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Abstract. We prove that every ultraproduct of p-adics is inp-minimal (i.e., of burden

1). More generally, we prove an Ax-Kochen type result on preservation of inp-minimality

for Henselian valued fields of equicharacteristic 0 in the RV language.

§1. Introduction. In his work on the classification of first-order theories [16]
Shelah has introduced a hierarchy of combinatorial properties of families of defin-
able sets, so called dividing lines, which includes stable theories, simple theories,
NIP, NSOP, etc. An important line of research in model theory is to charac-
terize various algebraic structures depending on their place in this classification
hierarchy (this knowledge can later be used to analyze various algebraic objects
definable in such structures using methods of generalized stability theory). Here
we will be concerned with valued fields and Ax-Kochen-type statements, i.e.
statements of the form “a certain property of the valued field can be determined
by looking just at the value group and the residue field”. For example, a classical
theorem of Delon [8] shows that given a Henselian valued field of equicharacter-
istic 0, if the residue field is NIP, then the whole valued field is NIP. More recent
results of similar type are [3] demonstrating preservation of NIP for certain val-
ued fields of positive characteristic, [17] demonstrating that the field of p-adics
is strongly dependent, and [10] demonstrating that it is in Fact dp-minimal.

A motivating example for this article is to determine the model-theoretic com-
plexity of the theory of an ultraproduct of the fields of p-adics Qp modulo a
non-principal ultrafilter on the set of prime numbers. Namely, let K =

∏
Qp/U ,

where U is a non-principal ultrafilter on the set of prime numbers. Note that
the residue field k is a pseudo-finite field of characteristic 0 and that the value
group Γ is a Z-group. Besides, both k and Γ are interpretable in K in the pure
ring language (e.g. by a result of Ax [2]). This implies that the theory of K is
neither NIP, nor simple — the two classes of structures extensively studied in
model theory. However it turns out that any ultraproduct of p-adics is NTP2

[5]. The class of NTP2 theories was introduced by Shelah [16, Chapter III] and
generalizes both simple and NIP theories. We recall the definition.

Definition 1.1. Let T be a complete first-order theory in a language L, and
let M |= T be a monster model. Let κ be a cardinal (finite or infinite).
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1. An inp-pattern of depth κ is given by (φi (x, yi) , āi, ki : i ∈ κ), where φi(x, yi)
are L-formulas with a fixed tuple of free variables x and a varying tuple
of parameter variables yi, āi = (ai,j : j ∈ ω) are sequences of tuples of ele-
ments from M, and ki are natural numbers such that:
(a) For every i ∈ κ, the set {φi (x, ai,j)}j∈ω is ki-inconsistent (i.e. no

subset of size ≥ ki is consistent).
(b) For every f : κ→ ω, the set

{
φi
(
x, ai,f(i)

)}
i∈κ is consistent.

2. T is NTP2 if there is a (cardinal) bound on the depths of inp-patterns.

Other algebraic examples of NTP2 structures were identified recently, includ-
ing bounded pseudo real closed and pseudo p-adically closed fields [15], certain
model complete multi-valued fields [14] and certain valued difference fields, e.g.
the theory VFA0 of a non-standard Frobenius on an algebraically closed valued
field of characteristic zero [6]. See also [7] and [12] for some general results about
groups and fields definable in NTP2 structures.

The notion of burden was introduced by Adler [1] based on Shelah’s cardinal
invariant κinp and provides a quantitative refinement of NTP2. In the special
case of simple theories burden corresponds to preweight, and in the case of NIP
theories to dp-rank (e.g. see [5, Section 3] for the details and references).

Definition 1.2. 1. T is strong if there are no inp-patterns of infinite depth.
2. T is of finite burden if there are no inp-patterns of arbitrary large finite

depth, with x a singleton.
3. T is inp-minimal if there is no inp-pattern of depth 2, with x a singleton.

Note that inp-minimality implies finite burden implies strong (the last impli-
cation uses submultiplicativity of burden from [5]). All the examples mentioned
above have been demonstrated to be strong of finite burden, with the exception
of VFA0: it remains open if VFA0 is strong, see [6, Question 5.2]. Some results
about strong groups and fields can be found in [7, Section 4] and [9].

Returning to ultraproducts of p-adics, we have the following more general
result.

Fact 1.3. [5] Let K̄ = (K, k,Γ, val, ac) be a Henselian valued field of equichar-
acteristic 0, considered as a three-sorted structure in the Denef-Pas language Lac

(i.e. there is a sort K for the field itself, as well as sorts k for the residue field
and Γ for the value group, together with the maps v : K → Γ for the valuation
and ac : K → k for an angular component).

1. If k is NTP2, then K̄ is NTP2.
2. If both k and Γ are strong (of finite burden) then K̄ is strong (respectively,

of finite burden).

Any pseudofinite field is supersimple of SU-rank 1, so in particular is inp-
minimal. Any ordered Z-group is dp-minimal, so in particular is inp-minimal.
It follows that any ultraproduct of p-adics is strong, of finite burden. However,
Fact 1.3(2) gives a finite bound on the burden of K̄ in terms of the burdens of k
and Γ via a certain Ramsey number, and is far from optimal in general. It was
conjectured in [5, Problem 7.13] that all ultraproducts of p-adics in the pure ring
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language are inp-minimal (note that in the Denef-Pas language, no valued field
with an infinite residue field can be inp-minimal as {ac (x) = ai} , {val (x) = vi}
with (ai) , (vi) pairwise different give an inp-pattern of depth 2).

In this paper we establish an Ax-Kochen type result for inp-minimality in the
RV language for valued fields, in particular confirming that conjecture.

Theorem 1.4. Let K̄ = (K,RV, rv) be a Henselian valued field of equichar-
acteristic 0, viewed as a structure in the RV-language (see Section 2). Assume
that both the residue field k and the value group Γ are inp-minimal, and that
moreover k×/(k×)p is finite for all prime p. Then K̄ is inp-minimal.

Corollary 1.5. Any ultraproduct of p-adics is inp-minimal.

Recall the following definition, see e.g. [18].

Definition 1.6. A theory is dp-minimal if for every mutually indiscernible
sequences of tuples (ai : i ∈ ω), (a′i : i ∈ ω) and a singleton b in the home sort,
one of this sequences must be indiscernible over b.

Remark 1.7. An NIP theory is dp-minimal if and only if it is inp-minimal.

Johnson [13] shows that a dp-minimal not strongly minimal field admits a de-
finable Henselian valuation. It follows that if K is dp-minimal, then K×/(K×)p

is finite for all prime p (a Fact which Johnson states and uses). Combining this
with Delon’s result on preservation of NIP we have the following corollary (which
also appears in Johnson’s thesis [14]).

Corollary 1.8. Under the same assumptions on K̄, if both k and Γ are dp-
minimal, then K̄ is dp-minimal.

There are three steps in the proof of the main theorem, corresponding to the
sections of the paper. First, we recall some Facts about the RV setting and
show that the whole valued field is inp-minimal if and only if the RV sort is
inp-minimal. Second, we show that the RV sort eliminates quantifiers down to
the residue field k and the value group Γ. Using this quantifier elimination, in
the last section we show that the RV sort is inp-minimal if and only if both k
and Γ are inp-minimal. Finally, we discuss some problems and future research
directions.

§2. Reduction to RV. We recall some basic Facts about the RV setting,
we are going to use [11] as a reference. Fix a valued field K, with value group
Γ and residue field k. Let RV be the quotient group K×/ (1 + m) where m =
{x ∈ K : val (x) > 0} is the maximal ideal of the valuation ring. We have a short

exact sequence 1→ k× → RV
valrv→ Γ→ 0.

Consider now the two-sorted structure K̄ = (K,RV, rv) in the language LRV+

consisting of:

• the quotient map rv : K → RV,
• on the sort K, the ring structure,
• on the sort RV, the structure ·, 1 of a multiplicative group, a symbol 0, a

symbol ∞ and a ternary relation ⊕.
The multiplicative group structure is interpreted as the group structure
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induced from K× and 0 · x = x · 0 = 0, ∞ = rv(0). The relation ⊕ is inter-
preted as the partially defined addition inherited from K: ⊕(a, b, c) ⇐⇒
∃x, y, z ∈ K (a = rv(x) ∧ b = rv(y) ∧ c = rv(z) ∧ x+ y = z).

Remark 2.1. 1. One can define the set WD(x, y) of pairs of elements for
which the sum is well-defined as ∀z, z′(⊕(x, y, z) ∧ ⊕(x, y, z′) =⇒ z = z′).
Given a pair of elements x, y ∈ RV such that WD(x, y) holds, we write x+y
to denote the unique element z ∈ RV satisfying ⊕(x, y, z).

2. We have WD(rv(a), rv(b)) ⇐⇒ val(a+ b) = min {val(a), val(b)}, in which
case rv(a+ b) = rv(a) + rv(b) (see [11, Proposition 2.4]).

3. The relation valrv(x) ≤ valrv(y) on RV is definable in this language [11,
Proposition 2.8(1)]. Namely, let d ∈ RV be arbitrary with valrv(d) = 0.
Then valrv(x) > 0 ⇐⇒ dx+1 = 1, and valrv(x) = 0 ⇐⇒ ¬ valrv(x) > 0∧
∃y(x ·y = 1∧¬ valrv(y) > 0). Then valrv(x) = valrv(y) ⇐⇒ ∃u(valrv(u) =
0 ∧ x = u · y) and valrv(x) < valrv(y) ⇐⇒ x 6=∞∧ x+ dy = x.

Let K̄ � K̄ be a monster model. We may always assume that K̄ admits a
cross-section map ac : K → k×, so we can view K̄ also as a structure in the
language Lac with ac added to the language.

Fact 2.2. [11, Proposition 5.1]

1. Let K be a Henselian valued field with char (k) = 0, and suppose that
S ⊆ K is definable. Then there are α1, . . . , αk and a definable subset
D ⊆ RVk such that

S = {x ∈ K : (rv (x− α1) , . . . , rv (x− αk)) ∈ D} .

2. The RV sort is fully stably embedded (i.e. the structure on RV induced
from K̄, with parameters, is precisely the one described above).

The following two lemmas are easy to verify (see [4], or the proof of [17, Claim
1.17] for the details).

Lemma 2.3. Let (ai)i∈I be an Lac-indiscernible sequence of singletons in K,
and consider the function (i, j) 7→ val (aj − ai) for i < j ∈ I. Then one of the
following cases occurs:

1. It is strictly increasing depending only on i (so the sequence is pseudo-
convergent).

2. It is strictly decreasing depending only on j (so the sequence taken in the
reverse direction is pseudo-convergent).

3. It is constant (we’ll refer to such a sequence as a “fan”).

Lemma 2.4. Let (ai)i∈I be an Lac-indiscernible pseudo-convergent sequence
from K. Then for any d ∈ K there is some i∗ ∈ Ī ∪ {+∞,−∞} (where Ī is the
Dedekind closure of I) such that the following holds (taking a∞ from K such that
I _ a∞ is indiscernible).

• For i < i∗: val(a∞ − ai) < val(d − a∞), val(d − ai) = val(a∞ − ai) and
ac(d− ai) = ac(a∞ − ai).

• For i > i∗: val(a∞ − ai) > val(d − a∞), val(d − ai) = val(d − a∞) and
ac(d− ai) = ac(d− a∞).
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Remark 2.5. Note also that for any non-zero x, y ∈ K, rv (x) = rv (y) if and
only if val (x− y) > val (y); and for any z ∈ K and x, y ∈ K \ {z}, rv (x− z) =
rv (y − z) if and only if val (x− y) > val (y − z).

In the remainder of this section we will reduce inp-minimality of K̄ to inp-
minimality of the RV sort with the induced structure.

First we treat a key special case. Assume that there is an inp-pattern consisting
of formulas ψ (x, yz) = φ (rv (x− y) , z) and ψ′ (x, yz′) = φ′ (rv (x− y) , z′) and
mutually Lac-indiscernible sequences (ci)i∈Z , (c

′
i)i∈Z with ci = aî bi and c′i = a′î b

′
i

where φ and φ′ are RV-formulas, bi ∈ RV|z|, b′i ∈ RV|z
′| and ai, a

′
i ∈ K. Without

loss of generality both {φ (rv (x− ai) , bi)}i∈Z and {φ′ (rv (x− a′i) , b′i)}i∈Z are k-
inconsistent, and let d |= φ (rv (x− a0) , b0) ∧ φ′ (rv (x− a′0) , b′0). We may also
add to the base elements a∞, a−∞, a

′
∞, a

′
−∞ continuing our sequences on the left

and on the right.

Claim 2.6. val (d− ai) ≤ val (d− a′0) and val
(
d− a′j

)
≤ val (d− a0) for all i

and j. In particular, val (d− a0) = val (d− a′0) = γ for some γ ∈ Γ.

Proof. Assume that val (d− ai) > val (d− a′0) for some i. Then rv (d− a′0) =
rv (ai − a′0). So |= φ′ (rv (ai − a′0) , b′0), and by mutual indiscernibility ai |={
φ′
(
rv
(
x− a′j

)
, b′j
)}
j∈ω — a contradiction. The other part is by symmetry. a

Claim 2.7. γ ≤ val (a0 − a′0).

Proof. As otherwise val (d− a0) = val (d− a′0) = γ > val (a0 − a′0), hence
val(a0 − a′0) = val((d− a′0)− (a0 − a′0)) = val (d− a0) — a contradiction. a
We now consider several cases separately.

Case A: val
(
ai − a′j

)
is constant, equal to some γ′ ∈ Γ.

As in this case the two sequences are mutually indiscernible over γ′, we may
add it to the base.

Note that γ ≤ γ′ by Claim 2.7. The following subcases cover all the possible
situations, using mutual indiscernibility of the sequences over γ′.

Subcase 1: γ < γ′.

Then rv (d− ai) = rv
(
d− a′j

)
= α for all i, j, for some some α ∈ RV with

valrv (α) = γ. Note furthermore that for any α∗ ∈ RV such that valrv (α∗) < γ′

we can find some d∗ ∈ K such that rv (d∗ − ai) = rv (d∗ − a′i) = α∗.
But then consider the array

φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) < γ′,

φ̃′ (x̃, b′i) = φ′ (x̃, b′i) ∧ valrv (x̃) < γ′,

where x̃ and bi, b
′
i are ranging over the RV sort and φ̃, φ̃′ are RV-formulas (we

are abusing the notation by writing valrv (x̃) < γ′ as a shortcut for valrv(x̃) <

valrv (a∞ − a′∞)). We have |= φ̃ (α, b0)∧φ̃′ (α, b′0) and
{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′ (x̃, b′i)

}
i∈Z

are both inconsistent by the previous observation as the original array was in-
consistent. This gives us an inp-pattern in the structure induced on the RV sort,
and so implies that RV is not inp-minimal.

Subcase 2: γ = γ′, val (ai − aj) > γ and val
(
a′i − a′j

)
> γ for all i < j.
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It follows by Remark 2.5 that there are α, α′ ∈ RV with valrv (α) = valrv (α′) =
γ such that rv (d− ai) = α and rv (d− a′i) = α′ for all i. Furthermore, rv

(
ai − a′j

)
=

α′ − α =: β for all i, j. It follows that our sequences are mutually indiscernible
over β and we can add it to the base.

We then consider a new array

φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) = γ,

φ̃′ (x̃, b′i) = φ′ (x̃− β, b′i) ∧ valrv (x̃) = γ.

It follows that α |= φ̃ (x̃, b0) ∧ φ̃′ (x̃, b′0), so to contradict inp-minimality of RV

it is enough to show that
{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′ (x̃, b′i)

}
i∈Z

are both inconsistent.

Let α∗ ∈ RV with valrv (α∗) = γ be arbitrary, and take d∗ ∈ K such that
rv(d∗ − a0) = α∗. Using Remark 2.5 again, we then have rv (d∗ − ai) = α∗ and
rv (d∗ − a′i) = α∗ + β for all i. Hence any α∗ realizing a row in the new array
gives d∗ realizing a row in the original array.

Subcase 3: γ = γ′, val (ai − aj) > γ and val
(
a′i − a′j

)
= γ for all i < j.

In this case we still have some α ∈ RV such that rv (d− ai) = α for all i. On
the other hand, it follows that rv (d− a′i) = rv (d− a∞) + rv (a∞ − a′i).

We then consider a new array given by

φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) = γ,

φ̃′
(
x̃, b̃′i

)
= φ′ (x̃+ rv (a∞ − a′i) , b′i) ∧ valrv (x̃) = γ ∧WD (x̃, rv (a∞ − a′i)) ,

so b̃′i = rv (a∞ − a′i) b̂′i. Note that (bi)i∈Z and
(
b̃′i

)
i∈Z

are mutually indiscernible

sequences in RV. It follows that α |= φ̃ (x̃, b0)∧φ̃′
(
x̃, b̃′0

)
, hence to contradict inp-

minimality of RV it is enough to show that both
{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′
(
x̃, b̃′i

)}
i∈Z

are inconsistent. Let α∗ ∈ RV be arbitrary such that valrv (α∗) = γ and
WD(α∗, rv(a∞ − a′i)) for all i. Let d∗ ∈ K be such that rv(d∗ − a∞) = α∗.
Then rv (d∗ − ai) = α∗ and rv (d∗ − a′i) = α∗ + rv (a∞ − a′i) for all i. This
implies that for any α∗ realizing a row in the new array, the corresponding d∗

realizes the same row in the original array.

Subcase 4: γ = γ′, val (ai − aj) = val
(
a′i − a′j

)
= γ for all i < j.

Then rv (d− ai) = rv (d− a∞) + rv (a∞ − ai) and rv (d− a′i) = rv (d− a∞) +
rv (a∞ − a′i) (as val (d− a′i) = val (d− ai) = val (d− a∞) = val (a∞ − a′i), be-
cause the first three are equal to γ and the last one to γ′).

We consider a new array given by

φ̃
(
x̃, b̃i

)
= φ (x̃+ rv (a∞ − ai) , bi) ∧ valrv (x̃) = γ ∧WD (x̃, rv (a∞ − ai)) ,

φ̃′
(
x̃, b̃′i

)
= φ′ (x̃+ rv (a∞ − a′i) , b′i) ∧ valrv (x̃) = γ ∧WD (x̃, rv (a∞ − a′i)) ,

so b̃i = rv (a∞ − ai) b̂i and b̃′i = rv (a∞ − a′i) b̂′i. Note that
(
b̃i

)
i∈Z

and
(
b̃′i

)
i∈Z

are mutually indiscernible sequences in RV. It follows that α |= φ̃
(
x̃, b̃0

)
∧

φ̃′
(
x̃, b̃′0

)
, so to contradict inp-minimality of RV it is enough to show that both
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φ̃
(
x̃, b̃i

)}
i∈Z

,
{
φ̃′
(
x̃, b̃′i

)}
i∈Z

are inconsistent. Let α∗ ∈ RV be arbitrary such

that valrv (α∗) = γ. Let d∗ be such that rv(d∗ − a∞) = α∗. Then rv (d∗ − ai) =
α∗ + rv (a∞ − ai) and rv (d∗ − a′i) = α∗ + rv (a∞ − a′i) for all i, assuming these
sums are well-defined (see Remark 2.1). But this implies that for any α∗ realizing
a row in the new array (hence all the sums above corresponding to this row are

well-defined by the choice of φ̃, φ̃′), the corresponding d∗ realizes the same row
in the original array.

Subcase 5: γ = γ′, val (ai − ai) = γ and val
(
a′i − a′j

)
> γ for all i < j.

Follows from Subcase 3 by symmetry.

Case B: Not Case A.

Claim 2.8. At least one of the sequences (ai)i∈Z, (a′i)i∈Z is not a fan.

Proof. Assume that both are, say val (ai − aj) = α and val
(
a′i − a′j

)
= α′

for all i < j. It follows by mutual indiscernibility that val
(
ai − a′j

)
≤ min {α, α′}

for all i, j. But then val
(
ai − a′j

)
= val (a0 − a′0) for all i, j, thus putting us in

Case A. a
So we may assume that (ai)i∈Z is a pseudo-convergent sequence (by Lemma 2.3,
possibly exchanging (ai) with (a′i) and reverting the ordering of the sequence).

Subcase 1: Some (equivalently, every) a′i is a pseudo-limit of (ai)i∈Z.

Then rv (d− a′i) = rv (d− a∞) for all i (by Claim 2.7).

We define φ̃′ (x̃, b′i) = φ′ (x̃, b′i) ∧ valrv (x̃) < val (a∞ − a′∞).
By Lemma 2.4 it follows that there is some i∗ ∈ {−∞} ∪ Z ∪ {∞} such that

rv (d− ai) = rv (d− a∞) for i > i∗ and rv (d− ai) = rv (a∞ − ai) for i < i∗.
Again by Claim 2.7, i∗ ≤ 0. Let’s restrict (ai)i∈Z to (ai)i∈ω.

If val (d− a∞) < val (a∞ − a0) then rv (d− ai) = rv (d− a∞) for all i. If
val (d− a∞) = val (a∞ − a0) then rv (d− ai) = rv (d− a∞) for all i > 0 and
rv (d− a0) = rv (d− a∞) + rv (a∞ − a0). We thus define

φ̃
(
x̃, b̃i

)
= (val (ai − a∞) > valrv (x̃) ∧ φ (x̃, bi)) ∨

(val (ai − a∞) = valrv (x̃) ∧WD(x̃, rv (a∞ − ai)) ∧ φ (x̃+ rv (a∞ − ai) , bi))

with b̃i = bî rv (ai − a∞). Then
(
b̃i

)
, (b′i) are mutually indiscernible sequences

in RV and rv (d− a∞) |= φ̃
(
x̃, b̃0

)
∧ φ̃′ (x̃, b′0). By inp-minimality of RV we

have that either there is some α∗ |=
{
φ̃′ (x̃, b′i)

}
i∈ω

, in which case we can find

d∗ with rv (d∗ − a∞) = α∗ and thus d∗ |= {φ′ (rv (x− a′i) , b′i)}i∈ω, or that

α∗ |=
{
φ̃
(
x̃, b̃i

)}
i∈ω

. Then it follows from the definition of φ̃ that there is

d∗ satisfying rv (d∗ − a∞) = α∗ and such that that d∗ |= {φ (rv (x− ai) , bi)}i∈ω
— a contradiction.

Subcase 2: Not Subcase 1.

Then we have the following observations.

Claim 2.9. For any i, j ∈ Z we have val(a∞ − ai) > val(a′j − ai).
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Proof. Since a′j is not a pseudo-limit of the sequence (ai) (as we are not in
Subcase 1), we must have val(a′j − ai1) < val(ai2 − ai1) for some i2 > i1 ∈ Z.
Then the claim follows by mutual indiscernibility. a

Claim 2.10. The sequence (a′i) must be pseudo-convergent.

Proof. If (a′i) was a fan, in view of Claim 2.9 we would have val(ai − a′j)
constant — a contradiction since we are not in Case A. Hence it is pseudo-
convergent, after possibly reversing the order, by Lemma 2.3. a

These two claims imply that the only possibility is that (a′i) is pseudo-convergent
and that any ai is a pseudo-limit of it. But then reversing the roles of the two
sequences we are back to Subcase 1, concluding the analysis of the special case.

Now we reduce the case of a general inp-pattern to the special case treated
above. Assume that there is an inp-pattern of depth 2. By Ramsey and compact-
ness we may assume that the rows are mutually indiscernible in the Lac-language.
Though in Fact 2.2 the formula defining D may depend on the formula defining
S, by indiscernibility, Ramsey and compactness we may assume that the formu-
las in our inp-pattern are in Fact of the form φ (rv (x− y1) , . . . , rv (x− yn) , z)
and φ′ (rv (x− y1) , . . . , rv (x− yn) , z′), for some n ∈ ω, where φ and φ′ are
RV-formulas. Let d realize the first column of the inp-pattern.

Case 1: val (d− a0,0) < val (a0,n − a0,0). Then rv (d− a0,0) = rv (d− a0,n)
and we define

φ̃
(
x, aib̃i

)
= φ (rv (x− ai,0) , . . . , rv (x− ai,n−1) , rv (x− ai,0) , bi)

∧ val (x− ai,0) < val (ai,n − ai,0)

with b̃i = bî rv (ai,n − ai,0).
Case 2: val (d− a0,0) > val (a0,n − a0,0). Then rv (d− a0,n) = rv (a0,n − a0,0)

and we define

φ̃
(
x, aib̃i

)
= φ (rv (x− ai,0) , . . . , rv (x− ai,n−1) , rv (ai,n − ai,0) , bi)

∧ val (x− ai,0) > val (ai,n − ai,0)

with b̃i = bî rv (ai,n − ai,0).
Case 3: v (d− a0,n) < v (a0,n − a0,0) and Case 4: v (d− a0,n) > v (a0,n − a0,0)

are symmetric to Case 1 and Case 2 respectively.
Case 5: v (d− a0,0) = v (d− a0,n) = v (a0,n − a0,0). Then rv (d− a0,0) =

rv (d− a0,n) + rv (a0,n − a0,0). We define φ̃
(
x, aib̃i

)
to be the formula

φ (rv (x− ai,n) + rv (ai,n − ai,0) , . . . , rv (x− ai,n−1) , rv (x− ai,n) , bi)

∧ v (x− ai,n) = v (ai,n − ai,0) ∧WD (rv (x− ai,n) , rv (ai,n − ai,0)) ,

with b̃i = bî rv (ai,n − ai,0).

In any of the cases, we still have that
(
b̃i

)
i∈Z

, (b′i)i∈Z are mutually indis-

cernible, that d |= φ̃
(
x, a0b̃0

)
∧ φ′ (x, a′0b′0) and that

{
φ̃
(
x, aib̃i

)}
i∈Z

is incon-

sistent. Thus we get a new inp-pattern replacing {φ (x, aibi)} by
{
φ̃
(
x, aib̃i

)}
,
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with φ̃ involving one less term of the form rv (x− yi). Repeating the same oper-
ation n times for φ, and then for φ′, we reduce the situation to the special case
of formulas considered before.

§3. Relative quantifier elimination for RV. Now it will be more conve-
nient to consider a valued field K in a slightly weaker language LRV. Namely,
we associate with it a three-sorted structure K̄ = (K,RV,Γ, valrv) such that on
RV we have the multiplicative group structure ·, 1, a constant 0, a predicate for
the residue field k ⊆ RV along with addition +̃ on k, and a map valrv : RV→ Γ.

The partial addition relation ⊕ on RV is definable in LRV (using [11, Propo-
sition 2.7]) as follows:

⊕(x, y, z) ⇐⇒ (valrv(x) < valrv(y) ∧ z = x) ∨ (valrv(y) < valrv(x) ∧ z = y)∨

(valrv(x) = valrv(y) ∧ ψ(x, y, z)) ,

where

ψ(x, y, z) =

((
x

y
+̃1 = 0 ∧ valrv(z) > valrv(x)

)
∨
((

x

y
+̃1

)
y = z ∧ z 6= 0

))
.

The conclusion is that in particular if (RV,Γ, valrv) is inp-minimal as an LRV-
structure, then (RV, ·,⊕) is inp-minimal as an LRV+ -structure. In the next
section we are going to demonstrate the former under the assumptions of the
main theorem, but in order to do that we prove a relative quantifier elimination
result for (a certain expansion of) the LRV language.

Assumptions

• G is an abelian group such that G/nG is finite for all n < ω.
• K ⊆ G is a subgroup, with quotient H = G/K. Let π : G→ H denote the

projection map.
• M is the two-sorted structure with sorts G and H, and the following lan-

guage.
– On G: we have the group structure +,−, 0, a predicate K (x) for

the subgroup K, predicates (Pn (x) : n < ω) interpreted as Pn (x) ↔
∃y ny = x, and constants naming a countable subgroup G0 containing
representatives of each class of G/nG, for each n < ω (such that more-
over all classes of elements from K are represented by elements from
G0 ∩K).

– On H: we have some language LH (containing the induced group struc-
ture) and we assume that the structure (H,LH) eliminates quantifiers.

– On K: we have some language LK such that (K,LK) eliminates quanti-
fiers and contains the language induced from G (via the group structure
and predicates Pn).

– We have the projection group homomorphism π : G→ H.
• Moreover, we assume that the language contains no other function symbols

apart from π and the group structures on G and H.
• Finally, H is torsion-free.

Proposition 3.1. M has quantifier elimination.
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Proof. We prove it by back-and-forth. So assume that M is ℵ1-saturated
and we have two substructures A and B from M and a partial isomorphism
f : A→ B. So A,B ⊇ G0 contain elements from both G and H, both are closed
under the group operations, inverse and π.

Let α ∈M be arbitrary, and we want to extend f to be defined on A1 = A (α),
the substructure generated by αA. We assume that α /∈ A.

Step 1: If α ∈ H, then we can extend f .

As f |A∩H is LH -elementary by quantifier elimination in (H,LH), there is
β ∈ H and a partial LH -automorphism g extending f |A∩H and sending A (α)∩H
to B (β)∩H. Then we extend f to F defined on A (α) by taking F = f ∪g (note
that, as there are no functions from H to G in the language, A (α)∩G = A∩G).

So by iterating Step 1 we may assume that α ∈ G and that π (a+ nα) ∈ A
for all a ∈ A and n ∈ Z.

Step 2: Assume that α ∈ K. Then we can extend f .

As f |A∩K is LK-elementary by quantifier elimination, we can find β ∈ K and
a partial LK-automorphism g extending it and sending A (α)∩K to B (β)∩K.
Then we define F on A (α) by setting F (a+ nα) = f (a)+g (nα) = f (a)+ng (α)
for all a ∈ A, n ∈ Z (note that nα ∈ A (α)∩K for all n ∈ Z by the assumption)
and F acts like f on A(α) ∩H = A ∩H.

• F is well-defined: Assume that a+nα = a′+n′α, so A 3 a−a′ = (n′ − n)α,
and thus f (a) − f (a′) = f (a− a′) = f ((n′ − n)α) = . . . as (n′ − n)α ∈
K ∩ A and g|A∩K = f |A∩K . . . = g ((n′ − n)α) = ng (α) − n′g (α). Then
we have F (a+ nα)− F (a′ + n′α) = f (a) + g (nα)− f (a′)− g (n′α) = 0.

• F extends f : immediate from the definition.
• Note that F |A(α)∩K = g, as given a + nα ∈ A (α) ∩ K it follows that
a ∈ A ∩K, and as f |A∩K = g|A∩K we have F (a+ nα) = f (a) + g (nα) =
g (a) + g (nα) = g (a+ nα).

• F |G is a group homomorphism:

F (a+ nα+ a′ + n′α) = F ((a+ a′) + (n+ n′)α) = f (a+ a′) + g ((n+ n′)α) =

f (a) + f (a′) + g (nα) + g (n′α) = F (a+ nα) + F (a′ + n′α) .

• F is onto B(β): every element of B (β) is of the form b+ nβ, so

F
(
f−1 (b) + nα

)
= b+ nβ.

• F preserves π: On one hand π (F (a+ nα)) = π (f (a) + ng (α)) = π (f (a))+
nπ (g (α)) = . . . as g (α) ∈ K . . . = π (f (a)) + 0 = f (π (a)) = F (π (a))
(recall that π (a) ∈ A). On the other hand we have F (π (a+ nα)) =
F (π (a) + nπ (α)) = F (π (a) + 0) = F (π (a)).

• In particular, F preserves K (x) = {x ∈ G : π (x) = 0}.
• F preserves Pk: Pk (F (a+ nα)) ⇔ Pk (f (a) + ng (α)) ⇔ Pk (a+ ng (α))

(as f (a) = a mod kG) ⇔ Pk (a+ nα) (as g (α) = α mod kG because all
representatives of classes of α ∈ K are in G0 ∩ K ⊆ A ∩ K, Pk ∩ K is
LK-definable and g|A(α)∩K is LK-elementary).

• F preserves every φ(x1, . . . , xk) ∈ LK : As F |A(α)∩K = g and g is an LK-
elementary map.



HENSELIAN VALUED FIELDS AND inp-MINIMALITY 11

• F preserves every ψ ∈ LH : As π (a+ nα) = π (a) + nπ (α) ∈ A ∩ H (as
π (α) ∈ A by the assumption), and F |A∩H = f |A∩H is LH -elementary.

So F is a partial isomorphism as wanted.

By iterating Step 2 we may assume that a + nα ∈ K ⇒ a + nα ∈ A for all
a ∈ A and n ∈ ω.

Step 3: Assume that mα ∈ A for some m ≥ 1. Then we can extend f .

Let m be minimal with this property.

Claim 3.2. There is β ∈ G satisfying mβ = f (mα) and β = α mod kG for
all k ∈ ω.

Proof. By ω-saturation it suffices to shows this one k at a time. By assump-
tion there is some g ∈ G0 such that Pk (α− g), then

Pk (α− g)⇒ Pmk (mα−mg)⇒ Pmk (f (mα)−mg)

(as mα,mg ∈ A, f (mg) = mf (g) = mg and f preserves Pl for all l < ω) ⇒
∃γ ∈ G such that mkγ = f (mα) −mg. Let β = kγ + g. Then mβ = f (mα)
and β = g = α mod kG, and the claim is proved. a

We define F on A (α)∩G by setting F (a+ nα) = f (a) +nβ and F |A(α)∩H =
f |A(α)∩H as A (α) ∩H = A ∩H.

• F is well-defined: If a + nα = a′ + n′α with a, a′ ∈ A, then (n− n′)α =
a′ − a ∈ A. It follows that m divides (n− n′) by minimality (assume
that n − n′ = km + m1, |m1| < m, then m1α = a′ − a − kmα ∈ A,
contradiction), say (n− n′) = km. Thus f (a′) − f (a) = f (a′ − a) =
f ((n− n′)α) = f (kmα) = kf (mα) = kmβ = (n− n′)β. But then
F (a+ nα)− F (a′ + n′α) = f (a) + nβ − f (a′)− n′β = 0.

• F extends f is obvious from the definition.
• F is a group homomorphism from A (α) to B (β):

F ((a+ nα) + (a′ + n′α)) = F ((a+ a′) + (n+ n′)α) = f (a+ a′) + (n+ n′)β =

(f (a) + nβ) + (f (a′) + n′β) = F (a+ nα) + F (a′ + n′α) .

• F preserves π: First observe that π (mβ) = π (f (mα)), so mπ (β) =

π (f (mα))
as mα∈A

= f (π (mα)) = f (mπ (α)) = mf (π (α)), and as H is
torsion free this implies that π (β) = f (π (α)). But then F (π (a+ nα)) =
f (π (a+ nα)) = f (π (a) + nπ (α)) = f (π (a)) + nf (π (α)) = π (f (a)) +
nπ (β) = π (f (a) + nβ) = π (F (a+ nα)).

• In particular, F preserves K (x) = {x ∈ G : π (x) = 0}.
• F preserves Pk(x): By the choice of β we have α = β mod kG for all k,

and for any a ∈ A we have f (a) = a mod kG for all k (as G0 ⊆ A and f
preserves Pk), hence Pk (F (a+ nα))⇔ Pk (f (a) + nβ)⇔ Pk (a+ nα).

• F preserves LK-formulas: As a+nα ∈ K ⇒ a+nα ∈ A by the assumption
and F |A∩K = f |A∩K is LK-elementary by elimination of quantifiers in
(K,LK).

• F preserves LH -formulas: As F |A(α)∩H = f |A(α)∩H=A∩H by definition, and
f is LH -elementary.

So we may assume that:
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1. A ∩H is a relatively divisible subgroup of H (iterating Step 1);
2. A ∩G is a relatively divisible subgroup of A(α) ∩G (iterating Step 3);
3. π (a+ nα) ∈ A for all a ∈ A,n ∈ Z (iterating Step 1);
4. a + nα /∈ K for all a ∈ A,n ∈ Z \ {0} (as a + nα ∈ K ⇒ a + nα ∈ A

by Step 2, so nα ∈ A, so α ∈ A by divisibility of A — contradicting the
assumption).

Step 4: General case.

Claim 3.3. There is some β ∈ G such that π (β) = f (π (α)) and α = β
mod kG for all k ∈ ω.

Proof. By ω-saturation we only need to consider one value of k at a time.
Let g ∈ G0 be such that Pk (g + α) holds, then π (g + α) is k-divisible as well.
As g ∈ A ⇒ g + α ∈ A (α) ⇒ π (g + α) ∈ A ∩H and f |A∩H is LH -elementary,
it follows that f (π (g + α)) is k-divisible as well. Take β to be kβ′ − g where

π (β′) = f(π(g+α))
k (recall that H is torsion free). Now we have Pk (g + β) and

π (β) = kπ (β′) − π (g) = f (π (g + α)) − π (g) = f (π (g)) + f (π (α)) − π (g) =
f (π (α)) as f (π (g)) = π (f (g)) and f (g) = g, so the claim is proved. a

We define F (a+ nα) = f (a) + nβ and F |A(α)∩H=A∩H = f |A∩H .

• F is well-defined: If a+ nα = a′ + n′α, then (a− a′) + (n− n′)α = 0 ∈ A,
which implies by the assumption that n = n′ and a = a′.

• F is a homomorphism: clear from definition and as f is a homomorphism
on A.

• F preserves π (so in particular K):

π (F (a+ nα)) = π (f (a) + nβ) = π (f (a)) + nπ (β) = f (π (a)) + nf (π (α)) =

f (π (a) + nπ (α)) = f (π (a+ nα)) = F (π (a+ nα)) .

• F preserves Pk: Pk (F (a+ nα)) ⇔ Pk (f (a) + nβ) ⇔ Pk (a+ nβ) (as
f (a) = a mod kG because we have all the representatives in G0) ⇔
Pk (a+ nα) (as α = β mod kG by the choice of β).

• F preserves LK-formulas and LH -formulas: as in Step 3.

a

Corollary 3.4. H and K are fully stably embedded, i.e. any subset of H
(resp. K) definable with external parameters is already definable with internal
parameters in LH (resp., LK) — this follows directly from the elimination of
quantifiers.

§4. Reduction from RV to k and Γ.

Proposition 4.1. Let M = (G,K,H) be a structure satisfying the assump-
tions from the previous section. Assume moreover that:

1. K (viewed as an LK structure) and H (viewed as an LH structure) are both
inp-minimal;

2. for every n, there are only finitely many x ∈ G for which nx = 0 (since H
is torsion-free, such elements are in Fact in K).

Then M is inp-minimal.
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Proof. We are working in a saturated extension of M . Assume that the
conclusion fails, then we have an inp-pattern φ (x, y) , φ′ (x, y′) , ā = (ai) , ā

′ =
(a′i) witnessing this, with ā and ā′ mutually indiscernible. In particular they
are mutually indiscernible over G0 ⊆ acl (∅) which contains representatives of
each class of G/nG and all torsion of G, and rows are k∗-inconsistent. Let
b |= φ (x, a0) ∧ φ′ (x, a′0). It follows from quantifier elimination that φ (x, ai) is
equivalent to a disjunction of conjuncts of the form θ(ti,0(x), . . . , ti,l−1(x), αi)∧
ψ (π (x) , bi) ∧ χ (x, ci) ∧ ρ (x, ei) where:

• the ti,j are terms with parameters in G, αi ∈ K and θ is an LK-formula;
• ψ is an LH -formula and bi ∈ H;
• χ (x, ci) is of the form

∧
j<k njx + ci,j = 0 ∧

∧
j<kmjx + di,j 6= 0 with

ci = (ci,j)j<k (̂di,j)j<k from G;

• ρ (x, ei) is of the form∧
j<k

Pm′j
(
n′jx+ e′i,j

)
∧
∧
j<k

¬Pm′′j
(
n′′j x+ e′′i,j

)
with ei =

(
e′i,j
)
j<k

ˆ
(
e′′i,j
)
j<k

.

Forgetting all but one disjunct satisfied by b, we may assume that φ(x, ai) is
equal to such a conjunction.

Any term ti,j is of the form ni,jx − gi,j and the formula makes sense only
when ni,jx − gi,j ∈ K, that is when π(x) = π(gi,j)/ni,j . Choose some hi such
that π(hi) = π(gi,j)/ni,j for some/all j. We can then replace ni,jx − gi,j with
n(x − hi) + h′i,j with h′i,j ∈ K. Adding h′i,j to αi and changing the formula θ,
we replace θ by a formula θ′(x− hi, α′i), θ′ ∈ LK .

Recalling that G/nG is finite for every n < ω, ρ (x, ei) is equivalent to some
finite disjunction of the form

∨
i<N Pki (x− gi) where gi ∈ G0 (so for example to

express ¬Pk (nx+ e) we have to say that x belongs to one of the finitely many
classes mod kG satisfying this, and to express Pk (nx+ e) ∧ Pl (n′x+ e′) we
have to say that x belongs to a certain subset of the classes mod klG).

Note that χ (x, c0) is infinite as χ (x, c0)∧φ′ (x, ai) is consistent for every i ∈ ω,
while {φ′ (x, ai)}i∈ω is k∗-inconsistent. Thus χ (x, ci) can only be of the form∧
j<k njx + ci,j 6= 0 (as every equation of the form nx + c = 0 has only finitely

many solutions by assumption (2)).
Thus we may assume that φ(x, ai) = θ(x − hi, αi) ∧ ψ (π (x) , bi) ∧ χ (x, ci) ∧

Pl (x− g) where:

• αi ∈ K and θ is an LK-formula,
• ψ is an LH -formula and bi ∈ Γ,

• χ (x, ci) =
(∧

j<k njx+ ci,j 6= 0
)

• l ∈ ω, g ∈ G0.

Similarly, we may assume that φ′(x, a′i) = θ′(x − h′i, α
′
i) ∧ ψ′ (π (x) , b′i) ∧

χ′ (x, c′i) ∧ Pl′ (x− g′) with the same properties.

Case 1: b ∈ H. Then by full stable embeddedness of H we can replace our

array by φ̃ (x, ãi) and φ̃′ (x, ã′i) where φ̃, φ̃′ ∈ LH and ãi, ã
′
i ∈ H are such that

φ̃ (x, ãi) ∩ H (x) = φ (x, ai) ∩ H (x), and similarly for φ̃′. But this contradicts
inp-minimality of (H,LH).
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Case 2: b ∈ K. Similarly, by full stable embeddedness of K we can replace our

array by φ̃ (x, ãi) and φ̃′ (x, ã′i) where φ̃, φ̃′ ∈ LK and ãi, ã
′
i ∈ K are such that

φ̃ (x, ãi) ∩ K (x) = φ (x, ai) ∩ K (x), and similarly for φ̃′. But this contradicts
inp-minimality of (K,LK).

Case 3: b /∈ K ∪H.
Subcase 3.1 Neither θ occurs in φ nor θ′ occurs in φ′ (i.e. φ is equivalent to the
formula obtained from it by omitting θ).

Then we have φ(x, ai) = ψ (π (x) , bi) ∧ χ (x, ci) ∧ Pl (x− g) and φ′(x, a′i) =
ψ′ (π (x) , b′i) ∧ χ′ (x, c′i) ∧ Pl′ (x− g′).

Consider ψ̃(x′, bi) := ψ(x′, bi)∧ “x′ − π (g) is l-divisible” and ψ̃′(x′, b′i) :=
ψ(x′, b′i)∧ “x′ − π (g′) is l′-divisible” — this is an array in the structure induced

on H. Note that π (b) |= ψ̃ (x′, b0) ∧ ψ̃′ (x′, b′0).
Subcase 3.1(a). K is infinite.

As H is inp-minimal, it follows without loss of generality that the set{
ψ̃ (x′, bi) : i < ω

}
has a solution h in H.

Say h− π (g) = lγ. Take β ∈ G such that π (β) = γ. As K is infinite, there is
an infinite sequence (βi)i∈ω in K such that all the differences βi−βj are pairwise
different. Let e′i = β+βi. Then we still have that e′i−e′j are all pairwise different,
and that π (e′i) = π (β) + π (βi) = γ. Note that as by assumption there are only
finitely many l-torsion elements in G, we may assume that e′i−e′j is not l-torsion,
for any i 6= j.

Finally, define ei = le′i + g. We have:

• all ei’s are pairwise different (as ei = ej ⇒
(
e′i − e′j

)
is l-torsion, contra-

dicting the choice of the elements b′i).
• π (ei) = lπ (e′i) + π (g) = lγ + π (g) = h.
• Pl (ei − g) holds as ei − g = le′i.

As the set
∨
i<k∗+1

(∨
j<k njx+ ci,j = 0

)
is finite, then one of the ei’s realizes

the first k∗ elements of the first row — a contradiction.
Subcase 3.1(b). K is finite.

It follows that all of the fibers of π are finite.

Claim 4.2. One of the partial types {ψ̃(x′, bi) : i ∈ ω} or {ψ̃′(x′, b′i) : i ∈ ω}
has infinitely many solutions in H.

Proof. By inp-minimality of H we find some e′0 ∈ H a solution to one of the

rows {ψ̃(x′, bi) : i ∈ ω} or {ψ̃′(x′, b′i) : i ∈ ω}. By Ramsey, mutual indiscernibility
and compactness we can find some e0 ∈ H which is still a solution to the same
row, and moreover b̄, b̄′ are mutually indiscernible over e0, so we can add it to

the base. Let ψ̃1 (x′, bi) := ψ̃ (x′, bi) ∧ x′ 6= e0, and the same for ψ̃′1.
As by assumption and mutual indiscernibility ψ (π (x) , b0)∧Pl (x− g)∧φ′(x, ai)

is consistent for each i ∈ ω, and {φ′ (x, ai)}i∈ω is k∗-inconsistent, it follows that
for infinitely many i ∈ ω, we can find pairwise different fi |= ψ (π (x) , b0) ∧
Pl (x− g) ∧ φ′(x, ai). As all fibers of π are finite, this implies that in Fact in H

for infinitely many i’s we can find pairwise different f ′i |= ψ̃(x′, b0) ∧ ψ̃′(x′, b′i).
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Thus ψ̃1 (x′, b0)∧ ψ̃′1 (x′, b′i) is consistent for some i, and so ψ̃1 (x′, b0)∧ ψ̃′1 (x′, b′0)
is consistent by mutual indiscernibility over e0. Repeating this argument, by
induction on s ∈ ω we can choose es ∈ H such that each es+1 satisfies one

of the rows of the array {ψ̃s+1(x′, bi) : i ∈ ω}, {ψ̃′s+1(x′, b′i) : i ∈ ω}, with

ψ̃s+1(x′, bi) := ψ̃s(x
′, bi) ∧ x′ 6= es and ψ̃′s+1(x′, b′i) := ψ̃′s(x

′, b′i) ∧ x′ 6= es. In
particular, all es are pairwise distinct, and by pigeonhole infinitely many of them
realize the same row, so in particular the same row of the original array. a

So let now (ei : i ∈ ω) be an infinite list of pairwise different solutions of

{ψ̃(x′, bi) : i ∈ ω} in H. In particular ei − π(g) = lγi for some γi ∈ H with
(γi : i ∈ ω) pairwise different. Let βi ∈ G be arbitrary such that π(βi) = γi. As
all fibers of π are finite, we may assume that all of βi’s are pairwise different as
well. Finally, let fi := lβi + g. We have:

• (fi : i ∈ ω) are pairwise different,
• Pl(fi − g) holds for all i ∈ ω, as fi − g = lβi,
• π(fi) = lπ(βi) + π(g) = lγi + π(g) = ei.

As the set
∨
i<k∗+1

(∨
j<k njx+ ci,j = 0

)
is finite, then one of the fi’s realizes

at least k∗ elements of the first row — a contradiction.

Subcase 3.2 θ occurs in φ and θ′ occurs in φ′. I.e. φ (respectively, φ′) is not
equivalent to the formula obtained from it by omitting θ (respectively, θ′).

Syntactically, this is only possible if b − g0 ∈ K, b − g′0 ∈ K, hence both
π(b) ∈ dcl(g0) and π(b) ∈ dcl(g′0). By mutual indiscernibility of the rows it
follows that ā, ā′ are mutually indiscernible over π(b) and we can add it to the
base.

Then by mutual indiscernibility of ā, ā′ over π(b), Ramsey, compactness and
applying an automorphism, we can find some f ∈ G such that π(f) = π(b) and
ā, ā′ are mutually indiscernible over f . So we can add f to the base as well.

Taking c := b − f we have c ∈ K. Translating by f , we can consider a new

array φ̃ (x, ãi) , φ̃
′ (x, ã′i) where φ̃(x, ai) = θ(x + f − hi, αi) ∧ ψ (π (x+ f) , bi) ∧

χ (x+ f, ci) ∧ Pl (x+ f − g), and analogously for φ̃′. Note that the first column
is realized by c ∈ K. By Case 2, we can find some c′ realizing, say, the first row
of the new array. But then taking b′ := c′ + f clearly b′ realizes the first row of
the old array.

Subcase 3.3 θ occurs in φ, but θ′ does not occur in φ′ (and the symmetric case
by permuting the rows).

By assumption φ′(x, a′i) = ψ′ (π (x) , b′i) ∧ χ′ (x, c′i) ∧ Pl′ (x− g′). As in Sub-
case 3.1, it follows that π(b) ∈ dcl(a0), say π(b) = f(a0) for some ∅-definable
function f . We have b |= φ′(x, a′0). In particular, |= ψ′(f(a0), b′0) ∧ “f(a0) −
π(g′) is l′-divisible”. By mutual indiscernibility of ā, ā′ it follows that

|= ψ′(f(ai), b
′
j) ∧ “f(ai)− π(g′) is l′-divisible”

for all i, j ∈ ω.
We may also assume that all of {f(ai) : i ∈ ω} are pairwise different. Other-

wise, if f(ai) = f(aj) for some i < j, by indiscernibility π(b) = f(a0) = f(a∞),
and so ā, ā′ are mutually indiscernible over π(b) — and we can conclude as in Sub-
case 3.2. It follows that the partial type {ψ′(x′, b′j) ∧ “x′ − π(g′) is l′-divisible”}
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has infinitely many solutions in H, witnessed by {f(ai) : i ∈ ω}. Now this im-
plies that the second row of the original array {φ′(x, a′i) : i ∈ ω} is consistent.
Namely, if K is infinite, then we conclude as in Case 3.1(a) using one of the
solutions, and if K is finite we conclude as in Case 3.1(b).

a
Proof of Theorem 1.4. Given a valued field K̄ satisfying the assumption of

Theorem 1.4, via the reductions in Sections 2 and 3 it is enough to demonstrate
that (RV, k,Γ) is inp-minimal. For this it is enough to show that the assumptions
of Proposition 4.1 are satisfied for G = RV, K a Morleyzation of k and H a
Morleyzation of Γ. Both K and H are inp-minimal as Morleyzation obviously
preserves inp-minimality, H is torsion-free since Γ is an ordered abelian group.

As Γ is an inp-minimal ordered group, it follows from [18, Lemma 3.2] that
Γ/nΓ is finite for all n ∈ ω. Besides, we have that k×/(k×)p is finite for all prime
p by assumption. Therefore also RV /nRV is finite for all n. Finally, k× has
finite n-torsion for all n.

Remarks and questions. We do not know if the assumption that k×/(k×)p

is finite for all p is in Fact necessary. It follows from the proof of [7, Corollary
4.6] that if k is an inp-minimal field, then there can be at most one prime p for
which k×/(k×)p is infinite.

Problem 4.3. Let k be an inp-minimal field. Is it true that k×/(k×)p is finite
for all prime p? Or at least, can we omit this extra assumption from Theorem
1.4?

The answer is positive for a dp-minimal field by the results of Johnson [13]
(so under the assumptions of Theorem 1.4, we have that K̄ is dp-minimal if and
only if both k and Γ are dp-minimal), but the proof relies on the construction of
a valuation which doesn’t seem to be available in the general inp-minimal case.

Another natural direction is to generalize Theorem 1.4 from the case of burden
1 to a general burden calculation.

Problem 4.4. Let K̄ = (K,RV, rv) be a Henselian valued field of equicharac-
teristic 0, viewed as a structure in the RV-language. Is it true that bdn(K̄) =
max{bdn(k),bdn(Γ)}?1
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