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Abstract
Speech activity detection (SAD) plays an important role in current speech processing systems, including automatic speech recognition (ASR).

SAD is particularly di�cult in environments with acoustic noise. A practical solution is to incorporate visual information, increasing the robustness
of the SAD approach. An audiovisual system has the advantage of being robust to di↵erent speech modes (e.g., whisper speech) or background
noise. Recent advances in audiovisual speech processing using deep learning have opened opportunities to capture in a principled way the
temporal relationships between acoustic and visual features. This study explores this idea proposing a bimodal recurrent neural network (BRNN)
framework for SAD. The approach models the temporal dynamic of the sequential audiovisual data, improving the accuracy and robustness of the
proposed SAD system. Instead of estimating hand-crafted features, the study investigates an end-to-end training approach, where acoustic and
visual features are directly learned from the raw data during training. The experimental evaluation considers a large audiovisual corpus with over
60.8 hours of recordings, collected from 105 speakers. The results demonstrate that the proposed framework leads to absolute improvements up
to 1.2% under practical scenarios over a VAD baseline using only audio implemented with deep neural network (DNN). The proposed approach
achieves 92.7% F1-score when it is evaluated using the sensors from a portable tablet under noisy acoustic environment, which is only 1.0% lower
than the performance obtained under ideal conditions (e.g., clean speech obtained with a high definition camera and a close-talking microphone).

c� 2011 Published by Elsevier Ltd.
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1. Introduction

The success of voice assistant products including Siri,
Google Assistant, and Cortana has made the use of speech
technology more widespread in our life. These interfaces rely
on several speech processing tasks, including speech activ-

ity detection (SAD). SAD is a very important pre-processing
step, especially for interfaces without push-to-talk button. The
accuracy of a SAD system directly a↵ects the performance
of other speech processing technologies including automatic

speech recognition (ASR) [1], speaker verification and identi-
fication [2], speech enhancement, speech emotion recognition
[3, 4], speech separation [5] and speaker tracking [6, 7, 8, 9].
A key challenge for SAD is the environmental noise observed
in real world applications, which can greatly a↵ect the perfor-
mance of the speech interface, especially if the SADmodels are
built with energy-based features [10, 11].
An appealing way to increase the robustness of a SAD sys-

tem against acoustic noise is to include visual features [12, 13,
14, 15], mimicking the multimodal nature of speech percep-

tion used during daily human interactions [16, 17]. While this
solution is not always practical for all applications, the use of
portable devices with camera and the advances of human-robot
interaction (HRI) make an audiovisual speech activity detection
(AV-SAD) system a suitable solution. Noisy environment leads
speakers to a↵ect their articulatory production to increase their
speech intelligibility, a phenomenon known as Lombard e↵ect.
While studies have reported di↵erences in visual features be-
tween clean and noisy environments, these variations are not as
pronounced as the di↵erences in acoustic features [18]. There-
fore, visual feature are more robust to acoustic noise. For ex-
ample, Tao et al. [19] showed that a visual speech activity de-

tection (V-SAD) system can achieve robust performance under
clean and noisy conditions using the camera of a portable de-
vice.

Conventional approaches to integrate acoustic and visual in-
formation in SAD tasks have relied on ad-hoc fusion schemes
such as logic operation, feature concatenation or pre-defined
rules [20, 21, 22, 23]. These approaches oversimplify the rela-
tionship between audio and visual modalities, which may lead
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to rigid models that cannot capture the temporal dynamic be-
tween these modalities. Recent advances on deep neural net-

work (DNN) have provided new data-driven frameworks to ap-
propriately model sequential data [24, 25]. These models avoid
defining predefined rules or making unnecessary assumptions
by directly learning relationships and distributions from the
data [26]. Recent studies on audiovisual speech processing
have demonstrated the potential of deep learning (DL) in this
area [13, 27, 28, 29, 30]. A straight forward extension from
conventional approaches is concatenating audiovisual features
as the input for a DNN [13, 26]. Another way is to rely on auto-
encoder to extract bottleneck audiovisual representations [31].
However, these methods do not directly capture the temporal re-
lationship between acoustic and visual features. Furthermore,
the systems still rely on hand-crafted features, which may not
lead to optimal systems.
This study proposes an end-to-end framework for AV-SAD

that explicitly captures the temporal dynamic between acoustic
and visual features. The approach builds upon the framework
presented in our preliminary work [32, 33], which relies on re-

current neural networks (RNNs). Our approach, referred to as
bimodal recurrent neural network (BRNN), consists of three
subsystems. The first two subsystems independently process
the modalities using RNNs, creating an acoustic RNN and a vi-
sual RNN. These subsystems are implemented with long short-
term memory (LSTM) layers, and their objective is to capture
the temporal relationship within each modality that are discrim-
inative for speech activity. These subsystems provide high level
representations for the modalities, which are concatenated and
fed as an input vector to a third subsystem. This system, also
implemented with LSTMs, predicts the speech/non-speech la-
bel for each frame, capturing the temporal information across
the modalities.
An important contribution of this study is that the acoustic

and visual features are directly learned from the data. Recent
advances in DNN for speech processing tasks have shown the
benefits of learning discriminative features as part of the train-
ing process, using convolutional neural network (CNN) and se-
quence modeling with RNN [34, 35]. We can learn end-to-end
system with this approach, which has led to performance im-
provements over hand-crafted features in many cases [29, 36].
Furthermore, we can capture the characteristics of the raw input
data and extract discriminative representation for a target task
[37, 38]. These observations motivate us to learn discriminate
features from the data. The inputs of the BRNN framework
are the raw image around the orofacial area as visual features,
and the Mel-filterbank as acoustic features. For the visual in-
put, we use three 2D convolutional layers to extract high-level
representation from the raw image around the mouth area. On
top of the convolutional layers, we use LSTM layers to model
temporal information. For the acoustic input, we use fully con-
nected (FC) layers that are connected to LSTM layers to model
the temporal evolution of the data, similar to the visual part.
The proposed approach is jointly trained learning discrimina-
tive features from the data, creating an e↵ective and robust end-
to-end AV-SAD system.
We evaluate our framework on a subset of the CRSS-

4English-14 corpus consisting of over 60h of recordings from
105 speakers. The corpus includes multiple sensors, which al-
lows us to evaluate the proposed approach under ideal channels
(i.e., close-taking microphone, high definition camera) or un-
der more practical channels (i.e., camera and microphone from
a portable tablet). The corpus also has noisy sessions where
di↵erent types of noise were played during the recordings. The
various conditions can mimic practical scenarios for speech-
based interfaces. We replicate state-of-the-art supervised SAD
approaches proposed in previous studies to demonstrate the
superior performance of the proposed approach. The experi-
mental evaluation shows that our end-to-end BRNN approach
achieves the best performance under all conditions. The pro-
posed approach can achieve at least 0.6% absolute improve-
ment compared to the state-of-the-art A-VAD system. Among
the AV-SAD systems, the proposed approach outperforms the
best baseline by 1.0% in the most challenging scenario corre-
sponding to sensors from a portable device under noisy envi-
ronment. This result for this condition is 1.2% higher than an
A-SAD system, providing clear benefits of the proposed audio-
visual solution for SAD.
The paper is organized as following. Section 2 reviews previ-

ous studies on AV-SAD, describing the di↵erences with our ap-
proach, and highlighting our contributions. Section 3 describes
the CRSS-4English-14 corpus and the post-processing steps to
use the recordings. Section 4 introduces our proposed end-to-
end BRNN framework. Section 5 presents the experimental
evaluations that demonstrate the benefits of our approach. The
paper concludes with Section 6, which summarizes our study
and discusses potential future directions in this area.

2. Related Work

A successful SAD system can have a direct impact on ASR
performance by correctly identifying speech segments. While
speech-based SAD systems have been extensively investigated,
SAD systems based on visual features are still under develop-
ment.
Visual information describing lip motion provides valuable

cues to determine the presence or absence of speech. Several
studies have relied on visual features to detect speech activ-
ity in speech-based interfaces [14, 39, 40]. These methods ei-
ther rely exclusively on visual features (V-SAD) [15, 19, 41,
42, 43, 44, 45], or complement acoustic features with visual
cues [20, 21, 46]. As an emerging research topic, several meth-
ods have been proposed. Early studies relied on Gaussian mix-

ture models (GMM) [41, 47], hidden Markov models (HMMs)
[45, 20], or static classifiers such as support vector machine

(SVM) [42]. Recent studies have demonstrated the potential of
using deep learning for V-SAD and AV-SAD [31].
The use of deep learning o↵ers better alternatives to fuse

audiovisual modalities. Early studies relied on simple fusion
schemes, including concatenating audiovisual features [21],
combining the individual SAD decisions using basic “AND”
or “OR” operations [22, 20], and creating hierarchical decision
rules to assess which systems to use [23]. In contrast, DL solu-
tions can incorporate in a principled manner the two modalities.
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DL techniques can be used to build powerful data-driven frame-
works, relying on the input data rather than rigid assumptions
or rules [24, 25]. DL-based approaches provide better solutions
for AV-SAD task compared with conventional approaches, in-
creasing the flexibility of the systems.
The pioneer work of Ngiam et al. [26] demonstrated that DL

can be a powerful tool for audiovisual automatic speech recog-
nition (AV-ASR). For AV-SAD, however, there are only few
studies using DL approaches. One exception is the approach
proposed by Ariav et al. [31]. They used an autoencoder to cre-
ate an audiovisual bottleneck representation. The acoustic and
visual features were concatenated and used as input of the au-
toencoder. The bottleneck features from the autoencoder were
used as input of a RNN, which aimed to detect speech activity.
This approach separated the fusion of audiovisual features (au-
toencoder) from the classifier (RNN), which may lead to a sub-
optimal system where the bottleneck features are not optimized
for the SAD task. To globally optimize the fusion and temporal
modeling, Tao and Busso [32, 33] proposed the bimodal recur-
rent neural network (BRNN) framework for AV-SAD task. The
approach used three RNNs as subnets following the structure in
Figure 2. The framework can model the temporal information
within and across modalities. The results show that this struc-
ture can outperform an RNN taking concatenated audiovisual
features.

2.1. Features for Speech Activity Detection

For acoustic features, studies have relied on Mel frequency

cepstral coe�cients (MFCCs) [48], spectrum energy [10] and
features describing speech periodicity [49]. However, there is
no standard set for visual features, where studies have proposed
several hand-crafted features. For example, Navarathna et al.
[41] and Almajai and Milner [21] used appearance-based fea-
tures such as 2D discrete cosine transform (DCT) coe�cients
from the orofacial area. Other studies have relied on geometric
features [47, 23, 45, 43]. A common approach is to use active
appearance model (AAM) [45]. Tao and Busso [50] and Neti
et al. [51] suggested that appearance based features have the
disadvantage of being more speaker dependent, so using geo-
metric features can provide representations with better general-
ization. Some studies have combined appearance and geometric
features [50].
Instead of using hand-crafted features, an appealing idea is

to learn discriminative features from the data using end-to-end
systems. The benefit of this approach is that the feature extrac-
tion and task modeling are jointly learned from the data, provid-
ing flexible and robust solutions. While this approach has been
used in other areas, we are not aware of previous studies on
end-to-end systems for AV-SAD. We hypothesize that this ap-
proach can lead to improvements in the performance, since fea-
ture representations obtained during the learning process have
been shown to be e↵ective on other tasks. CNN was originally
used to learn features from images, since CNN can learn spa-
tial, translation invariant representations from raw pixels [52].
The spatial invariance property in CNN allows the system to
learn robust high-level representations from the input data [53].
Saitoh et al. [54] used CNN to extract a visual representation

from concatenated images for visual automatic speech recog-

nition (V-ASR) task. Petridis et al. [29] presented an end-to-
end systems for V-ASR. They used raw images and their corre-
sponding delta information as input to recognize words, relying
on bidirectional LSTMs (BLSTMs). Amodei et al. [37], Sercu
et al. [55] used CNN to extract high-level acoustic feature rep-
resentations from raw acoustic data for audio automatic speech
recognition (A-ASR) tasks. In these studies, FC layers were
stacked over the CNN, mapping the representation extracted by
the CNNs into the classification task space (Soltau et al. [56]
showed the benefits of adding FC layers on top of CNN layers).
Inspired by these studies, this study adopts a CNN as a feature
extractor for visual features to learn high-level representations
that are discriminative for AV-SAD tasks.

2.2. Temporal Modeling for Speech Activity Detection

Speech is characterized by semi-periodic patterns that are
distinctive from non-speech sounds such as laugh, lip-smack,
and deep breath. The temporal cues are observed not only on
speech features, but also on orofacial features reflecting the ar-
ticulatory movements needed to produce speech. Therefore,
modeling temporal information is very important for SAD.
An approach to model temporal information is to include

features that convey dynamic cues. A classic approach is by
concatenating contiguous frames, creating contextual feature
vectors [48, 41]. However, this approach relies on a pre-
defined context window, which will constraint the capability
of static frameworks such as DNN. Temporal information can
also be added by taking temporal derivatives of the features
[47, 21, 43], or by relying on optical flow features [44]. For
example, Sodoyer et al. [43] demonstrated that dynamic fea-
tures extracted by taking derivatives are more e↵ective than the
actual values describing the lip configuration. Takeuchi et al.
[20] extracted the variance of optical flow as visual features to
capture dynamic information.
An alternative, but complementary, approach to model tem-

poral information is by using frameworks that capture recurrent
connections. A common approach in speech processing tasks
is the use of RNNs, which rely on connections between two
contiguous time steps capturing temporal dependencies in se-
quential signals [57, 58, 59, 60]. Ariav et al. [31] used RNNs
to capture temporal information in a AV-SAD task. A popular
RNN framework is the use of LSTM units, which have been
successfully used for AV-SAD task, showing competitive per-
formance [32, 33]. Our proposed approach build on the bimodal
recurrent neural network (BRNN) framework introduced in our
previous studies [32, 33], which is described in Section 4.3.

2.3. Contributions of this Study

This study extends the BRNN framework proposed in Tao
and Busso [32] by directly learning discriminative audiovi-
sual features, creating an e↵ective end-to-end AV-SAD system.
While aspects of the BRNN framework were original presented
in our preliminary work [32, 33], this study provides key contri-
butions. A key di↵erence between this study and our previous
work is the features used for the task. While our preliminary
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(a) Equipments

(b) Recording setting

Figure 1. Equipments and recording setting for the collection of the CRSS-
4English-14 corpus. This study uses the audio from the close-taking and tablet
microphones and the videos from the HD camera and the tablet.

studies relied on hand-craft audiovisual features, our method
learns discriminative features directly from the data. To the best
of our knowledge, this is the first end-to-end AV-SAD system.
Other key di↵erence with our previous work is the exper-

imental evaluation. The framework is exhaustively evaluated
with other AV-SAD methods, obtaining state-of-the-art perfor-
mance on a large audiovisual database. The study also demon-
strates the benefits of using Mel-filterbank over speech spectro-
gram in the presence of acoustic noise.

3. The CRSS-4English-14 Audiovisual Corpus

This study uses the CRSS-4English-14 audiovisual corpus,
which was collected by the center of robust speech systems

(CRSS) at the University of Texas at Dallas. The corpus was
described in details in Tao and Busso [13], so this section only
describes the aspects of the corpus that are relevant to this study.
Figure 1 shows the settings used to collect the corpus.

3.1. Data Collection

The CRSS-4English-14 corpus was collected in a 13 f t⇥13 f t
American Speech-Language-Hearing Association (ASHA) cer-

tified sound booth. Figure 1 shows the recording setting. The
audio was collected at 48 kHz with five microphones: a close-
talking microphone (Shure Beta 53), a desktop microphone
(Shure MX391/S), the bottom and top microphones of a cell-
phone (Samsung Galaxy SIII), and a tablet (Samsung Galaxy
Tab 10.1N). This study only uses the close-talking microphone,
which was placed close to subject’s mouth, and the microphone
from the tablet, which was placed facing the subjects about two
meters from them. The illumination was controlled with two
LED light panels to collect high quality videos. The videos
were collected with two cameras: a high definition (HD) cam-
era (Sony HDR-XR100) and a camera from the tablet (Sam-
sung Galaxy Tab 10.1N). This study uses the recordings from
both cameras. The HD camera has a resolution of 1440 ⇥ 1080
at a frame rate of 29.97 fps. The tablet camera has a resolution
of 1280 ⇥ 720 at a frame rate of 24 fps. Both cameras were
placed facing the subjects about two meters from them, captur-
ing frontal views of the head and shoulder of the subjects. A
green screen was placed behind the subjects to create a smooth
background. The participants were free to move their head and
body during the data collection, without any constraint.
We used a computer screen about three meters from the sub-

jects, presenting slides with the instructions for each task. The
corpus includes read speech and spontaneous speech. For the
read speech, we included di↵erent tasks such as single words
(e.g., “yes”), city names (e.g., “Dallas, Texas”), short phrases
or commands (e.g., “change probe”), connected digit sequences
(e.g., “1,2,3,4”), questions (e.g. “How tall is the Mountain
Everest”), and continuous sentences (e.g., “I’d like to see an
action movie tonight, any recommendation?”). For the spon-
taneous speech, we proposed questions to the speakers, who
are required to respond using spontaneous speech. The sen-
tences for each of the tasks are randomly selected from a pool
of options created for the data collection, so the content per
speaker is balanced, but not the same. The data collection starts
with the clean session where the speaker completed all the re-
quested tasks (about 45 minutes). The clean session includes
read and spontaneous speech. Then, we collected the noisy ses-
sion for five minutes. We played pre-recorded noise using an
audio speaker (Beolit 12), which was located about three me-
ters from the subjects. The noise recordings were recorded in
four di↵erent locations: restaurant, house, o�ce and shopping
mall. Playing noise during the recording rather than adding ar-
tificial noise after the recording is a strength of this corpus, as it
includes speech production variations associated with Lombard
e↵ect (speakers adapt their speech production in the presence of
acoustic noise). For the noisy session, the slides were randomly
selected from the ones used in the clean section. However, we
only considered slides with read speech, discarding slides used
for spontaneous speech.
The corpus contains recording from 442 subjects with four

English Accent: American (115), Australian (103), Indian
(112) and Hispanic (112). All the subjects are asked to speak
in English. This study only uses the subset of the corpus col-
lected from American speakers. During the recordings, we had
problem with the data from 10 subjects, so we only use data
collected from 105 subjects (55 females and 50 males). The
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Figure 2. Diagram of the BRNN framework, which consists of three subnets
implemented with RNNs. The A-RNN processes acoustic information, while
the V-RNN processes visual information. The AV-RNN takes the concatenation
of the outputs from the A-RNN and V-RNN as input, predicting the task label
as output.

total duration of this set is 60 hours and 48 minutes. The size,
variability in tasks, presence of clean and noisy sessions, and
use of multiple devices make this corpus unique to evaluate our
AV-SAD framework under di↵erent conditions.

3.2. Data Processing

A bell ring was recorded as a marker every time the sub-
jects switched slides. This signal was used to segment the
recordings. We manually transcribed the corpus, using forced-
alignment to identify speech and non-speech labels. For this
task, we use the open-source software SAILAlign [61]. In
the annotation and transcription of the speech, we annotate
non-speech activities such as laughers, smacks, and coughs.
We carefully remove these segments from frames labeled as
‘speech’.
We resample the sampling rate of the videos collected with

the tablet to match the sampling rate of the HD camera (e.g.,
29.97 fps). We also resample the audio to 16kHz for both audio
channels (close-talking microphone and tablet).

4. Proposed Framework

In this study, we propose an end-to-end AV-SAD system
building on the BRNN framework proposed in Fei and Busso
[32]. Figure 2 describes the BRNN framework, which has three
subnets implemented with RNN: an audio subnet, a video sub-
net and an audiovisual subnets. The audio and video subnets
separately process each set of the features, capturing the tem-
poral dependencies within modality that are relevant for SAD.
The outputs from these two RNNs are concatenated and fed into
a third subnet, fusing the information by capturing the tempo-
ral dependencies across modalities. This section describes the
three subnets.

4.1. Audio Recurrent Neural Network (A-RNN)

The audio subnet corresponds to the audio recurrent neu-

ral network (A-RNN) and it is described in Figure 3(a). The
A-RNN takes the acoustic features as input of a network con-
sisting of static layers and dynamic layers (recurrent layers).
The static layers model the input feature space, extracting the

Softmax

FC

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

FC

FC

CNN

AV-RNN

V-RNN A-RNN

(a)

(b)

Figure 3. Detailed structure of the BRNN framework. (a) The structure of the
proposed framework for one time frame. The A-RNN subnet includes FC and
LSTM layers to process acoustic Mel-filterbank features. The V-RNN subnet
has CNN extracting a visual representation from raw pixels and LSTMs to pro-
cess temporal information. The AV-RNN subnet relies on FC and LSTM to
process the concatenated output from the substructures A-RNN and V-RNN.
(b) Detailed CNN configuration used to learn visual features.

essential characteristics to determine speech activity. We rely
on two fully connected (FC) layers. This study uses two max-
out layers [62] rather than convolutional layers as static layers
to reduce the computational complexity in training the models.
Each layer has 512 neurons. The outputs of the FC layers are
fed to dynamic layers to model the time dependencies within
modality, as temporal patterns are important in SAD tasks [33].
We use two LSTM layers as dynamic layers. While bidirec-
tional LSTMs have been used for this task [32], we only use
unidirectional LSTMs to reduce the latency of the model, as
our goal is to implement this approach in practical applications.
The acoustic feature used in our system are the Mel-

filterbank features, which correspond to the energy in the fre-
quency bands defined by the Mel scale filters. Therefore, it
is a raw input feature that retains the main spectral informa-
tion of the original speech. We use the tool python speech fea-

tures to extract the Mel-filterbank features, using the default
setting (25 ms window, 10 ms shifting step, and 26D filters in
the Mel-filterbank). In this study, we concatenate 11 contiguous
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Figure 4. Flowchart to extract the ROI around the orofacial area. The solid
dots are facial landmarks. The dots with circle are used to estimate the a�ne
transformation for normalization. The ROI is determined after normalization.
The final mouth image is resized to 32 ⇥ 32 and transformed into a gray scale.

frames as input, which includes 10 previous frames, in addition
to the current frame. Concatenating previous frames improves
the temporal modeling of the framework, while keeping the la-
tency of the system low.

4.2. Visual Recurrent Neural Network (V-RNN)

The video subnet corresponds to the video recurrent neural

network (C-RNN) and it is also described in Figure 3(a). The
V-RNN takes raw images as visual feature. It extracts visual
representation relying on convolutional layers. Figure 3(b) de-
scribes the details of the architecture. The convolutional layers
capture visual patterns, such as edges, corners and texture from
raw pixels based on local convolutions. The visual patterns can
depict the mouth appearance and shape associated with speech
activity. We stack three convolutional layers with rectified lin-

ear units (ReLUs) [63] to capture the visual patterns. Each layer
has 64 filters. The kernel size is 5 ⇥ 5 and the stride is two
(Fig. 3(b)). By using stride, we reduce the size of the feature
map, so we do not need to use the pooling operation. The fea-
ture representation defined by the CNNs is a 64D feature vec-
tor. The implementation is intended to keep a compact network
with lower hardware requirements and computation workload,
which is ideal for practical applications. On top of the convo-
lutional layers, we rely on two LSTM layers to further process
the extracted visual representation, capturing the temporal in-
formation along time. Each layer has 64 neurons. Therefore,
the V-RNN is able to directly extract both the visual patterns
and temporal information from raw images that are relevant for
speech articulation.
Figure 4 shows the flow chart of the visual feature extraction

process used in this study. We manually pick a frame of a sub-
ject posing a frontal face as the template. We extract 49 facial
landmarks from the template and each frame of the videos. The
facial landmarks are extracted with the toolkit IntraFace [64].
IntraFace does not output a valid number when it fails to detect
the landmarks, which occurred on some frames. We apply lin-
ear interpolation to predict these values when less than 10% of

the frames of a video are missing. Otherwise, we discard the
video. We apply an a�ne transformation to normalize the face
by comparing the positions of nine facial points in the template
and the current frame. This normalization compensates for the
rotation and size of the face. These nine points are selected
around the nose area, because they are more stable when the
people are speaking (points highlighted on Fig. 4 describing
the template). After face normalization, we compute the mouth
centroid based on the landmarks around mouth. We downsam-
ple the region of interest (ROI) to 32⇥ 32 and convert it to gray
scale colormap to limit the memory and computation workload.

4.3. Audiovisual Recurrent Neural Network (AV-RNN)

The high-level feature representations provided by the top
layers of the A-RNN and V-RNN subnets are concatenated to-
gether and fed into the audiovisual recurrent neural network

(AV-RNN) subnet (Fig. 3(a)). The proposed framework consid-
ers two LSTM layers to process the concatenated input. These
LSTM layers aim to capture the temporal information across
the modalities. On top of the LSTM layers, we include a FC
layer implemented with maxout to further process the audio-
visual representation. Each of the LSTM and FC layers are
implemented with 512 neurons. The output is then sent to a
softmax layer for classification, which determines whether the
sample corresponds to a speech or non-speech segment.
The BRNN framework is designed to model the time depen-

dency within single modality and across the modalities. The
convolutional layers allow us to directly extract visual repre-
sentation from raw images. The framework also directly ob-
tain acoustic representation from Mel-filterbank features. The
proposed BRNN is jointly trained, minimizing a common ob-
jective function (in this case, the cross-entropy function). This
framework provides a powerful end-to-end system for SAD, as
demonstrated with the experimental results.

5. Experiments and Results

5.1. Experiment Settings

We evaluate our proposed approach on the CRSS-4English-
14 corpus (Sec. 3). We partition the corpus into train (data
from 70 subjects), test (data from 25 subjects) and validation
(data from 10 subjects) sets. All these sets are gender balanced.
We use accuracy, recall rate, precision rate and F1-score as the
performance metrics. The positive class to estimate precision
and recall rates is speech (i.e., frames with speech activity). We
estimate F1-score with Equation 1, combining precision and
recall rates.

F1-score = 2 ⇥ Precision ⇥ Recall
Precision + Recall

(1)

We consider the F1-score as the main metric to compare al-
ternative methods.We separately compute the results for each of
the 25 subjects in the test set, reporting the average performance
across individuals. We perform one-tailed t-test on the aver-
age of the F1-scores to determine if one method is statistically
better than the other, asserting significance at p-value=0.05.
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The experiments were conducted with a GPU using the Nvidia
GeForce GTX 1070 graphic card (8GB graphic memory).
Since all of the three baseline approaches rely on deep learn-

ing techniques, we apply the same training strategy (Sec. 5.2).
We use dropout with p= 0.1 to improve the generalization of
the models. We use ADAM optimizer [65], monitoring the loss
on the validation set. We rely on early stopping when the vali-
dation loss stops decreasing.

5.2. Baseline Methods

We aim to compare the proposed approach with state-of-the-
art methods proposed for SAD. The study considers five base-
lines. Three approaches rely only on acoustic features. Two of
them are implemented with conventional methods (SVM and
GMM), and one is implemented with deep learning solutions.
By using conventional approaches, we aim to show the e↵ec-
tiveness of applying deep learning techniques for this problem.
Two approaches rely on audiovisual features. Our proposed ap-
proach uses unidirectional LSTM instead of BLSTM to reduce
the latency in the model, which is a key feature for practical
applications. To make the comparison fair, we also implement
the baselines using deep learning with unidirectional LSTMs.

5.2.1. Conventional non-DNN A-SAD

The first two baselines are implemented with conventional A-
SAD frameworks that are not implemented with deep learning
algorithms. The first system relies on SVM trained with Mel-
filterbank feature. The classifier is trained with a linear kernel.
We refer to this system as “SVM-SAD”.
The second system is the Combo-SAD system, which is a

state-of-the-art unsupervised A-SAD proposed by Sadjadi and
Hansen [49]. The system takes five acoustic features as inputs:
harmonicity, clarity, prediction gain, periodicity and percep-
tual spectral flux. These features capture key speech proper-
ties that are discriminative of speech segments such as period-
icity and slow spectral fluctuations. Harmonicity, also called
Harmonics-to-Noise Ratio (HNR), measures the relative value
of the maximum autocorrelation peak, which produces high
peaks for voiced segments. Clarity is defined as the relative
depth of the minimum average magnitude di↵erence function

(AMDF) valley in the possible pitch range. This metric also
leads to large values in the voiced segments. Prediction gain

corresponds to the energy ratio between the original signal and
the linear prediction (LP) residual signal. It will also show
higher values for voiced segments. Periodicity is a frequency
domain feature based on the harmonic product spectrum (HPS).
Perceptual spectral flux captures the quasi-stationary feature of
the voice activity, as the spectral properties of speech do not
change as quickly as non-speech segments or noise. The de-
tails of these features are explained in Sadjadi and Hansen [49].
These five features are combined using principle component

analysis (PCA), where the resulting signal is the first principal
component referred to as the 1-D “combo” feature. A threshold
is then obtained by fitting a GMM with two mixtures using ex-
pectation maximization under the assumption that one mixture
represents speech and the other mixture represents silence. We
name this baseline as “Sadjadi-2013”.

5.2.2. A-SAD using DNN [48]

The third baseline corresponds to the A-SAD framework pro-
posed by Ryant et al. [48], which we denote “Ryant-2013”.
This approach is a state-of-the-art supervised A-SAD system
using DNN. The system has four fully connected layers with
256 maxout neurons per layer. On top of the four layers, the
system has a 2-class softmax layer for SAD classification. This
approach uses 13D MFCCs. We concatenate 11 feature frames
as input to make the system comparable with the proposed ap-
proach.

5.2.3. AV-SAD system using BRNN [32]

The fourth baseline is the AV-SAD system proposed by Tao
and Busso [32], which we denote “Tao-2017”. This framework
is a state-of-the-art AV-SAD system, relying on BRNN. The
network is similar to the approach presented in this paper (Fig.
2). The key di↵erence is the audiovisual features, which corre-
spond to hand-crafted.
The acoustic features correspond to the five features pro-

posed by Sadjadi and Hansen [49] for A-SAD: harmonicity,
clarity, prediction gain, periodicity and perceptual spectral flux
(Sec. 5.2.1). The visual features include geometric and opti-
cal flow features describing orofacial movements characteris-
tic of speech articulation. We extract 26D visual features from
the ROI shown in Figure 4. This vector is created as follows.
First, we extract a 7D feature vector from the ROI (three op-
tical flow features, and four geometric features). The optical
flow features consists of the variance of the optical flow in the
vertical and horizontal direction within the ROI. The third op-
tical flow feature corresponds to the summation of the variance
in both direction, which provides the overall temporal dynamic
on the frame. The four geometric features include the width,
height, perimeter and area of the mouth. Based on the 7D fea-
ture vector, we compute three statistics over short-term win-
dow: variance, zero crossing rate (ZCR) and speech periodic

characteristic (SPC) (details are introduced in Tao et al. [22]).
The short-term window is shifted one frame at a time. We set
its size equal to nine frames (about 0.3s) to balance the trade o↵
between resolution (it requires short window) and robust esti-
mation (it requires long window). The three statistics estimated
over the 7D vector results in a 21D feature vector. We append
the summation of the optical flow variances and the first order
derivative of the 4D geometric feature to the 21D vector, since
they can also provide dynamic information. The final visual
feature is, therefore, a 26D vector. All the visual features are
z-normalized at the utterance level.
We concatenate 11 audio feature frames as audio input, and

use 1 visual feature frame as visual input. The subnet pro-
cessing the audio features has four layers, each of them im-
plemented with 256 neurons. The first two layers are maxout
neuron layers and the other two layers are LSTM layers. The
subnet processing the video features has four layers, each of
them implemented with 64 neurons. The first two layers are
maxout neuron layers and the last two layers are LSTM layers.
The hidden values from the top layers of the two subnets are
concatenated and fed to the third subnet, which has four lay-
ers. The first two layers are LSTM layers with 512 neurons.
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The third layer is implemented with maxout neurons with 512
neurons. The last layer is the softmax layer for classification.

5.2.4. AV-SAD System using Autoencoder [31]

The fifth baseline corresponds to the AV-SAD approach pro-
posed by Ariav et al. [31], which relies on autoencoder (Section
2 describes this approach). We refer to this method as “Ariav-
2018”. 13D MFCCs are used as audio feature, and optical flow
over the frame is used as visual feature. There are two stages in
this approach. The first stage is the feature fusion stage which
relies on an autoencoder. We implement this approach by con-
catenating 11 audio feature frames and one visual feature frame.
The concatenated features are used as input for a five-layer au-
toencoder. The middle layer has 64 neurons, and the other lay-
ers have 256 neurons. The hidden values extracted from the
middle layers are used as bottleneck features. All the layers use
maxout neurons. The second stage uses the bottleneck features
as the input of a four-layer RNN. The first two layers are LSTM
layers, with 256 neurons per layer. The third layer is a maxout
layer with 256 neurons. The last layer is the softmax layer for
classification.

5.3. Experimental Results

While the CRSS-4English-14 corpus has several recording
devices, this study only considers two combinations. The ideal
channels use the data collected with the close-talking micro-
phone and the HD camera, which have the best quality. The
practical channels consider the video and audio recordings col-
lected with the tablet. We expect that these sensors are good
representations of the sensors used in practical speech-based
interfaces. In addition, there are two types of environment as
described in Section 3.1: clean and noisy audio recordings. Al-
together, this evaluation considers four testing conditions (ideal
channel+clean; ideal channel+noise; practical channel+clean;
practical channel+noise). All the models are trained with the
ideal channels under clear recordings, so the other conditions
create train-test mismatches. We are interested in evaluating the
robustness of the approaches under these channel and/or envi-
ronment mismatches.
The first six rows of Table 1 shows the performance for the

ideal channel under clean audio recordings. The proposed ap-
proach can outperform the baseline approaches (“SVM-SAD”
by 6.0%, “Sadjadi-2013” by 7.4%, “Ryant-2013” by 0.6%;
“Tao-2017” by 4.5%; “Ariav-2018” by 0.5%). The di↵erences
between our framework and “Tao-2017” are statistically sig-
nificant (p-value > 0.05). “Tao-2017” used hand-crafted fea-
tures. Our end-to-end BRNN system achieves better perfor-
mance, which demonstrate the benefits of learning the features
from the raw data. The proposed approach perform slightly bet-
ter than the baselines ‘Ryant-2013” and “Ariav-2018”, although
the di↵erences are not statistically significant. The proposed
approach is also significantly better than the conventional SAD
systems that do not rely on deep learning (“SVM-SAD”, and
“Sadjadi-2013”).
The last six rows of Table 1 shows the performance under

noisy audio recordings. The proposed approach can outper-
form the baselines (“SVM-SAD” by 6.6%, “Sadjadi-2013” by

Table 1. Performance of the SAD systems for the ideal channels (close-talking
microphone, HD camera). “Env” stands for testing environment (“C” is clean;
“N” is noisy). “Modality” stands for modality used by the approach (“A” is
A-SAD, “AV” is AV-SAD). “Approach” stands for corresponding framework
(“Acc:” accuracy; “Pre:” precision rate; “Rec:” recall rate;“F:” F1-score).
Env Modality Approach Acc Pre Rec F

C

A SVM-SAD 88.4 97.2 80.3 88.0
A Sadjadi-2013 87.2 97.6 77.8 86.6
A Ryant-2013 90.3 96.6 90.5 93.4
AV Tao-2017 90.1 94.6 84.8 89.5
AV Ariav-2018 93.4 95.4 91.7 93.5
AV Proposed 93.9 95.8 92.3 94.0

N

A SVM-SAD 88.8 96.8 82.5 89.1
A Sadjadi-2013 87.7 97.6 79.8 87.8
A Ryant-2013 94.8 96.4 93.8 95.0
AV Tao-2017 93.3 93.1 94.0 93.4
AV Ariav-2018 94.4 95.4 94.1 94.7
AV Proposed 95.3 96.2 95.2 95.7

7.9%, “Ryant-2013” by 0.7%; “Tao-2017” by 2.3%; “Ariav-
2018” by 1.0%). The di↵erences are statistically significant (p-
value<0.05) when our approach is compared with the “SVM-
SAD”, “Sadjadi-2013”, “Tao-2017” and “Ariav-2018” systems.
The classification improvement over the “Ariav-2018” system
demonstrates that the BRNN framework combine better the
modalities than the autoencorder framework, especially in the
presence of noise. The proposed BRNN structure jointly learns
how to extract the features and fuse the modalities, improving
the temporal modeling of the system. Table 1 shows that the
system tested with ideal channels has better performance under
noisy conditions than under clean conditions. This unintuitive
result is due to two reasons. First, the signal-to-noise ratios

(SNRs) under noisy and clean conditions are very similar for
the ideal channels since the microphone is close to the subject’s
mouth and far from the audio speaker playing the noise. Figure
5 shows the distribution of the predicted SNR, using the NIST
Speech SNR Toolkit [66]. The Figure 5(a) shows an impor-
tant overlap between both conditions. Second, we only have
read speech in the noisy section. In addition to read speech,
the clean section also has spontaneous speech, which is a more
di�cult task for SAD.
Table 2 presents the results for the practical channels, which

shows that our approach also achieves better performance
than the baseline methods across conditions. For clean au-
dio recordings, the proposed approach can significantly outper-
forms all the baselines (“SVM-SAD” by 6.6%, “Sadjadi-2013”
by 7.9%,“Ryant-2013” by 0.8%; “Tao-2017” by 4.3%; “Ariav-
2018” by 0.8%). For noisy audio recordings, we observe that
the performances drop across conditions compared to the re-
sults obtained under clean recordings. The microphone of the
tablet is closer to the audio speaker playing the noise, so the
SNR is lower (Fig. 5(b)). The proposed approach can main-
tain a 92.7% F1-score performance, outperforming all the base-
line frameworks (“SVM-SAD” by 12.7%, “Sadjadi-2013” by
11.8%, “Ryant-2013” by 1.2%; “Tao-2017” by 6.7%; “Ariav-
2018” by 1.0%). The di↵erences are statistically significant for
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(a) Ideal channels

(b) Practical channels

Figure 5. Distributions of the SNR predictions for the ideal and practical chan-
nels. The SNR prediction are estimated with the NIST Speech SNR Toolkit
[66](CRSS-4English-14 corpus). For the noisy audio recordings, the micro-
phone in the tablet was closer to the audio speaker playing the noise, so the
microphone of the practical channels is more a↵ected by the noise.

all the baselines. This result shows that the proposed end-to-end
BRNN framework can extract audiovisual feature representa-
tions that are robust against noisy audio recordings.
It can also be noticed that the DNN-based A-SAD (“Ryant-

2013”) is better than the conventional non-DNN approaches
(“SVM-SAD” and “Sadjadi-2013”) under all conditions. The
DNN-based A-SAD (“Ryant-2013”) outperforms the best con-
ventional approach (“Sadjadi-2013”) with absolute di↵erences
in F1-score as large as 10.6%. The results of conventional non-
DNN baselines are also significantly worse than our proposed
audiovisual approach. These results confirm that the DNN-
based approaches have better robustness and modeling capabil-
ities for SAD problems. In the rest of the evaluation, we only
consider approaches relying on DNN.

5.4. BRNN Implemented with Di↵erent Acoustic Features

We also re-implement the proposed approach with alterna-
tives acoustic features to demonstrate the benefits of using Mel-
filterbank features. The first acoustic features considered in this
section is the spectrogram features without using theMel filters.
We extract 320D features using a Turkey filter with uniform
bins between 0-8KHz. The second acoustic features correspond
to the 5D hand-crafted acoustic features proposed by Sadjadi
and Hansen [49], which we describe in Section 5.2.1. In both
cases, we concatenate 10 previous frames to the current frame
to create a contextual window, following the approach used for
the Mel-filterbank features. For the spectrogram, the A-RNN
subnet has four layers, each of them implemented with 4,096
neurons. For the 5D hand-craft features, the A-RNN subnet has
four layers, each of them implemented with 256 neurons. The
configuration for the rest of the framework is consistent with
the proposed approach, including the A-RNN and AV-RNN.

Table 2. Performance of the SAD systems for the practical channels (micro-
phone and camera from the tablet). “Env” stands for testing environment (“C”
is clean; “N” is noisy). “Modality” stands for modality used by the approach
(“A” is A-SAD, “AV” is AV-SAD). “Approach” stands for corresponding frame-
work (“Acc:” accuracy; “Pre:” precision rate; “Rec:” recall rate;“F:” F1-score).
Env Modality Approach Acc Pre Rec F

C

A SVM-SAD 87.5 97.1 78.9 87.1
A Sadjadi-2013 86.3 97.2 76.4 85.6
A Ryant-2013 92.7 94.3 91.6 92.9
AV Tao-2017 90.0 91.9 87.3 89.4
AV Ariav-2018 92.8 95.2 90.8 92.9
AV Proposed 93.4 95.4 92.0 93.7

N

A SVM-SAD 78.9 84.1 76.3 80.0
A Sadjadi-2013 80.5 88.2 74.7 80.9
A Ryant-2013 90.8 90.6 92.5 91.5
AV Tao-2017 83.3 77.5 96.7 86.0
AV Ariav-2018 91.2 92.9 90.6 91.7
AV Proposed 92.1 92.9 92.6 92.7

Table 3. Performance of the BRNN framework implemented with di↵erent
acoustic features. “CH” stands for channel. “Env” stands for testing environ-
ment (“C” is clean; “N” is noisy). “Feature” stands for acoustic feature used in
the evaluation (“Acc:” accuracy; “Pre:” precision rate; “Rec:” recall rate;“F:”
F1-score).

CH Env Feature Acc Pre Rec F

Ideal C

Mel-filterbank 93.8 95.8 92.3 94.0
Spectrogram 93.4 94.8 93.1 93.9

Hand-crafted [49] 92.2 94.0 90.4 92.2

Practical N

Mel-filterbank 92.1 92.9 92.6 92.7
Spectrogram 76.8 71.3 97.4 82.2

Hand-crafted [49] 66.9 64.3 88.1 74.3

The evaluation only considers two conditions: ideal channels
with clean audio recordings, and practical channels with noisy
audio recordings. These two conditions represent the easiest
and hardest settings considered in this study, respectively.
Table 3 presents the results. For the ideal channels under

clean audio recordings, using a feature representation learnt
fromMel-filterbank is slightly better than using a representation
learnt from the spectrogram. Both of these feature representa-
tions lead to significantly better performance than the system
trained with hand-crafted features. Learning flexible feature
representations from the raw data lead to better performance
than using hand-crafted features, as they are not constrained by
pre-defined rules or assumptions. For the practical channels un-
der noisy audio recordings, the model trained with hand-crafted
features achieve the worse performance. The feature represen-
tation learnt from the Mel-filterbank is able to significantly out-
performs the representation learnt from the spectrogram by a
large margin (10.5%). The feature representation learnt from
the spectrogram is more sensitive to acoustic noise.
The experiments in this section show that learning feature

representations fromMel-filterbank leads to better performance
across conditions, showing competitive results under clear and
noisy speech.
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Table 4. Performance for unimodal SAD systems and the bimodal SAD system.
‘CH” stands for channel. “Env” stands for testing environment (“C” is clean;
“N” is noisy). “Modality” stands for modality used by the approach (“Acc:”
accuracy; “Pre:” precision rate; “Rec:” recall rate;“F:” F1-score).

CH Env Modality Acc Pre Rec F

Ideal C

Bimodal 93.8 95.8 92.3 94.0
Audio 92.7 94.5 91.4 92.8
Video 60.0 65.3 50.9 57.2

Practical N

Bimodal 92.1 92.9 92.6 92.7
Audio 90.3 89.2 93.9 91.5
Video 65.5 69.3 68.5 68.9

5.5. Performance of Unimodal Systems

We also explore the performance of SAD systems trained
with unimodal features to highlight the benefits of using au-
diovisual information. The experimental setup uses the V-RNN
and A-RNN modules of the BRNN framework (Fig. 3(a)). For
the audio-based system, we use the pre-trained A-RNN mod-
els. The weights of this subnet are not modified. On top of the
A-RNN, we implement the same structure used in the BRNN
consisting of two LSTM layers, one FC layer, and a softmax
layer (Fig. 3(a)). We train these four layers from scratch, using
the same training scheme used to train the BRNN network (i.e.,
dropout, ADAM, early stopping). The visual-based system is
trained using the same strategy, starting with the V-RNN sub-
net. Similar to Section 5.4, the evaluation only considers the
ideal channels with clean audio recordings, and practical chan-
nels with noisy audio recordings.
Table 4 shows the performance for the audio-based and

visual-based systems. For comparison, we also include the pro-
posed audiovisual BRNN approach. For the ideal channels un-
der clean audio recordings, the bimodal system can outperform
the unimodal systems, showing the benefits of using audiovi-
sual features. The result from the audio-based system is 35.6%
(absolute) better than the result from the video-based systems.
This result is consistent with findings from previous study
[32, 22, 19]. In spite of the lower performance of the visual-
based system, the addition of orofacial features lead to clear
improvements in the BRNN system. For noisy channels under
noisy audio recordings, the bimodal system still achieves the
best performance, outperforming the unimodal systems where
the di↵erences are statistically significant. The audio-based
system achieves better results than the visual-based system.
The performance for the visual-based system using noisy au-
dio recordings is higher than the results obtained with clean au-
dio recordings. This result is explained due to two reasons: (1)
the visual features are not greatly a↵ected by the background
acoustic noise, and (2) the data for noisy audio recordings does
not contain spontaneous speech, as explained in Section 5.3. If
we include only read sentences recorded in both noisy and clear
recordings, the performance of the visual-based system trained
with the ideal channels under clean audio recordings is 69.2%.
This result is slightly higher than the value reported in Table 4
for visual-based system under noisy audio recordings.
The comparison between bimodal and unimodal inputs

shows the benefit of using bimodal features. It highlights that

our proposed BRNN approach can achieve better performance
than state-of-the-art unimodal SAD systems.

6. Conclusion and Future Work

This study proposed an end-to-end AV-SAD framework
where the acoustic and visual features are directly learnt dur-
ing the training process. The proposed approach relies on
LSTM layers to capture temporal dependencies within and
across modalities. This objective is achieved with three sub-
nets. The first two subnets separately learn visual and acoustic
representations that are discriminative for SAD tasks. The vi-
sual subnet uses CNNs to learn features directly from images
of the orofacial area. The audio subnet extracts acoustic rep-
resentation directly from Mel-filterbank features. The outputs
of these subnets are concatenated and used as input of a third
subnet, which models the temporal dependencies across modal-
ities. Instead of using BLSTM, the proposed framework relies
on unidirectional LSTM, reducing the latency, and, therefore,
increasing the usability of the system in real applications. To
the best of our knowledge, this is the first end-to-end AV-SAD
system.
We evaluated the proposed approach on a set of the CRSS-

4English-14 corpus (105 speakers), which is a large audiovi-
sual corpus. The proposed approach outperformed alternative
state-of-the-art A-SAD and AV-SAD systems. We observed
consistent improvements across conditions. The proposed end-
to-end BRNN framework maintained good performance in the
presence of di↵erent noise and channel conditions. The system
also achieved better performance than an implementation of the
BRNN system using audiovisual hand-crafted features. These
results demonstrated the benefits of learning feature represen-
tations during the training process. This approach provides an
appealing solutions for practical applications.
There are several research directions to extend the proposed

approach. This study only focused on acoustic noise. In the
future, we will evaluate the framework in the presence of vi-
sual artifacts (e.g., blurred images, occlusions). Likewise, the
proposed approach assumes that the audiovisual modalities are
available. We are exploring alternative solutions to address
missing information. Finally, we leave as a future work to learn
acoustic representations with CNNs. This direction was not
pursued on this study due to the high computational cost and
memory requirements needed to train the models.

Acknowledgment

This study was funded by the National Science Foundation
(NSF) grants IIS-1718944 and IIS-1453781 (CAREER).

References

[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, B. Kingsbury, Deep neural networks
for acoustic modeling in speech recognition: The shared views of four
research groups, IEEE Signal Processing Magazine 29 (6) (2012) 82–97,
doi:\bibinfo{doi}{10.1109/MSP.2012.2205597}.

10



/ Speech Communication 00 (2020) 1–12 11

[2] G. Liu, Q. Qian, Z. Wang, Q. Zhao, T. Wang, H. Li, J. Xue, S. Zhu,
R. Jin, T. Zhao, The Opensesame NIST 2016 Speaker Recognition Eval-
uation System, in: Interspeech 2017, Stockholm, Sweden, 2854–2858,
doi:\bibinfo{doi}{10.21437/Interspeech.2017-997}, 2017.

[3] S. Parthasarathy, C. Busso, Jointly Predicting Arousal, Valence and Dom-
inance with Multi-Task Learning, in: Interspeech 2017, Stockholm, Swe-
den, 1103–1107, doi:\bibinfo{doi}{10.21437/Interspeech.2017-1494},
2017.

[4] F. Tao, G. Liu, Q. Zhao, An ensemble framework of voice-based emotion
recognition system for films and TV programs, in: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2018),
Calgary, AB, Canada, 6209–6213, doi:\bibinfo{doi}{10.1109/ICASSP.
2018.8461617}, 2018.

[5] B. Rivet, W. Wang, S. M. Naqvi, J. A. Chambers, Audiovisual speech
source separation: An overview of key methodologies, IEEE Signal
Processing Magazine 31 (3) (2014) 125–134, doi:\bibinfo{doi}{10.1109/
MSP.2013.2296173}.

[6] Q. Liu, W. Wang, T. de Campos, P. J. B. Jackson, A. Hilton, Multiple
Speaker Tracking in Spatial Audio via PHD Filtering and Depth-Audio
Fusion, IEEE Transactions on Multimedia 20 (7) (2018) 1767–1780, doi:
\bibinfo{doi}{10.1109/TMM.2017.2777671}.
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