
1

LEARN Codes: Inventing Low-Latency Codes
via Recurrent Neural Networks

Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Abstract—Designing channel codes under low-latency
constraints is one of the most demanding requirements
in 5G standards. However, a sharp characterization of
the performance of traditional codes is available only in
the large block-length limit. Guided by such asymptotic
analysis, code designs require large block lengths as well
as latency to achieve the desired error rate. Tail-biting
convolutional codes and other recent state-of-the-art short
block codes, while promising reduced latency, are neither
robust to channel-mismatch nor adaptive to varying chan-
nel conditions. When the codes designed for one channel
(e.g., Additive White Gaussian Noise (AWGN) channel) are
used for another (e.g., non-AWGN channels), heuristics are
necessary to achieve non-trivial performance.

In this paper, we first propose an end-to-end learned
neural code, obtained by jointly designing a Recurrent
Neural Network (RNN) based encoder and decoder. This
code outperforms canonical convolutional code under block
settings. We then leverage this experience to propose a
new class of codes under low-latency constraints, which we
call Low-latency Efficient Adaptive Robust Neural (LEARN)
codes. These codes outperform state-of-the-art low-latency
codes and exhibit robustness and adaptivity properties.
LEARN codes show the potential to design new versatile
and universal codes for future communications via tools
of modern deep learning coupled with communication
engineering insights.

Index Terms—Channel Coding, Low Latency, Com-
munications, Deep Learning, Robustness, Adaptivity.

I. INTRODUCTION

Reliable channel codes have had a huge impact on
communications in the modern information age. Since its
inception in [1] that was powered by the mathematical
insights of information theory and principles of modern

Y. Jiang and S. Kannan are with Department of Electrical
and Computer Engineering (ECE) at University of Washington
(UW), Seattle, USA. Email: yihanrogerjiang@gmail.com
(Y. Jiang), ksreeram@uw.edu (S. Kannan). H. Kim is with
Samsung AI Center Cambridge, Cambridge, United Kingdom,
Email: hkim1505@gmail.com. H. Asnani is with the School
of Technology and Computer Science (STCS) at Tata Insti-
tute of Fundamental Research (TIFR), Mumbai, India, Email:
himanshu.asnani@tifr.res.in. S. Oh is with the Allen School
of Computer Science & Engineering at University of Washington
(UW), Seattle, USA, Email: sewoong@cs.washington.edu. P.
Viswanath is with the Coordinated Science Lab (CSL) and the
Department of Electrical Engineering at University of Illinois at Urbana
Champaign (UIUC), Email: pramodv@illinois.edu.
This paper is an extended version of work appeared in the 53rd IEEE
International Conference on Communications (ICC 2019).

engineering, several capacity-achieving codes such as
Polar, Turbo and LDPC codes [2][3][4] have come close
to the Shannon limit when operated at large block lengths
under Additive White Gaussian Noise (AWGN) channels.
These codes were successfully adopted and applied in
LTE and 5G data planes [5]. Since 5G is under intensive
development, designing codes that have features such
as low latency, robustness, and adaptivity has become
increasingly important.

A. Motivation
Ultra-Reliable Low Latency Communication

(URLLC) code [6] requires minimal delay constraints,
thereby enabling scenarios such as vehicular
communication, virtual reality, and remote surgery.
When considering low-latency requirements, it is
instructive to observe the interplay of three different
types of delays: processing delays, propagation delays,
and structural delays. Processing and propagation
delays are affected mostly by computing resources
and varying environments [7]. Low-latency channel
coding, the focus of this paper, aims to improve the
structural delay caused by the encoder and/or decoder.
Encoder structural delay refers to the delay between
the encoder’s receiving the information bit and sending
it out. Decoder structural delay refers to the delay
between the decoder’s receiving and decoding bits from
the channel. Traditional AWGN capacity-achieving
codes, such as LDPC and Turbo codes with small
block lengths, show poor performance for URLLC
requirements [7], [11]. There has also been recent interest
in establishing theoretical limits and bounds on the
reliability of codes at small to medium block lengths [12].

We note that latency translates directly to block
length when using a block code; the decoder waits
until it receives the entire (noisy) codeword to start the
decoding. On the other hand, when using a convolutional
code, latency is given by the decoding window length.
Thus, there is an inherent difference between block
codes and convolutional codes when considering latency.
Since the latter incorporates locality in encoding, they
can also be locally decoded. While convolutional codes
with small constraint lengths are not capacity achieving,

2

they can possibly be optimal under the low-latency
constraint. Indeed, this possibility was raised by [7]
and observed in [8], [9], [10]. Convolutional codes
that allows run-length coding beyond block coding
schemes [7] perform better than a known converse
bound on the performance of block codes. In this
work, we advance this hypothesis by showing that we
can invent codes similar to convolutional codes that
outperform handcrafted codes in the low-latency regime.
While convolutional codes are the state-of-the-art in
this regime, in the moderate latency regime, Extended
Bose-Chaudhuri-Hocquenghem codes (eBCH) also
perform well [13].

In addition, low-latency constraint channel coding
must take channel effects into account under non-AWGN
settings because pilot bits used for accurate channel
estimation increase latency [7]. This calls for incorpo-
rating both robustness and adaptivity as desired features
for URLLC codes. Robustness refers to the ability to
perform with acceptable degradation without retraining
when model mismatches occur; adaptivity refers to the
ability to learn to adapt to different channel models with
retraining. Current traditional channel coding systems
require heuristics to compensate for channel effects,
which leads to sub-optimality for model mismatches [14].
In general, channels without clean mathematical analysis
lack the theory of an optimal communication algorithm
and thus rely on sub-optimal heuristics [15]. In short,
current channel coding schemes fail to deliver under the
challenges of low latency, robustness, and adaptivity.

B. Channel Coding Inspired by Deep Learning: Prior
Art

On the past decade, advances in deep learning
(DL) have greatly benefited engineering fields such as
computer vision, natural language processing, and gaming
technology [16]. This has generated recent excitement
about applying DL methods to communication system
design [19][20]. These methods have typically been
successful in settings where there is a significant model-
deficiency, i.e., the observed data cannot be well described
by a clean mathematical model. Thus, many initial pro-
posals applying DL to communication systems have also
focused on problems where there is model uncertainty
due to the lack of, say, channel knowledge [21], [22].
In developing codes for the AWGN channel under low-
latency constraints, there is no model deficiency since
the channel is well-defined mathematically and simple
to describe. However, the main challenge is that optimal
codes and decoding algorithms are not known; we refer
to this as algorithm deficiency.

For algorithm-deficit problems, the following two
categories of work apply deep learning to communication

systems: (1) designing a neural network decoder (aka
neural decoder) for a given canonical encoder such as
LDPC or Turbo codes, and (2) jointly designing both
the neural network encoder and decoder, referred to
as a Channel Autoencoder (aka Channel AE) [19] (as
illustrated in Figure 1).

Fig. 1. Channel AE block diagram.

Neural decoders show promising performance by
mimicking and modifying existing optimal decoding
algorithms. Learnable Belief Propagation (BP) decoders
for BCH and High-Density Parity-Check (HDPC) code
have been proposed in [24] and [25]. Polar decoding
via neural BP is proposed in [26] and [27]. Since
mimicking learnable Tanner graphs requires a fully
connected neural network, generalizing to longer block
lengths is prohibitive. Capacity-achieving performance
for Turbo code under an AWGN channel is achieved
via Recurrent Neural Networks (RNNs) for arbitrary
block lengths [28]. The joint design of neural code
(encoders) and decoders via a Channel AE, relevant to the
problem under consideration in this paper, has witnessed
scant progress. Deep autoencoders have been successfully
applied for various problems, such as dimensionality
reduction, representation learning, and graph generation
[18]. However, Channel AE significantly differs from
typical deep autoencoder models in the following two as-
pects, making its design and training highly challenging:

1) The number of possible message bits b grows
exponentially with respect to the block length.
Hence, Channel AE must generalize to unseen
messages with capacity-restricted encoders and
decoders [26].

2) Channel models add noise between the encoder and
decoder, and the encoder needs to satisfy power
constraints, thus requiring high robustness in the
code.

For Channel AE training, [19] and [20] introduce
learning tricks emphasizing both channel coding and
modulations. Learning Channel AE without a channel
gradient is shown in [32]. Modulation gain is reported in
[33]. Beyond AWGN and fading channels, [34] extended
RNN to design a code for the feedback channel, which
outperforms existing state-of-the-art codes [29], [30].
Extending Channel AE to MIMO settings is reported in
[23]. Despite the successes, existing research on Channel
AE under canonical channels is currently restricted to
very short block lengths (for example, achieving the
same performance as a rate 4/7 Hamming code with 4

3

information bits). Furthermore, existing works do not
focus on the low-latency, robustness, and adaptivity
requirements.

With this backdrop, this paper poses the following
fundamental question: Can we improve the Channel AE
design to construct new codes that comply with low-
latency requirements?

We answer this in affirmative, as described next.

C. Our Contribution

Our primary goal is to design a low-latency code
under extremely low-structural-latency requirements. As
noted, convolutional codes outperform block codes given
low structural latency [7] [8] [9] [10]. An RNN is a
constrained neural structure with a natural connection
to convolutional codes since the encoded symbol has a
locality of memory and is most strongly influenced by
the recent past of the input bits. Furthermore, RNN-based
codes have shown a natural generalization across different
block lengths in prior work [28][26]. With a carefully
designed learnable structure that uses Bidirectional RNN
(Bi-RNN) for both encoder and decoder, as well as a
novel training methodology developed specifically for the
Channel AE model, we demonstrate that our Bi-RNN-
based neural code outperforms convolutional code.

We then propose Low-Latency Efficient Adaptive
Robust Neural (LEARN) code, which applies learnable
RNN structures to both the encoder and decoder with
an additional low-latency constraint. LEARN improves
performance under extremely low-latency constraints.
Ours is the first work we know of that creates an end-to-
end design for a neural code that improves performance
on the AWGN channel (in any regime). In summary, the
contributions of this paper include:

1. Outperforming convolutional codes. We propose a
bi-directional RNN network structure and a tailored
learning methodology for Channel AE that outper-
form canonical convolutional codes. The proposed
training methodology results in smoother training
dynamics and better generalization. (Section II)

2. Improving performance in low-latency settings.
We design LEARN code for low-latency require-
ments with specific network designs. LEARN code
improves performance in extremely low-latency
settings. (Section III).

3. Showing robustness and adaptivity. When channel
conditions are varying, LEARN codes demonstrate
robustness (ability to work well under unseen
channels) and adaptivity (ability to adapt to a
new channel with few training symbols), showing
an order of magnitude improvement in reliability
compared to existing state-of-the-art codes. (Section
III)

4. Providing interpretations. We provide interpreta-
tions to aid in the fundamental understanding of
why the jointly trained code works better than
canonical codes, instrumental in aiding future
research. (Section IV)

II. DESIGNING NEURAL CODES THAT OUTPERFORM
CONVOLUTIONAL CODES

The reliability of neural-network-based codes relies
heavily on two factors: (1) a network structure design, and
(2) a training methodology. In this section, we provide
guidelines for these two factors and demonstrate that
neural codes designed and trained using our guidelines
have superior reliability compared to convolutional codes
in a block coding setting.

A. Network Structure Design

Canonical channel codes perform better given longer
block lengths, which is referred to as coding gain. Recent
research on the Channel AE model does not show coding
gain for even moderate block lengths [19][26] with fully
connected neural networks, even with nearly unlimited
training examples. We argue that a Recurrent Neural
Network (RNN) architecture is a more suitable DL
structure for Channel AE. For a brief introduction to
RNN and its variants – such as Bidirectional RNN (Bi-
RNN), Gated Recurrent Unit (GRU), or Long Short Term
Memory (LSTM) – please refer to Appendix A. In this
paper, we use the terms GRU and RNN interchangeably.

RNN-based Encoder and Decoder Design
Our empirical results comparing different Channel AE
structures (Figure 2) show that for a longer block length,
RNN outperforms a Fully Connected Neural Network
(FCNN) for Channel AE. The FCNN curve in Figure 2
refers to using FCNN for both encoder and decoder. RNN
in Figure 2 refers to using Bi-RNN for both encoder and
decoder. The training steps are kept the same for a fair
comparison. The repetition code and extended Hamming
code performances are shown as a reference for both
short and long block lengths.

Figure 2 (left) shows that for short block lengths
(4), the performance of FCNN and RNN are close to
each other since enumerating all possible code is not
prohibitive. On the other hand, for a longer block length
(100), Figure 2 (right) shows that in using FCNN, the
Bit Error Rate (BER) is even worse than repetition
codes, which shows a failure in generalization; RNN
outperforms FCNN due to its generalization via parameter
sharing and adaptive learnable dependency length. Hence,
in this paper, we model the encoder and decoder as
RNNs in order to gain generalization across block
lengths. Figure 2 also shows that RNNs with tailored
training methodologies outperform simply applying RNN

4

Fig. 2. Channel AE performance on code rate 1/2, where block length (number of information bits) is 4 (left) and 100 (right). TBCC shown on
the right is m=2, with g11 = 5, g12 = 7 with feedback 7.

or FCNN for Channel AE; we illustrate this training
methodology in Section II.B.

Power Constraint Module
The output of the RNN encoder can take arbitrary values
and does not necessarily satisfy the power constraint. To
impose the power constraint, we use a power constraint
layer after the RNN encoding layer, as shown in Figure
1. Power normalization enforces that the output code has
unit power by normalizing the output as E[x2] = 1. More
detail is in the Appendix.

B. Training Methodology

The following training methods result in a faster
learning trajectory and better generalization with the
learnable structure discussed above.
• Training with a large batch size
• Using Binary Crossentropy (BCE) loss
• Training encoder and decoder separately
• Adding a minimum distance regularizer on encoder.
• Using the Adam optimizer
• Adding more capacity (parameters) to the decoder

than the encoder
Some of the training methods are not common in

deep learning due to the unique structure of Channel AE.
Appendix C shows the empirical evidence, where we
reason about the better performance of the above training
methods.

C. Performance of RNN-Based Channel AE: AWGN
Setting

Applying the network architecture guidelines and the
training methodology improvements thus far proposed,
we design neural code with Bi-GRU for both encoder
and decoder, as shown in Figure 3. The hyperparameters
are shown in Figure 4.

Decoder layer Output dimension
input (K, 1/R)

Bi-GRU (2 layers) (K, 100)
FCNN (sigmoid) (K,1)

Encoder layer Output dimension
input (K, 1)

Bi-GRU (2 layers) (K, 25)
FCNN (linear) (K,1/R)

Fig. 3. RNN-based Channel AE encoder (top left), decoder (top right),
and network structures (bottom).

Tail-biting Convolutional Code (TBCC) has proven
to be the state of the art under a short block length regime
[7], [8], [9], [10]. We compare the performance of TBCC
with RNN-based channel code on block code settings.
The BER performance in the AWGN channel under
various code rates is shown in Figure 5. The TBCC BER
curve is generated by convolutional code with constraint
length up to m = 7 by the best generator function from
Figure 7, with traceback length equals 5(m + 1); we
measure the BERs for all TBCCs in Figure 7 empirically
using CommPy simulator [52] and plot the best one.
Figure 5 shows that RNN-based Channel AE outperforms
all convolutional codes up to constrained length 7. RNN-
based Channel AE empirically shows the advantage of
jointly optimizing encoder and decoder over the AWGN

5

Encoder 2-layer Bi-GRU w/ 25 units
Decoder 2-layer Bi-GRU w/ 100 units

Power constraint bit-wise normalization
Batch size 1000

Learning rate 0.001, × 1/10 when saturate
Num epoch 250

Block length 100
Batch per epoch 100

Optimizer Adam
Loss Binary Cross Entropy (BCE)

Min Dist Regularizer 0.0
Train SNR at rate 1/2 mixture of 0 to 8dB
Train SNR at rate 1/3 mixture of -1 to 2dB
Train SNR at rate 1/4 mixture of -2 to 2dB

Train method train ENC once DEC 5 times
Min Distance Regularizer 0.001 (s = 10)

Fig. 4. RNN-based Channel AE hyperparameters.

channel.
Note that the RNN-based Channel AE code is

continuous; the performance gain is from both coding
gain and high-order modulation gain, as shown in Figure 5
right; the performance gap at a higher SNR is larger.
Binarized code leads to a fairer comparison; however,
binarizing with the sign function is not differentiable.
Bypassing non-differentiability using a straight-through
estimator (STE) [50] degrades performance in channel
coding [51]. Binarizing code and comparing to high order
modulation are deferred to future research.

D. Performance of RNN-Based Channel AE: Non-AWGN
Setting

We test the robustness and adaptivity of RNN-based
Channel AE on three families of channels:

1) AWGN channel: y = x+ z, where z ∼ N(0, σ2).
2) Additive T-distribution Noise (ATN) channel: y =

x+z, where x ∼ T (v, σ2), for v = 3, 5. This noise
is a model for heavy-tailed distributions.

3) Radar channel: y = x+w+z, where z ∼ N(0, σ2
1)

and w ∼ N(0, σ2
2), w.p. p = 0.05. (Assume σ1 �

σ2). This noise model appears when there is bursty
interference, for example, when Radar interferes
with LTE [39], [15].

Robustness
Robustness implies that when RNN-based Channel AE is
trained for the AWGN channel, the test performance with
no re-training on a different channel (ATN and Radar)
should not degrade significantly. Most existing codes are
designed under AWGN since it has a clean mathematical
abstraction, and AWGN is the worst case noise under
a given power constraint [1]. When both the encoder
and decoder are unaware of the non-AWGN channel,
the BER performance degrades. Robustness ensures both
the encoder and decoder perform well under channel

mismatch, which is a typical use case for the low-latency
scheme when channel estimation and compensation are
not accurate [5].

Adaptivity
Adaptivity allows RNN-based Channel AE to learn
a decoding algorithm from sufficient data (includes
retraining) even under no clean mathematical model [28].
We train RNN-based Channel AE under ATN and Radar
channels with the same hyperparameters shown in Figure
4 and the same amount of training data to ensure that the
RNN-based Channel AE converges. With both learnable
encoder and decoder, two cases of adaptivity are tested.
First is decoder adaptivity, where the encoder is fixed
and the decoder can be further trained. Second is the full
adaptivity of both encoder and decoder. In our findings,
encoder adaptivity shows no further advantage and is
thus omitted.

We now evaluate RNN-based Channel AE for robust-
ness and adaptivity on ATN and Radar channels. The BER
performance is shown in Figure 6. Note that under non-
AWGN channels, RNN-based Channel AE trained on the
AWGN channel outperforms the convolutional code with
the Viterbi decoder. It also shows more robust decoding
ability for channel mismatching compared to the best
convolutional code. As shown in Figure 6, RNN-based
Channel AE with decoder-only adaptivity improves over
the RNN-based Channel AE robust decoder, while RNN-
based Channel AE with full adaptivity with both trainable
encoder and decoder shows the best performance.

The fully adapted RNN-based Channel AE outper-
forms the convolutional code even with CSIR, which
utilizes the log-likelihood of T-distribution noise. Thus,
designing jointly by utilizing the encoder and decoder
further optimizes code under given channels. Even
when the underlying mathematical model is far from
a cleaner abstraction, RNN-based Channel AE can learn
the underlying functional code via self-supervised back-
propagation.

RNN-based Channel AE is the first neural code to
our knowledge that outperforms existing canonical codes
under the AWGN channel coding setting, which opens a
new field of constructing efficient neural codes under
canonical settings. Furthermore, RNN-based Channel
AE can be applied to channels even when mathematical
analysis cannot be performed.

III. DESIGNING LOW LATENCY NEURAL CODES:
LEARN

Designing codes for low-latency constraints is chal-
lenging since many existing block codes require inevitably
long block lengths. To address this challenge, we now
propose a new RNN-based encoder and decoder architec-
ture that satisfies a low-latency constraint, which we call
LEARN. While our encoder and decoder architectures

6

Fig. 5. Comparing RNN-based Channel AE with convolutional code on rate 1/4 (left), 1/3 (middle), 1/2 (right). Block length = 100.

Fig. 6. RNN-based Channel AE vs TBCC, ATN(ν = 3) at rate 1/2 (left), Radar (σ2
2 = 5.0) at rate 1/3 (middle), ATN(ν = 3) at rate 1/4 (right).

TBCC is m=2, with g11 = 5, g12 = 7 with feedback 7

are based on RNNs, we introduce a new block in the
decoder architecture so that the decoder can satisfy the
extreme low-latency constraint. We show that LEARN
code is: (1) significantly more reliable than convolutional
codes, which are state-of-the-art under extreme low-
latency constraints [7], and (2) more robust and adaptive
for various channels beyond AWGN channels. In the
following, we first define the latency and review the
literature for the low-latency setting.

A. Low-Latency Convolutional Code

Formally, decoder structural delay D is understood
in the following setting: to send message bt at time t,
the causal encoder sends code xt, and the decoder has
to decode bt as soon as it received yt+D. The decoder
structural delay D is the number of bits that the decoder
can look ahead to decode. The convolutional code has 0
encoder delay due to its causal encoder, and the decoder
delay is controlled by the optimal Viterbi decoder [35]
with a decoding window of length w, which uses only the
last w future branches in the trellis to compute the current
output. For code rate R = k

n convolutional code, the
structural decoder delay is D = k−1+kw [11]. We use

code rate k = 1 with n = 2, 3, 4,; the structural decoder
delay is D = w. Convolutional code is state-of-the-art
code under extreme low latency, where D ≤ 50 [7].

In this paper, we confine our scope to investigating
extreme low latency with no encoder delay under ex-
tremely low structural decoder delay D = 1 to D = 10
with code rates 1/2, 1/3, and 1/4. The benchmark we
are using is convolutional code with variable memory
length. Under an unbounded block length setting, longer
memory improves performance; however, under a low-
latency constraint, longer memory may not necessarily
mean better performance since the decoding window
is shorter [7]. Hence, we test for all memory lengths
under 7 to get the state-of-the-art performance of the
Recursive Systematic Convolutional (RSC) code, whose
generating functions are shown in Figure 7 (top), with the
convolutional code encoder shown in Figure 7 (bottom).
The decoder is Viterbi with a decoding window w = D.

B. LEARN Network Structure

Using the network design proposed in the previous
section, we propose a novel RNN-based neural network
architecture for LEARN (both encoder and decoder) that

7

R=1/2 R=1/3 R=1/4
m g11 g12 g11 g12 g13 g11 g12 g13 g14 Feedback

1 2 3 1 3 3 1 1 3 3 3
2 5 7 5 7 7 5 7 7 7 7
3 15 17 13 15 17 13 15 15 17 17
4 23 35 25 33 37 25 27 33 37 37
5 53 75 47 53 75 53 67 71 75 75
6 133 171 133 145 175 135 135 147 163 163
7 247 371 225 331 367 237 275 313 357 357

Fig. 7. Convolutional code generator matrix in octal representation
(top) [7] and encoder (bottom).

satisfies the low-latency constraint. Our proposed LEARN
encoder is illustrated in Figure 8 (top left). The causal
neural encoder is a causal RNN with two layers of GRU
added to a Fully Connected Neural Network (FCNN). The
neural structure ensures that the optimal temporal storage
can be learned and extended to a non-linear regime. The
power constraint module is bit-wise normalization, as
described in the previous section.

Decoder layer Output dimension
Input (K, 1/R)

GRU1 (2 layers) (K, 100)
GRU2 (2 layers) (K, 100)
FCNN (sigmoid) (K,1)

Encoder layer Output dimension
Input (K, 1)

GRU (2 layers) (K, 25)
FCNN (linear) (K,1/R)

Fig. 8. LEARN encoder (top left), LEARN decoder (top right), and
network structures (bottom).

Applying the Bi-RNN decoder for low-latency code
requires the computation of lookahead instances for
each received information bit, which is computationally
expensive in both time and memory. To improve effi-
ciency, the LEARN decoder uses two GRU structures
instead of Bi-RNN structures. It has two GRUs: one
GRU runs till the current time slot, and another GRU
runs further for D steps; the outputs of the two GRUs
are then summarized by a FCNN. The LEARN decoder

ensures that all the information bits satisfying the delay
constraint can be utilized with the forward pass only.
When decoding a received signal, each GRU needs to
process only one step ahead, which results in decoding
computation complexity O(1). Viterbi and BCJR low-
latency decoders need to go through the trellis and
backtrack to the desired position, which requires going
forward one step and backward with delay constraints
steps, resulting in O(D) computation for decoding each
bit. Although GRU has a large computational constant due
to the complexity of the neural network, the computation
time is expected to diminish [38] with emerging AI chips.
The hyperparameters of LEARN differ from block code
settings. To summarize the differences: (1) the encoder
and decoder use GRU instead of Bi-GRU, (2) the number
of training epochs is reduced to 120, and (3) we do not
use a partial minimum distance regularizer.

C. Performance of LEARN: AWGN Setting

Figure 9 shows the BER of a LEARN code and
state-of-the-art RSC codes with varying memory lengths
as illustrated in Figure 7 (top) for rates 1/2, 1/3, and 1/4
as a function of SNR under latency constraints D = 1
and D = 10. As the figure shows, for rates 1/3 and 1/4
under the AWGN channel, LEARN code under extreme
delay (D = 1 to D = 10) shows better performance
in Bit Error Rate (BER) compared to the state-of-the-
art RSC codes from varying memory lengths in Figure
7 (top). LEARN outperforms all RSC codes listed in
Figure 7 (top) with D ≤ 10 with code rates 1/3 and 1/4,
demonstrating a promising application of neural code
under the low-latency constraint.

For higher code rates (such as R = 1
2 and D ≥ 5),

LEARN shows comparable performance to convolutional
codes but degrades at a high SNR. We expect further
improvements can be made via improved structure design
and hyperparameter optimization, especially at higher
rates.

D. Robustness and Adaptivity

The performance of LEARN with reference to
robustness and adaptivity is shown in Figure 10 for three
different settings: (1) delay D = 10, code rate R = 1/2,
with ATN (ν = 3) channel; (2) delay D = 2, code rate
R = 1/3, with ATN (ν = 3) channel; and (3) delay
D = 10, code rate R = 1/2, with the Radar (p = 0.05,
σ2 = 5.0) channel. As shown in Figure 10 (left), with
ATN (ν = 3), which has a heavy-tail noise, LEARN with
robustness outperforms convolutional code. Adaptivity
with both encoder and decoder performs best and is better
than when only the decoder is adaptive. By utilizing the
degree of freedom in designing an encoder and decoder,
neural designed coding schemes can match canonical

8

Fig. 9. BER curves comparing low-latency convolutional code vs LEARN under the AWGN channel with rate 1/4, 1/3, and 1/2.

convolutional codes with Channel State Information at
Receiver (CSIR) at a low code rate (R = 1/2) and
outperform convolutional codes with CSIR at a high
code rate (R = 1/3).

As for Figure 10 (middle) ATN (ν = 3) channel with
code rate R = 1/3 and Figure 10 (right) Radar (σ2 =
5.0) channel with code rate R = 1/4, the same trend
holds. Note that under the Radar channel, we apply the
heuristic proposed in [15]. We observe that LEARN with
full adaptation gives an order-of-magnitude improvement
in reliability over the convolutional code heuristic [15].
This experiment shows that by jointly designing both
encoder and decoder, LEARN can adapt to a broad family
of channels. LEARN offers an end-to-end low-latency
coding design method that can be applied to any statistical
channels and ensure good performance.

IV. INTERPRETABILITY OF DEEP MODELS

The promising performance of LEARN and the
RNN-based Channel AE leads to an inevitable question:
how do we interpret what the encoder and decoder have
learned? Answering this can inspire future research as
well as help us find caveats and limitations. In this section,
we present interpretation analysis via local perturbation
for LEARN and RNN-based Channel AE encoders and
decoders.

A. Encoder Interpretability

The significant recurrent length of RNNs is a
recurrent capacity indicator that helps to interpret neural
encoder and decoders. The RNN encoder’s significant re-
current length is defined, at time t, as how long a sequence
the input ut can impact as RNN operates recurrently.
Assume two input sequences, u1 = u1,1, ..., u1,t, ...u1,T
and u2 = u2,1, ..., u2,t, ...u2,T , where only u1,t and u2,t
differ. Taking a batch of u1 and u2 as input for the RNN
encoder, we compare the output absolute difference along
the whole block between x1 = f(u1) and x2 = f(u2)
to investigate how long the input flip at time t can affect.
To investigate LEARN’s RNN encoder, we flip only the
first bit (position 0) of u1 and u2. The code position
refers to the block bit positions, and the y-axis shows
the averaged difference between two different sequences.
Figure 11 (top left) shows that for an extremely short
delay D = 1, the encoder’s significant recurrent length
is short. The effect of the current bit diminishes after
2 bits. As the delay constraint increases, the encoder’s
significant recurrent length increases, accordingly. The
LEARN encoder learns to encode locally to optimize
under the low-latency constraint.

For RNN-based Channel AE with Bi-RNN encoder,
the block length is 100, and the flip is applied at
the middle 50th bit position. Figure 11 (top right)
shows the encoder trained under the AWGN and ATN
channels. The encoder trained on ATN shows a longer

9

Fig. 10. LEARN robustness and adaptivity in ATN (ν = 3, R = 1/2, D = 10)(left), ATN (ν = 3, R = 1/3, D = 2)(middle), and Radar
(p = 0.05, σ2 = 5.0, R = 1/4, D = 10) (right) channels.

significant dependency length. ATN is a heavy-tail noise
distribution to alleviate the effect of extreme value;
increasing the dependency of code improves reliability.
Note that even the longest significant recurrent length is
only backward 10 steps and forward 16 steps; thus, the
GRU encoder actually did not learn very long recurrent
dependency. AWGN capacity-achieving code has some
inbuilt mechanisms to improve long-term dependency, for
example, the Turbo encoder uses interleaver to improve
the long-term dependency [3]. Improving the significant
recurrent length length via a more learnable structure
design is an interesting future research direction.

B. Decoder Interpretability
The decoder’s significant recurrent length can il-

lustrate how it copes with different constraints and
channels. Assume two noiseless coded sequences, y1 =
y1,1, ..., y1,t, ...y1,T and y2 = y2,1, ..., y2,t, ...y2,T , y1,
and y2 equals y1 other than at time t, where y1,t = y2,t+
p, where p is the large deterministic pulse noise; p = 5.0
for our experiment. We compare the output absolute
difference along the whole block between û1 = g(y1)
and u2 = g(y2) to investigate how long the pulse noise
can affect. For the LEARN decoder, we inject pulse noise
at the starting position. Figure 11 (bottom left) shows that
for all delay cases, the noise most significantly affected
the position equal to the delay constraint. This shows that
the LEARN decoder learns to coordinate with the causal
LEARN encoder. Since D = 1, the maximized decoder
difference along the block is at position 1; when D = 10,
the maximized decoder difference along the block is at
position 10. Other code bits have a less significant but
non-zero decoder difference.

The LEARN decoder’s significant recurrent length
implies that it not only learns to utilize the causal
encoder’s immediate output, but it also utilizes outputs in
other time slots to help decoding. Note that the maximized

significant recurrent length is approximately twice the
delay constraint; after less than approximately 2D, the
impact diminishes. The LEARN decoder learns to decode
locally to optimize under different low-latency constraints.
For RNN-based Channel AE with the Bi-RNN encoder,

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Code position

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

co
de

 d
iff

er
en

ce

LEARN encoder interpretation
delay = 1
delay = 5
delay = 10

40 45 50 55 60 65 70
Code position

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

co
de

 d
iff

er
en

ce

RNN-based Channel AE Encoder interpretation
AWGN trained
ATN trained

0 5 10 15 20 25
Code position

0.0

0.2

0.4

0.6

0.8

De
c

di
ffe

re
nc

e

LEARN decoder interpretation
delay = 1
delay = 5
delay = 10

40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0
Code position

10 5

10 4

10 3

10 2

10 1

100

De
c

di
ffe

re
nc

e

RNN-based Channel AE Decoder interpretation
AWGN trained
ATN trained

Fig. 11. Encoder interpretation for LEARN (top left) and RNN-based
Channel AE (top right). Decoder interpretation for LEARN (bottom
left) and RNN-based Channel AE (bottom right).

the perturbation is applied at the middle 50th position,
still with block length 100. Figure 11 (bottom right)
shows the decoder trained under the AWGN and ATN
channels. The AWGN-trained decoder is more sensitive
to pulse noise with extreme values than the ATN-trained
decoder. By reducing the sensitivity for extreme noise,
the ATN-trained decoder learns to alleviate the effect
of non-Gaussian noise. The RNN-based Channel AE
decoder learns to optimize the utilization of received
signals under different channel settings.

10

V. CONCLUSION

In this paper, we demonstrated the power of neural
network-based architectures to achieve state-of-the-art per-
formance for simultaneous code and decoder design. We
showed that our learned codes significantly outperform
convolutional codes in short to medium block lengths.
However, in order to outperform state-of-the-art codes
such as Turbo or LDPC codes, we require additional
mechanisms such as interleaving to introduce long-term
dependence. This promises to be a fruitful direction for
future exploration.

In the low-latency regime, we achieved state-of-
the-art performance with LEARN codes. Furthermore,
LEARN codes beat existing codes by an order of
magnitude in reliability given channel mismatch. Our
present design is restricted to extreme low latency;
however, with additional mechanisms for introducing
longer term dependence [40], [41], we believe that it
is possible to extend these designs to cover a larger
range of delays. This is another interesting direction
for future work. Finally, we focused only on extreme
structural latency. Latency depends on other factors
as well (e.g., computational complexity). Optimization
of neural decoders to reduce other latency poses an
interesting open problem.

ACKNOWLEDGMENT

This work was supported in part by NSF awards
1651236 and 1703403, as well as a gift from Intel. We
also want to thank reviewers for the helpful and supportive
comments.

REFERENCES

[1] Shannon, C.E. “A mathematical theory of communication." Bell
system technical journal 27.3 (1948): 379-423.

[2] Arikan, Erdal. “A performance comparison of polar codes and
Reed-Muller codes." IEEE Communications Letters 12.6 (2008).

[3] Berrou, Claude, Alain Glavieux, and Punya Thitimajshima. “Near
Shannon limit error-correcting coding and decoding: Turbo-codes.
1." Communications, 1993. ICC’93.

[4] MacKay, D. JC, and Radford M. N. “Near Shannon limit perfor-
mance of low density parity check codes." Electronics letters 32.18
(1996).

[5] Richardson, Tom, and Ruediger Urbanke. Modern coding theory.
Cambridge university press, 2008.

[6] Sybis, Michal, et al. “Channel coding for ultra-reliable low-latency
communication in 5G systems." Vehicular Technology Conference
(VTC-Fall), IEEE 84th. IEEE, 2016.

[7] Rachinger, Christoph, Johannes B. Huber, and Ralf R. Muller.
“Comparison of convolutional and block codes for low structural
delay." IEEE Transactions on Communications 63.12 (2015): 4629-
4638.

[8] Liva G, Gaudio L, Ninacs T, Jerkovits T. Code design for short
blocks: A survey. arXiv preprint arXiv:1610.00873. 2016 Oct 4.

[9] Liva G, Durisi G, Chiani M, Ullah SS, Liew SC. Short codes with
mismatched channel state information: A case study. In2017 IEEE
18th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC) 2017 Jul 3 (pp. 1-5). IEEE.

[10] Durisi G, Koch T, Popovski P. Toward massive, ultrareliable, and
low-latency wireless communication with short packets. Proceed-
ings of the IEEE. 2016 Aug 2;104(9):1711-26.

[11] Maiya, Shashank V., Daniel J. Costello, and Thomas E. Fuja.
“Low latency coding: Convolutional codes vs. LDPC codes." IEEE
Transactions on Communications 60.5 (2012): 1215-1225.

[12] Polyanskiy, Yury, H. Vincent Poor, and Sergio Verdu. "Channel
coding rate in the finite blocklength regime." IEEE Trans. on Info.
Theory 56.5 (2010): 2307-2359.

[13] Shirvanimoghaddam M, Mohammadi MS, Abbas R, Minja A,
Yue C, Matuz B, Han G, Lin Z, Liu W, Li Y, Johnson S. Short
block-length codes for ultra-reliable low latency communications.
IEEE Communications Magazine. 2018 Dec 28;57(2):130-7.

[14] Li, Junyi, Xinzhou Wu, and Rajiv Laroia. OFDMA mobile
broadband communications: A systems approach. Cambridge
University Press, 2013.

[15] Safavi-Naeini HA, Ghosh C, Visotsky E, Ratasuk R, Roy S. Impact
and mitigation of narrow-band radar interference in down-link LTE.
In2015 IEEE international conference on communications (ICC)
2015 Jun 8 (pp. 2644-2649). IEEE.

[16] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press;
2016 Nov 10.

[17] Han, Song, Huizi Mao, and William J. Dally. “Deep compres-
sion: Compressing deep neural networks with pruning, trained
quantization and Huffman coding." arXiv:1510.00149 (2015).

[18] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the
dimensionality of data with neural networks." science 313.5786
(2006): 504-507.

[19] O’Shea, Timothy J., Kiran Karra, and T. Charles Clancy. “Learning
to communicate: Channel auto-encoders, domain specific regulariz-
ers, and attention." Signal Processing and Information Technology
(ISSPIT), 2016 IEEE International Symposium on. IEEE, 2016.

[20] O’Shea, Timothy, and Jakob Hoydis. “An introduction to deep
learning for the physical layer." IEEE Transactions on Cognitive
Communications and Networking 3.4 (2017): 563-575.

[21] Farsad, Nariman and Goldsmith, Andrea, “Neural Network
Detection of Data Sequences in Communication Systems." IEEE
Transactions on Signal Processing, Jan 2018.

[22] Dörner S, Cammerer S, Hoydis J, ten Brink S. Deep learning
based communication over the air. IEEE Journal of Selected Topics
in Signal Processing. 2017 Dec 15;12(1):132-43.

[23] O’Shea, Timothy J., Tugba Erpek, and T. Charles Clancy.
“Deep learning based MIMO communications." arXiv preprint
arXiv:1707.07980 (2017).

[24] Nachmani, Eliya, Yair Be’ery, and David Burshtein. “Learning to
decode linear codes using deep learning." Communication, Control,
and Computing (Allerton), 2016 54th Annual Allerton Conference
on. IEEE, 2016.

[25] Nachmani, Eliya, et al. “Deep learning methods for improved
decoding of linear codes." IEEE Journal of Selected Topics in
Signal Processing 12.1 (2018): 119-131.

[26] Gruber T, Cammerer S, Hoydis J, ten Brink S. On deep learning-
based channel decoding. In2017 51st Annual Conference on
Information Sciences and Systems (CISS) 2017 Mar 22 (pp. 1-6).
IEEE.

[27] Cammerer S, Gruber T, Hoydis J, ten Brink S. Scaling deep
learning-based decoding of polar codes via partitioning. InGLOBE-
COM 2017-2017 IEEE Global Communications Conference 2017
Dec 4 (pp. 1-6). IEEE.

[28] Kim, Hyeji and Jiang, Yihan and Rana, Ranvir and Kannan,
Sreeram and Oh, Sewoong and Viswanath, Pramod. ”Communica-
tion Algorithms via Deep Learning” Sixth International Conference
on Learning Representations (ICLR), 2018.

[29] Schalkwijk J, Kailath T. A coding scheme for additive noise chan-
nels with feedback–I: No bandwidth constraint. IEEE Transactions
on Information Theory. 1966 Apr;12(2):172-82.

[30] Chance Z, Love DJ. Concatenated coding for the AWGN channel
with noisy feedback. IEEE Transactions on Information Theory.
2011 Oct 6;57(10):6633-49.

[31] Hammer, Barbara, “On the approximation capability of recurrent
neural networks." Neurocomputing Vol. 31, pp. 107–123, 2010.

11

[32] Aoudia FA, Hoydis J. End-to-end learning of communications sys-
tems without a channel model. In2018 52nd Asilomar Conference
on Signals, Systems, and Computers 2018 Oct 28 (pp. 298-303).
IEEE.

[33] Felix A, Cammerer S, Dörner S, Hoydis J, Ten Brink S. OFDM-
Autoencoder for end-to-end learning of communications systems.
In2018 IEEE 19th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC) 2018 Jun 25 (pp.
1-5). IEEE.

[34] Kim, Hyeji and Jiang, Yihan and Rana, Ranvir and Kannan,
Sreeram and Oh, Sewoong and Viswanath, Pramod. “Deepcode:
Feedback codes via deep learning." NeurIPS 2018.

[35] Viterbi, Andrew. “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm." IEEE transactions
on Information Theory 13.2 (1967): 260-269.

[36] Chung, J., Gulcehre, C., Cho, K., Bengio, Y. “Empirical evaluation
of gated recurrent neural networks on sequence modeling." In NIPS
2014 Workshop on Deep Learning, December 2014

[37] Ioffe, S., Szegedy, C. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift." Proceed-
ings of the 32nd International Conference on Machine Learning,
in PMLR 37:448-456

[38] Ovtcharov, Kalin, et al. “Accelerating deep convolutional neural
networks using specialized hardware." MSR Whitepaper 2.11
(2015).

[39] Sanders, Geoffrey A, “Effects of radar interference on LTE (FDD)
eNodeB and UE receiver performance in the 3.5 GHz band."
US Department of Commerce, National Telecommunications and
Information Administration, 2014.

[40] Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V, “Sequence to
sequence learning with neural networks." NeurIPS 2014.

[41] Jaderberg, Max and Simonyan, Karen and Zisserman, Andrew
and others, “Spatial transformer networks." NeurIPS 2015.

[42] Rifai, Salah, et al. "Contractive auto-encoders: Explicit invariance
during feature extraction." Proceedings of the 28th International
Conference on International Conference on Machine Learning.
Omnipress, 2011.

[43] Hoffer, Elad, Itay Hubara, and Daniel Soudry. "Train longer,
generalize better: closing the generalization gap in large batch
training of neural networks." Advances in Neural Information
Processing Systems. 2017.

[44] Poole, Ben, Jascha Sohl-Dickstein, and Surya Ganguli. "Ana-
lyzing noise in autoencoders and deep networks." arXiv preprint
arXiv:1406.1831 (2014).

[45] Samuel L. Smith and Pieter-Jan Kindermans and Quoc V. Le.
“Don’t decay the learning rate, increase the batch size." International
Conference on Learning Representations (2018)

[46] Buja, Andreas, Werner Stuetzle, and Yi Shen. "Loss functions
for binary class probability estimation and classification: Structure
and applications." Working draft, November 3 (2005).

[47] Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. "Practical
bayesian optimization of machine learning algorithms." Advances
in neural information processing systems. 2012.

[48] Sabri, Motaz, and Takio Kurita. "Effect of Additive Noise for
Multi-Layered Perceptron with AutoEncoders." IEICE TRANSAC-
TIONS on Information and Systems 100.7 (2017): 1494-1504.

[49] Kinga, D., and J. Ba Adam. "A method for stochastic optimiza-
tion." International Conference on Learning Representations (ICLR).
Vol. 5. 2015.

[50] Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y.
Binarized neural networks. InAdvances in neural information
processing systems 2016 (pp. 4107-4115).

[51] Jiang Y, Kim H, Asnani H, Kannan S, Oh S, Viswanath P. Turbo
Autoencoder: Deep learning based channel codes for point-to-
point communication channels. InAdvances in Neural Information
Processing Systems 2019 (pp. 2754-2764).

[52] Veeresh Taranalli, “CommPy: Digital Communication with
Python", available at https://github.com/veeresht/CommPy", 2015.

Yihan Jiang Yihan Jiang is a Ph.D. candidate at the Electrical and
Computer Engineering Department, University of Washington, Seattle
at Washington. He received his M.S degree in 2014 in Electrical and
Computer Engineering from UC San Diego and a B.S degree from
Beijing Institute of Technology in 2012. His research interests are in
the areas of channel coding, information theory, deep learning, and
federated learning.

Hyeji Kim Hyeji Kim is a researcher at Samsung AI Research
Cambridge. Prior to joining Samsung AI Research in 2018, she was
a postdoctoral research associate at the University of Illinois, Urbana-
Champaign. She received her Ph.D. and M.S. degrees in Electrical
Engineering from Stanford University in 2016 and 2013, respectively,
and her B.S. degree with honors in Electrical Engineering from KAIST
in 2011. She is a recipient of the Stanford Graduate Fellowship and
participant in the Rising Stars in EECS Workshop, 2015.

Himanshu Asnani Himanshu Asnani is currently Reader (eq. to tenure-
track Assistant Professor) in the School of Technology and Computer
Science at the Tata Institute of Fundamental Research, Mumbai. He
is also an Affiliate Assistant Professor in the Electrical and Computer
Engineering Department at University of Washington, Seattle, where
he held a Research Associate position previously. His current research
interests include machine learning, causal inference and information and
coding theory. He received his M.S. and Ph.D. in Electrical Engineering
Department in 2011 and 2014 respectively from Stanford University
where he was a Stanford Graduate Fellow. He received his B.Tech.
from IIT Bombay in 2009. Following his graduation, Himanshu worked
briefly as a System Architect in Ericsson Silicon Valley following which
he was involved in a couple education startups. In the past, he has
also held visiting faculty appointments at Stanford University and IIT
Bombay. He was the recipient of 2014 Marconi Society Paul Baran
Young Scholar Award, 2018 Amazon Catalyst Fellow Award, Best
Paper Award at MobiHoc 2009, and was the Finalist for the Student
Paper Award in ISIT 2011.

Sreeram Kannan Sreeram Kannan is currently an Assistant Professor
at the University of Washington, Seattle. He was a postdoctoral scholar
at the University of California, Berkeley between 2012-2014 before
which he received his Ph.D. in Electrical Engineering and M.S. in
Mathematics from the University of Illinois, Urbana-Champaign. He is
a recipient of the 2019 UW ECE Outstanding Teaching award, 2017 NSF
Faculty Early CAREER award, the 2013 Van Valkenburg outstanding
dissertation award from UIUC, a co-recipient of the 2010 Qualcomm
Cognitive Radio Contest first prize, a recipient of 2010 Qualcomm
(CTO) Roberto Padovani Outstanding Intern award, a recipient of the
SVC Aiya medal from the Indian Institute of Science, 2008, and a
co-recipient of Intel India Student Research Contest first prize, 2006.
His research interests include the applications of information theory and
learning to blockchains, computational biology and wireless networks.

12

Sewoong Oh Sewoong Oh is an Associate Professor in the Paul G.
Allen School of Computer Science & Engineering at the University of
Washington. Prior to joining the University of Washington in 2019, he
was an Assistant Professor in the department of Industrial and Enterprise
Systems Engineering at University of Illinois, Urbana-Champaign
since 2012. He received his Ph.D. from the department of Electrical
Engineering at Stanford University in 2011 under the supervision of
Andrea Montanari. Following his Ph.D., he worked as a postdoctoral
researcher at the Laboratory for Information and Decision Systems
(LIDS) at MIT under the supervision of Devavrat Shah. Sewoong’s
research interest is in theoretical machine learning. He was co-awarded
the ACM SIGMETRICS Best Paper award in 2015, the NSF CAREER
award in 2016, the ACM SIGMETRICS Rising Star award in 2017,
and the GOOGLE Faculty Research Award in 2017 and 2020.

Pramod Viswanath Pramod Viswanath is a Professor of Electrical and
Computer Engineering at the University of Illinois, Urbana-Champaign.
He received his Ph.D. degree in Electrical Engineering and Computer
Science from the University of California, Berkeley in 2000. His current
research interests include blockchain technologies from a variety of
angles: networking protocols, consensus algorithms, payment channels,
distributed coded storage and incentive designs. He is a co-founder and
CEO of Applied Protocol Research, a startup focused on developing
core blockchain technologies. He has received the Eliahu Jury Award,
the Bernard Friedman Prize, a NSF CAREER award, and the Best
Paper Award at the Sigmetrics conference in 2015. He is a co-author,
with David Tse, of the text Fundamentals of Wireless Communication,
which has been used in over 60 institutions worldwide.

13

APPENDIX

APPENDIX A
RECURRENT NEURAL NETWORKS : AN

INTRODUCTION

As illustrated in Figure 12 (left), RNN is defined as
a general function f(.) such that (yt, ht) = f(xt, ht−1)
at time t, where xt is the input, yt is the output, ht is
the state sent to the next time slot and ht−1 is the state
from the last time slot. RNN can only emulate causal
sequential functions. Indeed, it is known that an RNN
can capture a general family of measurable functions
from the input time-sequence to the output time-sequence
[31]. Illustrated in Figure 12 (right), Bidirectional RNN
(Bi-RNN) combines one forward and backward RNN
and can infer current state by evaluating through both
past and future. Bi-RNN is defined as (yt, h

f
t , h

b
t) =

f(xt, h
f
t−1, h

b
t+1), where hft and hbt stands for the state

at time t for forward and backward RNNs [16].
RNN is a restricted structure which shares pa-

rameters between different time slots across the whole
block, which makes it naturally generalizable to a longer
block length. Moreover, RNN can be considered as an
overparameterized non-linear convolutional code for both
encoder and decoder, since convolutional code encoder
can be represented by causal RNN and BCJR forward-
backward algorithm can be emulated by Bi-RNN [28].
There are several parametric functions f(.) for RNN, such
as vanilla RNN, Gated Recurrent Unit (GRU), or Long
Short Term Memory (LSTM). Vanilla RNN is known to
be hard to train due to diminishing gradients. LSTM and
GRU are the most widely used RNN variants which utilize
gating schemes to alleviate the problem of diminishing
gradients [16]. We empirically compare Vanilla RNN
with GRU and LSTM under test loss trajectory, which
shows the test loss along with the training times. The test
loss trajectory is the mean of 5 independent experiments.
Figure 12 right depicts the test loss along training time,
which shows that vanilla RNN has slower convergence,
GRU converges fast, while GRU and LSTM have similar
final test performances. Since GRU has less computational
complexity, in this paper we use GRU as our primary
network structure [36]. In this paper, we use the terms
GRU and RNN interchangeably.

APPENDIX B
POWER CONSTRAINT MODULE

The power normalization enforces the output code
has unit power by normalizing the output. In the follow-
ing, we investigate three implementations on the power
constraint layer that are differentiable. We let b, x̂, x
denote the message bit sequence, output of the encoder,
and the normalized codeword, respectively.

Fig. 12. Basic RNN structure (left), Bi-RNN (middle), and test
trajectory for RNN variants selection (right)

1. hard power constraint: use hyperbolic tangent
function in training (x = tanh(x̂)) and threshold
to -1 and +1 for testing, which only allows discrete
coding schemes.

2. bit-wise normalization: E||Xi||22 ≤ 1, ∀i. We have
xi = x̂i−mean(xi)

std(xi)
∀i. For a given coding bit

position, the bit power is normalized.
3. block-wise normalization: E||X||22 ≤ 1,We have

x = x̂−mean(x)
std(x) ∀i which allows us to reallocate

power across the code block.

For bit-wise and block-wise normalizations, the
behaviors in training and testing are different. During the
training phase, bit-wise and block-wise normalizations
normalize input mini-batch according to the training mini-
batch statistics. During testing phase, the mean and std
are precomputed by passing through many samples to
ensure that the estimations of mean and std are accurate.

Figure 13 left shows that block-wise normalization
does offer better learning test trajectory, while bit-wise
normalization shows slightly worse performance. Hard
power constraint using tanh, due to saturating gradients,
results in high test error. Since neural code operates
on communication systems, reallocating power might be
against hardware constraints. To satisfy maximized power
constraint, we use bit-wise normalization in this paper.

14

APPENDIX C
TRAINING METHODOLOGY

In this section we give empirical evidence for the
best tricks of trade to design superior codes used in this
paper.

A. Using Large Batch Size

Deep Learning models typically use mini-batching
to improve generalization and reduce the memory usage.
Small random mini-batch results in better generalization
[43][45], while large batch size requires more training
to generalize. However, Figure 13 middle shows that
larger batch size results in much better generalization for
Channel AE, while small batch size tends to saturate in
high test loss. Large batch size is required due to the
following reasons:

(1) Large batch offers better power constraint statis-
tics [37]. With a large batch size, the normalization of
power constraint module offers a better estimation of
mean and standard deviation, which makes the output
of the encoder less noisy, thus the decoder can be better
trained accordingly.

(2) Large batch size gives a better gradient. Since
Channel AE is trained with self-supervision, the im-
provement of Channel AE originates from error back
propagation. As extreme error might result in wrong
gradient direction, large batch size can alleviate this issue.

The randomness of training mini-batch results in
better generalization [16]. Figure 13 right shows that even
with small block length (L = 10) when enumeration of all
possible codes becomes possible, random mini-batching
outperforms fixed full batch which enumerates all possible
codes in each batch. Note that training with all possible
codewords leads to worse test performance, while training
with large random batch (5000) outperforms full batch
settings. Thus we conclude that using a large random
batch gives a better result. In this paper due to GPU
memory limitation, we use batch size 1000.

B. Use Binary Crossentropy Loss

The input u ∈ {0, 1}k and output û ∈ {0, 1}k
are binary digits, which makes training Channel AE a
binary self-supervised classification problem [19]. Binary
Crossentropy (BCE) is better due to surrogate loss
argument [46]. MSE and its variants can be used as
the loss function for Channel AE [23][26] as MSE offers
implicit regularization on over-confidence of decoding.
The comparison of MSE and BCE loss is shown in Figure
14 left.

Although the final both test loss for BCE and MSE
tends to converge, MSE leads to slower convergence.
This is due to the fact that MSE actually punishes over-
confident bits, which makes the learning gradient more

Fig. 13. Test loss trajectory on different power constraint (left), different
batch size with block length 100 (middle) and random batch with block
length 10 (right)

sparse. As faster convergence and better generalization
are always appreciated, BCE is used as a primary loss
function.

C. Separately Training Encoder and Decoder

Training encoder and decoder jointly with end-to-end
back-propagation leads to saddle points. We argue that
training Channel AE entails separately training encoder
and decoder [32]. The accurate gradient of the encoder

15

Fig. 14. Test loss trajectory different loss functions (left), Training
jointly vs separately (right)

can be computed when the decoder is optimal for a given
encoder. Thus after training encoder, training decoder
until convergence will make the gradient of encoder more
trustable. However, at every step training decoder till
convergence is computationally expensive. Empirically
we compare different training methods in Figure 14 right.
Training encoder and decoder jointly saturates easily.
Training encoder once and training decoder 5 times shows
the best performance, and is used in this paper.

D. Adding Minimum Distance Regularizer

Naively optimizing Channel AE results in paired
local optimum: a bad encoder and a bad decoder can be
locked in a saddle-point. Adding regularization to loss is
a common method to escape local optima [16]. Coding
theory suggests that maximizing minimum distance
between all possible input messages[5] improves coding
performance. However since the number of all possible
messages increases exponentially with respect to code
block length, computing loss with maximized minimum
distance for long block code becomes prohibitive.

Exploiting the locality inherent to RNN codes,
we introduce a different loss term solely for the en-
coder which we refer to as the partial minimum code
distance regularizer. Partial minimum code distance

d(uL) = minu1,u2∈RL,u1 6=u2
{||fθ(u1) − fθ(u2)||22} is

the minimum distance among all message with length L.
Computing pairwise distance requires O(

(
2L

2

)
) computa-

tions. For long block code with block length LB >> L,
RNN encoded portion L has minimum distance M ,
which guarantees that the block code with block length
LB has minimum distance at least M , while can be
as large as LB

L M . Partial minimum code distance is a
compromise over computation, which still guarantees
large minimum distance under small block length L,
while hoping the minimum distance on longer block
length would still be large. The loss objective of Channel
AE with partial maximized minimum code distance is
L(u) = Ez||gφ(h(fθ(u)) + z) − u||22 + λd(uL). To
beat convolutional code via RNN autoencoder, we add
minimum distance regularizer for block length 100, with
L = 10 and λ = 0.001. The performance is shown
in Figure 15, while the left graph shows the test loss
trajectory, and the middle graph shows the BER.

Fig. 15. Effect of Partial Minimum Distance Regularization, Test
loss trajectory(left) and BER(middle). Test loss trajectory different
optimizers with learning rate 0.001 (right)

E. Using Adam optimizer
The learning rate for encoder and decoder has to

be adaptive to compensate the realizations of noise with
different magnitude. Also as training loss decreases, it
is less likely to experience decoding error, which makes
both encoder and decoder gradient sparse. Adam[49] has
adaptive learning rate and exponential moving average
for sparse and non-stationary gradient, thus in theory
is a suitable optimizer. The comparison of different
optimizer in Figure 15 right shows that Adam empirically
outperforms all other optimizers, with faster convergence
and better generalization. SGD fails to converge with
learning rate 0.001 with high instability. Thus we use
Adam for training Channel AE.

16

F. Adding more capacity (parameters) to the decoder
than the encoder

Channel AE can be considered as an overcomplete
autoencoder model with the noise injected in the middle
layer. In what follows, we perform the analysis of the
introduction of the noise as done in [39] and for sim-
plification consider only Minimum Square Error (MSE)
(Binary Cross-entropy (BCE) loss would follow the same
procedure). Assume z ∼ N(0, σ2) is the added Gaussian
noise, u is the input binary bits, fθ is the encoder,
gφ is the decoder, and h(.) is the power constraint
module. Applying Taylor expansion (see appendix for
more details), the loss of Channel AE can be written
as: L = ||gφ(h(fθ(u))) − u||22 + σ2||Jgφ(u)||2F , where
||Jgφ(u)||2F =

∑k
i

∑n
j (
∂gφ(c)i
∂cj

)2 is the Jacobian of func-
tion gφ. The reconstruction error ||gφ(h(fθ(u))) − u||22
can be interpreted as the coding error when no noise
is added. With smaller ∂gφ(c)i

∂cj
, the decoder results in

an invariance and robustness of the representation for
small variations of the input [42], thus the Jacobian term
σ2
∑k
i

∑n
j (
∂gφ(c)i
∂cj

)2 is the regularizer encouraging the
decoder to be locally invariant to noise [44]. The Jacobian
term reduces the sensitivity of decoder, which improves
the generalization of decoders.

Empirically there exist an optimal training SNR for
neural decoders [28] and Channel AE [19]. When training
with too large noise σ2, the Jacobian term dominates,
hence the reconstruction error becomes non-zero, which
degrades the performance. When training with too small
noise, the decoder is not local invariant, which reduces
the generalization ability.

Also as the Jacobian term only applies regularization
to the decoder, thus the decoder needs more capacity.
Empirically the neural decoder has to be more compli-
cated than encoder. With training for 120 epochs, the
encoder/decoder size 25/100 and 100/400 units shows
better test loss, comparing to the cases where encoder
is less complicated than decoder. As encoder/decoder
with 25/100 units works as well as encoder/decoder
with size 100/400 units, we take 25 units encoder
and 100 units decoder for most of our applications.
Further hyper-parameter optimization such as Bayesian
Optimization[47] could lead to even better performance.

Encoder and Decoder Hyperparameter Design after 120 epochs
Enc Unit Dec Unit Test Loss
25 100 0.180
25 400 0.640
100 100 0.690
100 400 0.181

APPENDIX D
FURTHER EMPIRICAL RESULTS

A. Alternative Minimum Distance Regularizer

As RNN encoder has small dependency length (see
section 4), small Hamming distance of messages may
cause small minimum code distance. Another method of
regularizing is to directly regularize the minimum dis-
tance between messages with small Hamming distances.
The method starts by enumerating all messages within
Hamming distance s to a random message u of length LB ,
which contains

∑s
i=1

(
LB
i

)
+ 1 messages, then compute

the minimum distance among the enumerated messages
as a regularization term. However, this method doesn’t
guarantee any minimum distance property even among
short block length, and the computational complexity is
high with even small s. Empirically this method doesn’t
work well.

B. Loss Analysis for Encoder and Decoder Size

This section shows the derivation of loss analysis
used in the main text. Using Minimum Square Error
(MSE), the loss of Channel AE is L = Ez||gφ(h(fθ(u))+
z) − u||22. The output of the encoder is denoted as
c = h(fθ(u)). Using 1st order Taylor expansion fol-
lowing [48], with the assumption that noise z is small
and ignoring all higher order components, the decoder is
approximated as: gφ(c+ z) = gφ(c) +

∂gφ(c)
∂c z +O(z)

Note that the 1st order Taylor expansion is a local
approximation of functions. Hence, the assumption of
ignoring higher order components is only valid with small
z locally. Then by expanding the MSE loss, we have:
L = ||gφ(h(fθ(u))) − u||22 + Eztr(z

T ∂gφ(c)
∂c

T ∂gφ(c)
∂c z),

which yields: L = ||gφ(h(fθ(u)))−u||22+σ2||Jgφ(u)||2F .

C. Low Latency Benchmark: Convolutional Code with
Different Memory length

The benchmarks of applying convolutional code
under extreme low latency constraint are shown in
Figure 16. Note that there doesn’t exist a uniform best
convolutional code under different delay constraints and
code rates. Thus the convolutional codes reported in main
section are using the best convolutional codes shown in
Figure 16.

17

Fig. 16. Convolutional Code with different delay constraint on rate 1/2 (top), rate 1/3 (bottom)

	Introduction
	Motivation
	Channel Coding Inspired by Deep Learning: Prior Art
	Our Contribution

	Designing Neural Codes that Outperform Convolutional Codes
	Network Structure Design
	Training Methodology
	Performance of RNN-Based Channel AE: AWGN Setting
	Performance of RNN-Based Channel AE: Non-AWGN Setting

	Designing Low Latency Neural Codes: LEARN
	Low-Latency Convolutional Code
	LEARN Network Structure
	Performance of LEARN: AWGN Setting
	Robustness and Adaptivity

	Interpretability of Deep Models
	Encoder Interpretability
	Decoder Interpretability

	Conclusion
	References
	Biographies
	Yihan Jiang
	Hyeji Kim
	Himanshu Asnani
	Sreeram Kannan
	Sewoong Oh
	Pramod Viswanath

	Appendix A: Recurrent Neural Networks : An Introduction
	Appendix B: Power Constraint Module
	Appendix C: Training Methodology
	Using Large Batch Size
	Use Binary Crossentropy Loss
	Separately Training Encoder and Decoder
	Adding Minimum Distance Regularizer
	Using Adam optimizer
	Adding more capacity (parameters) to the decoder than the encoder

	Appendix D: Further Empirical Results
	Alternative Minimum Distance Regularizer
	Loss Analysis for Encoder and Decoder Size
	Low Latency Benchmark: Convolutional Code with Different Memory length

