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Abstract

Let {X(t), t ∈ M} and {Z(t′), t′ ∈ M ′} be smooth Gaussian random fields parameter-

ized on Riemannian manifolds M and M ′, respectively, such that X(t) = Z(f(t)), where

f : M →M ′ is a diffeomorphic transformation. We study the expected number and height

distribution of the critical points of X in connection with those of Z. As an important

case, when X is an anisotropic Gaussian random field, then we show that its expected

number of critical points becomes proportional to that of an isotropic field Z, while the

height distribution remains the same as that of Z.
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1 Introduction

The study of critical points of Gaussian random fields, especially of their expected number and

height distribution, is important in probability theory [1, 8] and has applications in many areas

such as physics [10], statistics [7, 4], neuroimaging [13, 12] and astronomy [3]. However, the

exact formulae for the expected number and height distribution of critical points of Gaussian

fields are difficult of obtain. The only exception, so far to the authors’ knowledge, is the

isotropic Gaussian fields [5, 6]. In this paper, we investigate Gaussian fields under diffeomorphic

transformations and find a new approach to obtain the exact formulae for a wider class of

Gaussian fields.

An important case is the anisotropic Gaussian field, which is a useful model in spatial

statistics [2]. Anisotropic fields also appear in smoothing of 3D brain images. While isotropic
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kernels are often used, it has been shown that in some situations anisotropic kernels yield

better results [14].

The standard approach for solving the expected number and height distribution of criti-

cal points of Gaussian random fields is the Kac-Rice formula [1, 10]. However, the problem

becomes much simpler by realizing that an anisotropic field can be obtained by a linear trans-

formation of the index parameter of an isotropic field; see Section 3.1 below. We present here

an easy solution to the expected number and height distribution of critical points of anisotropic

Gaussian fields by casting the problem more generally as a diffeomorphic transformation of

the parameter space.

This approach has advantages for other applications where diffeomorphic transformations

are used. Diffeomorphic transformations of random fields appear, for example, in structural

and functional imaging of the cortical surface of the brain. Because the brain’s cortex is

a convoluted closed surface, it is often mapped onto the 2-dimensional sphere S2 [9], where

statistical inference can be performed using Gaussian random field theory [11, 12]. Thus, the

study of topological features of quantities such as local maxima and local minima of cortical

thickness and cortical activity can be carried out in a simpler representation on the sphere.

2 Gaussian Random Fields under Diffeomorphic Transforma-

tions

Let {X(t), t ∈ M} be a smooth Gaussian random field parameterized on a piecewise C2

compact Riemannian manifold M . Here and in the sequel, the smoothness assumption means

that the field satisfies the condition (11.3.1) in [1], which is slightly stronger than C2 but can

be implied by C3. The number of critical points of index i of X exceeding level u over the

domain M is defined as

µXi (M,u) = #
{
t ∈M : X(t) ≥ u,∇X(t) = 0, index(∇2X(t)) = i

}
, 0 ≤ i ≤ N, (2.1)

where ∇X(t) and ∇2X(t) are respectively the gradient and Hessian of X, and index(∇2X(t))

denotes the number of negative eigenvalues of ∇2X(t). The expected number of critical points

is therefore E[µXi (M,u)].

We introduce next the height distribution of a critical point of X. It is convenient to

consider the tail probability, that is, the probability that the height of the critical point exceeds

a fixed threshold at that point, conditioned on the event that the point is a critical point of

X. Such conditional probability can be defined as

FX
i (t, u) = P{X(t) > u|t is a critical point of index i of X}.

It is shown in [5] that the height distribution of a critical point of index i of X at t is

FX
i (t, u) =

E{|det(∇2X(t))|1{X(t)>u}1{index(∇2X(t))=i}|∇X(t) = 0}
E{|det(∇2X(t))|1{index(∇2X(t))=i}|∇X(t) = 0}

. (2.2)
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A mapping f : M → M ′ is called C2 diffeomorphic if it is one-to-one and f and its

inverse f−1 are both twice differentiable. Suppose there exists {Z(t′), t′ ∈ M ′}, a smooth

Gaussian random field parameterized on a Riemannian manifold M ′, and a C2 diffeomorphic

transformation f : M → M ′, such that X(t) = Z(f(t)). Similarly to (2.1), the number of

critical points of index i of Z exceeding level u over the domain M ′ is defined as

µZi (M ′, u) = #
{
t′ ∈M ′ : Z(t′) ≥ u,∇Z(t′) = 0, index(∇2Z(t′)) = i

}
, 0 ≤ i ≤ N ;

and the height distribution of critical points of index i of Z at t′ is defined as FZ
i (t′, u).

We have the following main result.

Theorem 2.1 Let {X(t), t ∈ M} and {Z(t′), t′ ∈ M ′} be smooth Gaussian random fields

parameterized on N -dimensional, piecewise C2, compact Riemannian manifolds M and M ′,

respectively, such that X(t) = Z(f(t)), where f : M → M ′ is a C2 diffeomorphic transforma-

tion. Then for 0 ≤ i ≤ N , t ∈M is a critical point of index i of X if and only if t′ = f(t) ∈M ′

is a critical point of index i of Z; and moreover, for u ∈ R,

E[µXi (M,u)] = E[µZi (M ′, u)] and FX
i (t, u) = FZ

i (t′, u). (2.3)

Proof Denote by TtM and Tt′M
′ the tangent spaces at t ∈M and t′ ∈M ′, respectively. By

the chain rule,

dX|t = dZ|f(t)df |t, (2.4)

where dX|t : TtM → R, df |t : TtM → Tf(t)M
′ and dZ|f(t) : Tf(t)M

′ → R. We may write

dX|t =
N∑
i=1

∂X

∂xi
dxi|t,

dZ|f(t) =
N∑
i=1

∂Z

∂x′i
dx′i|f(t),

and df |t is a linear mapping that can be represented as an N × N matrix, denoted by B =

(Bij)1≤i,j≤N , such that

df |t(v) =
N∑
i=1

 N∑
j=1

Bijvj

 ∂

∂x′i
|f(t), ∀v =

N∑
i=1

vi
∂

∂xi
|t ∈ TtM, (2.5)

where { ∂
∂xi
|t}ni=1 and { ∂

∂x′i
|f(t)}ni=1 are the bases in TtM and Tf(t)M

′, respectively. Let ei|t =
∂
∂xi
|t. By (2.4) and (2.5), we have

∂X

∂xi
|t = 〈dX|t,

∂

∂xi
|t〉 = dX|t(

∂

∂xi
|t) = dX|t(ei|t)

= dZ|f(t)df |t(ei|t) = dZ|f(t)

(
N∑
k=1

Bki
∂

∂x′k
|f(t)

)
=

N∑
k=1

Bki
∂Z

∂x′k
|f(t).
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Therefore,

∇X|t = (
∂X

∂x1
, . . . ,

∂X

∂xN
)T = BT (

∂Z

∂x′1
, . . . ,

∂Z

∂x′N
)T = BT∇Z|f(t),

implying

∇X|t = 0 ⇔ ∇Z|f(t) = 0. (2.6)

Similarly, we have

∂

∂xj
(
∂X

∂xi
)|t =

N∑
l=1

N∑
k=1

Bki
∂

∂x′l
(
∂Z

∂x′k
)|f(t)Blj .

Therefore

∇2X|t = BT∇2Z|f(t)B, (2.7)

implying

index(∇2X|t) = index(∇2Z|f(t)). (2.8)

It follows from (2.6) and (2.8) that t ∈ M is a critical point of index i of X if and only if

t′ = f(t) ∈M ′ is a critical point of index i of Z.

It follows from (2.1), (2.6) and (2.8) that

µXi (M,u) = #
{
t ∈M : X(t) ≥ u,∇X(t) = 0, index(∇2X(t)) = i

}
= #

{
t ∈M : Z(f(t)) ≥ u,∇Z|f(t) = 0, index(∇2Z|f(t)) = i

}
= µZi (M ′, u),

yielding E[µXi (M,u)] = E[µZi (M ′, u)].

Notice that (2.7) implies det(∇2X(t)) = |det(B)|2det(∇2Z|f(t)). Therefore, by (2.2), (2.6)

and (2.8),

FX
i (t, u) =

E{|det(∇2X(t))|1{X(t)>u}1{index(∇2X(t))=i}|∇X(t) = 0}
E{|det(∇2X(t))|1{index(∇2X(t))=i}|∇X(t) = 0}

=
|det(B)|2E{|det(∇2Z|f(t))|1{Z(f(t))>u}1{index(∇2Z|f(t))=i}|∇Z|f(t) = 0}

|det(B)|2E{|det(∇2Z|f(t))||1{index(∇2Z|f(t))=i}|∇Z|f(t) = 0}

= FZ
i (t′, u).

�

Remark 2.2 In certain situations, we only know the covariance, or equivalently the distribu-

tion, of X(t). But there exist another Gaussian field Z and some diffeomorphic transformation

f such that X(t) and Z(f(t)) have the same distribution, that is X(t)
d
= Z(f(t)). Then the

results in (2.3) still hold since the expected number and height distribution of critical points

depend only on the distribution of the field.
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3 Applications

3.1 Anisotropic Gaussian Random Fields on Euclidean Space

Let A be a nondegenerate N ×N matrix, that is det(A) 6= 0. An anisotropic Gaussian random

field {X(t), t ∈ RN} is defined as

X(t) = Z(At), t ∈ RN , (3.1)

where {Z(t), t ∈ RN} is a smooth, unit-variance, isotropic Gaussian random field. So, it is a

special case of the diffeomorphic transformation f : RN → RN where f(t) = At. Due to the

isotropy of Z, there exists a function ρ : [0,∞)→ R such that the covariance of Z has the form

E[Z(t)Z(s)] = ρ
(
‖t− s‖2

)
. (3.2)

By (3.1) and (3.2), equivalently, we call {X(t), t ∈ RN} an anisotropic Gaussian random field

if the covariance has the form

E[X(t)X(s)] = ρ
(
‖A(t− s)‖2

)
.

Using the isotropy property (3.2), it has been shown in Cheng and Schwartzman [5, 6] that

the exact formulae of the expected number and height distribution of critical points of isotropic

Gaussian fields can be obtained by using GOI random matrices. We show below that the study

of critical points of anisotropic Gaussian fields can be transferred to isotropic Gaussian fields,

so that their expected number and height distribution can be obtained exactly.

Corollary 3.1 Let {X(t), t ∈ RN} be a smooth, unit-variance, anisotropic Gaussian random

field satisfying (3.1) and let D be an N -dimensional set on RN . Then for 0 ≤ i ≤ N and

u ∈ R,

E[µXi (D,u)] = |det(A)|E[µZi (D,u)] and FX
i (u) = FZ

i (u),

where E[µZi (D,u)] and FZ
i (u) are respectively the expected number and height distribution for

the isotropic Gaussian field Z, and can be found in [5, 6]; and FX
i (u) := FX

i (t, u) and FZ
i (u) :=

FZ
i (t, u) since they do not depend on t due to the stationarity (isotropy) of X and Z.

Proof Let D′ = {At : t ∈ D}, then Vol(D′) = |det(A)|Vol(D). It follows from Theorem 2.1

and the isotropy of Z that

E[µXi (D,u)] = E[µZi (D′, u)] = |det(A)|Vol(D)E[µZi ([0, 1]N , u)] = |det(A)|E[µZi (D,u)]

and

FX
i (u) = FX

i (t, u) = FZ
i (At, u) = FZ

i (t, u) = FZ
i (u).

�

Remark 3.2 It can be seen easily that the results in Corollary 3.1 can hold in a more general

setting where Z is stationary but not necessarily isotropic.
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3.2 Gaussian Random Fields on an Ellipsoid

Suppose {X(t), t ∈ M} is a smooth Gaussian field on the N -dimensional ellipsoid M . If M

is embedded in RN+1, then there is a linear mapping on RN+1, denoted by g, that maps M

onto the N -dimensional unit sphere SN . Let f : M → SN be the N -dimensional diffeomor-

phic mapping between M and SN induced by g. Then we can write X(t) = Z(f(t)), where

{Z(t′), t′ ∈ SN} is a Gaussian random field on the N -dimensional unit sphere SN . Now the

study of critical points of X on the ellipsoid M can be transferred to the Gaussian field Z on

the unit sphere SN by Theorem 2.1.

In particular, if the Gaussian field Z above is isotropic on SN , then by Theorem 2.1,

E[µXi (M,u)] = E[µZi (SN , u)] and FX
i (t, u) = FZ

i (t′, u) with t′ = f(t), whose formulae can be

found in [5, 6].
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