
JOURNAL ON SELECTED AREAS IN INFORMATION THEORY 1

Deepcode: Feedback Codes via Deep Learning
Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Abstract—The design of codes for communicating reli-
ably over a statistically well defined channel is an important
endeavor involving deep mathematical research and wide-
ranging practical applications. In this work, we present
the first family of codes obtained via deep learning, which
significantly outperforms state-of-the-art codes designed
over several decades of research. The communication
channel under consideration is the Gaussian noise channel
with feedback, whose study was initiated by Shannon;
feedback is known theoretically to improve reliability of
communication, but no practical codes that do so have
ever been successfully constructed.

We break this logjam by integrating information theo-
retic insights harmoniously with recurrent-neural-network
based encoders and decoders to create novel codes that
outperform known codes by 3 orders of magnitude in
reliability and achieve a 3dB gain in terms of SNR. We
also demonstrate several desirable properties of the codes:
(a) generalization to larger block lengths, (b) composability
with known codes, and (c) adaptation to practical con-
straints. This result also has broader ramifications for cod-
ing theory: even when the channel has a clear mathematical
model, deep learning methodologies, when combined with
channel-specific information-theoretic insights, can poten-
tially beat state-of-the-art codes constructed over decades
of mathematical research.

Index Terms—Channel coding, Deep learning, Neural
networks, Recurrent neural networks, Feedback communi-
cation, Schalkwijk–Kailath scheme

I. INTRODUCTION

The ubiquitous digital communication enabled via
wireless (e.g. WiFi, mobile, satellite) and wired (e.g.
ethernet, storage media, computer buses) media has been
the workhorses underlying the current information age.
The advances of reliable and efficient digital communi-
cation have been primarily driven by the design of codes
which allow the receiver to recover messages reliably
and efficiently under noisy conditions. The discipline
of coding theory has made significant progress in the
past seven decades since Shannon’s celebrated work in
1948 [1]. As a result, we now have near optimal codes in

H. Kim is with the Samsung AI Research in Cambridge, United
Kingdom. Y. Jiang and S. Kannan are with the Department of
Electrical Engineering at University of Washington. S. Oh is with
the Department of Computer Science and Engineering at University
of Washington. P. Viswanath is with the Department of Electrical
Engineering at University of Illinois at Urbana Champaign. Email:
hkim1505@gmail.com, yihanrogerjiang@gmail.com,
ksreeram@uw.edu, sewoong@cs.washington.edu,
pramodv@illinois.edu

This paper is an extended version of work appeared in the 32nd
Conference on Neural Information Processing Systems (NeurIPS 2018).

a canonical setting, namely, additive white Gaussian noise
(AWGN) channel. However, several channel models of
great practical interest lack efficient and practical coding
schemes.

A channel with feedback (from the receiver to
the transmitter) is an example of a long-standing open
problem with significant practical importance. Modern
wireless communication includes feedback in one form or
the other; for example, the feedback can be the received
value itself, or quantization of the received value or an
automatic repeat request (ARQ) [2]. Accordingly, there
are different models for channels with feedback, and
among them, the AWGN channel with output feedback
is a model that captures the essence of channels with
feedback; this model is also classical, introduced by
Shannon in 1956 [3]. In this channel model, the received
value is fed back (with unit time delay) to the transmitter
without any processing (refer to Figure 1). Designing
codes for this channel via deep learning approaches is
the central focus of this paper.

Whereas the output feedback does not improve
the Shannon capacity of the AWGN channel [3], it is
known to provide better reliability at finite block lengths
[4]. On the other hand, practical coding schemes have
not been successful in harnessing the feedback gain
thereby significantly limiting the use of output feedback in
practice. This state of the art is at odds with the theoretical
predictions of the gains in reliability via using feedback:
the seminal work of Schalkwijk and Kailath [4] proposed
a (theoretically) achievable scheme (S-K scheme) with
superior reliability guarantees. However, the S-K scheme
is shown to be extremely sensitive to both the precision of
the numerical computation and noise in the feedback [5],
[6]. Whereas several works extended the S-K scheme
to noisy feedback settings [7], [8], [9], the success has
been limited. For example, the scheme of [8] is designed
for channels with noisy feedback, but not only is the
reliability poor, it is often independent of the feedback
quality as shown in Figure 12, suggesting that the
feedback data is not being fully exploited. More generally,
it has been proven that no linear code incorporating the
noisy output feedback can achieve a positive rate of
communications [9]. This is especially troubling since
all practical codes are linear and linear codes are known
to achieve capacity (without feedback) [10], whereas [9]
proposes an asymptotically optimal and nonlinear coding
scheme for channels with noisy feedback based on a



2 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

three-phase detection and retransmission protocol.
Throughout the paper, we consider a finite-length

block coding with a fixed rate setting (i.e., the total
number of channel usages does not change). Under the
variable length setting (i.e., total number of channel
usages varies and depends on the feedback) with noisy
output feedback, the transmitter and the receiver may
not be in an agreement on whether the transmission
is over or not, and this can cause an error on current
and the upcoming transmissions [7]. Under the variable
length setting, [11], [12] proposes a coding scheme for
channels with noisy feedback and demonstrates that
the improvement in reliability function resulting from
the variable-length coding is not fragile to the noise in
the feedback. In [13], the authors propose a variable-
length code with active feedback (i.e., coded feedback
as opposed to the output feedback) and show that their
code improves the reliability under noisy feedback if
the feedback Signal-to-Noise Ratio (SNR) is sufficiently
larger than the forward SNR.

In this paper, we demonstrate new neural network-
driven encoders (with matching decoders) that operate
significantly better (100–1000 times in Bit Error Rate
(BER) and 3dB gain in SNR) than state of the art on the
AWGN channel with (noisy) output feedback. We show
that architectural insights from simple communication
channels with feedback, when coupled with recurrent
neural network architectures, can discover novel codes.
We consider Recurrent Neural Network (RNN) param-
eterized encoders (and decoders), which are inherently
nonlinear and map information bits directly to real-valued
transmissions in a sequential manner.

Designing codes driven by deep learning has been
of significant interest recently, starting from [14] which
proposes an autoencoder framework for communications.
In [14], it is demonstrated that for classical AWGN
channels, feedforward neural codes can mimic the per-
formance of a well-known code for a short block length
(4 information bits). Extending this idea to orthogonal
frequency division multiplex (OFDM), [15], [16] show
that neural codes can mimic the performance of state-
of-the-art codes for short block lengths (8 information
bits). Several results extend the autoencoder idea to other
settings of AWGN channels [17] and modulation [18].
Beyond AWGN channels, [19] considers the problem of
communicating a complicated source (text) over erasure
channels and shows that RNN-based neural codes which
map raw texts directly to codewords can beat the state-
of-the art codes, when the reliability is evaluated by
human perception (as opposed to bit error rate). Deep
learning has been applied also in the problem of designing
decoders for existing encoders [20], [21], [22], [23], [24],
[25], [26], demonstrating the efficiency, robustness, and
adaptivity of neural decoders over the existing decoders.

In a different context, for distributed computation, where
an encoder adds redundant computations so that the de-
coder can reliably approximate the desired computations
under unavailabilities, [27] showed that neural network
based codes can beat the state of the art codes.

While several works in the past years apply deep
learning for channel coding, very few of them consider
the design of novel codes using deep learning (rather
than decoders). Furthermore, none of them are able to
beat state-of-the-art channel codes on a canonical (well
known) channel in terms of the standard reliability metric.
We demonstrate first family of codes obtained via deep
learning which outperforms state-of-the-art codes, signal-
ing a potential shift in code design, which historically
has been driven by individual human ingenuity with
sporadic progress over the decades. Henceforth, we call
this new family of codes Deepcode. We also demonstrate
the superior performance of variants of Deepcode under
a variety of practical constraints. Our main contributions
are as follows:

1) We demonstrate Deepcode – a new family of
RNN-driven neural codes that has three orders
of magnitude better reliability than state of the art
with both noiseless and noisy feedback (and 3dB
gain in SNR). Our results are significantly driven
by the intuition obtained from information and
coding theory, in designing a series of progressive
improvements in the neural network architectures.
We provide a detailed comparison on the complex-
ity; while Deepcode has complexity linear in block
length, without any optimization of complexity,
Deepcode is more complex than traditional codes
(Section III and IV).

2) We show that variants of Deepcode significantly
outperform state-of-the art codes under a variety of
practical constraints (example: delayed feedback,
very noisy feedback link) (Section IV).

3) We show composability: Deepcode naturally con-
catenates with a traditional inner code and demon-
strates continued improvements in reliability as the
block length increases (Section IV).

4) Our interpretation and analysis of Deepcode pro-
vide a guidance on the fundamantal understanding
of how the feedback can be used and some
information theoretic insights into designing codes
for channels with feedback (Section V).

5) We discuss design decisions and demonstrate
practical gains of Deepcode in practical cellular
communication systems (Section VI).

II. PROBLEM FORMULATION

The most canonical channel studied in the literature
(example: textbook material [28]) and also used in model-
ing practical scenarios (example: 5G LTE standards) is the



SUBMITTED PAPER 3

Additive White Gaussian Noise (AWGN) channel without
feedback. Concretely, the encoder takes in K information
bits jointly, b = (b1, · · · , bK) ∈ {0, 1}K , and outputs
n real valued signals to be transmitted over a noisy
channel (sequentially). At the i-th transmission for each
i ∈ {1, . . . , n}, a transmitted symbol xi ∈ R is corrupted
by an independent Gaussian noise ni ∼ N (0, σ2), and
the decoder receives yi = xi + ni ∈ R. After receiving
the n received symbols, the decoder makes a decision on
which information bit sequence b was sent, out of 2K

possible choices. The goal is to maximize the probability
of correctly decoding the received symbols and recover
b.

Both the encoder and the decoder are functions, map-
ping b ∈ {0, 1}K to x ∈ Rn and y ∈ Rn to b̂ ∈ {0, 1}K ,
respectively. The design of a good code (an encoder and
a corresponding decoder) addresses both (i) the statistical
challenge of achieving a small error rate; and (ii) the
computational challenge of achieving the desired error
rate with efficient encoder and decoder. Almost a century
of progress in this domain of coding theory has produced
several innovative codes that efficiently achieve small
error rate, including convolutional codes, Turbo codes,
LDPC codes, and polar codes. These codes are known
to perform close to the fundamental limits of reliable
communication [29].

Fig. 1: AWGN channel with noisy output feedback

In a canonical AWGN channel with noisy feedback,
the received symbol yi is transmitted back to the encoder
after one unit time of delay and via another additive
white Gaussian noise feedback channel (Figure 1). The
encoder can use this feedback symbol to sequentially
and adaptively decide what symbol to transmit next. At
time i the encoder receives a noisy view of what was
received at the receiver (in the past by one unit time),
ỹi−1 = yi−1+wi−1 ∈ R, where the noise is independent
and distributed as wi−1 ∼ N (0, σ2

F ). Formally, an
encoder is now a function that sequentially maps the
information bit vector b and the feedback symbols
ỹi−1
1 = (ỹ1, · · · , ỹi−1) received thus far to a transmit

symbol xi: fi : (b, ỹi−1
1 ) 7→ xi, i ∈ {1, · · · , n}

and a decoder is a function that maps the received

sequence yn1 = (y1, · · · , yn) into estimated information
bits: g : yn1 7→ b̂ ∈ {0, 1}K .

The standard measures of performance are the
average bit error rate (BER) defined as BER ≡
(1/K)

∑K
i=1 P(bi 6= b̂i) and the block error rate (BLER)

defined as BLER ≡ P(b 6= b̂), where the random-
ness comes from the forward and feedback channels
and any other sources of randomness that might be
used in the encoding and decoding processes. It is
standard (both theoretically and practically) to have
an average power constraint, i.e., (1/n)E[‖x‖2] ≤ 1,
where x = (x1, · · · , xn) and the expectation is over the
randomness in choosing the information bits b uniformly
at random, the randomness in the noisy feedback symbols
(ỹ1, · · · , ỹn) and any other randomness used in the
encoder.

A. Results preview
While the capacity of the channel remains the same

in the presence of feedback [3], the reliability can increase
significantly as demonstrated by the celebrated result of
Schalkwijk and Kailath (S-K) [4]. Although the optimal
theoretical performance is met by the S-K scheme, critical
drawbacks make it fragile. Theoretically, the scheme crit-
ically relies on exactly noiseless feedback (i.e. σ2

F = 0),
and does not extend to channels with even arbitrarily
small amount of noise in the feedback (i.e. σ2

F > 0). The
scheme is also very sensitive to numerical precisions; we
see this in Figure 2, where the numerical errors dominate
the performance of the S-K scheme, with a practical
choice of MATLAB implementation with a precision of
64 bits to represent floating-point numbers.

Even with a noiseless feedback channel with σ2
F = 0,

which the S-K scheme is designed for, it is outperformed
significantly by our proposed Deepcode (described in
detail in Section III). At moderate SNR of 2 dB, Deepcode
can outperform S-K scheme by three orders of magnitude
in BER. In Figure 2 (top), the resulting BER is shown
as a function of the Signal-to-Noise Ratio (SNR) defined
as −10 log10 σ2, where we consider the setting of rate
1/3 and information block length of K = 50 (hence,
n = 150). Also shown as a baseline is an LTE turbo
code which does not use any feedback. Deepcode exploits
the feedback symbols to achieve a significant gain of two
orders of magnitude consistently over the Turbo code
for all SNR. In Figure 2 (bottom), BLER of Deepcode
is shown as a function of the Signal-to-Noise Ratio
(SNR), together with state-of-the art polar, LDPC, and
convolutional codes in a 3GPP document for 5G [30]
(we refer to Appendix VIII for the details of these
codes). Deepcode significantly improves over all state-
of-the-art codes of the similar block-length and the same
rate. Also plotted as a baseline are the theoretically
estimated performance of the best code with no efficient



4 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

decoding schemes. This impractical baseline lies between
approximate achievable BLER (labelled Normapx in the
figure) and a converse to the BLER (labelled Converse
in the figure) from [29], [31]. We note that there
are schemes proposed more recently that address the
sensitivity to noise in the output feedback, a major
drawback of the S-K scheme (e.g., [32] and [8]). However,
these schemes either still suffer from similar sensitivity
to numerical precisions at the decoder due to the uniform
message constellation as in the S-K scheme [32], or are
often incapable of exploiting the feedback information
[8] as we illustrate in Figure 12 in experiments with
noisy feedback.

BER

SNR (dB)

BLER

SNR (dB)

Fig. 2: Deepcode significantly outperforms the baseline
of S-K and Turbo code when information block length is
50 and noiseless feedback is available in BER (top) and
BLER (bottom). Deepcode also outperforms all state-of-
the art codes (without feedback) in BLER (bottom).

III. DEEPCODE: NEURAL ENCODER AND DECODER

A natural strategy to create a feedback code is to
utilize a recurrent neural network (RNN) as an encoder
since (i) communication with feedback is naturally a
sequential process and (ii) we can exploit the sequential
structure for an efficient decoding. We propose represent-
ing the encoder and the decoder as RNNs, training them
jointly under AWGN channels with noisy feedback, and

minimizing the error in decoding the information bits.
However, in our experiments, we find that this strategy
by itself is insufficient to achieve any performance
improvement with feedback; there are several design
elements that need to be carefully chosen in constructing
and training a RNN based code.

We exploit information theoretic insights to enable
improved performance, by considering the coding scheme
for erasure channels with feedback: here transmitted bits
are either received perfectly or erased, and whether the
previous bit was erased or received perfectly is fed back
to the transmitter. In such a channel, the following two-
phase scheme can be used: transmit a block of symbols,
and then transmit whichever symbols were erased in
the first block (and ad infinitum). This motivates a two-
phase scheme, where uncoded bits are sent in the first
phase, and then based on the feedback in the first phase,
coded bits are sent in the second phase; thus the code
only needs to be designed for the second phase. We
show in this section that these intuitions can be critically
employed to innovate neural network architectures for
coding on AWGN channels with feedback. Even within
this two-phase paradigm, several architectural choices
need to be made. In the following, we show the baseline
neural network architectures (Scheme A) and a series
of improvements (Schemes B,C,D) made based on the
typical error analysis.

Our experiments focus on the setting of rate 1/3 and
information block length of 50 for concreteness1. That is,
the encoder maps K = 50 message bits to a codeword
of length n = 150. We discuss generalizations to longer
block lengths in Section IV.

Scheme A. RNN based feedback encoder/decoder (RNN
(linear) and RNN (tanh)).

We propose a baseline encoding scheme that pro-
gresses in two phases. In the first phase, the K raw
information bits are sent (uncoded) over the AWGN
channel. In the second phase, 2K coded bits are generated
based on the information bits b and (delayed) output
feedback and sequentially transmitted (so that the total
rate is fixed as 1/3).

Encoding. The architecture of the encoder is shown
in Figure 3. The architectures for RNN (tanh) and
RNN (linear) feedback codes are equivalent except the
activation function in RNN; RNN (tanh) encoder uses a
tanh activation while RNN (linear) encoder uses a linear
activation (for both the recurrent and output activation).
In the first phase of the encoding process, the encoder
simply transmits the K raw message bits via binary

1Source codes are available under https://github.com/hyejikim1/
feedback_code (Keras) and https://github.com/yihanjiang/feedback_code
(PyTorch)

https://github.com/hyejikim1/feedback_code
https://github.com/hyejikim1/feedback_code
https://github.com/yihanjiang/feedback_code


SUBMITTED PAPER 5

phase shift keying (BPSK). That is, the encoder maps
bk to ck = 2bk − 1 for k ∈ {1, · · · ,K}, and stores the
feedback ỹ1, · · · , ỹK for later use. In the second phase,
the encoder generates a coded sequence of length 2K
(length (1/r − 1)K for general rate r code) through a
single directional RNN. In particular, each k-th RNN cell
generates two coded bits ck,1, ck,2 for k ∈ {1, . . . ,K},
which uses both the information bits and (delayed)
output feedback from the earlier raw information bit
transmissions. The input to the k-th RNN cell is of
size four: bk, ỹk − ck (the estimated noise added to
the k-th message bit in phase 1) and the most recent
two noisy feedbacks from phase 2: ỹk−1,1 − ck−1,1 and
ỹk−1,2−ck−1,2. Note that we use ỹk,j = ck,j+nk,j+wk,j

to denote the feedback received from the transmission of
ck,j for k ∈ {1, · · · ,K} and j ∈ {1, 2}, and nk,j and
wk,j are corresponding forward and feedback channel
noises, respectively.

Layer Output dimension
Input (K, 4)

RNN (linear or tanh) (K, 50)
Dense (sigmoid) (K, 2)
Normalization (K, 2)

Fig. 3: RNN encoder for Scheme A.

To generate codewords that satisfy the power con-
straint, we put a normalization layer to the RNN outputs
so that each coded bit has a mean 0 and a variance 1.
During training, the normalization layer subtracts the
batch mean from the output of RNN and divide by
the standard deviation of the batch. After training, we
compute the mean and the variance of the RNN outputs
over 106 examples. In testing, we use the precomputed
means and variances.
Decoding. We propose a decoding scheme using
two layers of bidirectional Gated Recurrent Units
(GRU). The architecture of the decoder is shown
in Figure 4. Based on the received sequence
y = (y1, · · · , yk, y1,1, y1,2, y2,1, y2,2, · · · , yK,1, yK,2) of
length 3K, the decoder estimates K information bits. For
the decoder, we use a two-layered bidirectional Gated
Recurrent Unit (GRU), where the input to the k-th GRU
cell is a tuple of three received symbols, (yk, yk,1, yk,2).
Training. As illustrated in Figure 5, both the encoder

Layer Output dim.
Input (K, 3)

bi-GRU (K, 100)
Batch Norm. (K, 100)

bi-GRU (K, 100)
Batch Norm. (K, 100)

Dense (K, 1)
(sigmoid)

Fig. 4: RNN decoder for Scheme A.

and decoder are trained jointly as in the autoencoder
training. We model the whole communication system
including the encoder and the channels and the decoder
as a large neural network, where the input is a random
sequence of message bits and the output is the estimate
of the message bit sequence. (We refer to Figure 18 in
Appendix IX for a detailed illustration of the encoder
and the decoder.)

SNR (dB)

Fig. 5: Autoencoder framework for the joint training of
encoder–decoder (illustrated for information block length
3, rate 1/3)

For training examples, we generate a random mes-
sage bit sequence b = (b1, · · · , bK) and a random noise
sequence for the forward channel (and a random noise
sequence for the feedback channel if we consider an
AWGN feedback channel). We train the encoder and the
decoder jointly via backpropagation through time (on
the entire input sequence), where the goal of training
is to minimize the binary cross-entropy loss function
L(b, b̂) =

∑K
i=1(−bi log b̂i−(1−bi) log(1−b̂i)). We do

the backpropagation through time over a 4×106 examples
via an Adam optimizer (β1=0.9, β2=0.999). We fix the
batch size as 200. We randomly initialize weights of the
encoder and the decoder. We observe that training with a
random initialization of the encoder and the decoder gives
a better code compared to initializing with a pre-trained



6 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

encoder/decoder by sequential channel codes for non-
feedback AWGN channels (e.g. convolutional codes). We
also use a decaying learning rate and gradient clipping;
we reduce the learning rate by 10 times after training with
106 examples, starting from 0.02. Gradients are clipped
to 1 if L2 norm of the gradient exceeds 1 so that we
prevent the gradients from getting too large. We do not
use any dropout. We find that the choices of training
examples are important. Empirically we find that if the
length of the training input sequence is too small (e.g.,
50), we cannot learn a good structured code. As we use
the RNN based encoder and decoder, the learned code
generalizes to arbitrary block lengths (e.g., as opposed
to a feedforward neural network which only applies to a
fixed input length). We set the length of the training input
sequence to 100 (and test with input sequence length 50).
In generating two sets of noise sequence for the AWGN
channels used during the training, we find that it works
best to set the SNRs equal to the SNRs to be used in
testing. For example, if we would like to learn a code
to be used under the 1dB forward channel with 1dB
feedback channel, it is best to train with noise sequences
generated under those SNRs.
Result. When jointly trained, as shown in Figure 6, a
linear RNN encoder (- -) achieves performance close to
Turbo code that does not use the feedback information
at all (-O-). (To generate plots in Figure 6, we take
an average bit error rate over 108 bits for SNR =
−1, 0dB and 109 bits for SNR= 1, 2dB.) With a non-
linear activation function of tanh(·), the performance
improves, achieving BER close to the existing S-K
scheme. Such a gain of non-linear codes over linear ones
is in-line with theory [32]. In order to further improve
the reliability, we perform typical error analysis and
propose modifications to the RNN encoder and decoder
architectures (Schemes B,C,D). The improved reliabilities
of modified architectures are also shown in Figure 6.
Typical error analysis. Due to the recurrent structure in
generating coded bits (ck,1, ck,2), the coded bit stream
carries more information on the first few bits than last
few bits (e.g. b1 than bK ). This results in more errors in
the last information bits, as shown in Figure 7, where
we plot the average BER of bk for k = {1, · · · ,K}. In
the following, we propose modifications to resolve this
issue.

Scheme B. RNN feedback code with zero padding (RNN
(tanh) + ZP).

In order to reduce high errors in the last information
bits, as shown in Figure 7, we apply the zero padding
(ZP) technique; we pad a zero in the end of information
bits, and transmit a codeword for the padded information
bits.

BER

SNR (dB)

Fig. 6: Building upon a simple linear RNN encoder (Fig-
ure 3), we progressively improve the architecture. Even-
tually with RNN(tanh)+ZP+W+A architecture formally
described in Section III, we significantly outperform the
baseline of S-K scheme and Turbo code, by several orders
of magnitude in the bit error rate, when information block
length is 50 and noiseless feedback is available (σ2

F = 0
and forward channel is AWGN).

Encoding and decoding. The encoder and decoder
structures with zero padding are shown in Figure 8
and Figure 9, respectively. We maintain the encoder and
decoder architecture same as Scheme A (RNN (tanh)) and
simply replace the input information bits by information
bits padded by a zero; hence, we use K + 1 RNN cells
in Phase 2 instead of K.

Fig. 8: Encoder for Scheme B.

Fig. 9: Decoder for Schemes B,C,D.



SUBMITTED PAPER 7

BER of bk

Position (k)

σ2

Position (k)

Fig. 7: (Left) A naive RNN(tanh) code gives a high BER in the last few information bits. With the idea of zero
padding and power allocation, the RNN(tanh)+ZP+W+A architecture gives a BER that varies less across the bit
position, and overall BER is significantly improved over the naive RNN(tanh) code. (Middle) Noise variances across
bit position which result in a block error: high noise variance on the second parity bit stream (c1,2, · · · , cK,2) causes
a block error. (Right) Noise covariance: Noise sequence which results in a block error does not have a significant
correlation across position.

Training. As in training Scheme A, we use back-
propagation with binary cross entropy loss. We measure
binary crossentropy loss on the information bits of length
K only (i.e., ignore the loss on the last bit which
corresponds to a zero padding).

Result. By applying zero padding, the BER of the last
information bits, as well as other bits, drops significantly,
as shown in Figure 7. Zero padding requires a few extra
channel usages (e.g. with one zero padding, we map 50
information bits to a codeword of length 153. Actual
transmission requires 152 channel usages because the
padded zero itself does not need to be transmitted.).
However, due to the significant improvement in BER,
it is widely used in sequential codes (e.g. convolutional
codes and turbo codes).

Typical error analysis. To see if there is a pattern in
the noise sequence which makes the decoder fail, we
simulate instances of the code and the channel (noise
sequence) and collect the corresponding decoding results
(whether each instance is decoded correct or wrong). We
then look at the first and second order noise statistics
which result in the decoding error. In Figure 7 (Middle),
we plot the average variance of noise added to bk in first
phase and ck,1 and ck,2 in the second phase, as a function
of k, which results in the (block) error in decoding. From
the figure, we make two observations; (i) large noise
in the last bits causes an error, and (ii) large noise in
ck,2 is likely to cause an error, which implies that the
raw bit stream and the coded bit streams are not equally
robust to the noise – an observation that will be exploited
next. In Figure 7 (Right), we plot noise covariances that
result in a decoding error. From Figure 7 (Right), we see

that there is no particular correlation within the noise
sequence that makes the decoder fail.

Scheme C. RNN feedback code with power allocation
(RNN(tanh) + ZP + W).

Based on the observation that the raw bit ck and
coded bits ck,1, ck,2 are not equally robust, as shown in
Figure 7 (Middle), we introduce trainable weights which
allow allocating different amount of power to the raw bit
stream and coded bit streams.
Encoding and decoding. The encoder and decoder
architectures for scheme C are shown in Figure 10
and Figure 9, respectively. Specifically, we introduce
three trainable weights (w0, w1, w2) which represent the
power allocated to ck, ck,1, ck,2 for all k ∈ {1, · · · ,K},
respectively. The weights (w0, w1, w2) satisfies w2

0+w
2
1+

w2
2 = 3 so that the average power is preserved (c.f. in

Encoder B, we let E[c2k] = E[c2k,1] = E[c2k,2] = 1 and
w1 = w2 = w3 = 1).

Fig. 10: Encoder for Scheme C.



8 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

Training. We initialize wis by 1 and train the encoder
and decoder jointly as we trained Schemes A and B.
The trained weights are (w1, w2, w3) = (1.13, 0.90, 0.96)
(trained at -1dB). This implies that the encoder uses more
power in Phase I, to transmit (raw) information bits. In
Phase II, the encoder uses more power on the second
parity bits than in the first parity bits.

Result and typical error analysis. By introducing and
training these weights, we achieve the improvement in
BER as shown in Figures 6 and 7. While the average
BER is improved by about an order of magnitude for
most bit positions as shown in Figure 7 (Left), the BER
of the last bit remains about the same. On the other hand,
the BER of first few bits are now smaller, suggesting the
following bit-specific power allocation method.

Scheme D. Deepcode: RNN feedback code with bit power
allocation (RNN(tanh) + ZP + W + A).

One way to resolve the unbalanced error according
to bit position is to use power allocation. Ideally, we
would like to reduce the power for the first information
bits and increase the power for the last information bits
so that we help transmission of last few information bits
more than first information bits. However, it is not clear
how much power to allow for the first few information
bits and the last few information bits. Hence, we introduce
a weight vector allowing the power of bits in different
position to be different.

Encoding and decoding. The encoder and decoder
architectures for scheme D are shown in Figure 11 and
Figure 9, respectively. We introduce trainable weights
a1, a2, · · · , aK , aK+1 for power allocation in each trans-
mission. To the full generality, we can train all these
K + 1 weights. However, we let a5, · · · , aK−4 = 1
and only train first 4 weights and the last 5 weights,
a1, a2, a3, a4 and aK−3, aK−2, aK−1, aK , aK+1, for two
reasons. Firstly, this way we can generalize the encoder to
longer block lengths by maintaining the weights for first
four and last five weights and fixing the rest of weights
as 1s, no matter how many rest weights we have. For
example, if we test our code for length 1000 information
bits, we can let a5, · · · , c996 = 1. Secondly, the BERs
of middle bits do not depend much on the bit position;
hence, power control is not as much needed as the first
and last few bits.

Fig. 11: Encoder for Scheme D: Deepcode.

Training. In training scheme D, we initialize the
encoder and decoder as the ones in Scheme C,
and then additionally train the weight vectors a
on top of the trained model, while allowing all
weights in the encoder and decoder to change
as well. After training, we see that the trained
weights are (a1, a2, a3, a4) = (0.87, 0.93, 0.96, 0.98)
and (aK−3, aK−2, aK−1, aK , aK+1) =
(1.009, 1.013, 1.056, 1.199, 0.935) (for −1dB trained
model). As we expected, the trained weights in the
later bits are larger. Also, the weight at the K + 1th bit
position is small because last bit is always zero and does
not convey any information. On the other hand, trained
weights in the beginning positions are small because
these bits are naturally more robust to noise due to the
sequential structure in Phase 2.
Result. The resulting BER curve is shown in Figure 6(-
o-). We can see that the BER is noticeably decreased. In
Figure 7(-o-), we can see that the BER in the last bits are
reduced, and we can also see that the BER in the first
bits are increased, as expected. Our use of unequal power
allocation across information bits is in-line with other
approaches from information/coding theory [33], [34].
We call this neural code Deepcode.
Complexity. Complexity and latency, as well as reliabil-
ity, are important metrics in practice, as the encoder and
the decoder need to run in real time on mobile devices.
Deepcode has linear encoding and decoding complexity
O(K), where K denotes the information block length.
S-K scheme and sequential forward error correcting
codes, such as turbo codes and convolutional codes, also
have linear encoding and decoding complexity. On the
other hand, polar codes have encoding and decoding
complexity O(K logK) [35]. General LDPC codes have
encoding complexity O(K2) and decoding complexity
O(K), where as some optimized LDPC codes have
encoding time complexity O(K) [36].

Actual latencies are very hard to compare because
the latency critically depends on how operations are
implemented in the hardware. Turbo decoder, for example,
is a belief-propagation decoder with multiple (e.g., 10 –
20) iterations of a component decoder, and each iteration
is followed by a permutation. On the other hand, the



SUBMITTED PAPER 9

decoder for Deepcode is a 2-layered bi-directional GRU
decoder, each with 50 hidden units, all of which are
matrix multiplications that can be parallelized.

Whereas we can not compare the runtimes of
Deepcode decoder and turbo decoder, we can compare
the number of multiplications required per each bit. The
bottleneck in the Deepcode decoder is the update of
the write gate, forget gate, and the hidden state in 4
GRUs (forward GRU and backward GRU in layers 1
and 2); hence, in total, it includes 12 matrix (dimension
50×50) – vector (length 50) multiplications per bit. On
the other hand, turbo decoder is a 10 – 20 iteration of
BCJR algorithms, each of which includes between 10 to
100 multiplications per bit depending on the trellis used
for the turbo code, followed by a permutation. We can
similarly compare the encoder complexity. The bottleneck
in the Deepcode encoder is an update of the hidden state
in the RNN; which requires a matrix (dimension 50×50)
– vector (length 50) multiplication per bit. Turbo encoder
generates two recursive systematic convolutional codes,
each requires 10s of boolean XORs per bit depending
on the trellis, and a permutation of the message bit
sequence. In the current form, Deepcode requires more
computation than turbo code. Ideas such as knowledge
distillation [37] and network binarization [38] can be
used to potentially further reduce the complexity of the
network. The optimization of Deepcode is beyond the
scope of this paper and is left as a future work. We
again note that the runtime comparison is open (e.g.,
matrix-vector multiplications can be highly parallelized).

IV. PRACTICAL CONSIDERATIONS:
NOISE AND DELAY IN FEEDBACK, FINITE PRECISION,

AND BLOCKLENGTH

We considered so far the AWGN channel with
noiseless output feedback with a unit time-step delay. In
this section, we demonstrate the robustness of Deepcode
(and its variants) under two variations on the feedback
channel, noise and delay, as well as finite precision. We
also present a generalization to longer block lengths.
We show that (a) Deepcode and its variant that allows
a K-step delayed feedback are more reliable than the
state-of-the-art schemes in channels with noisy feedback,
and (b) Deepcode concatenated with turbo code achieves
superior error rate decay as block length increases with
noisy feedback.

Noisy feedback. We show that Deepcode, trained on
AWGN channels with noisy output feedback, achieves
a significantly smaller BER than both S-K and C-L
schemes [8]. In Figure 12 (Left), we plot the BER
as a function of the feedback SNR for S-K scheme,
C-L scheme, and Deepcode for a rate 1/3 code with
50 information bits, where we fix the forward channel

SNR to be 0dB. As feedback SNR increases, we expect
the BER to decrease. However, as shown in Figure 12
(Left), both C-L scheme, designed for channels with
noisy feedback, and S-K scheme are sensitive to even a
small amount of noise in the feedback, and reliability is
almost independent of feedback quality. For C-L scheme,
we take the experimental results for rate 1/3 (blocklength
5144) shown in [8].

Deepcode outperforms these two baseline (linear)
codes by a large margin, with decaying error as feedback
SNR increases, showing that Deepcode harnesses noisy
feedback information to make communication more
reliable. This is highly promising as the performance
with noisy feedback is directly related to the practical
communication channels. To achieve the performance
shown in Figure 12, for example the line in red, training
with matched SNR is required. For each datapoint, we
use different neural codes specifically trained at the same
SNR at the test noise. The neural encoder takes the
feedback signal (as well as the message) as an input
and includes power normalization tailored to the SNR of
forward and feedback channels; hence, if trained with a
mismatched SNR, the output of the neural code does not
satisfy the power constraint. In Section V, we discuss
how Deepcode differs depending on what SNR it was
trained on, hence it is not universal.

Noise feedback with delay. We model the practical
constraint of delay in the feedback, by introducing a
variant of Deepcode that works with a K time-step
delayed feedback (we refer to Appendix X for the details);
recall K is the number of information bits and this code
tolerates a large delay in the feedback. We see from
Figure 12 (Left), that these neural codes are robust against
delay in the feedback for noisy feedback channels of SNR
up to 12dB.

Finite precision. We evaluate the sensitivity of Deepcode
to the finite machine precision (without any re-training).
In Figure 13, we plot the BER as a function of SNR for
Deepcode implemented with a finite precision. We notice
that under the 8 bit codeword quantization, Deepcode has
almost no reliability loss. Re-training can potentially bring
down the required precision even further. On the other
hand, S-K scheme is very sensitive to the finite machine
precision. In Figure 13, S-K scheme is implemented with
64-bit precision.

One of the reasons for the sensitivity is that its
first transmission is a M -ary PAM where M represents
the number of total messages (e.g., if information block
length is 50, first transmission has to be done via a 250-
PAM modulation). As a means to overcome this effect,
one can consider using multiple blocks each of which



10 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

BER

SNR of feedback channel (dB)

BER

SNR (dB)

BER

Blocklength

Fig. 12: (Left) Deepcode (introduced in Section III) and its variant code that allows K time-step delay significantly
outperform the two baseline schemes in noisy feedback scenarios. (Middle) By unrolling the RNN cells of Deepcode,
the BER of Deepcode remains unchanged for block lengths 50 to 500. (Right) Concatenation of Deepcode and turbo
code (with and without noise in the feedback) achieves BER that decays exponentially as block length increases,
faster than turbo codes (without feedback) at the same rate.

BER

SNR (dB)

Fig. 13: Performance of Deepcode under the scenarios
where codewords are quantized to 8 bits and 6 bits.

has a smaller block length (e.g., 5 blocks of length-10
codewords all together represent a length-50 codeword.)
In Figure 14, we show the effect of precision (y-axis) and
the length of each coding block (x-axis) on the relative
performance of S-K and Deepcode for noiseless feedback
(Left) and noisy feedback (Right). We let the forward
SNR be 0dB for both cases and feedback SNR be 40dB
(hence, very small noise) for the noisy feedback scenario.
Figure 14 (Left) demonstrates that the S-K scheme can
outperform Deepcode for noiseless feedback by reducing
the coding block length as long as precision value is
large enough; however, for a smaller precision (e.g.,
8 bit), Deepcode always outperforms the S-K scheme.
Figure 14 (Right) demonstrates that regardless of the
precision and the length of each coding block, Deepcode
always outperforms the S-K scheme.

Generalization to longer block lengths. In wireless

Precision

Length of coding block Length of coding block

Fig. 14: Relative performance of S-K and Deepcode as
a function of machine precision (y-axis) and the length
of each coding block (x-axis) for noiseless feedback
(Left) and noisy feedback (Right). When precision is
small (e.g., 8 bit) or feedback is noisy (even a small
amount of noise; e.g., feedback SNR is 40dB), Deepcode
outperforms the S-K scheme. When precision is large
enough and feedback channel is noiseless, S-K can
outperform Deepcode by reducing the coding block
length.

communications, a wide range of blocklengths are of
interest (e.g., 40 to 6144 information bits in LTE
standards). In previous sections, we considered block
length of 50 information bits. Here we show how to
generalize Deepcode to longer block lengths and achieve
an improved reliability as we increase the block length.

A natural generalization of the RNN-based Deep-
code is to unroll the RNN cells. In Figure 12 (Middle),
we plot the BER as a function of the SNR, for 50
information bits and length 500 information bits (with
noiseless feedback) when we unroll the RNN cells.
We can see that the BER remains the same as we
increase block lengths. This is not an entirely satisfying
generalization because, typically, it is possible to design
a code for which error rate decays faster as block length



SUBMITTED PAPER 11

increases. For example, turbo codes have error rate
decaying exponentially (log BER decays linearly) in
the block length as shown in Figure 12 (Right). This
critically relies on the interleaver, which creates long
range dependencies between information bits that are far
apart in the block. Given that Deepcode is a sequential
code, there is no strong long range dependence. Each
transmitted bit depends on only a few past information
bits and their feedback (we refer to Section V for a
detailed discussion).

To resolve this problem, we propose a new concate-
nated code which concatenates Deepcode (as inner code)
and turbo code as an outer code. The outer code is not
restricted to a turbo code, and we refer to Appendix XI
for a detailed discussion. In Figure 12 (Right), we plot
the BERs of the concatenated code, in channels with
both noiseless and noisy feedback (of feedback SNR
10dB), and turbo code, both at rate 1/9 at (forward)
SNR −6.5dB. From the figure, we see that even with
noisy feedback, BER drops almost exponentially (log
BER drops linearly) as block length increases, and the
slope is sharper than the one for turbo codes. We also
note that in this setting, C-L scheme suggests not using
the feedback.

V. INTERPRETATION

Thus far we have used information theoretic insights
in driving our deep learning designs. Here, we ask if the
deep learning architectures we have learnt can provide
an insight to the information theory of communications
with feedback. We aim to understand the behavior of
Deepcode (i.e., how coded bits are generated via RNN
in Phase 2). We show that in the second phase, (a) the
encoder focuses on refining information bits that were
corrupted by large noise in the first phase; and (b) the
coded bit depends on past as well as current information
bits, i.e., coupling in the coding process.

Correcting noise from previous phase. The main
motivation behind the proposed two-phase encoding
scheme is to use the Phase 2 to clean the noise added
in Phase 1. The encoder at Phase 2 knows how much
noise was added in Phase 1 (exactly if noiseless feedback
and approximately if noisy). Potentially, it could learn to
send this information in the Phase 2, so that the decoder
can refine the corrupted information bits sent in Phase
1. Interpreting the parity bits confirms this conjecture as
shown in Figure 15. We show as a scatter plot multiple
instances of the pairs of random variables (nk, ck,1) (left)
and (nk, ck,2) (right), where nk denotes the noise added
to the transmission of bk in the first phase. We are plotting
1,000 sample points: 20 samples for each k and for
k ∈ {1, . . . , 50}. This illustrates how the encoder has
learned to send rectified linear unit (ReLU(x)=max{0, x}

) functional of the noise nk to send the noise information
while efficiently using the power. Precisely, the dominant
term in the parity bit can be closely approximated
by ck,1 ' −(2bk − 1) × ReLU(−nk(2bk − 1)), and
ck,2 ' (2bk − 1)× ReLU(−nk(2bk − 1)).

Consider the case when bk = 1. If the noise added
to bit bk in Phase 1 is positive, then the bit is likely to
have been correctly decoded, and the parity chooses not
to send any information about nk. The encoder generates
coded bits close to zero (i.e., does not further refine bk).
Otherwise, the encoder generates coded bits proportional
to the noise nk, i.e., uses more power to refine bk.

ck,1 ck,2

nk nk

Fig. 15: Noise in first phase nk vs. first parity bit ck,1
(left) and second parity bit ck,2 (right) under noiseless
feedback channel and forward AWGN channel of SNR
0dB. Blue ‘x’ data points correspond to those samples
conditioned on bk = 1 and red ‘o’ points correspond to
those samples conditioned on bk = 0.

Ideally, for practical use, we want to use the same
code for a broad range of varying SNR, as we might
be uncertain about the condition of the channel we
are operating on. This is particularly true for code
for non-feedback channels. For channels with output
feedback, however, all known encoding schemes adapt
to the channel. For instance, in S-K scheme, in order to
achieve the optimal error rate, it is critical to choose the
optimal power allocation across transmission symbols
depending on the (forward) channel SNR. Similarly, C-L
scheme also requires pre-computation of optimal power
allocation across transmission depending on the forward
and feedback SNRs. In the case of AWGN channels with
feedback, it is not even clear how one could meet the
power constraints, if not adapting to the channel SNR.

In Figure 16, we show how the trained Deepcode
has learned to adapt to the channel conditions. For
various choices of forward channel SNRf and feedback
channel SNRfb, each scatter plot is showing 5,000 sample
points: 100 samples for each k and for k ∈ {1, . . . , 50}.
On the top row, as forward signal power decreases,
the parity gradually changes from ck,1 ' −(2bk −
1) × ReLU(−nk(2bk − 1)) to ck,1 ' (2bk − 1) − nk.
On the bottom row, as feedback noise increases (i.e.,
feedback SNR decreases), the parity gradually becomes
less correlated with the sum of forward and feedback



12 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

noises nk+wk. Note that under noisy feedback, nk is not
available to the encoder, but nk +wk is what is available
to the encoder (nk + wk = ỹk − ck).

ck,1

nk

SNRf=0 dB
SNRfb=noiseless

ck,1

nk + wk

SNRf=0 dB
SNRfb=23 dB

ck,1

nk

SNRf=1 dB
SNRfb=noiseless

ck,1

nk + wk

SNRf=0 dB
SNRfb=13 dB

ck,1

nk

SNRf=2 dB
SNRfb=noiseless

ck,1

nk + wk

SNRf=0 dB
SNRfb=6 dB

Fig. 16: Noise in first phase nk vs. first parity bit ck,1
as forward SNR increases for noiseless feedback (left
column) and sum of forward and feedback noises in first
phase nk + wk vs. first parity bit ck,1 as feedback SNR
decreases for fixed forward SNR 0dB (right column). Blue
‘x’ data points correspond to those samples conditioned
on bk = 1 and red ‘o’ points correspond to those samples
conditioned on bk = 0.

Coupling. A natural question is whether our feedback
code is exploiting the memory of RNN and coding
information bits jointly. To answer this question, we
look at the correlation between information bits and
the coded bits. If the memory of RNN were not used,
we would expect the coded bits (ck,1, ck,2) depend only
on bk. We find that E[ck,1bk] = −0.42,E[ck,1bk−1] =
−0.24,E[ck,1bk−2] = −0.1,E[ck,1bk−3] = −0.05, and
E[ck,2bk] = 0.57,E[ck,2bk−1] = −0.11,E[ck,2bk−2] =
−0.05, E[ck,2bk−3] = −0.02 (for the encoder for forward
SNR 0dB and noiseless feedback). This result implies
that the RNN encoder does make use of the memory, of
length two to three.

Overall, our analysis suggests that Deepcode exploits
memory and selectively enhances bits that were subject
to larger noise - properties reminiscent of any good
code. We also observe that the relationship between the
transmitted bit and previous feedback demonstrates a
non-linear relationship as expected. Thus our code has
features requisite of a strong feedback code. Furthermore,
improvements can be obtained if instead of transmitting
two coded symbols per bit during Phase 2, an attention-
type mechanism can be used to zoom in on bits that were
prone to high noise in Phase 1. These insights suggest
the following generic feedback code: it is a sequential
code with long cumulative memory but the importance
of a given bit in the memory is dynamically weighted
based on the feedback.

VI. SYSTEM AND IMPLEMENTATION ISSUES

We began with the idealized Shannon model of
feedback and have progressively considered practical
variants (delay, noise and active feedback). In this
section we extend this progression by studying design
decisions in real-world implementations of Deepcode
(our neural-network feedback-enabled codes). We do this
in the context of cellular wireless systems, with specific
relevance to the upcoming 5G LTE standard.

LTE cellular standards prescribe separate uplink and
downlink transmissions (usually in frequency division
duplex mode). Further, these transmissions are scheduled
in a centralized manner by the base station associated
with the cell. In many scenarios, the traffic flowing across
uplink and downlink could be asymmetric (example: more
“downloads” than “uploads” leads to higher downlink
traffic than the combined uplink ones). In such cases,
there could be more channel resources in the uplink than
the traffic demand. Given the sharp inflexible division
among uplink and downlink, these resources go unused.
We propose to link, opportunistically, unused resources in
one direction to aid the reliability of transmission in the
opposite direction – this is done via using the feedback
codes developed in this paper. Note that the availability
of such unused channel resources is known in advance
to the base station which makes scheduling decisions on
both directions of uplink and downlink – thus such a
synchronized cross uplink-downlink scheduling is readily
possible.

The availability of the feedback traffic channel
enables the usage of the codes designed in this paper –
leading to much stronger reliability than the feedforward
codes alone. Combined with automatic repeat request
(ARQ), this leads to fewer retransmissions and smaller
average transmission time than the traditional scheme of
feedforward codes combined with ARQ would achieve.
In order to numerically evaluate the expected benefits of
such a system design, in Figure 17, we plot BLER as



SUBMITTED PAPER 13

a function of number of (re)transmissions for Deepcode
under noiseless and noisy feedback and feedforward codes
(for a rate 1/3 code with 50 information bits). From
this figure, we can see that combining Deepcode with
ARQ allows fewer block transmissions to achieve the
target BLER compared to the state-of-the-art codes. The
performance of Deepcode depends on the quality of the
feedback channel. As feedback channel becomes less
noisy, Deepcode requires fewer retransmissions. We note
that in measuring the BLER of neural code under noisy
feedback (10dB), we used a variant of Deepcode, shown
as Act-Deepcode, which allows an active feedback of rate
3/4; in Phase 1, the decoder sends back RNN encoded
bits at rate 1/2. Phase 2 works as in Deepcode. Hence,
for a rate 1/3 code with 50 information bits, the decoder
makes 200 usages of the feedback channel (204 with zero
padding). Improving further the performance of (active)
Deepcode at realistic feedback SNRs (such as 10dB or
lower) is an important open problem. The improvements
could come from architectural or learning methodology
innovations or a combination of both.

We propose using Deepcode when the feedback
SNR is high. Practically, a user may not always have a
high SNR feedback channel, but when there are multiple
users, it is possible that some of the users have high
SNR feedback channels. For example, in scenarios where
a base station communicates with multiple users, we
propose scheduling users based on their feedback as well
as forward channel qualities, utilizing multiuser diversity.
In Internet-of-Things (IoT) applications, feedback channel
SNR can be much higher than forward SNR; e.g., a small
device with limited power communicates a message to
the router connected to the power source.

BLER

Number of transmissions
Fig. 17: BLER as a function of number of transmissions
for a rate 1/3 code with 50 information bits where forward
SNR is 0dB. Deepcode allows fewer transmissions than
feedforward codes to achieve the target BLER.

VII. CONCLUSION

In this paper we have shown that appropriately
designed and trained RNN codes (encoder and decoder),
which we call Deepcode, outperform the state-of-the-
art codes by a significant margin on the challenging
problem of communicating over AWGN channels with
noisy output feedback, both on the theoretical model
and with practical considerations taken into account. By
concatenating Deepcode with a traditional outer code,
the BER curve drops significantly with increasing block
lengths, allowing generalizations of the learned neural
network architectures. The encoding and decoding capa-
bilities of the RNN architectures suggest that new codes
could be found in other open problems in information
theory (e.g., network settings), where practical codes are
sorely missing. Our work suggests several immediate
avenues continue the research program begun by this
paper, solutions to which will have significant practical
impacts.

Learning to take advantage of the block lengths. The
first one is an interesting new challenge for machine
learning, that has not been posed before to the best of
our knowledge. We proposed concatenation in Section
IV to achieve the block-length gain. By concatenating
Deepcode with a traditional inner code, the BER curve
drops significantly with increasing block lengths, al-
lowing generalizations of the learned neural network
architectures. However, concatenation comes at the cost
of reduced rate.

A more natural way to achieve the block-length
gain is to incorporate structures of the modern codes,
in particular turbo codes. Turbo codes use interleavers
to introduce long range dependency on top of standard
convolutional codes, achieving error rate that exponen-
tially decays in block-lengths as desired. In the encoder,
we can easily include an inter-leaver with two neural
encoders we proposed. However, the major challenge
is in decoding. Turbo decoder critically relies on BCJR
decoder’s accurate estimate of the posterior probability of
each information bit. This is in turn fed into the next phase
of turbo decoder, which refines the likelihood iteratively.
For the proposed neural feedback code, there exists no
decoder that can output accurate posterior likelihood.
Further, there exists no decoder that can take as part
of the input the side information from the previous
phase on the prior likelihood of the information bit.
This poses an interesting challenge for deep learning.
As a means to overcome this challenge, [39] proposes
a novel architecture which harmoniously combines the
interleaving idea of turbo code and iterative decoding
together with CNN architectures. It is demonstrated that
the neural code in [39] exhibits the blocklength gain (i.e.,
the error rate decays as block length increases).



14 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

Interpreting Deepcode. The second challenge is in
using the lessons learned from the trained Deepcode
to contribute back to the communication theory. We
identified in Section V some parts of the parity symbols of
the trained Deepcode. However, how Deepcode is able to
exploit the feedback symbols remains mysterious, despite
our efforts to interpret the trained neural network. It is an
interesting challenge to disentangle the neural encoder,
and provide a guideline for designing simple feedback
encoders that enjoy some of the benefits of the complex
neural encoder. Manually designing such simple encoders
without training can provide a new family of feedback
encoders that are simple enough to be mathematically
analyzed.
Rate beyond 1/3. The third challenge is to generalize
Deepcode to rates beyond 1/3. Our neural code struc-
ture can be immediately generalized to rates 1/r for
r = 2, 3, 4, · · · . For example, we have preliminary results
showing that a rate-1/2 RNN based feedback code beats
the state-of-the-art codes for short block lengths (e.g., 64)
under low SNRs (e.g., below 2dB). Extensive experiments
and simulations over various rates and comparison to
state-of-the-art codes are yet to be explored. On the other
hand, generalization to rates higher than 1/2 requires
a new architecture of encoders. In this direction, we
propose two potential approaches. One is to use a higher-
order modulation (e.g., pulse amplitude modulation)
and generate parity bits for super symbols which are
functions of multiple information bits. The other is to
use puncturing, a widely used technique to design high
rate codes from low rate codes (e.g., convolutional codes);
the encoder first generates a low rate code and then throws
away some of the coded bits and sends only a fraction
of the coded bits. Generalization to higher rate codes via
these two approaches is of great practical interest.

ACKNOWLEDGEMENT

We thank Shrinivas Kudekar and Saurabh Tavildar
for helpful discussions and providing references to the
state-of-the-art feedforward codes. We thank Dina Katabi
for a detailed discussion that prompted the work on
system implementation.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication, part i,
part ii,” Bell Syst. Tech. J., vol. 27, pp. 623–656, 1948.

[2] C. J. Il, J. Mayank, S. Kannan, L. Philip, and K. Sachin,
“Achieving single channel, full duplex wireless communication,”
in Proceedings of the 16th Annual International Conference on
Mobile Computing and Networking, MOBICOM 2010, Chicago,
Illinois, USA, September 20-24, 2010.

[3] C. Shannon, “The zero error capacity of a noisy channel,” IRE
Transactions on Information Theory, vol. 2, no. 3, pp. 8–19, 1956.

[4] J. Schalkwijk and T. Kailath, “A coding scheme for additive
noise channels with feedback–i: No bandwidth constraint,” IEEE
Transactions on Information Theory, vol. 12, no. 2, pp. 172–182,
1966.

[5] J. Schalkwijk, “A coding scheme for additive noise channels
with feedback–ii: Band-limited signals,” IEEE Transactions on
Information Theory, vol. 12, no. 2, pp. 183–189, April 1966.

[6] R. G. Gallager and B. Nakiboglu, “Variations on a theme by
Schalkwijk and Kailath,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 6–17, Jan 2010.

[7] N. C. Martins and T. Weissman, “Coding for additive white noise
channels with feedback corrupted by quantization or bounded
noise,” IEEE Transactions on Information Theory, vol. 54, no. 9,
pp. 4274–4282, Sep. 2008.

[8] Z. Chance and D. J. Love, “Concatenated coding for the AWGN
channel with noisy feedback,” IEEE Transactions on Information
Theory, vol. 57, no. 10, pp. 6633–6649, Oct 2011.

[9] Y.-H. Kim, A. Lapidoth, and T. Weissman, “The Gaussian channel
with noisy feedback,” in IEEE International Symposium on
Information Theory. IEEE, 2007, pp. 1416–1420.

[10] P. Elias, “Coding for noisy channels,” in IRE Convention record,
vol. 4, 1955, pp. 37–46.

[11] S. C. Draper and A. Sahai, “Noisy feedback improves commu-
nication reliability,” in 2006 IEEE International Symposium on
Information Theory, July 2006, pp. 69–73.

[12] S. C. Draper and A. Sahai, “Variable-length channel coding with
noisy feedback,” European Transactions on Telecommunications,
vol. 19, pp. 355–370, 2008.

[13] A. Ben-Yishai and O. Shayevitz, “Interactive schemes for the
AWGN channel with noisy feedback,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 2409–2427, April 2017.

[14] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications
and Networking, vol. 3, no. 4, pp. 563–575, Dec 2017.

[15] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. t. Brink,
“OFDM-autoencoder for end-to-end learning of communications
systems,” in IEEE 19th International Workshop on Signal Pro-
cessing Advances in Wireless Communications (SPAWC), June
2018, pp. 1–5.

[16] S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, “End-to-end
learning for physical layer communications,” in The International
Zurich Seminar on Information and Communication (IZS 2018)
Proceedings. ETH Zurich, 2018, pp. 51–52.

[17] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Deep learning based
MIMO communications,” CoRR, vol. abs/1707.07980, 2017.

[18] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to commu-
nicate: Channel auto-encoders, domain specific regularizers, and
attention,” in IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), 2016, pp. 223–228.

[19] N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint
source-channel coding of text,” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2018.

[20] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath,
“Communication algorithms via deep learning,” in The Inter-
national Conference on Representation Learning (ICLR 2018)
Proceedings. Vancouver, April, 2018.

[21] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode
linear codes using deep learning,” in IEEE 54th Annual Allerton
Conference on Communication, Control, and Computing (Allerton)
2016, pp. 341–346.

[22] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein,
and Y. Be’ery, “Deep learning methods for improved decoding
of linear codes,” IEEE Journal of Selected Topics in Signal
Processing, 2018.

[23] X. Tan, W. Xu, K. Sun, Y. Xu, Y. Be’ery, X. You, and C. Zhang,
“Improving massive MIMO message passing detectors with deep
neural network,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 2, pp. 1267–1280, Feb 2020.

[24] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance
evaluation of channel decoding with deep neural networks,” 2018
IEEE International Conference on Communications (ICC), pp.
1–6, 2018.

[25] M. Lian, C. Häger, and H. D. Pfister, “What can machine learning
teach us about communications?” in IEEE Information Theory
Workshop (ITW), Nov 2018, pp. 1–5.



SUBMITTED PAPER 15

[26] F. Carpi, C. Häger, M. Martalò, R. Raheli, and H. D. Pfister,
“Reinforcement learning for channel coding: Learned bit-flipping
decoding,” in 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Sep. 2019, pp. 922–929.

[27] J. Kosaian, K. Rashmi, and S. Venkataraman, “Learning a code:
Machine learning for approximate non-linear coded computation,”
arXiv preprint arXiv:1806.01259, 2018.

[28] T. M. Cover and J. A. Thomas, Elements of information theory.
John Wiley & Sons, 2012.

[29] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in
the finite blocklength regime,” IEEE Transactions on Information
Theory, vol. 56, no. 5, pp. 2307–2359, 2010.

[30] H. Huawei, “Performance evaluation of channel codes for control
channel,” 3GPP TSG-RAN WG1 #87 Reno, U.S.A., November
14-18, 2016, vol. R1-1611257. [Online]. Available: www.3gpp.
org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1611257.zip

[31] T. Erseghe, “On the evaluation of the Polyanskiy-Poor-Verdu
converse bound for finite block-length coding in AWGN,” IEEE
Transactions on Information Theory, vol. 61, January 2014.

[32] Y. H. Kim, A. Lapidoth, and T. Weissman, “The Gaussian
channel with noisy feedback,” in IEEE International Symposium
on Information Theory, June 2007, pp. 1416–1420.

[33] T. Duman and M. Salehi, “On optimal power allocation for turbo
codes,” in IEEE International Symposium on Information Theory
- Proceedings. IEEE, 1997, p. 104.

[34] H. Qi, D. Malone, and V. Subramanian, “Does every bit need
the same power? an investigation on unequal power allocation
for irregular LDPC codes,” in 2009 International Conference on
Wireless Communications Signal Processing, Nov 2009, pp. 1–5.

[35] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE
Transactions on Information Theory, vol. 61, no. 5, pp. 2213–2226,
May 2015.

[36] T. Richardson and R. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Transactions on Information Theory,
vol. 47, pp. 638 – 656, 03 2001.

[37] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” in NIPS Deep Learning and Representation
Learning Workshop, 2015.

[38] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in European Conference on Computer Vision. Springer,
2016, pp. 525–542.

[39] H. A. S. O. S. K. P. V. Yihan Jiang, Hyeji Kim, “Feedback
turbo autoencoder,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020.

[40] G. D. Forney, Jr, “Concatenated codes,” MIT Press, Cambridge,
MA., 1966.

[41] K. Miwa, N. Miki, T. Kawamura, and M. Sawahashi, “Perfor-
mance of decision-directed channel estimation using low-rate
turbo codes for dft-precoded OFDMA,” in IEEE 75th Vehicular
Technology Conference (VTC Spring), May 2012, pp. 1–5.

Hyeji Kim Hyeji Kim is a researcher at Samsung AI Research
Cambridge. Prior to joining Samsung AI Research in 2018, she was a
postdoctoral research associate at the university of Illinois at Urbana
Champaign. She received her Ph.D. and M.S. degrees in Electrical
Engineering from Stanford University in 2016 and 2013, respectively,
and her B.S. degree with honors in Electrical Engineering from KAIST
in 2011. She is a recipient of the Stanford Graduate Fellowship and
participant of the Rising Stars in EECS Workshop in 2015.

Yihan Jiang Yihan Jiang is a Ph.D. candidate at the Electrical and
Computer Engineering Department, University of Washington, Seattle
at Washington. He received his M.S degree in 2014 in electrical and
computer engineering from UC San Diego and a B.S degree from
Beijing Institute of Technology in 2012. His research interests are in
the areas of channel coding, information theory, deep learning, and
federated learning.

Sreeram Kannan Sreeram Kannan is currently an assistant professor
at University of Washington, Seattle. He was a postdoctoral scholar at
University of California, Berkeley between 2012-2014 before which he
received his Ph.D. in Electrical Engineering and M.S. in mathematics
from the University of Illinois Urbana Champaign. He is a recipient of
the 2019 UW ECE outstanding teaching award, 2017 NSF Faculty Early
CAREER award, the 2013 Van Valkenburg outstanding dissertation
award from UIUC, a co-recipient of the 2010 Qualcomm Cognitive
Radio Contest first prize, a recipient of 2010 Qualcomm (CTO) Roberto
Padovani outstanding intern award, a recipient of the SVC Aiya medal
from the Indian Institute of Science, 2008, and a co-recipient of
Intel India Student Research Contest first prize, 2006. His research
interests include the applications of information theory and learning to
blockchains, computational biology and wireless networks.

Sewoong Oh Sewoong Oh is an Associate Professor in the Paul G.
Allen School of Computer Science & Engineering at the University of
Washington. Previous to joining University of Washington in 2019, he
was an Assistant Professor in the department of Industrial and Enterprise
Systems Engineering at University of Illinois at Urbana-Champaign
since 2012. He received his PhD from the department of Electrical
Engineering at Stanford University in 2011, under the supervision of
Andrea Montanari. Following his PhD, he worked as a postdoctoral
researcher at Laboratory for Information and Decision Systems (LIDS)
at MIT, under the supervision of Devavrat Shah. Sewoong’s research
interest is in theoretical machine learning. He was co-awarded the
ACM SIGMETRICS best paper award in 2015, NSF CAREER award
in 2016, ACM SIGMETRICS rising star award in 2017, and GOOGLE
Faculty Research Award in 2017 and 2020.

Pramod Viswanath Pramod Viswanath is a professor of Electrical
and Computer Engineering at the University of Illinois at Urbana-
Champaign. He received his Ph.D. degree in electrical engineering
and computer science from the University of California, Berkeley in
2000. His current research interests include blockchain technologies
from a variety of angles: networking protocols, consensus algorithms,
payment channels, distributed coded storage and incentive designs.
He is a co-founder and CEO of Applied Protocol Research, a startup
focused on developing core blockchain technologies. He has received
the Eliahu Jury Award, the Bernard Friedman Prize, a NSF CAREER
award, and the Best Paper Award at the Sigmetrics conference in 2015.
He is a co-author, with David Tse, of the text Fundamentals of Wireless
Communication, which has been used in over 60 institutions worldwide.

www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1611257.zip
www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1611257.zip


16 JOURNAL ON SELECTED AREAS IN INFORMATION THEORY

APPENDIX

VIII. STATE-OF-THE ART CODES USED IN
COMPARISON

In this section, we provide details on how to compute
the BER and BLER of state-of-the art feedforward
codes. LTE turbo code used in the simulation uses
trellis-([13, 15], 13) convolutional code (octal notation)
as a component code, and uses quadratic permutation
polynomial (QPP) interleaver. Decoding is done by 8
iterations of Belief Propagation (BP) decoder that uses a
posteriori probability (APP) decoder as the constituent
decoder. Tail-bitting convolutional codes (TBCC) used
in the simulation has a constraint length 7 and trellis
([123,135,157]) (in octal notation), and uses Viterbi
decoder. Polar code used in the simulation uses successive
cancellation list decoding (SCL) with list size 8. LDPC
code used in the simulation (Rate 1/3, maps 64 bits to a
length-196 codeword with sub-matrix dimension 16) uses
the parity check matrix shown below, and layered offset
min-sum decoder is used with offset parameter 0.22 and
(max) iteration 25.



10 11 2 3 0 −1 −1 −1 −1 −1 −1 −1
−1 15 9 9 14 0 −1 −1 −1 −1 −1 −1
6 −1 5 13 −1 11 0 −1 −1 −1 −1 −1

−1 5 −1 8 12 −1 6 0 −1 −1 −1 −1
−1 11 −1 −1 1 −1 −1 11 0 −1 −1 −1
−1 2 −1 −1 14 12 −1 7 −1 0 −1 −1
−1 15 10 −1 −1 −1 −1 −1 11 −1 0 −1
−1 −1 −1 7 −1 11 −1 3 −1 −1 −1 0



IX. IMPLEMENTATION DETAILS

In this section, we provide implementation details
on the neural encoders and decoders introduced in
Section III together with an illustration of the end-to-end
communication system in Figure 18.

Fig. 18: Illustration of communications system with
Deepcode

X. ILLUSTRATION ON SCHEME FOR DELAYED
FEEDBACK.

Practical feedback typically is delayed for a random
time, thus the encoder cannot use immediate feedback to
encode. The feedback is randomly delayed up to block
length K, we are restricted not to use feedback till K
bits are transmitted.

We propose a delayed feedback scheme to overcome
noisy feedback and delaying effect; the 1/3 code rate
encoder is shown in Figure 19. In the first phase, the K
information bits can be encoded by Bi-GRU, while the
feedback is delayed and can only be used in the next
phase. The second and third phases use uni-directional
GRU to encode with K-delayed feedback. For example,
at index m of phase 2, the encoder can only use the
feedback before index m of phase 1. The decoder is a
Bi-GRU which waits to decode until all transmissions
are received, same as in Deepcode.

Fig. 19: Encoder for delayed feedback

XI. CONCATENATION OF DEEPCODE WITH EXISTING
CODES

Concatenated codes are constructed from two or
more codes, originally proposed by Forney [40]. We
concatenate forward error correcting codes (that does
not use a feedback) with our Deepcode that makes
use of feedback. Encoding is performed in two steps;
we first map information bits into a turbo code, and
then encode the turbo code via an encoder for channels
with feedback. Decoding is also performed in two steps.
In the first step, decoder recovers the estimates of
turbo codes. In the second step, the decoder recovers
information bits based on the estimates of turbo codes.
For the experiment in Section IV, for which results
are shown in Figure 12 (Right), we use the rate 1/3
LTE turbo code as an outer code; LTE turbo code uses
([13, 15], 13) convolutional code (octal notation) as a
component code. We compare the performance of the
concatenated code with a rate 1/9 turbo code, which uses
([13,17,16,15,11],13) convolutional code as a component
code (introduced in [41]). Besides turbo codes, any
existing codes (e.g., LDPC, polar, convolutional codes)
can be used as an outer code. We also note that C-L
scheme is based on the concatenation idea [8].


	Introduction
	Problem formulation
	blackResults preview

	Deepcode: neural encoder and decoder
	Practical considerations: noise and delay in feedback, blackfinite precision, and blocklength
	Interpretation
	System and implementation issues
	Conclusion
	References
	Biographies
	Hyeji Kim
	Yihan Jiang
	Sreeram Kannan
	Sewoong Oh
	Pramod Viswanath

	State-of-the art codes used in comparison
	Implementation details
	Illustration on Scheme for delayed feedback.
	Concatenation of Deepcode with existing codes

