
developments in the analysis of spherical random fields an spherical wavelets. In partic-
ular, we can define bell-shaped signals by adopting a natural definition of a Gaussian
distribution on the sphere, motivated in terms of diffusion processes; likewise, filtering
can be implemented by wavelet techniques - we find particularly convenient the Mexican
needlet construction introduced by [13, 14], see also [27] for some earlier applications to
CMB data.

A second, more delicate, issue is the rigorous investigation of asymptotic statistical
properties. A crucial staple of the STEM algorithm is the possibility to control the FDR,
assuming convergence of the empirical distribution of local maxima to its theoretical
counterpart. In standard settings this can be done by resorting to ergodicity properties,
assuming that the domain of the observations grows larger and larger. This form of
ergodic properties cannot be exploited here because our spherical domain is compact. We
shall hence require a convergence result on the empirical distribution of local maxima
in a high-frequency/fixed domain setting, i.e., as the observed frequencies diverge: this
result extends to the case of the needlet transform some related computations which were
recently performed in [6] for the case of random spherical harmonics. In this sense, our
setting is related to the increasingly popular fixed-domain asymptotics approach for the
analysis of random fields [18].

The plan of this paper is as follows. Our basic setting and model is introduced in
Section 2, with Section 3 devoted to a careful discussion on the nature and effects of
filtering. Section 5 provides a description of the multiple testing scheme and discusses
the error and power definitions, including the derivation of asymptotic p-values and our
adoption of Benjamini and Hochberg’s (1995) pioneering approach [4]. The proofs of FDR
control and tests consistency are collected in Section 6, while in Section 7 we provide
numerical results on the empirical performance of the proposed procedures in simulated
CMB fields.

Because of the technical issues involved in processing of real astrophysical data, we
limit ourselves in this paper to the algorithmic and theoretical issues described above
and defer the application to real CMB data to follow-up work.

2. The model

As motivated above, our purpose here is to represent a situation where a large number of
“point sources”, defined here as “signal”, are superimposed on some isotropic background
“noise”. Of course, the notions of “noise” and “signal”, here as in any other motivat-
ing field, are very much conventional. For CMB-oriented applications the background
Gaussian field is the primary object of physical interest, while the super-imposed point
sources are contaminants to be removed; in other astrophysical areas, the identification
of the sources may be by itself a major scientific goal (a very recent catalogue of detected
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point sources/astrophysical objects is given for instance by [26]). Moreover, ”follow-up”
observations of these sources by means of ground telescopes are expensive, hence we need
to minimize false detections, in a suitable sense to be discussed below.

2.1. Spherical Gaussian

To introduce our model for the signal, we first need to justify the notion of a “Gaussian-
shaped” density on the sphere. Our “point source” signal will be built from a set of such
bell-shaped distributions. Let S? denote the unit sphere in R3. The diffusion equation on
the sphere is given by

0

ah(xa t,$0) = 7AS2 h(l’, taxO)a h(l’,o,fﬂo) = §zo ($)7 T e Sza

where Agz is the Laplacian operator of S? and ,,(z) is the Dirac’s delta measure
centered at zo € S?, and the second line is to be understood in the weak sense. It is
standard to write the solution in terms of diffusion operators as

204+ 1
h(w;t, 30) = exp(—tAge Jh(w;0,30) = 3 2t

14

exp(—tA\e) Pe({z0, z)), (2.1)

where again the first equality is to be understood in the weak sense, —\; := —£(¢ +
1) denotes the set of eigenvalues of the spherical Laplacian, ¢ = 1,2, ..., while {P(:)}
represents the family of Legendre polynomials

(1 d

Fulu) =5t

(1-u?®  (=1,2,..., (2.2)

ie., Pi(u) = u, Po(u) = (3u® —1)/2, P3(u) = (5u® — 3u)/2, etc., and (-,-) denotes
inner product on R3. By a straightforward analogy with the Euclidean case, it is natu-
ral/customary to view h(-;t, o) as the density on S? of a spherical Gaussian centered on
xo and having variance ¢.

2.2. Signal plus noise model

We can hence introduce the following sequence of signal-plus-noise models, for N =
1,2,...,
yn(z) = pn (@) +2(2), 2 €S (2.3)

where pn(z) denotes a sequence of deterministic functions on the sphere defined by

N
pn (@) = arh(@ten, &), ar >0, (2.4)
k=1
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and h(z;t n,&) is the family of “spherical Gaussian distributions” on S? (centered on
&, and with variance ¢, y) which we introduced in (2.1). As mentioned earlier, we will
set tp, v — 0 as N — o0, so that each kernel h(x;t, v, &) will become in the limit more
and more concentrated around its center &.

Let us now focus on the “noise” component z(z). Assume that {z(z), = € S?} is
Gaussian, zero-mean and isotropic. For such fields, it is well-known that the following
representation holds in the mean square sense [19]:

2x) = z(@),  z@)= Y amYm(@), (2.5)
=1

where {Yz,(.)} denotes the family of spherical harmonics, which form an orthonormal
basis for the L?(S?) space of square integrable functions on the sphere (see for instance
[19], Chapters 3 and 5); on the other hand, {ag,} denotes the uncorrelated array of
random spherical harmonic coefficients, which can be obtained by means of the spherical
Fourier transform

Ao = /S2 2(2)Y g (x)dex; (2.6)
here, Elamem] = Ced5 67, where 60 is the Kronecker delta function, and the sequence
{Cy} represents the so-called angular power spectrum of the field; (2.5) is hence the
Karhunen-Loeve expansion on the sphere. As pointed out in [20], under isotropy and
finite-variance the sequence {Cy} necessarily satisfies Y, Cp(20+1)/(47) = E[2%(z)] < 0
and the random field z(z) is mean square continuous, meaning that lim,_,,, E(z(z) —
2(z0))? = 0 for all 7y € S?. Its covariance function is given by

o~ 20+ 1
(z1,22) = E[2(21)2(22)] = ) g Celel{zr,z2)), w2 € Ss2.
£=0

The Fourier components {z¢(z)}, can be viewed as random eigenfunctions of the spherical
Laplacian:
Agezp = —L(l+ 1)z, 0=1,2,...;

the asymptotic behaviour of critical points for z;(z) has been studied for instance by [6].

3. Filtering and smoothing

An important step in the implementation of the STEM algorithm is smoothing of the
observed data. Given the very delicate nature of the asymptotic results in our setting,
the definition of the kernel function requires here special care. We shall propose here to
adopt a kernel which is based upon the so-called Mexican needlet construction introduced
by [13]; see also [17, 22, 27] for the investigation of stochastic properties and statistical
applications of these techniques.
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Mexican needlets can be viewed as a natural development of the standard needlet
frame which was introduced by [23]. Loosely speaking, Mexican needlets differ from the
standard needlet construction inasmuch as they allow for providing a kernel which is
unboundedly supported in the spectral domain; they can hence be shown to enjoy better
localization properties in the spatial domain, i.e., faster (Gaussian rather than nearly
exponential) decay of their tails. For our purposes, these better localization properties in
the spatial domain turn out to be very important, as they allow a tight control of leakage
in the signals.

The Mexican needlet transform of order p € N can be defined by

¥ ({or.aa)) = Wyl(or i Bos) = 300 gis) 2P (o) ()
£=0

here the function b(-;s) is defined by b(u;s) = u2*e~*", with u € R.; it is easily seen to
belong to the Schwartz class (i.e., all its derivatives decay faster than any polynomial).
The user-chosen integer parameter s is usually labelled p in the literature, but we avoid
this choice here for possible notational conflicts with p—values; it has been shown that
higher values of s entail better properties in the frequency domain, but worse spatial
localization, in particular, a higher number of sidelobes. Finally, B > 1 plays the role
of a bandwidth parameter: for any given value j, a higher value of B implies better
localization properties in the spatial domain, and worse in the spectral domain; values
in the range 1.1-1.3 have been shown to perform well in practice [27].

4. High frequency asymptotics

Our asymptotic theory will be developed in the so-called “high-frequency” framework
as the filtering frequency j increases. To achieve non-trivial limits, we shall allow the
number of point sources N to grow with j (N = N; — oo as j — 00), and their shape
to become more and more localized (¢t n = tk,n; — 0as Nj — 00). Under this regime,
in what follows we shall only use the index j for asymptotics.

The above conditions can be understood by an analogy with the (now standard) high-
dimensional asympotics framework where the number of parameters is allowed to grow
to infinity in the presence of growing number of observations. From the point of view of
astronomy, this reflects a growing number of sharper and sharper sources as the resolution
of our experiments grow better and better, or equivalently as the scales that we are able
to probe become smaller and smaller.

It should be noted that, in the absence of these conditions, all our procedures to follow
have properties that can be trivially established: in particular, the power of our detection
procedures is very easily seen to converge to unity. More explicitly, we believe that our
setting is meaningful and relevant as a guidance for applied scientists; indeed, in many
circumstances the cardinality of possible signals (i.e., the number of potential galactic
sources in an astrophysical environment) is in the order of several thousands, so it seems
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Multiple testing on the sphere 7

more useful to consider this quantity as diverging to infinity together with the number
of observations.
To formally achieve the right balance, we shall introduce the following assumption.

Condition 1. Let ty, = maxp—1, . ntgn,. As j — 00, tn, B* — 0.

In words, we are assuming that both the signal and the filter become more and more
localized, the former more rapidly to make identification meaningful.

4.1. The filtered signal

Applied to (2.3), the kernel transform (3.1) produces the sequence of observable smoothed
fields

y; () = py(x) + Bj (@), (4.1)
where p;(z) denotes the smoothed signal and f;(z) denotes the smoothed noise (the
change in notation in Eq. (4.1) with respect to Eq. (2.3) reflects the dependence of all

the quantities, including N, on 7). We describe both components in detail below.
For the filtered signal we obtain

N
) = Z ar(¥; ((z, ¥)), M(y; te, N+ Ek)) L2 (52)

k=1
N oo
:ZZa ( s) exp(— €(£+1)tk,N)2£+1PZ(<£k7 ).

k=1 4=0

In words, both the filtered noise and signals are averaged versions, in the spectral do-
main, of (random and deterministic, respectively) Fourier components. We neglect the
numerical approximations that can arise when computing these integrals on real data
(these numerical approximations are certainly of lower order with current packages such
as Healpix [15]).

For further analysis, it is convenient to introduce the simple approximation

[es) 2s
Zak< ) exp (—0(£ + L)ty y — B~20?) 2€4—;:1Pe(<£k7:c>)

=

P (35) ew(-558) 2Pl + 1)

£=0

(=)

I
M= I M=

apW;((z, &) + 0;(1),

>
I
—

where the second line can be easily justified resorting to Condition 1 above. It is also
known that the smoothing filter ¥;((-,&)), for any & € S?, has Gaussian tails (up to a
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polynomial factor), and hence decays faster than exponentially; more precisely one has
that there exists a constant Cy such that [13, 14]

B23d?(x,&})

W52, &) < CsB¥e” 1 (14 |Has (BYd(z,&))]) (4.2)

where d(z,y) = arccos({z,y)) is the standard geodesic distance on the sphere and H,(-)
denotes the Hermite polynomial of degree ¢, which is defined by
2279 d9 a2
H,(x) = (-1)% /2@ (e /2) .

It is also possible to provide a useful analytic approximation for the functional form of
the needlet filter at high frequencies j; indeed Geller and Mayeli [13] proved the following.

Lemma 4.1. Let s =1 and let & € S? be fired. Then as j — oo,

U5 ({x, &) = g(d(z,&))(1 + O(B~2)),

where

1 .. peig B2 g2
R (1— 40 ), 0 € [0, 7],

and d is the standard geodesic distance on the sphere.

As a consequence, we have the following analytic expression for our signal when s = 1,
as j — oo:

N . .
1 . B2d%(a¢y) B2 d?(z, &) iy
uj(x):;akﬂjs% 7 <1—4> (1+0(B™#)) +0;(1). (4.3)

It is readily verified that the function g(-) has the global maximum g(0) = £ B%* and a
local minimum ¢(2v2B77) = — e 2B%.

4.2. The filtered noise

Our next step is to focus on the sequence of filtered noise fields.
Recalling the standard addition theorem for spherical harmonics (see [19], Eq. (3.42))

14

Z Y;Zm(xl)?lm(x2) =

m=—{

20+1
s

Po((x1,22)),

it is then easy to see that the “filtered noise” is given by

Bi(x) = (Wi((2,9)), 2(y)) L2(s2)

ib<l§j;s) i agmnm(x)ib(;;8> ze(2),

£=0 m=—/{ £=0
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where the last line is due to (2.5).
As derived in (4.4), they can be expressed as averaged forms of random spherical
eigenfunctions,

o0
14 .
ﬂj<m>=gzb(3j;s)z[<m>, j=12... (4.4)
=1
It is convenient to normalize these fields to have unit variance, as follows:

(o) = 222 j=12... (4.5)

JEIB ()]

Let us define also
j; = Yj _ ~j i My '
E[B ()] E[57 ()]

In this paper, we assume that the angular power spectrum of the spherical noise field
is known, and from this it is immediate to compute the normalizing variance needed to
construct §;(z) and ;. In practical applications, it should be noted that there are usu-
ally both tight theoretical predictions on the angular power spectrum and very efficient
empirical estimates which converge very rapidly to the true values, in the high-frequency
sense, so that these statistics can be usually implemented without difficulties.

A rigorous investigation of the asymptotic properties of these smoothed fields requires
some mild regularity assumptions on the power spectrum Cy, which are customary in this
branch of literature. More precisely (see for instance [19], page 257, or [2, 21, 17, 22]),

(4.6)

Condition 2. There exist M € N,y > 2 and a function G(-) € C* such that
Cy=0""G(¥) (4.7)
where G(£) > 0 for all £, and for some ¢1,...,cpr >0 andr=1,..., M, we have

d’[‘
du”

sup
u

G(u)' <o

Condition 2 entails a weak smoothness requirement on the behaviour of the angu-
lar power spectrum, which is satisfied by cosmologically relevant models; for instance,
this condition is fulfilled by models of the form (4.7), where G(¢{) = P(£)/Q(¢) and
P(£),Q(¢) > 0 are two positive polynomials of the same order. In what follows we denote
by Gp the limit Gg := limy_, o G(¥).

Under Condition 2, it is possible to establish an upper bound on the correlation
function of {3;(-)}, as follows (see [17, 22] for a proof).
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10 D. Cheng et al.

Proposition 4.2. Assume Condition 2 holds with v < 4s+2 and M > 4s+2—~; then
there exists a constant Ky > 0, not depending on j, x, and y, such that the following
inequality holds

Ky

- 4.
(145 Bid(w,y) 7277 (48)

|Cor(8;(x), ()| <
where d(x,y) = arccos({x,y)) is the standard geodesic distance on the sphere.

The inequality (4.8) is qualitatively similar to others which were earlier established in
the case of standard needlets; see for instance [2]. A quick comparison with the results
in [2] shows an important difference, namely that the rate of decay for the bound on
the right-hand side depends on the shape of the kernel (in particular, on the parameter
s) and on the rate of decay of the angular power spectrum (i.e., on the parameter 7);
none of these values affect the rate of convergence in the standard needlet case. As a
consequence, in the case of Mexican needlets, asymptotic uncorrelation only holds under
the assumption that v < 4s+2, so that higher values of s are needed to ensure asymptotic
uncorrelation for larger values of 7. We believe this issue can be easily addressed by a
plug-in procedure; for instance, for the CMB applications we mentioned earlier there are
strong theoretical motivations and experimental constraints that allow to set 2 < v < 3,
so that taking s = 1 is already enough to ensure the correlation function decays to zero:
ample numerical evidence on the uncorrelation properties of Mexican needlets is collected
in [27]. The term j—! appearing in the denominator of (4.8) is a consequence of some
standard technical difficulties when dealing with boundary cases such as M = 4s+2 —1.

Recall that a Gaussian random field {X(z), z € S?} is isotropic if and only if its
covariance function is invariant to rotations, i.e.

['(z,y) = Cov(X(z), X (y)) = Cov(X(g - 2), X (9 v))

for all elements g € SO(3) of the three-dimensional group of rotations. For such fields
the covariance functions can be expressed by

o0

20+1

D(@,y; {Crlemr.) = Y — CePel(@,9));
=1

it turns now to be convenient to make explicit the dependence of the covariance function
from the angular power spectrum sequence {Cy}y=12,.... The fields §;(x) are obviously
isotropic and from Proposition 4.2 it is immediate to obtain a bound on the covariance
(rather than correlation) function, indeed we have

2041

- 0
Lys(e,y) =EB; (@)8;()] = Y6 (55:5) Ce——Pul (@)
{=1
. ¢ Ky - ‘- 2041
= F(l'uy, {bg(ﬁys)cé}leﬂ,...) S(l—'—j_lBjd(x’y))‘lS“’Q—’Y ;b2 (Eytg)CZ An .
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Multiple testing on the sphere 11
For the implementation of our multiple testing procedures, we shall need to write down
an analytic formula for the asympotic distribution of maxima of the noise components;

to this aim, we need the exact limiting behaviour of higher-order derivatives of the
covariance function, evaluated at the origin. Let us first introduce the functions

oo
Coon(7y) = 20/27272D(1 — v/2 + n + 25), I'(t) := / ' exp(—x)dz.
0

Let us also define

=20+ 1 2+ 1
I'(Ce) = 5 Cele(), TG = > Ol (1),
=1 a /=1 ™
where
LL+1) -1+t +2)

Pi(1) =

and P/(1) =

8

represent the derivatives of the Legendre polynomials evaluated at 1. Moreover, let us

write also

F/(Cf) _ F,(Cf) (49)

= /F//(Cg)7 Kj /F//(Cé)'

In the sequel, it should be kept in mind that 7; and x; are for the standardized fields Bj
(and not for 3;).

Proposition 4.3. As j — oo, we have

F/(Bj)NMBQj F//(Bj)NMBM

205,0(7) ’ 805,0(7) 7
and therefore
0 ~ 2 65,2(7) B_j .y \/505,2(/}/) .
! 0374(7) 7 ’ 6370(7)0374 (7) 7

where a; ~ b; denotes lim;_,o a;/b; = 1.

The proof is provided in the Supplement. We note that the expressions for n; and &;
will be used in the applied sections below for the numerical evaluation of p-values. In the
sequel, we let s = 1; all the results below can be trivially extended to choices of other
forms of filtering, with different values of s (we stress that the case s = 1 is the choice
that has been usually adopted for applications, see [28, 27]).
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12 D. Cheng et al.

5. The multiple testing scheme

5.1. The signal and null regions

To properly approach the detection of point sources as a multiple testing problem, we
first need to carefully define the spatial region occupied by the needlet-transformed point
sources.

Define the signal region D} = UY_ D(&, p) and null region Df = S?\ DY, where p > 0
is a pre-specified location tolerance parameter and D(&, p) is the geodesic ball on S?
with center & and radius p. The presence of a tolerance parameter is not only required
to settle properly the theoretical framework, but is also consistent with the common
scientific practice, see again [28]. We introduce now a further condition.

Condition 3. As j — oo, we have

=p;~j'B7J i N> 2 i N
p=pj~] alSkIQ}CI}SNd(fkagk)> p, and  fin ai >ag, VN,

where d(x,y) is the geodesic distance on the sphere, and v and agy are positive constants.
Condition 3 is meant to ensure that the tolerance radius p decays to zero asymptot-
ically faster than the distance between separate sources. This assumption is needed for
our theoretical results below; in particular, for the power consistency argument to go
through we require some form of convexity to hold (with high probability) in neighbour-
hoods around the maxima of radius equal to the tolerance parameter, and this would not
necessarily be the case should two maxima be ”too close” (see i.e., the proof of Lemma
6.10). Notice that the restriction min; <<y d(&k,&r) > 2p in Condition 3 yields
Area(D(&1, pj))N; < 41 = Area(S?),
for every j, implying that the area of null region is always positive and that /N; cannot
grow too fast, specifically N; = O(pj_2) = O(j~2¥B%). It is easy to check that
Area(D(&1, pj)) = 2m(1 — cos pj) ~ wp? ~ BT,

Here are some examples for Condition 3. If N; = [B2(1=9)| for some 0 < § < 1/2
(|.] denoting integer part), then the area of signal region tends to 0. If N; ~ cop;2 ~
coj 2V B for some cg € (0,4), then the area of signal region tends to 7cy.

5.2. The STEM algorithm on the sphere

As some general notation, for a smooth Gaussian random field {X(z),z € S?}, define
the number of local maxima of X exceeding the level u € R over a domain D C S? as

M,(X;D)=#{ze€D:X(z) >u, VX(z)=0, V?X(z) <0}; (5.1)
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Multiple testing on the sphere 13

here VX (z) and V2X(z) denote the gradient and Hessian of the field X at z, and
V2X(z) < 0 means the Hessian V2X (z) is negative definite. The gradient and Hessian
can be computed as VX = (E1 X, E2X) and V2X = (E;F;X)1<; j<2, respectively, where
FE4 and F are orthonormal tangent vectors. In spherical coordinates, at any given point
x=(0,0¢),0<0<m 0<p <27 these are given by

0 1 0

2,x —

)

Ex:77
b9

sinf g’
For convenience, denote by M (X; D) = M_.(X; D) the total number of local maxima
of X over D.

Suppose now we observe yy (t) on S? defined by (2.3). In accordance to [29, 8], we call
the following procedure STEM (Smoothing and TEsting of Maxima).

Algorithm 1 (STEM algorithm).

1. Smoothing: For a given j, apply the needlet transform to the observed field (2.3)
to obtain the filtered field (4.1). Normalize by the (known) noise variance to obtain
the field (4.6).

2. Candidate peaks: Find the set of local maxima of §;(x) on S

T; = {zeS*: Vj(x) =0, V?*j;(z) <0} . (5.2)

3. p-values: For each z € Tj, compute the p-value p;j(x) for testing the (conditional)
hypothesis

Ho(z): {pj(@’) =0 for all 2’ € D(z,p;)} vs.

Ha(z): {p(@") >0 for some 2’ € D(x,p;)} (5:3)

where B(x, pj) is a geodesic ball centered at x on the sphere and of radius equal to
the tolerance radius p;.

4. Multiple testing: Notice that M(g;;S?) = #{x € T]} is the number of tested hy-
potheses. Perform a multiple testing procedure on the set of M(g]j;SQ) p-values
{pj(z), z € Tj}, and declare significant all local mazxima whose p-values are smaller
than the significance threshold.

Next, we carefully define detection errors and power for this testing scheme.

5.3. Error and power definitions
We shall consider two forms of inference, one with fixed significance threshold « and one

where the significance threshold is determined by the data according to a multiple testing
procedure (see Section 5.4). For fixed u € R, denote by T;(u) the set of local maxima
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14 D. Cheng et al.

of §; exceeding u defined via (5.1). Define the total number of detected peaks and the
number of falsely detected peaks as

R](u) = Mu(gﬁ 82)’ ij (u) = Mu(ﬂj; ng)v (54)

respectively. Both are defined as zero if f’j(u), is empty. As usual, the False Discovery
Proportion (FDP) is proportion of falsely detected peaks, i.e.

V;(u) Mu(g'§Dpj)
FDP,, (u) = R.p. 1 7P ST .M)Pi ) (5.5)
i (u) v (Mu(95;Dp") + Mu(g;;D77)) V1
while the False Discovery Rate (FDR) is the expected FDP, i.e.
V,.(u)
FDR,, (u) =E{ 2"~ 1. 5.6
) =B s ] 5.6

We shall denote W, (u) = Rj(u) — V,, (u).
Finally, again following the same conventions as in [29, 8], we define the power of
Algorithm 1 as the expected fraction of true discovered peaks

N N
1 < 1
Power, (u) =E N, Z I{Tj(u)mp(fk,pj);ée)} = N Z Power, (u), (5.7)
k=1 k=1
where Power,, r(u) is the probability of detecting peak &k

Power,, (1) = P (Tj(u) N D(Ex, p;) # a)) . (5.8)

The indicator function in (5.7) ensures that only one significant local maximum is
counted within the same peak support, so power is not inflated. In other words, no
matter if the number of elements in Tj falling into Dj, is one or larger the value of the
indicator function will be always unity.

5.4. P-values and BH procedure
For each observed local maximum, its P-value is the probability, under the null hypoth-
esis, of obtaining such height as the one observed or higher. Given the observed heights
y;j(x) at the local maxima x € T}, the p-values in step (3) of Algorithm 1 are computed
as p;(t) = Fj (g;(¢)), t € T;, where

Fi(u)=P (B](x) >u ‘ x € ﬂ) (5.9)

denotes the right tail probability of B](x) at the local maximum z € Tj, evaluated under
the null hypothesis that there are no point masses at all, i.e., uy(z) = 0,Vz.
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Multiple testing on the sphere 15

Note that, since only local maxima are evaluated as candidates for point sources, the
probability (5.9) must be conditional on the location z being a local maximum. Such
probabilities have been derived in [9]. Applying the technique there, we have that

Fy(u) = [[ 58 - [ (5.10)

(@) = A {77 +r2(a? = 1)) p(a)d | ——L
] 2+m\/3+% j V2Hn =

(2+T) _,Q 2+4n?)a?

2(2+n ﬂu

+

(3+nj)w
ﬂ ¢ T s }
7(3+ 12 — r2) @+ =KD+ 12— r2)

Here n; and x; are defined in (4.9) above, and ¢(z) and ®(x) denote the standard normal
density and cumulative distribution functions, respectively.

As a multiple testing procedure in step (4) of Algorithm 1, we apply the Benjamini-
Hochberg (BH) procedure [4]. In the context of this work, it is implemented directly
as follows. Consider the N; p-values in increasing order. For a fixed significance level

€ (0,1), let k be the largest index for which the ith smallest P-value is less than
io/M(§;;S?). Then the null hypothesis Ho(z) at z € Tj is rejected if

ko . . R ko
pj(z) < M5 8%) = yj(x) > upn,; = F; (M@j;SQJ ; (5.11)

where ka/M(7;;S?) is defined as 1 if M(y;;S?) = 0. Since app,; is random, definition
(5.6) is hereby modified to

V, (iiBw.;)
FD =E{ LI 12
Ret s, {Rj(ﬂBH,j) V1 } ’ (5:12)

where R;(-) and V,,(-) are defined in (5.4) and the expectation is taken over all possible
realizations of the random threshold @gh ;.
Since @pp,; is random, similarly to the definition of FDRpy,,, (5.12), we define

N
1 J

Powergy,p, = E N, > L7, (i D (€ )20} | - (5.13)
k=1

imsart-bj ver. 2014/10/16 file: "PeakDetSphere_BernoulliRevision - AS6".tex date: June 5, 2018



16 D. Cheng et al.

6. FDR Control and Power Consistency

6.1. FDR Control

The strategy to prove FDR control is to first quantify the expected number of local
maxima above any level u over the null region (false discoveries) and signal region (true
discoveries). This is given in Lemmas 6.1 and 6.3 below.

Lemma 6.1. Let u € R be fixred. Then under Condition 2 as j — oo, the expected
number of local maxima of j; above u in the null region ng 18

v

E[M.(§;;Dg")] = [47 — 2m(1 — cos p;)Nj]r;(u) + o(e™"), (6.1)

where
Tj(u) = [ (BJ’SZ)] ( )TJ’ u € R, (6'2)

18 the expected number of local mazxima of Bj exceeding u over a unit area on S%, Fj;(u)
is the tail distribution function (5.10), and

rj =rj(=00) = S — (6.3)

AT om2, [3 402

Proof. Recall Area(D (&, p;)) = 2n(1 — cos p;) for every k, therefore
Area(Df’) = Area(S?) — Area(D(&, pj))N; = 47 — 2m(1 — cos pj)N;.
By the Kac-Rice metatheorem, Lemma 4.1 and Condition 3,
E[Mu(5;; D))
= 0]dx

1
= E[|det(V27: ()| Lis. (2) 50 924, (21 <0t | VT (z
L5 T 4et(253 ()11 5,010,925, 0101 V55 )

/ E{det (V55 (@)1 (5, (2150, 925, (o) <0y | V55 @) = Old
274/ detCov( VBJ

+ O(N;B™ e,

where m is some positive constant. Evaluating the integral yields (6.1), where

1

1500 = e GBI T B L 5, 5, 925,000 VB ) = O

is the expected number of local maxima of Bj exceeding u over a unit area on S?. The
exact expression (6.2) follows from (5.10), while (6.3) was proved in [9]. O
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Multiple testing on the sphere 17

Remark 6.2 [Asymptotics of r;(u).] By Proposition 4.3, as j — oo,
Cs,4(7) 2 cs,a(7) 2j
rj~ —————B% and r;j(u)=F;(u)r; ~ F;(u) ’ B*.
T 81V3es2(7) ! T 8eyBes 2 ()

Lemma 6.3. Let u € R be fired. Then under Conditions 2,3 as j — oo, the number of
local mazima of §; over the signal region ]D)fj satisfies

M, (§;: D7) > Nj + O, (B~ , E[M,(5;;D}")] > N; + O(B~%).

Proof. Let pj = B < p; = j*B~J. By Lemma 4.1, within the domain B(&, p;), the
mean function of g; satisfies the assumptions of the unimodal signal model in [8] with
the signal strength being a = B%/. It then follows from similar arguments as in [8] that

M, (§;; D) = N, + O, (B~%)
E[M.,(§;;D7")] = N; + O(B~%).
The desired results then follow immediately from the observation
M, (g5 DY) > M, (5;;D57),

where the inequality admits the possibility of there being other local maxima in the
flatter areas D(&x, p;) \ D(k, pj) of the needlet transform impulse response. The exact
expected number of these is presumably small, but hard to estimate. O

Remark 6.4 [The rate of p;] The proof of Lemma 6.3 explains why we make the
assumption p; ~ j¥ B~ in Condition 3 above. This choice of rate for p;, decaying slightly
less slowly than B~/ allows obtaining an asymptotic limit to the number of local maxima
over the null region E[M,,(g;;Dg’)], while the number of local maxima over the signal
region E[M,(§;;D}”)] can be bounded asymptotically. If we had chosen the rate of p; for
pj, decaying at a rate B~7, then as shown in the proof of Lemma 6.3, we could obtain an
exact limit for the number of local maxima over the signal region; however in that case,
the number of local maxima over the null region would be difficult to quantify due to
complicated behavior of the mean function fi; (after the needlet tranform) immediately
outside that radius.

The following ergodic result, which will be used in the proof of Theorem 6.6 below,
shows that the variance of the number of local maxima goes to zero after normalization
by the expected value. The result itself is theoretically important and the proof is given
in the Supplement.

Theorem 6.5. Under Conditions 1, 2, 3, as j — o0,
Var[M,(3;;S%)] < ¢(u)j?B¥ + o(j2B%),

where the constant c(u) is uniformly bounded with respect to u and the o(-) term is
universal.
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18 D. Cheng et al.
The following is the first main result of this paper, showing control of FDP and FDR.

Theorem 6.6. Let Conditions 1, 2, 8 hold.
(i) Suppose that Algorithm 1 is applied with a fixed threshold w, then

[47 — 27(1 — cos p; ) N]r;(u)
FDPy, (u) < [4m — 27 (1 — cos p; ) N;]rj(u) + N;

(14 0p(1)), (6.4)

where ;(u) is defined in (6.2).
(i1) Suppose that Algorithm 1 is applied with the random threshold upw ; (5.11), then

[4m — 27 (1 — cos p; ) N;]r;
[4m — 27m(1 — cos pj)N;]r; + N;

FDRpH,p; <« +o(1) < a+o(l), (6.5)

where r; is given by (6.3).
Proof. (i) By Theorem 6.5 and Chebyshev’s inequality,
M, (y;;Dg’)/B¥
M (9;:D°)/B% + M, (y;; DY)/ B
3 E[M, (7;: D)}/ B
= E[M(35;D5°)]/BY + Mu(5;; DY)/ B%

FDP,, (1) =

(14 0,(1)).

It then follows from Lemmas 6.1 and 6.3 that

[Am — 27m(1 — cos p;) N;]r; (u)
[4m — 27 (1 — cos p;j ) N;]rj(u) + N;

FDP,, (u) = (1+ 0,(1)).

(ii) Following a similar argument to that in [8], we use the fact that @pm,; is the
smallest u satisfying aG;(u) > Fj(u), where
Gilu) = M, (g5; D) + M (g;; DY)
’ M(5;;D") + M (35 D7)

and Fj(u) is the height distribution (5.10) of ;. Notice that

E[M.(g;;Dg)]

500 = Bt 0]

Similarly to the proof of part (i), we have

= E[M(gj,DpJ)]Fj(’UJ) +NJ
G2 TG, o
[47‘(’ — 27‘(’(1 — cospj)Nj]erj(u) —+ Nj

= + 0p(1).
[4m — 27(1 — cos p;)Nj]r; + N; p(1)

imsart-bj ver. 2014/10/16 file: "PeakDetSphere_BernoulliRevision - AS6".tex date: June 5, 2018



Multiple testing on the sphere 19

Solving the equation

[4m — 2m(1 — cos p;)N;|r; Fj(u) + N;
[47T — 271’(1 — COSpj)Nj}T‘j —+ Nj

+ 0p(1) = Fj(u)

gives an asymptotic solution

~ 3k . F—l OLN]
Upm,; = £y

’ (Nj + (1 — )[4 — 2 (1 — cos pj)Nj]rj> +0p(1). (6.6)

: ~ ~ %
Since upn,; < Upy ; almost surely, we have

] Vy, (tBn ;) ] } <E
Vi, (Bn,;) + W, (iBn,;)

E[Vy, (U5 ;)]

v;j(ﬁE}Lj)
Vo, (ﬂ’EH,j) + W, (f‘EH,j)
E[M(?JﬁDSj)]Fj(aEH,j)

FDRpp,; = E {

= E[V,, (ufy ;)] + EW,, (@ ;)] (I+o0(1)) < E[M (5, D) )IF (@) + Ny (1+o0(1))
— [4m — 2w (1 — cos p; ) Nj]r;
=« [Am — 2m(1 — cos pj)N;]r; + N; +o(1).

O

Remark 6.7 [Threshold for FDP.] To make the bound for FDP asymptotically equal
to a significance level «, the corresponding threshold v must satisfy the equation

[4m — 27(1 — cos pj) Nylrj(u)

[Am — 27(1 — cos p;)Nj]rj(u) + N;

a,

implying N
() = al;
) = A (= cos p;)N;] (67)

By Remark 6.2,

() ~ Fy(u) —220)_ g

SivBeas()
implying that as j — oo and u — 00, log(r;(u)) ~ log(B¥e~*"/2). Solving the equation

CkNj
(1 —a)[dm — 27w (1 — cos pj)N;]

u ~ y/2log(B% /Nj). (6.8)

According to Condition 3, N;p? = O(1), implying N; = O(pj*?) = O(j72VB%). There-

fore, u > 24/vlog(j) — oo.

szequ/z _

yields the approximate solution
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20 D. Cheng et al.

Remark 6.8 [Comparison between FDP and BH Procedure.] Dividing both
sides of (6.7) by r; yields

(1]V5

B = 0o =2 —cos Ny,

implying the following threshold by FDP for controlling significance level a:

I alN;
Ua = ((1 —a)[dr —2n(1 — cospj)Nj]T’j) '

In comparison, for controlling significance level « by the BH procedure, the asymptotic
threshold is given by (6.6). If we replace a by

[4m — 27 (1 — cos p; ) N;]r;

T “r —27(1 — cosp;)NjJr; + N,

then the FDP threshold at significance level & is given by

ug = F;t ol
“ 77 \Nj+ (1 —a)dr —27(1 — cos pj)Nj|r; )

This coincides with the asymptotic threshold upy ; (6.6) by the BH procedure. Since
r; = O(B%) and N; = O(p{z) = O(j72B?%), we see that the upper bound in (6.5)
tends to « in the limit of high-frequency.

Remark 6.9 [Comparison with FWER control (the expected Euler charac-
teristic thresholding).] For high values of the threshold , the expected Euler charac-
teristic exceeding u can be approximated by r;(u); hence, the threshold for controlling
the FWER can be obtained by solving the equation r;(u) = «. By the discussion in

the previous remark, this equation becomes B2 e~%"/2 = «, which gives the solution

u ~ /2log(B%) = 2y/jlog(B). In comparison, the FDR threshold increases at rate
24/vlog(j), which is much slower.

6.2. Power Consistency

To prove power consistency, we first show that, asymptotically, there will be at least one
local maximum of y; within a small ball centered at every point source.

Lemma 6.10. Under Conditions 1, 2, 3, for each fized k, there exists ¢ > 0 such that
for sufficiently large 7,

P (#{x € Ty(u) N DG 7)) 2 1) > 1 — exp (—eB/-212)

where p; = B™ and u = \/21og(B% /N;) is the asymptotic BH threshold (6.8).
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Proof. For each k, the probability ;(z) has at least one local maximum above u in
D(&k, pj) is the complement of the probability that: (1) g;(z) has no local maxima in
D(&k, pj), or (2) g;(x) is below u everywhere in D(&, pj).

For (1), this is less than the probability that there exists some x € D(, p1) such that
(Vy;(x), & —x) <0, since all x € 0D (&, p;) satistying (V;(x), &k —x) > 0 would imply
the existence of at least one local maximum in D(&, p;). This probability is bounded
above by

P ( inf  (VBj(z),& —x) < — inf  (Viy(x),& — x))

9D (&x,p5) 0D (&x,p5)
“P{ sup —<w§j<x), fk—x> - <vﬁj(x)7 6/«—%>
OD(€r,57) (| 0D (x75) (|

<P sup sup (Vj(x),7) > e B0/
vep?s lIrl=1
where ¢y is a positive constant and the last inequality is due to the result proved in the
Supplement that Var(8;) ~ cs0(7)/B?(7~2), together with (4.3), Lemma 4.1 and the fact
that D(&, pj) is contained in the closure of D(¢x, p;). By Proposition 4.3, there exists
co > 0 such that for sufficiently large j

sup  sup Var((VB;(x),7)) < coaB%.
z€D(&k,p5) lITII=1

Then by the Borell-TIS inequality, there exists c3 > 0 such that for sufficiently large j,
P(#{e € ;N D&, 1)} = 0) < exp (—esBIOD72).

On the other hand, for (2), the probability that §,(x) is below u everywhere in D (&g, 5;)
is bounded above by 1 — ®(|u — B¥+7(v=2)/2|), The desired result then follows from the
observation

P (#{w € Ty() N D(&, 1)} 2 1) 2 1= exp (—esBIO7D/2) = (1= @(ju — BFHO-2/2)))

where the last term in parentheses is much smaller than the second when u = /21log(B?//N;).
O

Following is the second main result of this paper, showing that the detection power
tends to one asymptotically.

Theorem 6.11. Let Conditions 1, 2, 3 hold.
(i) Suppose that Algorithm 1 is applied with a fived threshold u, then Power, (u) — 1.
(i) Suppose that Algorithm 1 is applied with the random threshold ugn (5.11), then
Powerpy,p, — 1.

Proof. The desired results follow directly from Lemma 6.10 and the definitions of power
(5.7) and (5.13). O
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7. Numerical Validation

In this section we present numerical evidence on the performance of the algorithm ad-
vocated in this work. One crucial step in the STEM algorithm (Algorithm 1) is the
computation of p-values of detected peaks, based on the distribution of peak heights
under the null hypothesis, i.e., no point masses at all. We therefore start our validation
by comparing the analytical peak height distribution function given in (5.10) with the
empirical result from filtered noise Monte Carlo simulations.

Once we establish the validity of the peak height distribution on the noise field, we
add simulated point sources to form the full signal-plus-noise Monte Carlo simulations.
These simulations are used to evaluate the numerical performance of the asymptotic FDP
approximation and FDR control of Section 6. For all the results we report, the Mexican
needlet parameters used are B = 1.2 and s = 1.

7.1. Simulation of the CMB noise field

All our maps and the corresponding spherical harmonic coefficients are generated using
the HEALpix package, which is now the standard routine software for handling cosmo-
logical data: see [15] for a detailed discussion on this package and its main features. In
HEALpix one can use the create_alm routine to generate random spherical harmonic
coefficients, ag,,, with a given power spectrum. The code alm2map takes these coeffi-
cients and generate a pixelized Gaussian map; the inverse process is implemented using
the map2alm code. To decompose a map into Mexican needlet components, we filter the
agm coefficients by the Mexican needlet window functions as given in (4.4).

A single HEALpix pixel has an area of 47 /Npix where Npix = 12N2, is the total
number of pixels on a given map. The resolution is specified by the Ngq. parameter,
which is a multiple of 2.

As it is the case in typical experimental circumstances, we assume that known astro-
physical contaminants (for instance, the Milky Way) have been preliminarily removed
from the data. To simulate our noise field, we then generated 100 Gaussian realization
maps of the CMB sky starting from the Planck CMB power spectrum. We refer to Figure
11 on page 21 of [24], which provides a plot showing the theoretical prediction on the
Cy, and their estimated values on Planck CMB data; the errors bars at high ¢ become so
narrow that they do not show up in the figure, being actually thinner than the thickness
of the theoretical line prediction. This plot shows both that very efficient estimates for
the power spectrum exist, and that theoretical models in this area should be considered
very reliable.

All maps are simulated with a pixel resolution of Ngqe = 1024. The standard deviation,
also called root mean square (RMS), of the simulated noise field is given by

02 e = 02 —ZM7 (7.1)

noise cmb — Ar

14

where C; is the Planck CMB power spectrum [25].
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To simulate the finite resolution of the measuring instrument, these maps are then
smoothed by a Gaussian filter with full-width half max (FWHM) of 10 arcmin. In the
literature, this is usually referred to as a 10 arcmin Gaussian beam. Its effect can be
thought of as part of the noise autocovariance function, although it is essentially negligible
at £ ~ 1000 as in our needlet analysis.

7.2. Simulation of point sources

As mentioned above, a point source in the sky is observed by a detector which has a finite
angular resolution. With some abuse of nomenclature, the opening angle of the smallest
resolvable angular unit, ¢y, is called the beam of the detector. The typical angular size
of galaxies is of a few arcsecs (i.e., one degree divided by 602) while the detector beam
sizes for typical CMB experiments (10 arcmin) are an order of magnitude larger. This
means that galaxies and other objects with angular size smaller than the beam can be
viewed as point sources. As argued in the previous sections, the convolution of the point
sources by the detector beam yields a Gaussian bell-like profile in the final map with
the peak of the Gaussian being at the location of the point sources, &. The signal part
of our simulations is hence given by (2.4) above, where the coefficient aj represent the
brightness of the kth point source and N is their total number.

It would be possible to consider more realistic models for these point sources, for in-
stance using the so-called Planck sky model (see for instance [10]). However, this would
require a rather lengthy technical discussion on some specific astrophysical and experi-
mental settings, which would not add anything substantial to the understanding of our
current algorithm, nor would alter significantly our numerical results. We therefore delay
a more complete analysis of these practical issues to a future, more applied paper.

To simulate our signal model with N point sources, we first generated N coordinate
points randomly with a uniform probability density over the sphere. Second we found the
pixels that correspond to these locations on the HEALpix map; third we set the values
ay, of these pixels as draws from a uniform distribution in the range 0 and A ax. These
amplitudes are given as a multiple of the RMS of the noise (7.1). Finally, to simulate
the instrumental resolution, we convolved the map obtained in the last step by means
of a Gaussian beam of FWHM = 10 arcmin. This final map is now a pixelized version
of (2.3). Notice that for clarity we have described the smoothing process as a separate
operation in the noise and signal maps, but this is, of course, equivalent to doing a single
smoothing operation on a signal plus noise map.

The Gaussian beam decreases the sources magnitude by a factor proportional to the
ratio between the area of a pixel and the area covered by the detector beam. For our
choice of the beam and the pixel resolution, this factor is an order of magnitude. Since
we desired to generate point sources uniformly distributed between 0 and 30,4sc after
smoothing, we used A4 = 300cms. We considered different values for the total number
of sources, i.e., N=1000, 3000, 5000.

The final signal-plus-noise Monte Carlo simulations are then obtained by adding the
point sources map to the 100 noise simulations; an example is provided in Figure 1. Note
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Figure 1. Signal plus noise maps: Upper panel is an equal area stereographic projection (the
so called Mollweide projection) of the signal plus noise simulation before needlet filtering; the
color map is given in standardized RMS units. Bottom left panel is a gnomonic projection of the
unfiltered map around a point source with 5 degree diameter; bottom right panel is a similar
gnomonic projection around the same point source but from a Mexican needlet filtered map.
The red marks have been added only to visualize the location of the point sources but are not
part of the simulation.

that the point sources are weak and hard to find without statistical analysis.

7.3. Distribution of peak heights

The theoretical distribution of local maxima (peaks) on a Mexican needlet filtered Gaus-
sian map is given by (5.10). In Figure 2 we present the comparison of the theoretical
density, h;(z), with what we obtained empirically using 100 Gaussian map simulations
with no point sources. The upper panels from left to right respectively present the nor-
malized Gaussian peak PDFs for needlet frequency j = 31,34, with Mexican needlet
parameters B = 1.2 and p = 1, while in Figure 1 we had taken B = 1.2 and j = 38.
The choice of the parameters B and j needs some discussion. In short, it is known (see
again [28, 27]) that the Mexican needlet filter at scale j is centered around the multipole
¢ = B and has most of its power concentrated in the multipoles [B7~!, B/*!]. In prac-
tical experimental circumstances, the multipoles to be covered will be fixed mainly by
the technical characteristics of the device collecting the data. For instance, it is known
that the antennae in the satellite Planck can reach a resolution of about 7 arcminutes,
corresponding roughly to ¢ = 1800; however, a detailed technical analysis (which is dis-
cussed in the Planck papers, see for instance [24]) has shown that the highest multipoles
are affected by instrumental noise which can make the corresponding data unreliable.
Focussing for instance on B = 1.2, j = 38 means that we will be concentrating the statis-
tical analysis on multipoles in the order of 1021 £200; in this range, instrumental noise is
known to be basically negligible. This form of knowledge on the technical features of the
experiment should be known in practice to any applied scientist which is investigating a
specific data set (not necessarily in astrophysics); the range of values that we reported
are also meant to illustrate the convergence result as j grows larger and larger.

In the lower panel of Figure 2 we show the relative percentage difference between the
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Figure 2. Peaks PDF': probability density of height of local maxima. In the upper panels, the
red curves represent the analytical values, while the black curves and the gray contours are the
mean and the 68,95,99 % percentiles from the simulations from 100 Monte Carlo simulations
with no point sources. The lower panels show the difference between the analytical (h%) and
numerical (h) result. Here j = 31, 34, which corresponds to central multipoles of ¢ = [284,492].

analytical and simulation results. It is easy to see from these figures that the theory
fits the numerical results remarkably well. Moreover, the dispersion around the expected
value of the PDF decreases as j increases, consistently with the ergodicity result of
Theorem 6.5.

7.4. Application of the STEM algorithm

The first step in the STEM algorithm, after needlet filtering, is to normalize the map
using its standard deviation, as defined in (4.5), to obtain (4.6).

To find local peaks on a map we compute the first and second derivatives using
HEALpix ’s routine alm2map_der. The pixels where the first derivative is close to zero
(within a precision of 1075) are classified as the local extrema. We then partition these
extrema into maxima, minima and saddle using the eigenvalue decomposition of the
Hessian matrix - of course, maxima are those with all the eigenvalues negative.

It is instructive to look at how the brightness of point sources increase as we filter the
signal plus noise map with Mexican needlets. In Figure 3, we plot the PDF of point source
amplitudes before adding noise (grey curve), after adding noise but before needlet filtering
(thick black curve), and after filtering with increasing j. For the high frequency Mexican
needlet we considered, j = 38, filtering increases the brightness by a factor greater than
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Figure 3. Needlet filtering increases signal-to-noise ratio: Histogram of signal amplitudes
at the location of the point sources, before adding noise (grey curve), after adding noise but
before filtering (thick black curve), and after filtering with the Mexican needlet at different j.

4. The negative values in the histogram are due to the added Gaussian noise; we do not
expect to detect such weak sources based on their amplitude information only.

7.5. False Discovery Proportion (FDP)

In (6.5) of Section 6 we provided the analytical result on the upper bound of the FDP
as a function of the power spectrum of the noise, the total number and the spatial
profile of the sources. Here we compare this result with what is obtained from numerical
simulations.

The empirical FDP is computed using the following steps: locate maxima on needlet
filtered signal-plus-noise Monte Carlo simulations using our peak detection code; classify
peaks as True discovery if the location of a maxima corresponds to a known (input) point
source within p pixel radius or False discovery if there are no input sources within p pixels
radius of the peak (p corresponding to the tolerance parameter); count the number of
True and False discoveries as a function of p and the RMS of the noise.

The empirical FDP as a function of u, which is in units of the RMS of the noise, and
the source detection tolerance parameter p is computed, according to (5.5), as

F/D\ij (u) = # of False discoveries above u

total # of peaks above u (7.2)

In Figure 4 we illustrate the comparison of the FDP for thresholds in the filtered map
above 30 and p = 3 for different values of j. We found that setting 2 < p < 8 does not
alter significantly our results (note that the smallest practical radius is p = 2). The red
curve in these plots corresponds to the first term on the right hand side of (6.5), while
the black curve is from the mean of the simulations. The contours from dark to light
gray corresponds to the 68,95 and 99% confidence intervals. We note that, as expected,
the analytic results for the upper bound become larger than the numerical simulations
as j increases.
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Figure 4. False Discovery Proportion: FDP as a function of threshold (in units of standard
deviation) for different needlet scales. The dashed red curves are for the analytical upper bounds
while the black curves are for the mean of the empirical FDPs from 100 Monte Carlo simulations.
The gray shades are for percentiles 68,95 and 99%.

7.6. False Discovery Rate (FDR)

We now proceed in validating the analytical formalism established in Section 6 to control
the false discovery rate (FDR). This is done by comparing the analytical upper bound of
the FDR, which is given by (6.5), with the empirical result from simulations. In Figure
5, it is shown that for a given error rate, the empirical FDR is always below the upper
limit set by the theory; in Figure 6 we present the mean FDP and FDR curves together
with the corresponding theoretical results for different number of input sources. Again,
the FDP and FDR are bounded above by the theoretical bounds.

7.7. Detection power

To quantify how many of the input point sources we discovered in our analysis, in Figure
7 we show the number of peaks that matches the true sources, i.e. the numerator of
(5.7), which measures the statistical power of the algorithm. These results show that the
power of the STEM algorithm is almost 100% in detecting bright sources - indeed, we
have detected all input sources whose brightness was above 1o in the unfiltered simulated
maps.

Overall, we believe that the results in this section provide a strong numerical support
for the asymptotic findings that we described earlier in this paper. Applications to real
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Figure 5. False Discovery Rate: FDR as a function of error rate « for different needlet scales.
The red curve is a plot of a * FDP(u = 3), while the black curve is the mean from 100 Monte
Carlo simulations. The gray shades are for percentiles 68,95 and 99%. The number of point
sources is 5000.

CMB data from the Planck satellite are currently being developed and will appear in a
follow-up paper.
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