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Abstract

Let {X(t),t € M} and {Z(t'),t' € M’} be smooth Gaussian random fields parameter-
ized on Riemannian manifolds M and M’, respectively, such that X (¢t) = Z(f(t)), where
f: M — M’ is a diffeomorphic transformation. We study the expected number and height
distribution of the critical points of X in connection with those of Z. As an important
case, when X is an anisotropic Gaussian random field, then we show that its expected
number of critical points becomes proportional to that of an isotropic field Z, while the

height distribution remains the same as that of Z.
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1 Introduction

The study of critical points of Gaussian random fields, especially of their expected number and
height distribution, is important in probability theory [1, 8] and has applications in many areas
such as physics [10], statistics [7, 4], neuroimaging [13, 12] and astronomy [3]. However, the
exact formulae for the expected number and height distribution of critical points of Gaussian
fields are difficult of obtain. The only exception, so far to the authors’ knowledge, is the
isotropic Gaussian fields [5, 6]. In this paper, we investigate Gaussian fields under diffeomorphic
transformations and find a new approach to obtain the exact formulae for a wider class of
Gaussian fields.

An important case is the anisotropic Gaussian field, which is a useful model in spatial

statistics [2]. Anisotropic fields also appear in smoothing of 3D brain images. While isotropic
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kernels are often used, it has been shown that in some situations anisotropic kernels yield
better results [14].

The standard approach for solving the expected number and height distribution of criti-
cal points of Gaussian random fields is the Kac-Rice formula [1, 10]. However, the problem
becomes much simpler by realizing that an anisotropic field can be obtained by a linear trans-
formation of the index parameter of an isotropic field; see Section 3.1 below. We present here
an easy solution to the expected number and height distribution of critical points of anisotropic
Gaussian fields by casting the problem more generally as a diffeomorphic transformation of
the parameter space.

This approach has advantages for other applications where diffeomorphic transformations
are used. Diffeomorphic transformations of random fields appear, for example, in structural
and functional imaging of the cortical surface of the brain. Because the brain’s cortex is
a convoluted closed surface, it is often mapped onto the 2-dimensional sphere S? [9], where
statistical inference can be performed using Gaussian random field theory [11, 12]. Thus, the
study of topological features of quantities such as local maxima and local minima of cortical

thickness and cortical activity can be carried out in a simpler representation on the sphere.

2 Gaussian Random Fields under Diffeomorphic Transforma-

tions

Let {X(t),t € M} be a smooth Gaussian random field parameterized on a piecewise C?
compact Riemannian manifold M. Here and in the sequel, the smoothness assumption means
that the field satisfies the condition (11.3.1) in [1], which is slightly stronger than C? but can
be implied by C3. The number of critical points of index i of X exceeding level u over the

domain M is defined as
X (Myu) =#{te M:X(t) >u,VX(t) =0,index(V>X(t)) =i}, 0<i<N, (2.1)

where VX (¢) and V2X (t) are respectively the gradient and Hessian of X, and index(V2X (t))
denotes the number of negative eigenvalues of V2X (t). The expected number of critical points
is therefore E[u:X (M, u)].

We introduce next the height distribution of a critical point of X. It is convenient to
consider the tail probability, that is, the probability that the height of the critical point exceeds
a fixed threshold at that point, conditioned on the event that the point is a critical point of

X. Such conditional probability can be defined as
FX(t,u) = P{X(t) > ult is a critical point of index i of X}.

It is shown in [5] that the height distribution of a critical point of index i of X at ¢ is

FX (1 u) = E{[det(V2X (£)|11x (1)>u} L findex(v2x (1))=i} | VX (£) = 0}
E{|det (VX ()1 findex(v2x (1))=i} | VX (£) = 0}
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A mapping f : M — M’ is called C? diffeomorphic if it is one-to-one and f and its
inverse f~! are both twice differentiable. Suppose there exists {Z(t'),t’ € M'}, a smooth
Gaussian random field parameterized on a Riemannian manifold M’, and a C? diffeomorphic
transformation f : M — M’, such that X(t) = Z(f(¢)). Similarly to (2.1), the number of

critical points of index i of Z exceeding level u over the domain M’ is defined as
pf (M) =#{t' e M': Z(t') >u,VZ(t') = 0,index(VZZ(t')) =i}, 0<i<N;

and the height distribution of critical points of index i of Z at t' is defined as FZ (¢, u).

We have the following main result.

Theorem 2.1 Let {X(t),t € M} and {Z(t'),t' € M'} be smooth Gaussian random fields
parameterized on N -dimensional, piecewise C2, compact Riemannian manifolds M and M’,
respectively, such that X (t) = Z(f(t)), where f : M — M’ is a C? diffeomorphic transforma-
tion. Then for 0 <i < N, t € M is a critical point of indez i of X if and only ift' = f(t) € M’

is a critical point of index i of Z; and moreover, for u € R,

E[M%X(Mvu)] = E[:U’iZ(M/vu)] and FzX(tvu) = FiZ(t,vu)' (23)

Proof Denote by T;M and Ty M’ the tangent spaces at t € M and t’ € M’, respectively. By
the chain rule,
dX|e = dZ|sdf s, (2.4)

where dX |y : LM — R, df|y : TLM — TyyM' and dZ| sy : TyiyM' — R. We may write

8X
dX|t = 8 d.’L’Z|t,
oz
dZ| ¢4 = . Ba ,d%'zlf ()

and df|; is a linear mapping that can be represented as an N x N matrix, denoted by B =

(Bij)lgi,jSNv such that
0
df (v Z ZBM s7lr, v Zvl |t e T,M (2.5)
=1 \j=1 g

Where {83: l¢}7, and {61 |£(t) Yi=1 are the bases in T,M and Ty M', respectively. Let e;]; =
8z |t By (2.4) and (2.5), we have

0X 0 0
oz, 0 = (dX |, 8751-’0 = dX\t(

,|t) = dX|i(eils)

N
07
= dZ|rwdf|i(eile) = dZ] y) (ZBM ) = ZBki@’f@)'

k=1 k
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Therefore,
0X 0X

8z1”"’8xN

VX[ = ( ) =

implying

r 7 07
ox) " Oy

VX|i=0 & VZy=0.

Similarly, we have

Therefore

V2X|, = B"V?*Z| B,

implying

index(V2X|;) = index(VzZ]f(t)).

)''= BTV Z| ),

(2.7)

(2.8)

It follows from (2.6) and (2.8) that ¢ € M is a critical point of index i of X if and only if
t' = f(t) € M’ is a critical point of index i of Z.

It follows from (2.1), (2.6) and (2.8) that

X (Myu) =#{te M :X(t) >

= #{te M:2(f(1) >

= :uiZ(M/au)v

yielding E[i¥ (M, w)] = E[u? (M, u)]

VX (t) = 0,index(VZX (t)) =i}
u,VZ| 4 = 0,index(V2Z| ;) = i}

Notice that (2.7) implies det(V2X (t)) = |det(B)|*det(V>Z|s(;)). Therefore, by (2.2), (2.6)

and (2.8),

~ E{|det(VEX ()T x> u) Lindex(v2x (1)=i} VX () = 0}

FX(t,u) =

)

E{|det (VX ()1 findex(v2x (1))=i} | VX (£) = 0}
~ |det(B)PE{|det (V2 Z] 1)) 11 z(s(2))>up Liindex(v22] )=t [V Z () = 0}

|det(B)[PE{|det(V2Z] (1)) |1 findex(v2 2] ;)=i} |V Z 1) = 0}

— FZZ(tl7u)

O

Remark 2.2 In certain situations, we only know the covariance, or equivalently the distribu-

tion, of X (¢). But there exist another Gaussian field Z and some diffeomorphic transformation
f such that X (¢) and Z(f(t)) have the same distribution, that is X (¢) = Z(f(t)). Then the

results in (2.3) still hold since the expected number and height distribution of critical points

depend only on the distribution of the field.



3 Applications

3.1 Anisotropic Gaussian Random Fields on Euclidean Space

Let A be a nondegenerate N x N matrix, that is det(A) # 0. An anisotropic Gaussian random
field {X(t),t € RV} is defined as

X(t) = Z(At), teRY, (3.1)

where {Z(t),t € RV} is a smooth, unit-variance, isotropic Gaussian random field. So, it is a
special case of the diffeomorphic transformation f : RN — RN where f(t) = At. Due to the

isotropy of Z, there exists a function p : [0,00) — R such that the covariance of Z has the form
E[Z(t)Z(s)] = p (It —s]?) - (3.2)

By (3.1) and (3.2), equivalently, we call {X(t),t € RV} an anisotropic Gaussian random field

if the covariance has the form
E[X ()X (s)] = p (| At — 9)[1?) -

Using the isotropy property (3.2), it has been shown in Cheng and Schwartzman [5, 6] that
the exact formulae of the expected number and height distribution of critical points of isotropic
Gaussian fields can be obtained by using GOI random matrices. We show below that the study
of critical points of anisotropic Gaussian fields can be transferred to isotropic Gaussian fields,

so that their expected number and height distribution can be obtained exactly.

Corollary 3.1 Let {X(t),t € RV} be a smooth, unit-variance, anisotropic Gaussian random
field satisfying (3.1) and let D be an N-dimensional set on RN. Then for 0 < i < N and
u € R,

Eu (D,u)] = |det(A)[E[p (D,u)] and  F¥(u) = F{(u),
where E[uZ (D, u)] and FZ(u) are respectively the expected number and height distribution for
the isotropic Gaussian field Z, and can be found in [5, 6]; and FiX (u) := FX(t,u) and FZ (u) =
FZ(t,u) since they do not depend on t due to the stationarity (isotropy) of X and Z.

Proof Let D' ={At:t e D}, then Vol(D') = |det(A)|Vol(D). It follows from Theorem 2.1
and the isotropy of Z that

Elpi (D, u)] = Elpf (D', u)] = |det(A)[Vol(D)E[uf ([0, 1], w)] = |det(A)[E[u (D, u)]

and
FX(“’) - FiX(t7u) - FiZ(Atﬂ u) - FiZ(t7u) - FzZ(u)

(2

O

Remark 3.2 It can be seen easily that the results in Corollary 3.1 can hold in a more general

setting where Z is stationary but not necessarily isotropic.



3.2 Gaussian Random Fields on an Ellipsoid

Suppose {X(t),t € M} is a smooth Gaussian field on the N-dimensional ellipsoid M. If M
is embedded in RV*1 then there is a linear mapping on RV*1, denoted by g, that maps M
onto the N-dimensional unit sphere SV. Let f : M — SV be the N-dimensional diffeomor-
phic mapping between M and SV induced by g. Then we can write X (¢) = Z(f(t)), where
{Z({#'),t € SV} is a Gaussian random field on the N-dimensional unit sphere SV. Now the
study of critical points of X on the ellipsoid M can be transferred to the Gaussian field Z on
the unit sphere SV by Theorem 2.1.

In particular, if the Gaussian field Z above is isotropic on S¥, then by Theorem 2.1,
E[uX (M, u)] = E[uZ (SN, u)] and FX(t,u) = FZ(t',u) with ¢ = f(t), whose formulae can be
found in [5, 6].
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