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Abstract

We discuss the STEM (Smoothing and Testing Multiple hypotheses) procedure to search for point sources in Cosmic
Microwave background maps; in particular, we aim at controlling the so-called False Discovery Rate, which is defined
as the expected value of false discoveries among pixels which are labelled as contaminated by point sources. STEM is
based on the following four steps: 1) needlet filtering of the observed CMB maps, to improve the signal to noise ratio;
2) selection of candidate peaks, i.e., the local maxima of filtered maps; 3) computation of p-values for local maxima;
4) implementation of the multiple testing procedure, by means of the so-called Benjamini-Hochberg method. These

procedures are also implemented on the latest release of Planck CMB maps.
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1. Introduction

In the last decades, observations and characterization
of Cosmic Microwave Background (CMB) temperature ani-
sotropy established the foundations for the ACDM concor-
dance model (see, e.g., BOOMERanG: MacTavish et al.
2006; WMAP: Hinshaw et al. 2013; Planck: Planck Col-
laboration XIII 2016). According to this scenario, the
Universe is described by a flat Euclidean geometry, with
cosmic structures originated by an almost scale-invariant
spectrum of adiabatic Gaussian primordial fluctuations,
and the cosmic energy density is in the form of barionic
matter (~ 5%), cold Dark Matter (~ 26.5%) and Dark
Energy (~ 68.5%).

However, an accurate analysis of the CMB polariza-
tion pattern is required in order to break the degeneracy
among some parameters and to constrain critical aspects
of the Early Universe. CMB polarization is usually de-
composed into a gradient and a curl component, so-called
E and B modes, respectively (Kamionkowski et al., 1997).
E-modes have been widely detected (see, e.g., Kovac et al.,
2002; Planck Collaboration XI, 2016), while primordial B-
modes have escaped observation so far (BICEP2/Keck and
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Planck Collaborations, 2015). The detection of the B-
mode polarization represents nowadays the new frontier
of observational cosmology, as B-modes would provide an
ultimate confirmation to the existence of a stochastic pri-
mordial background of gravitational waves, as predicted
by inflationary models (Lyth and Riotto, 1999).

The primary concern in CMB observations is the pres-
ence of foreground contamination, due to both diffuse Galac-
tic emission (e.g. Planck Collaboration X 2016) and extra-
galactic (point) sources (e.g. Planck Collaboration XXVI
2016). In intensity, Galactic emission consists in a mixture
of many processes, such as free-free emission, anomalous
microwave emission eventually due to non-thermal (spin-
ning) dust and synchrotron emission at low frequency, and
thermal dust emission at high frequency. Extragalactic
sources, as well, have different astrophysical origin. In
particular, the two main classes of sources are radio galax-
ies and dusty galaxies that are present mainly at low and
high frequencies, respectively.

To disentangle the CMB signal from foreground con-
tamination, many approaches have been followed (Planck
Collaboration IV, 2018). The latest released Planck cleaned-
CMB maps have been produced by the SEVEM template
fitting technique, the NILC and SMICA non-parametric
procedures and the COMMANDER parametric method.
Despite the difference in their approaches, these methods
yield largely compatible output maps.

In this work we investigate the application of a general
method for the localization of peaks on the sphere, un-
der isotropic Gaussian noise, to detect point sources out
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of CMB maps. On one hand, this identification may allow
a better cleaning of the CMB maps from the source con-
taminants; on the other hand, these sources are of astro-
physical interest themselves. Here, we focus on intensity
CMB maps and leave the extension to polarization to a
forthcoming paper. Our method is based on the so-called
STEM procedure (see Cheng et al., 2016), which consists
of the following four steps: i) filtering the CMB maps with
(Mexican) needlets, in order to increase the signal-to-noise
ratio (see Marinucci et al., 2008); ii) detection of local max-
ima in the filtered maps; iii) computation of p-values for
each of the local maxima; iv) implementation of the mul-
tiple testing scheme by applying the so-called Benjamini-
Hochberg (BH) procedure. The algorithm allows to effec-
tively control the False Discovery Rate, i.e. the expected
number of false discoveries among the critical points iden-
tified as point sources. We validate this procedure on real-
istic simulations of CMB maps and, then, apply the algo-
rithm to the latest release of Planck cleaned-CMB maps;
in particular, we compare the performance of the different
component separation methods in the removal of the ex-
tragalactic sources. We find some candidate point sources
in most of the maps; however, we conclude that the in-
painting procedure adopted for the 2018 release seems to
have produced maps which are much closer to being purely
Gaussian, with a number of local maxima largely consis-
tent with theoretical predictions.

This paper is organized as follows: in Section 2 we pro-
vide a formal description of STEM procedure; in Section
3 we present the numerical implementation of the algo-
rithm and discuss about its performance on simulations; in
Section 4 we show our results from Planck cleaned-CMB
maps; finally, in Section 5 we draw our conclusions and
outline some future perspectives for the application of the
algorithm.

2. Methodology: The STEM Procedure and FDR
Control

The procedure that we shall exploit in this paper can
be viewed as an extension to the sphere of the STEM algo-
rithm, which was introduced in a 1-dimensional Euclidean
framework by Schwartzman et al. (2011) and further ex-
tended to 2 and 3 dimensions by Cheng et al. (2017); for
the sphere, the mathematical background for our proposal
and some theoretical results which we shall present below
have been discussed in Cheng et al. (2016).

In short, the algorithm can be summarized in the fol-
lowing four steps (STEM stands for Smoothing and TEst-
ing Multiple hypothesis):

e In the first step, the map is smoothed to enhance the
signal-to-noise ratio of possible sources, and (equiva-
lently) to get rid of as much Cosmic Variance as pos-
sible. The proper implementation of this smoothing
step is one of the most delicate parts of our algo-
rithm, and is achieved by means of the (Mexican)

needlet transform, which we shall describe exten-
sively in Subsection 2.1

e In the second step, candidate point sources are se-
lected by numerically computing local maxima of the
filtered maps. The algorithm to detect the maxima is
described in Subsection 2.2 and has been extensively
validated.

e The third step requires the computation of p-values
for each of the computed local maxima. Needless to
say, even for a purely Gaussian map the distribution
of local maxima is not Gaussian, and can be derived
analytically along the lines of Bardeen et al. (1985);
Cheng and Schwartzman (2015) and Cheng et al.
(2016) (see also Cammarota et al. (2016) for related
results in the case of single multipole fields/spherical
harmonic components). More remarkably, it can be
shown that in the high-frequency limit the sample
distribution on filtered maps converges to the the-
oretical expectation, thus making a principled sta-
tistical analysis doable. These results are discussed
below in Subsection 2.3.

e In the fourth and final step, the multiple testing
procedure is implemented. Here we are resorting
to the control of the False Discovery Rate, an ap-
proach which has become classical in the statisti-
cal community over the last decade or so (see Ben-
jamini and Hochberg, 1995, for the pioneering con-
tribution). Heuristically, the idea is to control the
proportion of detected point sources that can turn
out to be false, as opposed to the control of each of
them individually. The advantage of this joint ap-
proach to testing have been now very widely recog-
nized in the statistical/mathematical literature, but
their impact in Cosmology and Astrophysics has so
far been rather limited. The details of our meth-
ods, in particular the so-called Benjamini-Hochberg
procedure, are discussed below in Subsection 2.4.

In the subsections to follow, we describe in greater de-
tails each of the four steps in our algorithm.

2.1. (Mezican) Needlets Filtering

The first step in the procedure is the proper filtering of
CMB maps in order to enhance the signal-to-noise ratio.
Heuristically, point sources are clearly confined to small
scales / high frequencies, hence all the features related to
the smallest values of the multipoles ¢ should be considered
as “noise” and hence discarded. We are hence looking for
a high-pass filter with optimal characteristics.

Needlets are a form of spherical wavelets which were in-
troduced in Cosmology roughly one decade ago and have
hence been shown to enjoy a number of very important
features. Let us denote by j,7 = 1,2,... a set of integer-
valued frequencies, and by Py((z,y)) the family of Legen-
dre polynomials, which for z,y € S? satisfies the identity
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Figure 1: Transversal cut of a needlet function. In the x-axis, it
is represented the angular distance between the center of the given
needlet (§) and an arbitrary point z, in minutes. The amplitude of
the needlet is found on the y-axis. The width of the desired needlet
can be selected through the parameters j and B. In this work we
will fix B = 1.2 and use the values of j found in the image: 38, 39,
and 40.

2D, (2, y)) = 300y Ve (€)Y o (y), where the bar de-
notes complex conjugation and Yp,,, as usual, the standard
basis of spherical harmonics. The needlet filter is then de-
fined to be

U= b 2 ). @
4

An example of this needlet filter can be seen in Fig.1,
represented in pixel space, with a fixed value of B = 1.2
and j taking the values 38, 39, 40, as we will do throughout
this work.

Loosely speaking, the needlet filter is hence nothing
more than a weighted average of the usual Legendre poly-
nomial, the latter projecting a spherical map into its dis-
tinct multipole components ¢; the standard needlet con-
struction was introduced in mathematics by Narcowich
et al. (2006), and then in statistics/cosmology by Baldi
et al. (2009), Marinucci et al. (2008), Pietrobon et al.
(2006). The key ingredient in the construction is then the
choice of the weight function b(.), which allows the optimal
tradeoff between localization properties in the real domain
and those in multipole space/frequency domain. In par-
ticular, in the standard needlet construction the function
b(.) is supposed to be infinitely differentiable, compactly
supported, and satisfying the partition of unity property,
which entails b?(%) = 1; here B is a user-chosen
parameter, whose value will be discussed later (see also
Marinucci and Peccati, 2011). These properties ensure,
in particular, that each needlet component is finitely sup-
ported in multipole space, and hence very-well localized
in frequency space. More than that, it has been possible
to show (see Narcowich et al., 2006) that the needlet fil-

ter enjoys very good localization properties in real space,
the tail of the filter decaying “nearly-exponentially”, i.e.,
faster than any polynomial, as the frequency j increases;
more precisely, one has that, for all integers M there exists
a constant Cj; such that

Cy x B¥
¢(1‘,f) < (1 + Bi x d52($a§))M7 (2)

where dgz2(z, €) is the usual geodesic distance on the sphere.
The needlet components are then given by

5i€) = [ Ty (o. e = 3 W )aen Yo ). (3
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so that on one hand the filtered field is only supported
on the multipoles where the function b(.) takes a non-zero
value, while on the other hand the value of the filtered field
at any given location £ is only influenced by the points
nearby in the original map T'(x). Filtered maps enjoy fur-
ther very useful (and rather remarkable) properties from
the statistical point of view; indeed, under standard as-
sumptions it can be shown that for any two different lo-
cations in the sky x and y, the values of §;(x) and £;(y)
are asymptotically uncorrelated (and hence independent,
under Gaussianity, see Baldi et al., 2009; Marinucci et al.,
2008) as the frequency j diverges to infinity. This prop-
erty will play a crucial role in the determination of the
statistical properties of the STEM algorithm.

The filter that is actually going to be implemented is
indeed a modification of the original needlet idea, which
was introduced soon after by Geller and Mayeli (2009a,b)
and then in the statistical/cosmological literature by Lan
et al. (2008) , Mayeli (2010) and Scodeller et al. (2011).
The idea is simply to replace the compactly supported
function b(.) by means of the Gaussian-related weight

l 1 ¢ 1,7

bp(ﬁ) = ﬁ(ﬁ)%ewl)(—§(ﬁ)2), (4)

where p is a parameter, that we have fixed at p = 1 in
what follows, see Fig. 2.

There are two motivations for the choice of Mexican
needlets:

a) the Mexican needlet filter is not compactly sup-
ported; however, in the harmonic domain the decay of
the filter function has Gaussian tails, hence for all practi-
cal purposes the contribution of multipoles which are not
concentrated around the centering value is utterly negli-
gible. Moreover, there is a huge theoretical and numeri-
cal evidence to show that Mexican needlets optimize the
trade-off between concentration in the real and harmonic
domain, see the discussion in Geller and Mayeli (2009a,b),
Mayeli (2010), Lan et al. (2008) and Scodeller et al. (2011).
Heuristically, this is due to the fact that a Gaussian distri-
bution saturates Heisenberg inequality on the concentra-
tion properties of a function and its Fourier transfom;

b) Mexican needlets have a very explicit form in both
the real and harmonic domain, and this makes the inves-
tigation of their power properties simpler. In particular,
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Figure 2: Representation of the filter function b for a Mexican needlet
with B = 1.2 and j = 38,39,40. The value of j determines the
multipole region that the filtering will extract.

it is simpler to control the oscillation of their lobes, which
is more pronounced in the standard needlet case (with the
risk to introduce spurious maxima).

2.2. Selection of Candidate Point Sources

Candidate point sources are selected by simply collect-
ing the local maxima in the filtered maps, i.e., the points
where the gradient is zero and the (covariant) Hessian ma-
trix is negative definite. We write G(3;) for the set of de-
tected peaks and M (;) for their total number, that is to
say that a point = € 5% belongs to G(8;) if and only if

{z € G(8))} & {2 : VBj(x) = 0 and V25;(x) < 0}, (5)

A < 0 denoting a negative definite matrix.

In practice, candidate peaks are simply identified by
the routine Hotspot in HEALPix, see https://healpix.jpl.
nasa.gov/html/facilitiesnode8.htm.

2.8. Distribution of Local Mazima and p-values

The key technical step in this algorithm is based on the
possibility to evaluate the exact distribution of local max-
ima for the CMB maps, under the (null) assumption that
no point source is present. Computing the density of local
maxima, or equivalently the expected number of maxima
for a given Gaussian field, is a topic which has drawn a
lot of work in Cosmology, starting from the seminal paper
Bardeen et al. (1985) in the eighties. Under the circum-
stances of the present paper, the density of these maxima
can be shown to be given by (see Cheng et al., 2016, and
the references therein)

2,/3+mn;
24 n2\/3+ 17

fi(x) [A+ B+ (6)

where we defined
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The notation here requires some clarification. Indeed,
o, ® denote, respectively, the standard density and cumu-
lative distribution function for a Gaussian random vari-
able; on the other hand, x; and n; are constants which
can be explicitly computed from the angular power spec-
trum of the original (unfiltered) CMB map; more precisely,
they are given by

I 1T
nj /T‘/(Cz) ) J F;-/(Ce) )
where
i)=Y TR, ®
l
o) =Y TGO, o)

and the derivatives of Legendre polynomials evaluated at
1 are given by

0 +1)
2

and  P(1) = Ll — 1)((; (¢ + 2).
(10)
In the sequel, it should be kept in mind that all our
computations will be carried over components which have
been normalized to have unit variance.
Of course, once the density of local maxima is known,
it is immediate to compute the p-value of any one of them
taking value u (say), which is indeed given by

Py(1) =

m@%:/mhwﬁ (1)

A further, more remarkable result was also established
in Cheng et al. (2016); it was indeed shown that at high
frequencies, the realized (observed) distributions of critical
points on CMB maps converges to the theoretical density
f; given above. In other words, even on a single realization
of CMB maps the observed distribution of local maxima
for large values of j is going to track closely the theoreti-
cal prediction, under the assumptions of Gaussianity and
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isotropy. This result is grounded on the capacity of needlet
filtered maps to control Cosmic Variance, and it is clearly
the foundation for the statistical multiple testing proce-
dure which we shall describe in the next subsection; see
Fig.5 later for numerical evidence supporting these claims.

2.4. The Multiple Testing Procedure

As a multiple testing procedure in step (4) we apply
the Benjamini-Hochberg (BH) approach Benjamini and
Hochberg (1995). This algorithm is now very popular
among statisticians; in this paper it is implemented di-
rectly as follows. Recall that we write G(f;) for the set
of detected peaks and M (8;) for their total number; let
us arrange their p-values in increasing order and fix a sig-
nificance level o € (0,1) whose role will be made clearer
below.

Now let k be the largest index for which the ith smallest
p-value is less than io/M(3;); then the null hypothesis
that there is no point source at a given local maximum
location x € G(B;) is rejected if

ko

M(B;)’

where we assume without loss of generality that at least a
peak is detected in the map (otherwise the test is clearly
unnecessary). In words, the algorithm can be explained as
follows: we draw a line starting from the origin with slope
a, and on the same plot we represent in ascending order
the p-values corresponding to the detected peaks: local
maxima are considered significant (and hence identified
with point sources) if and only if they are small enough to
fall below the line. The procedure is illustrated in Fig. 3.

This procedure has a multiple testing nature in an ob-
vious sense: for any local maxima, not only its value is
considered, but also its ranking in the full map (a single
source at 30, say, may not be significant in a map with
million pixels, but one thousand such maxima have defi-
nitely another meaning). More rigorously, this algorithm
guarantees control of the so called False Discovery Rate,
which is defined as the expected number of false discover-
ies out of the critical points which are identified as point
sources (see Cheng et al. (2016) for more discussion and
details):

pj(z) < (12)

W

FDR; = (),
where S;, W, denote, respectively, the number of local
maxima which are identified as sources and those for which
this identification is actually wrong, and (.) is as usual the
ensemble expected value. Under some standard assump-
tions, it is indeed possible to show that the STEM algo-
rithm that we introduced on one hand allows to control
the False Discovery Rate by the user chosen parameter «,
in the high-frequency limit; i.e.,

(13)

limj%wFDRj S g (14)
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Figure 3: Example of the Benjamini-Hochberg procedure for multiple
testing. In the x-axis, we have the rank i of the p-values, sorted from
lower (less likely) to higher (more likely). The value of the p-values
times the total number of maxima is plotted for each maximum as
blue points. This is an estimate of the number of maxima expected to
be at least as intense as a given point in a purely Gaussian CMB map.
The three colored lines represent the threshold for 3 different values
of a; the highest value still below the line determines the number of
points to be classified as candidate point sources. In dashed black
line, corresponding to @ = 1, we have the expected behaviour for a
purely Gaussian map.

moreover, in a suitable sense the procedure has statistical
power growing to unity at the largest scales, i.e., it is able
to recover a proportion growing to 100% of the existing
sources. These results are clearly of a theoretical nature,
but as we shall show in the Sections to follow they do pro-
vide a very good guidance on the actual performance of
the STEM algorithm under realistic experimental condi-
tions and on Planck 2018 data.

3. Numerical Implementation and Simulations

The algorithm described in the previous section has
been implemented on Planck-like simulations including point
sources, as described below.

3.1. Implementation

We implement the algorithm by creating a software
on Python 3.5, exploiting in particular numpy (Oliphant,
2006) and scipy (Jones et al., 2001). We use astropy
(The Astropy Collaboration, 2018) to import FITS im-
ages as the ones provided by the Planck Collaboration,
and HEALPix (Gorski et al., 2005) to deal with full-sky
spherical images, as this is the standard adopted by the
Planck Collaboration. The Python package concerning the
needlet treatment and the multiple testing approach has
been programmed entirely by us, following the algorithm
explained in the previous section. Finally, we use pandas
(McKinney, 2010) and Matplotlib (Hunter, 2007) to an-
alyze the results.



The software is structured into three parts: i) The
main algorithm, which takes a CMB map and extract a
list of points believed to be point sources, according to the
STEM Procedure explained in Section 2; ii) The simula-
tions, which create a number of possible CMB realizations
and introduces artificial point sources according to specifi-
cations, in order to test the validity of the procedure; and
iii) The Planck maps analysis, which helps to perform the
study of the maps provided by the Planck Collaboration.

Here we explain the main steps of the implementation
for each of these parts.

3.1.1. Implementation of the Main Algorithm

We follow the four steps described in Section 2: filtering
the map, selecting candidates, computing their p-values,
and applying the multiple testing procedure.

We start by filtering the input CMB map; this is done
in harmonic space, using Eq. 3. First, we extract the
spherical harmonics coefficients ay,, using the map2alm
routine on HEALPix. Then, these quantities are multiplied
by the filter b (é) of the corresponding Mexican needlet
with fixed parameters B and j: of course, this filtering fac-
tor depends on ¢ but not m (needlets are isotropic); this
procedure is significantly more efficient than filtering in
pixel space. The result is then used to reconstruct the now-
filtered map 3;(§) with the alm2map routine on HEALPix.
Going through the spherical harmonic coefficients may be
suspected to affect the properties of needlet-filtered ran-
dom fields, in the presence of masked regions; however it
has been shown both numerically and mathematically that
this effect is negligible at high frequencies j, as those on
which we focus for point source detection, see i.e., Scodeller
et al. (2011).

An example of a CMB map before and after the needlet
filtering is in Fig. 4. The angular size of this image is 5° x
5°; of course, the small scale clumps in the temperature
map are enhanced in the [-map, especially at the scale
corresponding to the selected needlet (around ~ 10').

Once the filtered map 3;(§) is computed, we extract
its local maxima with the hotspot routine in HEALPix.
It checks the intensity of the neighboring pixels for every
pixel in the map and delivers both the location and the
intensity of the maxima. At this point, the maxima distri-
bution can be compared with the theoretical distribution
().

At this stage, the p-value is computed for each maxi-
mum, following Eq. 11: for each maximum of intensity x,
we integrate f;(«) numerically from z to infinity, obtaining
the p-value p;(x). However, it has to be noted that every
map has tens of thousands of maxima, with similar val-
ues for their intensities. Because of this, performing the
integration for every point is highly inefficient. Instead,
we take the highest and lowest values for the intensity and
integrate in this interval with a small step of Az = 0.05;
the error in this procedure is lower than the error in the
numerical integration, which is % < 10~*. Nonetheless,

CMB temperature map Filtered B map

-289.257 uK 343.753 pK -0.00585404 kK 0.00531234 pK

Figure 4: Comparison between a CMB temperature map (on the
left) and the S-map resulting of filtering this map with a needlet
B = 1.2, j = 39 (on the right). The field of view for both images
corresponds to 5° x 5°.

we make the exact computation only for the 1000 most
intense maxima.

The last step is to apply the Benjamini-Hochberg al-
gorithm to identify the possible point sources among the
whole maxima population. In order to do that, we proceed
as described in Section 2.4: first we sort the p-values from
lowest (less likely) to highest (more likely); and then we
extract the highest p-value that satisfies Eq. 12. This rou-
tine can be implemented for any value of the confidence
parameter « € (0, 1), see Fig. 3.

All the steps described in this section have been im-
plemented in a Python package named MTNeedlet!. This
package consists of a series of flexible functions that can
be used individually or together. The package is fully
documented and available through the standard procedure
“pip install mtneedlet”.

8.1.2. Implementation of the simulations

We are now in the position to apply the algorithm to
simulated maps. We generate a number of realizations of
the CMB and a set of artificial point sources, according
to the input parameters. After applying the STEM algo-
rithm, this routine calculates the true and false detections
obtained by the algorithm. The complete Python code de-
scribed in this section can be found online? as a Jupyter
Notebook.

More precisely, we generate an angular power spectrum
Cy from the Planck cosmological parameters, using CAMB
(see Lewis, 2011). We use this angular power spectrum to
generate a series of compatible CMB maps; we choose to
use the same resolution of the Planck maps, nside = 2048.
According to the HEALPix standard, the total number of
pixels is 12 - nside?. The maps are then convolved with
a Gaussian profile of fwhm = 5', similar to the nominal
resolution of Planck data.

Lhttps://javicarron.github.io/mtneedlet/
2https://javiercarron.com/code/
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A population of artificial point sources is then intro-
duced. In order to do that, a blank map of higher res-
olution is created (nside = 4096) and a set of pixels is
selected at random; the intensities of these points are se-
lected following a uniform distribution between the chosen
limits. These artificial point sources are now convolved
with a Gaussian profile equal to the one used for the map
before. This map of artificial point sources is then added
to the different CMB realizations.

The main algorithm is run on each map (CMB + point

sources) to obtain the list of points selected as point sources.

We will claim that a detection is successful if it is less than
p = 3 pixels away from the artificial source that had been
injected into the map, as in Cheng et al. (2016). We find
that increasing this tolerance to any reasonable extent does
not have a significant impact on the results, while of course
excluding this tolerance factor decreases the number of de-
tections.

The values chosen for the parameters and the results
of these simulations will be explained in Section 3.2.

3.1.83. Implementation for the Planck data

The last part of the numerical implementation concerns
a pipeline that loads the target maps (in this case Planck
CMB observations), applies the algorithm, and gather the
most important results (which we present in the tables be-
low). The complete Python code described in this section
can be found online® as a Jupyter Notebook.

First, we extract some information concerning each
map: number of pixels, map-making algorithm (and its
version), and whether it is the inpainted version provided
by Planck or not. Then, the user can choose a set of values
for the parameters of the main algorithm: in particular,
the needlet parameters B and j, and the confidence level
Q.

After the main algorithm is implemented on each map,
the procedure checks the location of the point sources se-
lected by the algorithm. In order to do that, it uses the two
confidence masks provided by the Planck Collaboration.
The first one is the common confidence mask, obtained
through the combination of the masks for the individual
algorithms; it covers around ~ 22% of the sky. The second
is the inpainting mask, covering the areas with apparent
contamination that are to be inpainted to obtain realistic
maps; it covers around ~ 2% of the sky (see Section 4.2
in Planck Collaboration IV (2018) for more information
about the masks). In our implementation, the number
of point sources detected inside and outside each mask is
reported; the Planck Catalogue of point sources is also ex-
plored to count how many of the detections in each region
are matched by known sources.

We then produce a pandas table with the results; for
every map we can find the information about the param-
eters of the algorithm and the number of sources reported
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Figure 5: Maxima distribution in filtered CMB maps. On the top,
the comparison between the observed distribution (mean of 200 real-
izations), in continuous black line; and the theoretical prediction
from Eq. 6, in dashed red line. On the bottom, the residual:
measured — predicted. Both cases include the regions where the
68% and the 90% of the maps lay.

(total number, number inside each mask and number in
the catalogues).

3.2. Numerical Validation

Let us now describe the validating simulations. In the
case of Mexican needlets, the only free parameter to be
chosen is B, see Eq. 4; in particular, we select B = 1.2
at frequencies j = 38,39,40, meaning multipole regions
around B7 ~ 1020, 1225, 1470. The reasons of this choice
will be explained in Section 3.2.2. In any case, select-
ing much lower multipoles (larger scales) makes the point
source detection less efficient, while selecting much higher
multipoles (smaller scales) makes the algorithm more sen-
sitive to noise and pixelization effects.

We start by generating 200 CMB realizations without
artificial point sources but with realistic noise (estimated
from the semidifference of odd and even observational rings
in Planck data). In these simulations, we observe that
the maxima population follows the theoretical distribution
from Eq. 6, as it can be seen in Fig. 5. We note that the
residual is not exactly 0, but it presents a characteristic
pattern, possibly due to pixelization effects. However the
case may be, the maximum of the residual is less than 0.01;
this is aligned with the result by Cheng et al. (2016), which
showed that at high frequency, the maxima distribution of
CMB maps converge to the theoretical prediction.

We use again the sample of 200 CMB realizations in or-
der to test the algorithm on maps without artificial sources.
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a =38 =39 j5=40
005 4.0% @ 65%
001 15% 25%
0.002 05% 05%
0.05 0.045 0.075 = 4.595
0.01 0.015 0.030 3.215
0.002 0.005 0.005  2.270

Table 1: Percentage of maps with incorrect detections and average
number of detections per map. Both are calculated for a total run
of 200 CMB maps without artificial sources but with noise. As ex-
pected, very few candidates are reported for j < 39, but the noise
becomes significant at larger multipoles.

It is applied with different values of the confidence parame-
ter « = 0.05,0.01,0.002. Since no artificial source is added,
we expect the amount of reported point sources to be due
to noise.

In Table 1 we can see the percentage of maps that
report at least one (incorrect) detection and the average
number of detections per map, for different combinations
of parameters. As expected, the number of detections that
are reported will increase as « increases. Additionally, we
observe that the number of incorrect detections is very
low for j < 39, almost unaffected by noise. For the time
being, we will do the analysis with the parameters 7 = 39,
a = 0.01, although a further discussion of this choice can
be found in Section 3.2.2.

3.2.1. Sensitivity of the algorithm

In order to test the detection power of the algorithm,
we introduce a total of 200 artificial point sources in each of
the simulated maps; they are produced with a peak inten-
sity between 0 and 7o, where o is the standard deviation
of the convolved maps before filtering (calculated from the
theoretical angular power spectrum). We are interested in
knowing the minimum intensity for which the algorithm is
able to recover most point sources: this is the lower limit of
intensity for a complete detection. Of course, we are also
interested in the number and intensities of false detections.

The results of the simulations for a = 0.01, B = 1.2,
and j = 39 can be seen in Fig. 6, which provides the
number of artificial sources, the correct detections, and
the false detections. The intensity of the maxima is mea-
sured with respect to the CMB temperature map before
the needlet filtering, in units of its standard deviation o.
It can be seen that the algorithm detects essentially every
artificial source over 4c; indeed, a 90% completeness level
is reached at 3.660. Additionally, the number of false de-
tections is very small and almost negligible over 2¢. The
average number of false detections in these simulations is
1.05 per map, meaning a False Discovery Rate of 0.009.

These results are reported with the intensity referring
to the CMB temperature map, before the filtering is ap-
plied. Since the detection occurs on the filtered maps S,
it is interesting to see the intensity of the point sources
after filtering; this is given in Fig. 7. The first difference
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Figure 6: Sensitivity of the algorithm. In the x-axis, we have the
intensity of the point sources, referred to the CMB temperature maps
before filtering, in units of its standard deviation. In the y-axis, we
have the number of detection of the maxima in each bin. In green,
we have the artificial sources; 10 sources have been introduced in
each bin, between 0 and 7o. In blue, we have the true detections:
number of artificial sources correctly detected. In orange, we have
the false detections: reported candidates that do not correspond to
any artificial source. For both true and false detections, we plot the
average and the confidence regions which include 70 and 90% of the
maps. The intensity for the artificial sources is the one with which
they were generated, the one for the false detections is measured on
the map. The algorithm has been applied 200 times, with 200 sources
at a time, a needlet filter of B = 1.2 and j = 39, and o = 0.01.

is a clear enhancement of the signal: while point sources
are generated with intensities between 0 and 7o, the
intensity of these points in the S-maps is up to 1505. The
signal to noise is increased up to a factor < 2 for most
point sources.

Another difference here is the noisy profile of the detec-
tions, resulting in wider confidence regions. This effect is
expected, it is a consequence of measuring the intensity on
filtered maps after adding the CMB realization: the same
source can be located on a minimum of the CMB signal in
one map, but on a maximum in another.

8.2.2. Choice of parameters

The implementation of the algorithm requires to select
the values of two parameters. The first one is the char-
acteristic scale of the needlet, i.e., the multipole region to
be filtered. The second one is the control level for FDR
(o) in the Benjamini-Hochberg procedure. The choice of
these parameters entails a trade-off between the power of
detection and the ratio of false discoveries. For our results
below, we shall set the limit FDR < 0.01: in words, we re-
quire that at most 1% of the reported point sources can be
false detections in the simulations. Within this limit, we
will choose the parameters which maximize the detection
power.

A priori, the characteristic scale of the needlet used
to filter the map should be comparable to the typical size
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Figure 7: Sensitivity of the algorithm on the filtered CMB maps
(B-maps). In the x-axis, we have the intensity of the point sources,
measured directly on the filtered CMB maps. In the y-axis, we have
the number of point sources. Detections that correspond to artificial
point sources are plotted in blue, while detections that do not, are
represented in orange. Artificial point sources that are not detected
are represented in red. The average and the confidence regions are
plotted, where 70 and 90% of the maps lay. As before, the algorithm
has been applied 200 times, with 200 sources at a time, a needlet
filter of B =1.2 and j = 39, and a = 0.01.

o} j=38 73=39 j=40
0.06 0.042 0.040 | 0.082
0.01  0.009 0.009 = 0.046
0.002 0.0013 0.0018 0.0325

Table 2: False Discovery Rate for a simulation of 200 CMB maps
with 200 added artificial sources between 0 and 7o¢ s and realistic
noise.

of a point source. Larger scales are expected to be less
efficient, as the signals of the point sources are diluted
into a larger area; and smaller scales are expected to be
more sensitive to instrumental noise and pixelization ef-
fects. We fix B = 1.2 and select j = 38,39,40 to probe
these hypotheses and select the optimal size (peaking at
£ ~ 1020, 1225, 1470, respectively). As before, we simu-
late 200 CMB realizations with 200 artificial sources be-
tween 0 and 7o and realistic noise. The algorithm is then
applied to all the maps with the different values for j and
Q.

Let us first discuss the effect of the parameters on the
False Discovery Rate (FDR). We report the values of the
F DR for our simulation in Table 2, and the average num-
ber of false discoveries per map in Table 3. We observe
that 7 = 38 and j = 39 yield similar realized values for
F DR; the actual values are lower than (but close to) a in
both cases, as predicted by Eq. 14 for high j. However,
this is not the case for j = 40, where the instrumental
noise produce a significant distortion. Indeed, this dispar-
ity is not observed if noise is not added to the maps. The
required limit FDR < 0.01 leads hence to j < 39.

a  j=38 ;=39
0.05 _ 3.65 501
001 066  1.05 _ 6.74
0.002 0.9 020 = 4.53

j =40

Table 3: Average number of incorrect detections per map for a simu-
lation of 200 CMB maps with 200 added artificial sources and noise.

a  j=238 ;=239 j=40
005 _ 508 350  2.50
001 = 536 3.66  2.66
0.002 = 574 386  2.74

Table 4: Level of intensity for which an artificial point source is re-
covered at least 90% of the times. The intensities are measured on
the peak of the signal before the needlet filtering, in units of the stan-
dard deviation of the CMB. These results have been obtained from
a run of 200 CMB maps with 200 added artificial sources between 0
and 7oc g and realistic noise.

Let us now investigate detection power: in order to
achieve this goal, the sensitivity curve is derived for each
case, as in Fig. 6. We are interested in the intensity of the
points that the algorithm is able to detect with frequency
90% or larger, this is the 90% completeness limit. The
values of this limit for different parameters are shown in
Table 4. The variation between different values of j is sig-
nificant: ~ 1.50 between 38 and 39; and ~ 1o between 39
and 40. As expected, a higher value of j yields a stronger
detection power.

To sum up, under the constraint that FDR < 0.01,
detection power is maximized by j = 39; this is therefore
our choice for the investigations to follow.

Lastly, we can also compare the results of the algorithm
in the case where no artificial source is introduced, i.e., we
observe only CMB and noise; the results were shown before
in Table 1. We see that the algorithm with this choice
of parameters performs satisfactorily: it only reports a
detection in 1 in 20 maps and, even in those cases no more
than 2 candidates are reported. On the other hand, as
before the case of j = 40 is significantly contaminated by
noise and the algorithm reports several detections in the
majority of the maps.

3.2.3. More comments on noise and masking

One of the advantages of needlet filtering is that it fo-
cuses only on the contribution of a band-limited multipole
region; this is also true in practice for Mexican needlets,
as the tail of the filter has a Gaussian decay. The noise
contribution is more important at high ¢, so we can min-
imize its effect by choosing lower values for ¢, while these
multipoles can be chosen large enough to be still suitable
to detect point sources. In Fig. 8, we can see the esti-
mated contribution of the noise and the signal to the an-
gular power spectrum CYy, together with the shape of the
needlet filter b (%) for the values considered in this work
B =1.2, j = 38,39,40 (peaking at ¢ ~ 1020, 1225, 1470,
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Figure 8: Estimated angular power spectrum C, of the signal and
the noise. Overlapped in dashed line, we can see the filter b (é)

for needlets with B = 1.2 and 7 = 38, 39,40. As expected, low multi-
poles are dominated by signal, while high multipoles are dominated
by noise. The needlet scales are chosen in order to correspond to the
size of point sources, while staying in the signal-dominated region.

respectively). It can be seen that the needlet filtering will
mostly reflect the signal-dominated scales, while the noise
starts to become significant (but not dominant) for j = 40,
as shown in the previous section.

To understand better the role played by noise, we re-
peated the simulations in the previous subsection without
adding a realistic noise component to the maps. In the
case of j = 38 and j = 39, all results are very similar to
those reported in (Tables 1 to 4), within statistical error;
this seems to suggest that the noise has a minimal impact
in the algorithm for this multipole region. On the other
hand, the addition of a noise component drastically affects
the results for j = 40: without noise, the False Discovery
Rate is similar to what we obtained for the other values
of j, that is FDR < a. For a = 0.01, j = 40 the False
Discovery Rate increases by a factor 5 when noise is intro-
duced.

It is also worth mentioning the effect of masking, i.e.,
setting to 0 the pixels of areas considered to be contam-
inated by the Galaxy or known point sources. We recall
that one of the main advantages of using needlets is their
extremely good localization properties; therefore, we may
expect that masking would remove the areas with known
contamination, while not affecting the algorithm on the
rest on the map. There is, however, some technical diffi-
culties that may arise: since masking a region makes its
value equal to 0, some masked sources in cold (negative)
regions can still appear as very intense point sources; addi-
tionally, in some cases masking generates artificial detec-
tions near the border of the masked area. We avoid these
technical problems by using the masks only to check the
location of the detections (i.e., inside or outside the con-
fidence masks); we do not mask the map before applying
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the algorithm.

4. Results on Planck 2018 Maps

In this section we apply the algorithm to the temper-
ature maps produced by the four algorithms of the last
Planck data release: COMMANDER, SMICA, SEVEM,
and NILC. All the maps are processed at their native res-
olution of nside = 2048. We analyze the last two data re-
leases: 2015 and 2018 (see Planck Collaboration IX, 2016;
Planck Collaboration IV, 2018); for the latter, we apply
the algorithm both in the inpainted and not inpainted
cases. These maps are expected to be very close outside
the confidence masks, but the results will be different since
the algorithm considers the maxima population as a whole
in the entire map. Using inpainting is a way to exclude
the bright and known sources from this analysis.

The algorithm is applied with the parameters discussed
in Section 3.2.2: B = 1.2, j = 39, and confidence param-
eter @« = 0.01. Several results are stored for each map:
first, the total number of detections reported (their loca-
tion and intensity are also stored but will not be shown
here for brevity’s sake). We then calculate the amount
of the detections outside the inpainting mask (98% of the
sky) and outside the common confidence mask (78% of
the sky). Lastly, we check how many detections match the
Planck catalogues of point sources. These catalogues are
reported for each frequency plus additional effects (such
as Sunyaev-Zel’dovich); the procedure checks all the cata-
logues individually and all together.

The file containing the complete table with all the re-
sults can be found in http://javiercarron.com/code, along
with the code used to generate it. This table includes the
results for other values of the parameters j and «. It con-
sists of 144 rows and 18 columns, including the location
and intensity of every point reported by the algorithm and,
therefore, is too large to be reproduced in this article. In
Table 5 we can see a part of these results for j = 39 and
a = 0.01, on which we are going to focus.

We note that the algorithm reports a significant num-
ber of detections for most of the maps. Some of them
are sources already present in the Planck catalogues that,
apparently, could not be completely removed for the fi-
nal maps. However, a fraction of them are sources that
are not intense enough to be present in these catalogues.
We note that, as expected, the algorithm does not detect
point sources in the high-z catalogue or in the Sunyaev-
Zel’dovich catalogue.

Before analyzing the results for the different algorithms,
we are going to focus on the similarities and the general
behavior of the procedure. The effect of the frequency
filtered () and the confidence parameter « is similar for
all maps. We can see an example of this effect for the
not-inpainted 2018 SMICA map in Table 6.

A lower value of j = 38 (¢ ~ 1020) means filtering the
map with wider needlets; this means that the signal will
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Map version inpainted detections mask C mask I cat cat C
commander 2.01 False 55 0 2 53 0
commander 3.00 False 6334 37 716 2927 11
commander 3.00 True 70 1 12 8 0
nile 2.01 False 1222 6 10 753 1
nile 3.00 False 1240 8 15 755 1
nilc 3.00 True 0 0 0 0 0
sevem 2.01 False 7063 39 690 4056 13
sevem 3.00 False 5894 31 261 3424 10
sevem 3.00 True 3 0 1 0 0
smica, 2.01 False 558 2 10 69 0
smica 3.00 False 318 2 16 197 0
smica 3.00 True 11 1 3 7 0

Table 5: Part of the results table. Here, the three versions for the four algorithms have been filtered with a needlet B = 1.2 and j = 39.
Also, «a is fixed to 0.01. The columns are as follows. Map: algorithm used to extract the cleaned temperature map. Version: data release
used, 2.01 corresponding to 2015 and 3.00 to 2018. Detections: number of candidates reported. Mask C: number of candidates outside the
common confidence mask (78% of the sky). Mask I: number of candidates outside the inpainting mask (98% of the sky). Cat: number of
candidates present in a catalogue. Cat C: number of candidates outside the common confidence mask that are present in a catalogue.

Map  version inpainted j alpha detections mask C mask I
smica 3.00 False 38 0.01 169 1 6
smica 3.00 False 39 0.01 318 2 16
smica 3.00 False 40 0.01 744 5 79
smica 3.00 False 39 0.002 268 1 8
smica 3.00 False 39 0.01 318 2 16
smica 3.00 False 39 0.05 403 11 49

Table 6: Example of the behaviour of the results with j and « for the not-inpainted SMICA maps from the last data release. On the top,

varying j with fixed a. On the bottom, varying o with fixed j.

be more diluted, making it more difficult to detect sources
but more robust against noise. On the other hand, a higher
value of j = 40 (¢ ~ 1470) means filtering with narrower
needlets, which are similar in size to the point sources; this
makes this value more sensitive to point sources but also
much more vulnerable to noise. This explains the observed
result: the number of detections grows with j.

Similarly, the number of detections also grows with the
confidence parameter . As explained before, a higher
value of o means that the confidence required to report
a detection is lower; therefore, more detections will be re-
ported. With these values for « we are able to detect a
significant number of point sources introducing a low count
of false detection, as explored with simulations in Section
3.2.

As explained in Section 3.2.2, the choice of parameters
j =39, a = 0.01 is the one that maximizes the power of
detection while maintaining FDR < 0.01

4.1. Comparison between the different algorithms

We are now going to analyze the differences between
the results for the different algorithms used to extract the
CMB temperature map; we are also going to discuss the
version, i.e., data release of the map and whether it is
inpainted or not. As discussed before, all values refers to
the results for the parameters j = 39 and o = 0.01.
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SEVEM maps present the highest amount of point
sources for the 2015 version (7064). This number is re-
duced for the 2018 version of the map, with 5894 detec-
tions. In these two cases the Galactic component is strong
and produces a large number of detections in the Galac-
tic plane; indeed, only a small number of them (39 and
31, respectively) are detected outside the confidence mask.
As mentioned before, we also analyze the inpainted map
in order to limit the influence of the known contamina-
tion, especially from Galactic origin: in this case, the over-
whelming majority of the detections are removed, only 3
remaining. None of these detections is outside of the con-
fidence mask: this means that the maxima population of
the SEVEM inpainted map is compatible with the purely
Gaussian case outside the confidence mask.

NILC maps present a lower amount of detections over-
all: 1222 and 1240 for the 2015 and 2018 versions, re-
spectively: again, only a very small part (6 and 8) are
outside the confidence mask. More interesting here is the
case of the inpainted map: this is the only case where the
algorithm does not report any detection, not even inside
the masks. Once the strongest point sources are removed
through inpainting, the maxima population of the NILC
map is perfectly compatible with the Gaussian case.

SMICA maps present the lowest number of detections:
558 and 318 for the 2015 and 2018 versions, respectively.
Of these detections, only 2 are outside the confidence mask



in both cases. The inpainted SMICA map present 11 de-
tections, a higher quantity that the previous algorithms;
of these, only one of them is located outside the confidence
mask. This source can be seen in Fig. 9.

COMMANDER maps present the highest number of
detections in the 2018 version (6335), although it was the
lowest for the 2015 version (55). This is probably due to
the fact that, in the last version, this is the only algorithm
that does not preprocess the frequency maps to remove
possible point sources. This produces a more robust pro-
cedure in exchange of a higher level of contamination. In-
deed, if we look at the inpainted map, where most of these
points are removed a posteriori, the number of detections
is reduced to 70, only 1 of them located outside the confi-
dence mask. This point is the same that was reported in
the SMICA map, which can be seen in Fig. 9.

In general, we observe that the inpainting procedures
have worked extremely efficiently, and all four algorithms
seem basically without or with very few spurious maxima
(i.e., undetected point sources) after inpainting has been
implemented.

4.2. Reported point sources

We will close this section by studying the point sources
detected by the algorithm. It is interesting to know the
intensities of the detections: on the filtered (8) maps, they
have a signal of at least 5.403. The signal of these points
before filtering, directly on the CMB maps, can be seen in
Fig. 10; there is not a clear cut on the intensity, since the
filtering is able to exploit their shape in order to boost the
detecting power.

As we mentioned before, there is a point source outside
of the confidence mask that has been reported by the algo-
rithm both in the SMICA and COMMANDER maps (see
Fig. 9; it also corresponds to the green point in Fig. 10).
It can be observed that its shape and intensity are similar
to the ones expected from an astrophysical point source.
This point is located at galactic longitude [ = 103°18’ and
galactic latitude b = —27°17" and, as the majority of the
detections, we have to note that this point does not corre-
spond to a source present in any of the Planck Catalogues
of point sources. Identifying this possible source is not
straightforward, but looking at this region in an infrared
survey such as 2MASS (see Skrutskie et al., 2006), we find
a bright triplet of point sources within the pixel where the
maximum is detected, as it can be seen in 11.

5. Conclusions

We have implemented the STEM algorithm to extract
candidates point sources from a map, controlling the False
Discovery Rate. In order to do that, we have written a
code from scratch in Python 3, trying to make our pipeline
as flexible as possible, accepting a wide variety of parame-
ters as input. The code could be used to analyze maps even
outside the CMB framework. We have extensively tested
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the code on CMB simulations, generated using HEALPix
and CAMB; we have then the ability to control the propor-
tion of False Detections and the power of the algorithm:
we recover most of the sources at intensities higher than 3
to 4 times the standard deviation of the map. Using simu-
lations again, we have tested the effect of noise and masks.
We have concluded that the effect of noise is largely negli-
gible, while masks can introduce some false maxima near
the boundary.

We have run the algorithm on a set of foreground cleaned
Planck CMB maps, including second and final data release
(2015 and 2018, respectively, see i.e., Planck Collaboration
IX 2016; Planck Collaboration IV 2018). For the final data
release, we have included both inpainted and not inpainted
maps (in all cases we focused on temperature anisotropy
maps). We have observed that the inpainting procedure
adopted for the 2018 release seems to have produced maps
which are much closer to being purely Gaussian, with a
number of local maxima largely consistent with theoret-
ical predictions. This was not necessarily the case with
some of the earlier releases.

In this paper, we have only focuses on CMB tempera-
ture maps. However, these techniques can be readily ap-
plied to any kind of spherical map that we suspect to be
contaminated by point sources. In particular, we plan to
apply this algorithm to polarization maps, both for the E
and B modes. Likewise, this algorithm could be eventu-
ally applied to frequency maps, before they are combined
to obtain the temperature (or polarization) maps. In this
case, we have the additional problem of diffuse Galactic
radiation contaminating the background, plus all the pop-
ulation of physical point sources. Our aim is also to ap-
ply the algorithm to different frequency bands and then
combine the results to improve sensitivity; indeed, in this
paper we did not make any use of the spectral information
of the CMB observations.

We made the code publicly available for the whole sci-
entific community and we plan to expand it for future
work.
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Figure 11: Region of the sky where the point source is detected, in
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Planck CMB maps is around 1.7 wide. The center of the Planck
pixel where the maximum is detected is marked with a cyan cross.
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