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PacGAN: The Power of Two Samples in Generative
Adversarial Networks
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Abstract—Generative adversarial networks (GANs) are inno-
vative techniques for learning generative models of complex data
distributions from samples. Despite remarkable improvements
in generating realistic images, one of their major shortcomings
is the fact that in practice, they tend to produce samples
with little diversity, even when trained on diverse datasets.
This phenomenon, known as mode collapse, has been the main
focus of several recent advances in GANs. Yet there is little
understanding of why mode collapse happens and why recently-
proposed approaches mitigate mode collapse. We propose a
principled approach to handle mode collapse called packing. The
main idea is to modify the discriminator to make decisions based
on multiple samples from the same class, either real or artificially
generated. We borrow analysis tools from binary hypothesis
testing—in particular the seminal result of Blackwell [1]—to
prove a fundamental connection between packing and mode
collapse. We show that packing naturally penalizes generators
with mode collapse, thereby favoring generator distributions with
less mode collapse during the training process. Numerical exper-
iments on benchmark datasets suggests that packing provides
significant improvements in practice as well.

Index Terms—generative adversarial networks, mode collapse,
hypothesis testing, data processing inequalities

I. INTRODUCTION

Generative adversarial networks (GANs) are an innovative
technique for training generative models to produce realistic
examples from a data distribution [2]. Suppose we are given
N i.i.d. samples X1, . . . , XN from an unknown probability
distribution P over some high-dimensional space Rp (e.g.,
images). The goal of generative modeling is to learn a model
that enables us to produce samples from P that are not in the
training data. Classical approaches to this problem typically
search over a parametric family (e.g., a Gaussian mixture),
and fit parameters to maximize the likelihood of the observed
data. Such likelihood-based methods suffer from the curse of
dimensionality in real-world datasets, such as images. Deep
neural network-based generative models were proposed to
cope with this problem [3], [4], [2]. However, these modern
generative models can be difficult to train, in large part because
it is challenging to evaluate their likelihoods. Generative
adversarial networks made a breakthrough in training such
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models by introducing an innovative minimax formulation
whose solution is approximated by iteratively training two
competing neural networks.

GANs have attracted a great deal of interest recently. They
are able to generate realistic, crisp, and original examples
of images [2], [5] and text [6]. This is useful in image
and video processing (e.g. frame prediction [7], image super-
resolution [8], and image-to-image translation [9]), as well as
dialogue systems or chatbots—applications where one may
need realistic but artificially generated data. Further, they
implicitly learn a latent, low-dimensional representation of
arbitrary high-dimensional data. Such embeddings have been
hugely successful in the area of natural language processing
(e.g. word2vec [10]). GANs may be able to provide an
unsupervised approach to learning representations that capture
semantics of arbitrary data structures and applications, for
downstream tasks like image manipulation [11] and defending
against adversarial examples [12].

a) Primer on GANs: Neural-network-based generative
models are trained to map a (typically lower dimensional)
random variable Z ∈ Rd from a standard distribution
(e.g. spherical Gaussian) to a domain of interest, like images.
In this context, a generator is a function G : Rd → Rp,
which is chosen from a rich class of parametric functions like
deep neural networks. In unsupervised generative modeling,
a primary goal is to train such a generator from unlabelled
training data drawn independently from a distribution (e.g.,
faces [13] or natural images [14]), to produce realistic samples
that are different from the training data.

GANs achieved a breakthrough in training such generative
models [2]. GANs train two neural networks: one for the
generator G(Z) and the other for a discriminator D(X). These
two neural networks play a dynamic minimax game against
each other. An analogy provides the intuition behind this idea.
The generator is acting as a forger trying to make fake coins
(i.e., samples), and the discriminator is trying to detect which
coins are fake and which are real. If these two parties are
allowed to play against each other long enough, eventually
both will become good. In particular, the generator will learn
to produce coins that are indistinguishable from real coins.
Concretely, we search for (the parameters of) neural networks
G and D that optimize the following minimax objective:

G∗ ∈ argmin
G

max
D

V (G,D)

= argmin
G

max
D

EX∼P [log(D(X))]

+ EZ∼PZ [log(1−D(G(Z)))] , (1)

where P is the distribution of the real data, and PZ is the
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distribution of the input random vector Z. Here D is a function
that tries to distinguish between real data and generated
samples, whereas G is the mapping from the latent space to
the data space. Critically, [2] shows that the global optimum
of (1) is achieved if and only if P = Q, where Q is the
generated distribution of G(Z) under some mild assumptions.
Section III discusses this minimax formulation in detail. The
solution to optimization (1) can be approximated by iteratively
training two “competing” neural networks, the generator G
and discriminator D. Each model can be updated individually
by backpropagating the gradient of the loss function to each
model’s parameters.

b) Mode Collapse in GANs: One major challenge in
training GAN is a phenomenon known as mode collapse,
which collectively refers to the lack of diversity in generated
samples. One manifestation of mode collapse is the obser-
vation that GANs commonly miss some of the modes when
trained on multimodal distributions. For instance, when trained
on hand-written digits with ten modes, the generator might
fail to produce some of the digits [15]. Similarly, in tasks
that translate a caption into an image, generators have been
shown to generate series of nearly-identical images [16]. Mode
collapse is believed to be related to the training instability of
GANs—another major challenge in GANs.

Several approaches have been proposed to fight mode
collapse, e.g. [17], [18], [19], [15], [20], [21], [22], [23].
Proposed solutions rely on modified architectures [17], [18],
[19], [15], loss functions [21], [24], and optimization algo-
rithms [20]. Although each of these proposed methods is
empirically shown to help mitigate mode collapse, it is not well
understood how the proposed changes relate to mode collapse.
Previously-proposed heuristics fall short of providing rigorous
explanations of their empirical gains, especially when those
gains are sensitive to architecture hyperparameters.

c) Our Contributions: In this work, we examine GANs
through the lens of binary hypothesis testing. By viewing
the discriminator as performing a binary hypothesis test on
samples (i.e., whether they were drawn from distribution P or
Q), we can apply insights from classical hypothesis testing lit-
erature to the analysis of GANs. In particular, this hypothesis-
testing viewpoint leads to the following contributions:
(1) The first contribution is conceptual: we propose a formal
mathematical definition of mode collapse that abstracts away
the geometric properties of the underlying data distributions
(see Section III-A). This definition is closely related to the no-
tions of false alarm and missed detection in binary hypothesis
testing (see Section III-C). Given this definition, we provide a
new interpretation of the pair of distributions (P,Q) as a two-
dimensional region called the mode collapse region, where
P is the true data distribution and Q the generated one. The
mode collapse region provides new insights on how to reason
about the relationship between those two distributions (Section
III-A).
(2) The second contribution is analytical: through the lens
of hypothesis testing and mode collapse regions, we show
that if the discriminator is allowed to see samples from the
m-th order product distributions Pm and Qm instead of the
usual target distribution P and generator distribution Q, then

the corresponding loss when training the generator naturally
penalizes generator distributions with strong mode collapse
(see Section III-B). Hence, a generator trained with this type
of discriminator will be encouraged to choose a distribution
that exhibits less mode collapse. The region interpretation of
mode collapse and corresponding data processing inequalities
provide the analysis tools that allows us to prove sharp results
with simple proofs. This follows a long tradition in information
theory literature (e.g. [25], [26], [27], [28], [29], [30], [31],
[32], [33]) where operational interpretations of mutual infor-
mation and corresponding data processing inequalities have
given rise to simple proofs of strong technical results.
(3) The third contribution is algorithmic: based on the insights
from the region interpretation of mode collapse, we propose
a new GAN framework to mitigate mode collapse, which we
call PacGAN. PacGAN can be applied to any existing GAN,
and it requires only a small modification to the discriminator
architecture (see Section II). The key idea is to pass m
“packed” or concatenated samples to the discriminator, which
are jointly classified as either real or generated. This allows
the discriminator to do binary hypothesis testing based on
the product distributions (Pm, Qm), which naturally penalizes
mode collapse (as we show in Section III-B). We demonstrate
on benchmark datasets that PacGAN significantly improves
upon competing approaches in mitigating mode collapse.
Further, unlike existing approaches on jointly using multiple
samples, e.g. [15], PacGAN requires no hyper-parameter tun-
ing and incurs only a slight overhead in the architecture.

d) Outline: This paper is structured as follows: we
present the PacGAN framework in Section II. In Section III,
we propose a new definition of mode collapse, and provide
analyses showing that PacGAN mitigates mode collapse. We
refer to a longer version of this paper [34] for proofs of
the main results, detailed discussion of the related work,
and extensive experimental results, demonstrating that we
significantly improve over competing state-of-the-art schemes
designed to mitigate mode collapse on all benchmark datasets.

II. PACGAN: A FRAMEWORK FOR MITIGATING MODE
COLLAPSE

We propose a new framework for mitigating mode collapse
in GANs. We start with an arbitrary existing GAN1, which is
typically defined by a generator architecture, a discriminator
architecture, and a loss function. Let us call this triplet the
mother architecture.

The PacGAN framework maintains the same generator
architecture and loss function as the mother architecture, and
makes a slight change only to the discriminator. That is,
instead of using a discriminator D(X) that maps a single
(either from real data or from the generator) to a (soft) label,
we use an augmented discriminator D(X1, X2, . . . , Xm) that
maps m samples, jointly coming from either real data or
the generator, to a single (soft) label. These m samples are
drawn independently from the same distribution—either real
(jointly labelled as Y = 1) or generated (jointly labelled as

1For a list of some popular GANs, we refer to the GAN zoo:
https://github.com/hindupuravinash/the-gan-zoo
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Fig. 1. PacGAN(m) augments the input layer by a factor of m. The number
of edges between the first two layers is increased accordingly to preserve the
connectivity of the mother architecture (e.g., fully-connected). Packed samples
are fed to the input layer in a concatenated fashion; the gridded nodes represent
input nodes for the second input sample.

Y = 0). We refer to the concatenation of samples with the
same label as packing, the resulting concatenated discriminator
as a packed discriminator, and the number m of concatenated
samples as the degree of packing. We call this approach a
framework instead of an architecture, because the proposed
approach of packing can be applied to any existing GAN,
using any architecture and any loss function, as long as it
uses a discriminator of the form D(X) that classifies a single
input sample.

We propose the nomenclature “Pac(X)(m)” where (X) is
the name of the mother architecture, and (m) is an integer
that refers to how many samples are packed together as an
input to the discriminator. For example, if we take an original
GAN [2] and feed the discriminator three packed samples
as input, we call this “PacGAN3”. If we take the celebrated
DCGAN [35] and feed the discriminator four packed samples
as input, we call this “PacDCGAN4”. We use PacGAN without
a subsequent integer to refer to the principle of packing.

How to pack a discriminator. Note that there are many
ways to change the discriminator architecture to accept packed
input samples. We propose to keep all hidden layers of the
discriminator exactly the same as the mother architecture, and
only increase the number of nodes in the input layer by a
factor of m. For example, in Figure 1, suppose we start with
a mother architecture in which the discriminator is a fully-
connected feed-forward network. Here, each sample X lies
in a space of dimension p = 2, so the input layer has two
nodes. Now, under PacGAN2, we would multiply the size of
the input layer by the packing degree (in this case, two), and
the connections to the first hidden layer would be adjusted
so that the first two layers remain fully-connected, as in the
mother architecture. The gridded nodes in Figure 1 represent
input nodes for the second sample.

Similarly, when packing a DCGAN, which uses (de-
)convolutional neural networks for both the generator and the
discriminator, we simply stack the images along the color
channel. For instance, the discriminator for PacDCGAN5 on
the MNIST dataset of handwritten images [36] would take an
input of size 28 × 28 × 5, since each individual black-and-
white MNIST image is 28 × 28 pixels; a discriminator for
PacDCGAN5 on the 32× 32× 5 CelebA dataset [13] would
take an input of size 32 × 32 × 15. Only the input layer and
the number of weights in the corresponding first convolutional
layer will increase in depth by a factor of five for these two

examples. By modifying only the input dimension and fixing
the number of hidden and output nodes in the discriminator, we
can focus purely on the effects of packing in our experiments.

How to train a packed discriminator. The only difference
between the training of PacGAN and standard GANs is that
each minibatch in PacGAN contains packed samples instead of
single samples. More precisely, each sample in the minibatch
is of the form (X1, X2, . . . , Xm, Y ), where the label is Y = 1
for real data and Y = 0 for generated data, and the m
independent samples from either class are jointly treated
as a single, higher-dimensional feature (X1, . . . , Xm). The
discriminator learns to classify m packed samples jointly. In-
tuitively, packing helps the discriminator detect mode collapse
because lack of diversity is more obvious in a set of samples
than in a single sample. Fundamentally, packing allows the
discriminator to observe samples from product distributions,
which highlight mode collapse more clearly than unmodified
data and generator distributions. We make this statement
precise in Section III.

Notice that the computational overhead of PacGAN training
is marginal, since only the input layer of the discriminator
gains new parameters. Furthermore, we keep all training
hyperparameters identical to the mother architecture, including
the stochastic gradient descent minibatch size, weight decay,
learning rate, and the number of training epochs. This is in
contrast with other approaches for mitigating mode collapse
that require significant computational overhead and/or delicate
hyperparameter selection [18], [17], [15], [19], [20].

a) Computational complexity.: The exact computational
complexity overhead of PacGAN (compared to GANs) is
architecture-dependent, but can be computed in a straight-
forward manner. For example, consider a discriminator with
w fully-connected layers, each containing g nodes. Since the
discriminator has a binary output, the (w + 1)th layer has
a single node, and is fully connected to the previous layer.
We seek the computational complexity of a single minibatch
parameter update, where each minibatch contains r samples.
Backpropagation in such a network is dominated by the
matrix-vector multiplication in each hidden layer, which has
complexity O(g2) per input sample, assuming a naive imple-
mentation. Hence the overall minibatch update complexity is
O(rwg2). Now suppose the input layer is expanded by a factor
of m. If we keep the same number of minibatch elements, the
per-minibatch cost grows to O((w +m)rg2). We find that in
practice, even m = 2 or m = 3 give good results. Also note
that the overhead can be much less in practice with GPUs,
which can parallelize these additional computations.

III. THEORETICAL ANALYSES OF PACGAN
In this section, we propose a formal and natural mathemati-

cal definition of mode collapse, which abstracts away domain-
specific details (e.g. images vs. time series). For a target
distribution P and a generator distribution Q, this definition
describes mode collapse through a two-dimensional represen-
tation of the pair (P,Q) as a region, which is motivated by the
ROC (Receiver Operating Characteristic) curve representation
of binary hypothesis testing.
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Mode collapse is a phenomenon commonly reported in
the GAN literature [37], [16], [38], [39], [40], which can
refer to two distinct concepts: (i) the generative model loses
some modes that are present in the samples of the target
distribution. For example, despite being trained on a dataset of
animal pictures that includes lizards, the model never generates
images of lizards. (ii) Two distant points in the code vector
Z are mapped to the same or similar points in the sample
space X . For instance, two distant latent vectors z1 and z2
map to the same picture of a lizard [37]. Although these
phenomena are different, and either one can occur without
the other, they are generally not explicitly distinguished in the
literature, and it has been suggested that the latter may cause
the former [37]. In this paper, we focus on the former notion,
as it does not depend on how the generator maps a code vector
Z to the sample X , and only focuses on the quality of the
samples generated. In other words, we assume here that two
generative models with the same marginal distribution over the
generated samples should not be treated differently based on
how random code vectors are mapped to the data sample space.
The second notion of mode collapse would differentiate two
such architectures, and is beyond the scope of this work. The
proposed region representation relies purely on the properties
of the generated samples, and not on the generator’s mapping
between the latent and sample spaces.

We analyze how the proposed idea of packing changes the
training of the generator. We view the discriminator’s role as
providing a surrogate for a desired loss to be minimized—
surrogate in the sense that the actual desired losses, such as
Jensen-Shannon divergence or total variation distances, cannot
be computed exactly and need to be estimated. Consider the
standard GAN discriminator with a cross-entropy loss:

min
G

maxD EX∼P [log(D(X))] +

EG(Z)∼Q[log(1−D(G(Z)))]︸ ︷︷ ︸
' dKL

(
P‖P+Q

2

)
+dKL

(
Q‖P+Q

2

)
+log(1/4)

, (2)

where the maximization is over the family of discriminators
(or the discriminator weights, if the family is a neural network
of a fixed architecture), the minimization is over the family
of generators, and X is drawn from the distribution P of
the real data, Z is drawn from the distribution of the code
vector, typically a low-dimensional Gaussian, and we denote
the resulting generator distribution as G(Z) ∼ Q. The role of
the discriminator under this GAN scenario is to provide the
generator with an approximation (or a surrogate) of a loss,
which in the case of cross entropy loss turns out to be the
Jensen-Shannon divergence (up to a scaling and shift by a con-
stant), defined as dJS(P,Q) , (1/2) dKL(P‖(P +Q)/2) +
(1/2) dKL(Q‖(P +Q)/2), where dKL(·) is the Kullback-
Leibler divergence. This follows from the fact that, if we
search for the maximizing discriminator over the space of
all functions, the maximizer turns out to be D(X) =
P (X)/(P (X)+Q(X)) [2]. In practice, we search over some
parametric family of discriminators, and we can only compute
sample average of the losses. This provides an approximation
of the Jensen-Shannon divergence between P and Q. The outer
minimization over the generator tries to generate samples such

that they are close to the real data in this (approximate) Jensen-
Shannon divergence, which is one measure of how close the
true distribution P and the generator distribution Q are.

In this section, we show a fundamental connection between
the principle of packing and mode collapse in GAN. We
provide a complete understanding of how packing changes
the loss as seen by the generator, by focusing on (as we did to
derive the Jensen-Shnnon divergence above) (a) the optimal
discriminator over a family of all measurable functions; (b)
the population expectation; and (c) the 0-1 loss function of
the form:

max
D

EX∼P [I(D(X))] + EG(Z)∼Q[1− I(D(G(Z)))]

subject to D(X) ∈ {0, 1} .

The first assumption allows us to bypass the specific architec-
ture of the discriminator used, which is common when analyz-
ing neural network based discriminators (e.g. [41], [42]). The
second assumption can be potentially relaxed and the standard
finite sample analysis can be applied to provide bounds similar
to those in our main results in Theorems 3, 4, and 5. The
last assumption gives a loss of the total variation distance
dTV(P,Q) , supS⊆X {P (S) − Q(S)} over the domain X .
This follows from the fact that (e.g. [37]),

sup
D

{
EX∼P [I(D(X))] + EG(Z)∼Q[1− I(D(G(Z)))]

}
= sup

S

{
P (S) + 1−Q(S)

}
= 1 + dTV(P,Q) .

This discriminator provides (an approximation of) the total
variation distance, and the generator tries to minimize the
total variation distance dTV(P,Q). The reason we make this
assumption is primarily for clarity and analytical tractability:
total variation distance highlights the effect of packing in a
way that is cleaner and easier to understand than if we were
to analyze Jensen-Shannon divergence. We discuss this point
in more detail in Section III-B. In sum, these three assumptions
allow us to focus purely on the impact of packing on the mode
collapse of resulting discriminator.

We want to understand how this 0-1 loss, as provided by
such a discriminator, changes with the degree of packing m.
As packed discriminators see m packed samples, each drawn
i.i.d. from one joint class (i.e. either real or generated), we
can consider these packed samples as a single sample that is
drawn from the product distribution: Pm for real and Qm

for generated. The resulting loss provided by the packed
discriminator is therefore dTV(P

m, Qm).
We first provide a formal mathematical definition of mode

collapse in Section III-A, which leads to a two-dimensional
representation of any pair of distributions (P,Q) as a mode-
collapse region. This region representation provides not only
conceptual clarity regarding mode collapse, but also proof
techniques that are essential to proving our main results on
the fundamental connections between the strength of mode
collapse in a pair (P,Q) and the loss dTV(P

m, Qm) seen
by a packed discriminator (Section III-B). The proofs of
these results are provided in [34]. In Section III-C, we show
that the proposed mode collapse region is equivalent to the
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ROC curve for binary hypothesis testing. This allows us to
use powerful mathematical techniques from binary hypothesis
testing including the data processing inequality and the reverse
data processing inequalities.

A. Mathematical definition of mode collapse as a region

Although no formal and agreed-upon definition of mode
collapse exists in the GAN literature, mode collapse is de-
clared for a multimodal target distribution P if the generator
Q assigns a significantly smaller probability density in the
regions surrounding a particular subset of modes. A major
challenge with this definition is that it involves the geometry
of P : there is no standard partitioning of the domain respecting
the modular topology of P , and even heuristic partitions
are typically computationally intractable in high dimensions.
Hence, we drop the geometric constraint, and introduce a
purely analytical definition.

Definition 1. A target distribution P and a generator Q
exhibit (ε, δ)-mode collapse for some 0 ≤ ε < δ ≤ 1 if there
exists a set S ⊆ X such that P (S) ≥ δ and Q(S) ≤ ε.

This definition provides a formal measure of mode collapse
for a target P and a generator Q; intuitively, larger δ and
smaller ε indicate more severe mode collapse. That is, if a
large portion of the target P (S) ≥ δ in some set S in the
domain X is missing in the generator Q(S) ≤ ε, then we
declare (ε, δ)-mode collapse.

A key observation is that two pairs of distributions can have
the same total variation distance while exhibiting very different
mode collapse patterns. Consider a toy example in Figure 2,
with a uniform target distribution P = U([0, 1]) over [0, 1].
Now consider all generators at a fixed total variation distance
of 0.2 from P . We compare the intensity of mode collapse
for two extreme cases of such generators. Q1 = U([0.2, 1]) is
uniform over [0.2, 1] and Q2 = 0.6U([0, 0.5])+1.4U([0.5, 1])
is a mixture of two uniform distributions, as shown in Figure 2.
They are designed to have the same total variations distance,
i.e. dTV(P,Q1) = dTV(P,Q2) = 0.2, but Q1 exhibits an
extreme mode collapse as the whole probability mass in
[0, 0.2] is lost, whereas Q2 captures a more balanced deviation
from P .

Definition 1 captures the fact that Q1 has more mode
collapse than Q2, since the pair (P,Q1) exhibits (ε = 0, δ =
0.2)-mode collapse, whereas the pair (P,Q2) exhibits only
(ε = 0.12, δ = 0.2)-mode collapse, for the same value of
δ = 0.2. However, the appropriate way to precisely represent
mode collapse (as we define it) is to visualize it through a
two-dimensional region we call the mode collapse region. For
a given pair (P,Q), the corresponding mode collapse region
R(P,Q) is defined as the convex hull of the region of points
(ε, δ) such that (P,Q) exhibit (ε, δ)-mode collapse, as shown
in Figure 2.

R(P,Q) ,

conv
( {

(ε, δ)
∣∣ δ > ε and (P,Q) has (ε, δ)-mode collapse

} )
,

(3)

where conv(·) denotes the convex hull. Using the convex hull
in this definition makes sure that the same definition seam-
lessly interpolates between continuous and discrete variables.
In particular, for continuous variables, the original region is
convex and we do not need to take a convex hull. This
definition of region is fundamental in the sense that it is a
sufficient statistic that captures the relations between P and
Q for the purpose of hypothesis testing. This assertion is
made precise in Section III-C by making a strong connection
between the mode collapse region and the type I and type
II errors in binary hypothesis testing. That connection allows
us to prove a sharp result on how the loss, as seen by the
discriminator, evolves under PacGAN. For now, we can use
this region representation of a given target-generator pair to
detect the strength of mode collapse occurring for a given
generator.

Typically, we are interested in the presence of mode collapse
with a small ε and a much larger δ; this corresponds to a
sharply-increasing slope near the origin (0, 0) in the mode
collapse region. For example, the middle panel in Figure 2
depicts the mode collapse region (shaded in gray) for a pair
of distributions (P,Q1) that exhibit significant mode collapse;
notice the sharply-increasing slope at (0, 0) of the upper
boundary of the shaded grey region (in this example the slope
is in fact infinite). The right panel in Figure 2 illustrates the
same region for a pair of distributions (P,Q2) that do not
exhibit strong mode collapse, resulting a region with a much
gentler slope at (0, 0) of the upper boundary of the shaded
grey region.

Similarly, if the generator assigns a large probability mass
compared to the target distribution on a subset, we call it a
mode augmentation, and give a formal definition below.

Definition 2. A target distribution P and a generator Q have
(ε, δ)-mode augmentation for some 0 ≤ ε < δ ≤ 1 if there
exists a set S ⊆ X such that Q(S) ≥ δ and P (S) ≤ ε.

We distinguish mode collapse and augmentation strictly
for analytical purposes. In GAN literature, both collapse and
augmentation contribute to the “mode collapse” phenomenon.

B. Evolution of the region under product distributions
The toy example generators Q1 and Q2 from Figure 2

could not be distinguished using only their total variation
distances from P , despite exhibiting very different mode
collapse properties. This suggests that the original GAN (with
0-1 loss) may be vulnerable to mode collapse. We prove in
Theorem 4 that a discriminator that packs multiple samples
together can better distinguish mode-collapsing generators.
Intuitively, m packed samples are equivalent to a single sample
drawn from the product distributions Pm and Qm. We show
in this section that there is a fundamental connection between
the strength of mode collapse of (P,Q) and the loss as seen
by the packed discriminator dTV(P

m, Qm).

Intuition via toy examples. Concretely, consider the example
from the previous section and recall that Pm denote the
product distribution resulting from packing together m inde-
pendent samples from P . Figure 3 illustrates how the mode
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Fig. 2. A formal definition of (ε, δ)-mode collapse and its accompanying region representation captures the intensity of mode collapse for generators Q1

with mode collapse and Q2 which does not have mode collapse, for a toy example distributions P , Q1, and Q2 shown on the left. The region of (ε, δ)-mode
collapse that is achievable is shown in grey.

collapse region evolves over m, the degree of packing. This
evolution highlights a key insight: the region R(Pm, Qm1 ) of a
mode-collapsing generator expands much faster as m increases
compared to the region R(Pm, Qm2 ) of a non-mode-collapsing
generator. This implies that the total variation distance of
(P,Q1) increases more rapidly as we pack more samples,
compared to (P,Q2). This follows from the fact that the
total variation distance between P and the generator can be
determined directly from the upper boundary of the mode
collapse region. In particular, a larger mode collapse region
implies a larger total variation distance between P and the
generator. The total variation distances dTV(P

m, Qm1 ) and
dTV(P

m, Qm2 ), which were explicitly chosen to be equal at
m = 1 in our example, grow farther apart with increasing m,
as illustrated in the right figure below. This implies that if we
use a packed discriminator, the mode-collapsing generator Q1

will be heavily penalized for having a larger loss, compared
to the non-mode-collapsing Q2.

Evolution of total variation distances. In order to generalize
the intuition from the above toy examples, we first analyze how
the total variation evolves for the set of all pairs (P,Q) that
have the same total variation distance τ when unpacked (i.e.,
when m = 1). The solutions to the following optimization
problems give the desired upper and lower bounds, respec-
tively, on total variation distance for any distribution pair in
this set with a packing degree of m:

min /maxP,Q dTV(P
m, Qm) (4)

subject to dTV(P,Q) = τ ,

where the maximization and minimization are over all prob-
ability measures P and Q. We give the exact solution in
Theorem 3, which is illustrated pictorially in Figure 4 (left).

Theorem 3. For all 0 ≤ τ ≤ 1 and a positive integer m, the
solution to the maximization in (4) is 1 − (1 − τ)m, and the
solution to the minimization in (4) is

L(τ,m) , min
0≤α≤1−τ

dTV

(
Pinner(α)

m, Qinner(α, τ)
m
)
, (5)

where Pinner(α)
m and Qinner(α, τ)

m are the m-th order
product distributions of binary random variables distributed

as

Pinner(α) =
[
1− α, α

]
, (6)

Qinner(α, τ) =
[
1− α− τ, α+ τ

]
. (7)

Although this is a simple statement that can be proved in
several different ways, we introduce a novel geometric proof
technique that critically relies on the proposed mode collapse
region. This particular technique will allow us to generalize
the proof to more complex problems involving mode collapse
in Theorem 4, for which other techniques do not generalize.
Note that the claim in Theorem 3 has nothing to do with mode
collapse. Still, the mode collapse region definition (used here
purely as a proof technique) provides a novel technique that
seamlessly generalizes to prove more complex statements in
the following.

For any given value of τ and m, the bounds in Theorem 3
are easy to evaluate numerically, as shown below in the left
panel of Figure 4. Within this achievable range, some subset of
pairs (P,Q) have rapidly increasing total variation, occupying
the upper part of the region (shown in red, middle panel of Fig-
ure 4), and some subset of pairs (P,Q) have slowly increasing
total variation, occupying the lower part as shown in blue in
the right panel in Figure 4. In particular, the evolution of the
mode-collapse region of a pair of m-th power distributions
R(Pm, Qm) is fundamentally connected to the strength of
mode collapse in the original pair (P,Q). This means that for
a mode-collapsed pair (P,Q1), the mth-power distribution will
exhibit a different total variation distance evolution than a non-
mode-collapsed pair (P,Q2). As such, these two pairs can be
distinguished by a packed discriminator. Making such a claim
precise for a broad class of mode-collapsing and non-mode-
collapsing generators is challenging, as it depends on the target
P and the generator Q, each of which can be a complex high
dimensional distribution, like natural images. The proposed
region interpretation, endowed with the hypothesis testing
interpretation and the data processing inequalities that come
with it, is critical: it enables the abstraction of technical details
and provides a simple and tight proof based on geometric
techniques on two-dimensional regions.

Evolution of total variation distances with mode collapse.
We analyze how the total variation evolves for the set of all
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Fig. 3. Evolution of the mode collapse region over the degree of packing m for the two toy examples from Figure 2. The region of the mode-collapsing
generator Q1 expands faster than the non-mode-collapsing generator Q2 when discriminator inputs are packed (at m = 1 these examples have the same TV
distances). This causes a discriminator to penalize mode collapse as desired.
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(4) provided in Theorem 3 (left panel). The range of dTV(Pm, Qm) achievable by those pairs that also have (ε = 0.00, δ = 0.1)-mode collapse (middle
panel). A similar range achievable by pairs of distributions that do not have (ε = 0.07, δ = 0.1)-mode collapse or (ε = 0.07, δ = 0.1)-mode augmentation
(right panel). Pairs (P,Q) with strong mode collapse occupy the top region (near the upper bound) and the pairs with weak mode collapse occupy the bottom
region (near the lower bound).

pairs (P,Q) that have the same total variations distances τ
when unpacked, with m = 1, and have (ε, δ)-mode collapse
for some 0 ≤ ε < δ ≤ 1. The solution of the following opti-
mization gives the desired range of total variation distances:

min /maxP,Q dTV(P
m, Qm) (8)

subject to dTV(P,Q) = τ

(P,Q) has (ε, δ)-mode collapse ,

where the maximization and minimization are over all proba-
bility measures P and Q, and the mode collapse constraint is
defined in Definition 1. (ε, δ)-mode collapsing pairs have total
variation at least δ− ε by definition, and when τ < δ− ε, the
feasible set of the above optimization is empty. Otherwise,
the next theorem shows that mode-collapsing pairs occupy
the upper part of the total variation region; that is, total
variation increases rapidly with packing (Figure 4, middle).
One implication is that distribution pairs (P,Q) at the top
of the total variation evolution region exhibit the strongest
mode collapse. Also, a pair (P,Q) with strong mode collapse
(i.e., with larger δ and smaller ε in the constraint) will be
penalized more by packing; hence, a generator minimizing an
approximation of dTV(P

m, Qm) will be unlikely to select a
distribution with strong mode collapse.

Theorem 4. For all 0 ≤ ε < δ ≤ 1 and a positive integer m,
if 1 ≥ τ ≥ δ − ε the solution to the maximization in (8) is

1− (1− τ)m, and the solution to the minimization in (8) is

L1(ε, δ, τ,m) ,

min
{

min
0≤α≤1− τδ

δ−ε

dTV

(
Pinner1(δ, α)

m, Qinner1(ε, α, τ)
m
)
,

min
1− τδ

δ−ε≤α≤1−τ
dTV

(
Pinner2(α)

m, Qinner2(α, τ)
m
)}

, (9)

where Pinner1(δ, α)
m, Qinner1(ε, α, τ)

m, Pinner2(α)
m, and

Qinner2(α, τ)
m are the m-th order product distributions of

discrete random variables distributed as

Pinner1(δ, α) =
[
δ, 1− α− δ, α

]
, (10)

Qinner1(ε, α, τ) =
[
ε, 1− α− τ − ε, α+ τ

]
,(11)

Pinner2(α) =
[
1− α, α

]
, (12)

Qinner2(α, τ) =
[
1− α− τ, α+ τ

]
. (13)

If τ < δ − ε, the optimization in (8) has no solution and the
feasible set is an empty set.

The proof relies on the mode collapse region representation
of the pair (P,Q) and Blackwell’s result [1]. The solutions in
Theorem 4 can be numerically evaluated for a given (ε, δ, τ) as
in Figure 5. Analogous results can be shown for pairs (P,Q)
that exhibit (ε, δ) mode augmentation as straightforward ex-
tensions of the mode collapse proofs. This holds because TV
distance is a metric, and therefore symmetric.

Evolution of total variation distances without mode col-
lapse. We next analyze how total variation evolves for the
set of all pairs (P,Q) that have the same (unpacked) total
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Fig. 5. The evolution of total variation distance over the packing degree m for mode collapsing pairs is shown as a red band. The upper and lower boundaries
of the red band is defined by the optimization 8 and computed using Theorem 4. For a fixed dTV(P,Q) = τ = 0.11 and (ε, δ = 0.1)-mode collapse, we
show the evolution with different choices of ε ∈ {0.00, 0.02, 0.03, 0.05}. The black solid lines show the maximum/minimum total variation in optimization
(4) as a reference. The family of pairs (P,Q) with stronger mode collapse (i.e. smaller ε in the constraint), occupy a smaller region at the top with higher
total variation under packing, and hence is more penalized when training the generator.

variation distances τ and do not have (ε, δ)-mode collapse
for some 0 ≤ ε < δ ≤ 1. By the symmetry of total
variation distance, mode augmentation in Definition 2 is as
damaging as mode collapse in terms of evolution of total
variation distance. Hence, we characterize this evolution for
families of distribution pairs without either mode collapse or
augmentation. The following optimization problem gives the
desired range of total variation distances:

min /maxP,Q dTV(P
m, Qm) (14)

subject to dTV(P,Q) = τ

(P,Q) does not have (ε, δ)-mode collapse/augmentation ,

where the maximization and minimization are over all prob-
ability measures P and Q, and the mode collapse and aug-
mentation constraints are defined in Definitions 1 and 2,
respectively.

It is not possible to have dTV(P,Q) > (δ − ε)/(δ + ε)
and δ + ε ≤ 1, and satisfy the mode collapse and mode
augmentation constraints. Similarly, it is not possible to have
dTV(P,Q) > (δ − ε)/(2 − δ − ε) and δ + ε ≥ 1, and
satisfy the constraints. Hence, the feasible set is empty when
τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}. On the other
hand, when τ ≤ δ− ε, no pairs with total variation distance τ
can have (ε, δ)-mode collapse. In this case, the optimization
reduces to the simpler one in (4) with no mode collapse
constraints. A non-trivial solution exists in the middle regime,
i.e. δ − ε ≤ τ ≤ max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}.
The lower bound for this regime in equation (18) is the same
as the lower bound in (5), except it optimizes over a different
range of α values. For a wide range of parameters ε, δ, and
τ , those lower bounds will be the same; if they differ for
some parameters, they differ slightly. This implies that the
pairs (P,Q) with weak mode collapse will occupy the bottom
part of the evolution of the total variation distances (Figure
4 right), and will be penalized less under packing. Hence a
generator minimizing (approximate) dTV(P

m, Qm) is likely
to generate distributions with weak mode collapse.

Theorem 5. For all 0 ≤ ε < δ ≤ 1 and a positive integer
m, if 0 ≤ τ < δ − ε, then the maximum and the minimum of
(14) are the same as those of the optimization (4) provided in
Theorem 3.

If δ + ε ≤ 1 and δ − ε ≤ τ ≤ (δ − ε)/(δ + ε) then the
solution to optimization (14) is

U1(ε, δ, τ,m) ,

max
α+β≤1−τ, ετδ−ε≤α,β

dTV

(
Pouter1(ε, δ, α, β, τ )

m,

Qouter1(ε, δ, α, β, τ )
m
)
, (15)

where Pouter1(ε, δ, α, β, τ )
m and Qouter1(ε, δ, α, β, τ )

m are
the m-th order product distributions of discrete random vari-
ables distributed as

Pouter1(ε, δ, α, β, τ ) = (16)[
α(δ−ε)−ετ

α−ε , α(α+τ−δ)
α−ε , 1− τ − α− β, β, 0

]
, and

Qouter1(ε, δ, α, β, τ ) = (17)[
0, α, 1− τ − α− β, β(β+τ−δ)

β−ε , β(δ−ε)−ετ
β−ε

]
.

The solution to the minimization in (14) is

L2(τ,m) , (18)

min
ετ
δ−ε≤α≤1−

δτ
δ−ε

dTV

(
Pinner(α)

m, Qinner(α, τ)
m
)
,

where Pinner(α) and Qinner(α, τ) are defined as in Theorem
3.

If δ+ε > 1 and δ−ε ≤ τ ≤ (δ−ε)/(2−δ−ε) the solution
to the maximization (14) is

U2(ε, δ, τ,m) ,

max
α+β≤1−τ, (1−δ)τδ−ε ≤α,β

dTV

(
Pouter2(ε, δ, α, β, τ )

m,

Qouter2(ε, δ, α, β, τ )
m
)
, (19)

where Pouter2(ε, δ, α, β, τ )
m and Qouter2(ε, δ, α, β, τ )

m are
the m-th order product distributions of discrete random vari-
ables distributed as

Pouter2(ε, δ, α, β, τ ) = (20)[
α(δ−ε)−(1−δ)τ

α−(1−δ) , α(α+τ−(1−ε))
α−(1−δ) , 1− τ − α− β, β, 0

]
,

and

Qouter2(ε, δ, α, β, τ ) = (21)[
0, α, 1− τ − α− β, β(β+τ−(1−ε))

β−(1−δ) , β(δ−ε)−(1−δ)τ
β−(1−δ)

]
.
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The solution to the minimization in (14) is

L3(τ,m) , (22)

min
(1−δ)τ
δ−ε ≤α≤1−

(1−ε)τ
δ−ε

dTV

(
Pinner(α)

m, Qinner(α, τ)
m
)
,

where Pinner(α) and Qinner(α, τ) are defined as in Theorem
3.

If τ > max{(δ− ε)/(δ+ ε), (δ− ε)/(2− δ− ε)}, then the
optimization in (14) has no solution and the feasible set is an
empty set.

A proof of this theorem also critically relies on the proposed
mode collapse region representation of the pair (P,Q) and
the celebrated result by Blackwell from [1]. The solutions in
Theorem 5 can be numerically evaluated for any given choices
of (ε, δ, τ) as we show in Figure 6.

C. Interpretation of mode collapse via hypothesis testing
regions

So far, all the definitions and theoretical results have been
explained without explicitly using the mode collapse region.
The main contribution of introducing the region definition is
that it provides a new proof technique based on the geometric
properties of these two-dimensional regions. Concretely, we
show that the proposed mode collapse region is equivalent to
a similar notion in binary hypothesis testing. This allows us
to bring powerful mathematical tools from this mature area
in statistics and information theory—in particular, the data
processing inequalities originating from the seminal work of
Blackwell [1]. We make this connection precise, which gives
insights on how to interpret the mode collapse region, and list
the properties and techniques which dramatically simplify the
proof, while providing the tight results.

1) Equivalence between the mode collapse region and the
ROC curve: There is a simple one-to-one correspondence
between mode collapse region as we define it in Section
III-A (e.g. Figure 2) and the ROC curve studied in binary
hypothesis testing. In the classical testing context, there are
two hypotheses, h = 0 or h = 1, and we make observations via
some stochastic experiment in which our observations depend
on the hypothesis. Let X denote this observation. One way
to visualize such an experiment is using a two-dimensional
region defined by the corresponding type I and type II errors.
This was used to prove strong composition theorems in differ-
ential privacy [33] and to identify the optimal differentially-
private mechanisms under local privacy [31] and multi-party
communications [32]. Concretely, an ROC curve of a binary
hypothesis testing is obtained by plotting the largest achievable
true positive rate (TPR), i.e. 1−probability of missed detection,
or equivalently 1− type II error, on the vertical axis against
the false positive rate (FPR), i.e probability of false alarm or
equivalently type I error, on the horizontal axis.

We map the binary hypothesis testing setup directly to the
GAN context. Suppose the null hypothesis h = 0 denotes
observations drawn from the generated distribution Q, and
the alternate hypothesis h = 1 denotes observations drawn
from the true distribution P . Given a sample X , suppose we

decide whether the sample came from P or Q based on a
rejection region Sreject; i.e., we reject the null hypothesis if
X ∈ Sreject. FPR (i.e. Type I error) is when the null hypothesis
is true but rejected, which happens with P(X ∈ Sreject|h = 0),
and TPR (i.e. 1-type II error) is when the null hypothesis is
false and rejected, which happens with P(X ∈ Sreject|h = 1).
Sweeping through the achievable pairs (P(X ∈ Sreject|h =
1),P(X ∈ Sreject|h = 0)) for all possible rejection sets
defines a two-dimensional, convex hypothesis testing region.
The upper boundary of this convex set is the ROC curve.
Example ROC curves for the two toy examples (P,Q1) and
(P,Q2) from Figure 2 are shown in Figure 7.

In defining the region, we allow stochastic decisions; if
two points (x, y) and (x′, y′) have achievable TPR and FPR,
then any convex combination of those points is achievable
by randomly choosing between the rejection sets. Hence,
the resulting hypothesis testing region is alway convex by
definition. We show only the region above the 45-degree
line passing through (0, 0) and (1, 1), as the other region is
symmetric and redundant. For a given pair (P,Q), a simple
relation relates its mode collapse region and hypothesis testing
region.

Remark 6 (Equivalence). For a pair of target P and generator
Q, the hypothesis testing region is the same as the mode
collapse region.

This follows immediately from the definition of mode
collapse region (Definition 1). If there exists a set S such that
P (S) = δ and Q(S) = ε, then for the choice of Sreject = S
in the binary hypothesis test, the point (P(X ∈ Sreject|h =
0) = ε,P(X ∈ Sreject|h = 1) = δ) in the hypothesis
testing region is achievable. The converse is also true, if we
make deterministic decisions on Sreject. As the mode collapse
region is a convex hull of all achievable points, points in the
hypothesis testing region requiring randomized decisions can
also be covered. For example, the hypothesis testing regions
of the toy examples from Figure 2 are shown below in Figure
7. This simple relation allows us to use rich analysis tools
known for hypothesis testing regions and ROC curves.

IV. EXPERIMENTS

Due to space constraints, we defer the bulk of our empirical
results to the longer version of this paper in [34]. However,
we include here some basic empirical results on synthetic
and real datasets. We start with a visual demonstration of
PacGAN’s efficacy on a toy dataset called 2-D Grid, consisting
of a Gaussian mixture of 25 modes in a grid arrangement
(Figure 8, left). Figure 8 shows the modes learned by a vanilla
GAN (center) and by PacGAN2 (right). We observe that while
vanilla GANs miss several modes, PacGAN2 is able to recover
all of them.

To quantify this effect, we measure both the number of
modes captured and the sample quality on the 2D-Grid, as
well as a related dataset, the 2D-Ring (an 8-mode mixture
of 2D Gaussians arranged in a ring). On these standard
Gaussian mixture benchmark datasets, we show in Table I
that PacGAN improves significantly over competing methods.
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“Modes” refers to the number of modes captured by the trained
generators (higher the better), “high quality samples ” refers
to the number of samples in the vicinity of the centers of
the ground truth mixture of Gaussians (higher the better),
and “reverse KL” measures the reverse KL divergence on
a quantized version of the generated samples and real data
(lower the better).

Another popular benchmark dataset is StackedMNIST,
where each (training) sample is constructed by concatenating
three randomly chosen MNIST handwritten digits, each one
on one of the three color channels: red, green, and blue.
PacDCGAN2 generates sharp and diverse images as shown

in Figure 9. Further, PacDCGAN significantly improves on
both number of modes captures, and the KL divergence as
shown in Table II.

V. DISCUSSION

In this work, we propose a packing framework that the-
oretically and empirically mitigates mode collapse with low
overhead. Our analysis leads to several interesting open ques-
tions, including how to apply these analysis techniques to
more general classes of loss functions such as Jensen-Shannon
divergence and Wasserstein distances. Another important ques-
tion is what packing architecture to use. For instance, a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Target distribution GAN PacGAN2

Fig. 8. Scatter plot of the 2D samples from the true distribution (left) of 2D-grid and the learned generators using GAN (middle) and PacGAN2 (right).
PacGAN2 captures all of the 25 modes.

2D-ring 2D-grid
Modes high quality reverse KL Modes high quality reverse KL

(Max 8) samples (Max 25) samples
GAN [2] 6.3±0.5 98.2±0.2 % 0.45±0.09 17.3±0.8 94.8±0.7 % 0.70±0.07
ALI [18] 6.6±0.3 97.6±0.4 % 0.36±0.04 24.1±0.4 95.7±0.6 % 0.14±0.03
Minibatch
Disc. [15] 4.3±0.8 36.6±8.8 % 1.93±0.11 23.8±0.5 79.9±3.2 % 0.17±0.03

PacGAN2 7.9±0.1 95.6±2.0 % 0.07±0.03 23.8±0.7 91.3±0.8 % 0.13±0.04
PacGAN3 7.8±0.1 97.7±0.3 % 0.10±0.02 24.6±0.4 94.2±0.4 % 0.06±0.02
PacGAN4 7.8±0.1 95.9±1.4 % 0.07±0.02 24.8±0.2 93.6±0.6 % 0.04±0.01

TABLE I
TWO MEASURES OF MODE COLLAPSE PROPOSED IN [19] FOR TWO SYNTHETIC MIXTURES OF GAUSSIANS: NUMBER OF MODES CAPTURED BY THE

GENERATOR AND PERCENTAGE OF HIGH QUALITY SAMPLES, AS WELL AS REVERSE KL. OUR RESULTS ARE AVERAGED OVER 10 TRIALS SHOWN WITH
THE STANDARD ERROR. WE NOTE THAT 2 TRIALS OF MD IN 2D-RING DATASET COVER NO MODE, WHICH MAKES REVERSE KL INTRACTABLE. THIS

REVERSE KL ENTRY IS AVERAGED OVER THE OTHER 8 TRIALS.

Stacked MNIST
Modes (Max 1000) KL

DCGAN [35] 99.0 3.40
ALI [18] 16.0 5.40
Unrolled GAN [20] 48.7 4.32
VEEGAN [19] 150.0 2.95
Minibatch Discrimination [15] 24.5±7.67 5.49±0.418
DCGAN (our implementation) 78.9±6.46 4.50±0.127
PacDCGAN2 (ours) 1000.0±0.00 0.06±0.003
PacDCGAN3 (ours) 1000.0±0.00 0.06±0.003
PacDCGAN4 (ours) 1000.0±0.00 0.07±0.005

TABLE II
TWO MEASURES OF MODE COLLAPSE PROPOSED IN [19] FOR THE

STACKED MNIST DATASET: NUMBER OF MODES CAPTURED BY THE
GENERATOR AND REVERSE KL DIVERGENCE OVER THE GENERATED

MODE DISTRIBUTION. THE DCGAN, PACDCGAN, AND MD RESULTS
ARE AVERAGED OVER 10 TRIALS, WITH STANDARD ERROR REPORTED.

framework that provides permutation invariance (e.g., graph
neural networks[43], [44], [45] or deep sets [46]) may give
better results.
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