
1

Physical Layer Communication via Deep Learning
Hyeji Kim, Sewoong Oh, and Pramod Viswanath

Abstract—Reliable digital communication is a primary
workhorse of the modern information age. The disciplines of
communication, coding, and information theories drive the inno-
vation by designing efficient codes that allow transmissions to be
robustly and efficiently decoded. Progress in near optimal codes
is made by individual human ingenuity over the decades, and
breakthroughs have been, befittingly, sporadic and spread over
several decades.

Deep learning is a part of daily life where its successes can
be attributed to a lack of a (mathematical) generative model.
Deep learning empirically fits neural network models to the
data, and the result has been extremely potent. In yet other
applications, the data is generated by a simple model and
performance criterion mathematically precise and training/test
samples infinitely abundant, but the space of algorithmic choices
is enormous (example: chess). Deep learning has recently shown
strong promise in these problems too (example: alphazero). The
latter scenario is a good description of communication theory.
The mathematical models underlying canonical communication
channels allow one to sample an unlimited amount of data to
train and test the communication algorithms ((encoder, decoder)
pairs) and the metric of bit (or block) error rate allows for
mathematically precise evaluation.

Motivated by the successes of deep learning in mathematically
well defined and extremely challenging tasks of chess, Go, and
protein folding, we posit that deep learning methods can play a
crucial role in solving core goals of coding theory: designing new
(encoder, decoder) pairs that improve state of the art performance
over canonical channel models. This manuscript surveys recent
advances towards demonstrating this hypothesis, by focusing on
strengthening a specific family of coding methods – sequential
codes (convolutional codes) and codes that use them as basic
building blocks (Turbo codes) – via deep learning methods. New
state of the art results are derived on several canonical channels,
including the AWGN channel with feedback.

I. INTRODUCTION

Reliable communication, both wireline (ethernet, cable and
DSL modems) and wireless (cellular, Wifi, and satellite), is a
primary workhorse of the modern information age. At the core
of the physical layer communication system is the design of
codes that a can be robustly transmitted and efficiently decoded
under noisy conditions. In this discipline of communication
theory over the past 70 years, breakthroughs are marked by
the discoveries of novel codes including convolutional codes,
Turbo codes, low density parity check (LDPC) codes and polar
codes. The impact on humanity is enormous – every cellular
phone designed uses one of these codes, which feature in
global cellular standards ranging from the 2nd generation to
the 5th generation respectively, and are text book material.

The canonical setting is a point-to-point channel with the
additive white Gaussian noise (AWGN), and performance of
a code in this setting is the gold standard. This naturally
fits much of wireline and wireless communications although
the front end of the receiver may have to be specifically
designed before being processed by the decoder (example:

intersymbol equalization in cable modems, beamforming and
sphere decoding in multiple antenna wireless systems). In
communication theory, the two long term goals are: (a) design
of new, computationally efficient, codes that improve the state
of the art (probability of correct reception) over the AWGN
setting. Although the current codes already operate close to the
(infinite block length) information theoretic “Shannon limit”,
there is room to improve the performance in some regimes
(at “moderate” block lengths, high rates). There is also an
emphasis on robustness and adaptability to deviations from
the AWGN settings (such as in urban, pedestrian, vehicular
settings). (b) design of new codes for multi-terminal (i.e., be-
yond point-to-point) settings – examples include the feedback
channel, the relay channel and the interference channel.

Progress over these long term goals has generally been
driven by individual human ingenuity and, befittingly, is
sporadic. For instance, the time duration between convolu-
tional codes (2nd generation cellular standards) to polar codes
(5th generation cellular standards) is over 4 decades. Deep
learning is fast emerging as capable of learning sophisticated
algorithms from observed data (input, action, output) alone and
has been remarkably successful in a large variety of human
endeavors. Deep learning is already a part of daily life, owing
to its successes in computer vision [1] and natural language
processing [2]. In these applications, the success of the model-
free deep learning approach can be attributed to a lack of
(mathematical) generative model. In yet other applications, the
data is generated by a simple model and performance criterion
mathematically precise and training/test samples infinitely
abundant, but the space of algorithmic choices is enormous
(example: chess). Deep learning has recently shown strong
promise in these problems too (example: AlphaZero [3]).
Motivated by these successes, we envision that deep learning
methods can play a crucial role in improving the state of the
art in both the aforementioned goals of communication theory.

Communication and coding theory deals with problems of
the latter type. The core questions are studied in the context
of simple mathematical models (example: AWGN channel
mentioned earlier). The performance metric is also mathe-
matically precise (example: bit error rate (BER) vs signal to
noise ratio (SNR) curve). The key complexity is algorithmic:
the space of efficient encoders and decoders is simply too
large and a priori unstructured. The recent success of deep
learning on mathematically well defined problems (games such
as Chess and Go, protein folding) leads us to hypothesize
similar breakthroughs in communication theory. This tutorial
summarizes the recent progress (and strong promise) along
this hypothesis.

Traditional communication methods involve imposing some
structure to encoders (example: linearity of codes) and de-
coders (example: iterative decoding); this pares down the com-

2

plexity of space of encoders and decoders. These structures
have entailed tremendous human effort and are the product of
substantial ingenuity; Figure 1 illustrates a taxonomy within
the linearity structures of codes; the structures allow for
computationally efficient decoding. This paper focuses on one
specific family of codes – sequential codes – and aims to
enlargen and strengthen this family of codes. This enlargening
of the (encoder, decoder) pair is possible by a family of neural
networks known as recurrent neural networks (RNNs). We
will see a variety of canonical contexts in which the enlargened
family strictly improves on the state of the art (among all
known codes).

Sequential Codes
Eg. Convolutional and
Turbo codes; Viterbi and
iterative decoding

Graphical Codes
Eg: LDPC codes;
iterative decoding

Algebraic Codes
Eg: Reed-Solomon and
Reed-Muller codes; BCH
codes

Fig. 1: Taxonomy of different coding methods. We focus
on strengthening the class of sequential codes (convolutional
codes and Turbo codes that are built using them) via RNNs.

We begin this exploration with a natural question: we fix the
encoder to be a specific sequential code (convolutional code)
and ask whether the classical ML decoder (Viterbi decoding)
can be “learnt from data alone”; this is the focus of § IV. We
see that creatively trained RNNs can successfully recover the
Viterbi algorithm and the Turbo decoder; the key intellectual
contribution is in the identification of using the “hardest” SNR
(signal to noise ratio) to train the neural network, despite the
decoder being tested on a variety of SNRs and bit (or block)
error rates being empirically evaluated.

Next we describe recent successes in discovering new
communication algorithms that strictly improve upon the state
of the art. In § V-A, we study the design of new decoders
based on RNNs that successfully outperform state of the
art decoders for Turbo codes on non-AWGN channels. An
overarching theme in each of the works we summarize is
the utilization of recent advances in deep learning, but being
mindful that training such models poses several challenges
distinct to communication systems. The exponential size of
the codebook, generalization in block lengths, availability of
infinite training samples all pose novel challenges and op-
portunities. Successful training and testing crucially relies on
innovations on (a) what architecture to pick; (b) what training
samples/SNR to use; and (c) what optimization procedures
to follow, including loss functions and regularizations. We
find that deep learning approaches for reliable communication
require channel and code-specific intuitions and insights from
information theory and coding theory.

Finally, we tackle the challenging problem of designing
encoders and decoders jointly using RNNs in § V-B. The com-

munication channel we consider is the AWGN channel with
feedback, whose study was initiated by Shannon; feedback is
known theoretically to improve reliability of communication,
but no practical codes that do so have ever been successfully
constructed. We break this logjam by integrating information
theoretic insights harmoniously with RNN based encoders and
decoders to create novel codes that outperform known codes
by 3 orders of magnitude in reliability. We also demonstrate
several desirable properties of the codes: (a) generalization to
larger block lengths, (b) composability with known codes, (c)
adaptation to practical constraints.

These results bring to broader ramifications for coding
theory: even when the channel has a clear mathematical model,
deep learning methodologies, when combined with channel-
specific information-theoretic insights, can potentially beat
state-of-the-art codes constructed over decades of mathemati-
cal research. In this article we have focused on a specific fam-
ily of deep learning methods (namely, RNNs) which enlargen a
specific family of coding theoretic methods (sequential coding
and decoding). Considering a broader family of deep learning
methods (eg: transformers) and a broader family of coding
theoretic methods to enlargen (eg: algebraic codes such as
Reed-Muller codes) is a promising area of research. We briefly
discuss these directions along with further strengthening the
family of RNNs in § VI; this concludes the paper.

II. PRELIMINARY ON CONVOLUTIONAL CODES AND ITS
VARIANTS

Among diverse families of coding schemes introduced in the
literature, sequential coding schemes are particularly attractive
for our goal; we aim to expand the space of efficient codes
that practitioners can use, by searching for a good code over
a larger space of functions for both encoders and decoders
than traditionally done. Ideally, the search space needs to
be large enough (in terms of the representation power of
the class of functions we search over), while allowing for
an efficient search (by exploiting and imposing structures
that induce desirable properties). The structural similarities of
sequential codes and sequential neural networks provide an
ideal candidate for such a search space, that we investigate
throughout this paper. This connection will be made mathe-
matically precise in § III.

We use the term sequential codes to refer to convolutional
codes and their variants like Turbo codes, i.e. codes (more
specifically encoders) that apply a basic building block re-
cursively over an input sequence. We explain them in detail
in the following section. We use the term sequential neural
networks to refer to a family of neural networks that apply a
basic building block recursively over an input sequence. This
includes Recurrent Neural Networks (RNN), Convolutional
Neural Networks (CNN), Gated Recurrent Units (GRU), and
Long Short-Term Memory networks (LSTM), and we provide
a brief summary in § III.

Our goal is to expand the space of sequential codes and dis-
cover powerful new codes, by building upon recent advances
in sequential neural networks from the deep learning literature.
This focus is based on the success of sequential codes, which

3

(a) are used extensively in mobile telephone standards includ-
ing satellite communications, 3G, 4G, and LTE; (b) provably
achieve performance close to the information theoretic limit
(albeit with computationally inefficient decoding); and (c) have
a natural recurrent structure that is aligned with an established
family of deep models, namely sequential neural networks. In
this section, we provide an overview of sequential codes.

A. Convolutional codes

A standard example is the rate-1/2 Recursive Systematic
Convolutional (RSC) code. The encoder performs a forward
pass recursively as shown in Figure 2 on a binary input
sequence b = (b1, . . . , bK) ∈ {0, 1}K , which we call message
bits or information bits, and computes a sequence of binary
vector states (s1, . . . , sK) ∈ {0, 1}2×K and a sequence of
binary vector outputs (c1, . . . , cK) ∈ {0, 1}2×K , which we
call coded bits or a codeword. At time k, the dynamic system
is associated with a state represented by a two-dimensional bi-
nary vector sk = (sk1, sk2) and takes as input a binary variable
bk ∈ {0, 1}. The corresponding output is a two-dimensional
binary vector ck = (ck1, ck2) = (bk, bk ⊕ sk1) ∈ {0, 1}2,
where x ⊕ y = |x − y|. The state of the next cell is updated
as sk+1 = (bk ⊕ sk1⊕ sk2, sk1). Initial state is assumed to be
0, i.e., s1 = (0, 0).

Fig. 2: (Left) A sequential encoder of a convolutional code
is a recurrent network. (Right) An example of one cell for a
rate-1/2 RSC code.

Fig. 3: The family of convolutional codes is a canonical
sequential code, with a family of efficient decoders that is
also optimal. We subsequently replace the decoder (Figure 7 in
§ IV-A) and also the encoder (Figure 11 in § IV-B) with trained
neural networks, while maintaining the sequential structure
for efficient training and decoding. We next investigate the
potential benefits of sequential neural networks when the
channel is not AWGN (Figure 16 in § V-A and Figure 18
in §V-B).

As illustrated in Figure 3, the coded bits c ∈ {0, 1}2K are
mapped to transmitted symbols x = 2c − 1 ∈ {−1, 1}2×K .
This is known as binary phase shift keying (BPSK) modula-
tion. Throughout this paper, we omit explicit description of
the modulation and treat it as a part of the encoder (as done
in Figure 3). The transmitted symbols are sent over a noisy
channel, with the canonical one being the Additive White
Gaussian Noise (AWGN) channel. The received real-valued

vectors y = (y1, . . . , yK) ∈ R2×K , which are called the
received symbols, are yki = xki + zki for all k ∈ {1, . . . ,K}
and i ∈ {1, 2}, where zki’s are i.i.d. Gaussian with zero mean
and variance σ2.

A decoder attempts to find the Maximum a Posteriori
(MAP) estimate of the message bits b, from received symbols
y. Due to the simple recurrent structure of the encoder,
efficient iterative schemes are available for finding the MAP
estimate exactly for any convolutional codes [4, 5]. There
are two MAP decoders depending on the error criterion in
evaluating the performance: bit error rate (BER) or block error
rate (BLER).

The BLER evaluates the average fraction of the blocks that
are erroneous, i.e. the decoder failed to recover the message
b exactly (assuming many such length-K blocks have been
transmitted). The matching optimal MAP estimator is b̂ =
argmaxb∈{0,1}K P(b|y). One can find the MAP estimate in
time linear in the block length K (and exponential in the size
of the state, which is two in the above example of rate-1/2
RSC code), which is called Viterbi algorithm.

The BER evaluates the average fraction of message bits
that are erroneous, i.e. the decoder failed to recover correctly
in a block. The matching optimal MAP estimator for the
k-th message bit is b̂k = argmaxbk P(bk|y), for all k ∈
{1, · · · ,K}. Again using a dynamic programming, the b̂k’s
can be simultaneously computed in O(K) time, which is called
the BCJR algorithm.

In both cases, the optimal (ML) decoder is computationally
very efficient (linear complexity) and crucially depends on
the sequential structure of the encoder. This structure can
be represented as a Hidden Markov Model (HMM). Both
decoders are special cases of a general family of efficient
methods to solve inference problems on HMMs using the
principle of dynamic programming. These methods efficiently
compute the exact posterior distributions in two passes through
the network: the forward pass and the backward pass. A
natural first step in determining if sequential neural networks
are sufficient for achieving our goal is to to recover Viterbi
and BCJR algorithms via neural network training. In § IV-A,
we investigate if one can train a sequential neural network
from samples, without explicitly specifying the underlying
probabilistic model, and still recover the accuracy of the
matching optimal decoders. At a high level, we want to prove
by a constructive example that highly engineered dynamic
programming (Viterbi algorithm) can be matched by a neural
network which only has access to the samples from a dynamic
system (the message sequence b and the noisy received
sequence y). The challenge lies in finding the right architecture
and training with the right training examples.

B. Turbo codes

Turbo codes, which concatenate codewords from two convo-
lutional encoders, are the first practical capacity-approaching
codes [6]. A standard example is the rate-1/3 Turbo code that
concatenates rate-1/2 RSC codes in parallel, as illustrated in
Figure 4. The encoder maps b ∈ {0, 1}K to c = (c1, c2, c3) ∈
{0, 1}3×K . The coded bit streams c1, c2 are generated through

4

a single rate-1/2 RSC encoder that takes b as an input;
c1 = b ∈ {0, 1}K denotes the systematic bits (information
bits) and c2 denotes the (remainder of the) coded bits. The
coded bit stream c3 is generated through a rate-1/2 RSC
encoder that takes the interleaved (permuted) bit sequence
π(b) ∈ {0, 1}K as an input. Systematic bit stream π(b) is not
included in the codeword as it is redundant. The interleaver
plays a crucial role in introducing long range correlations,
which contributes to the high reliability of Turbo codes.

Fig. 4: (Left) Visualization of interleaver (π) and de-interleaver
(π−1). (Right) A rate-1/3 Turbo code which concatenates rate-
1/2 RSC codewords in parallel.

The 3K output bits are modulated to x = 2c − 1 ∈
{−1,+1}3×K and sent over a noisy channel, with the canon-
ical one being the AWGN channel. Let y = (y1,y2,y3) ∈
R3×K , where yi = xi + ni ∈ RK for i ∈ {1, 2, 3}, denotes
the received real-valued vectors.

A decoder attempts to estimate b based on y. Turbo codes
accompany with corresponding iterative decoders which we
call Turbo decoders. The posterior distribution is successively
refined via the BCJR algorithm with interleavers and de-
interleavers as shown in Figure 5. The Turbo decoder first
computes the likelihood L = (L1, · · · , LK) for Lk =
log(P(bk = 1|(y1,y2))/P(bk = 0|(y1,y2))) based on the
noisy rate-1/2 RSC codeword (y1,y2) via BCJR algorithm.
The Turbo decoder then estimates P(bk|(π(y1),y3,L)) based
on the noisy rate-1/2 RSC codeword (π(y1),y3) with a prior
given by L from the previous execution of a BCJR algorithm.
The Turbo decoder iterates this process until convergence or
a predefined number of iterations.

Fig. 5: Turbo decoder is an alternating recursion of two BCJR
algorithms with interleaver (π) and de-interleaver (π−1) in
between.

III. PRELIMINARY ON SEQUENTIAL NEURAL NETWORKS

We focus on a family of neural architectures which recur-
sively applies a functional mapping on the input sequence
while maintaining a memory (referred to as a hidden state)
to represent an output sequence. We refer to this class as
sequential neural networks, as opposed to a more conventional
recurrent neural networks, to reserve the term recurrent neural
network (RNN) for a specific choice of the functional map-
pings as described below.

The sequential neural network family is a strictly larger class
of functions than the family of encoders and decoders used in

Fig. 6: A sequential neural network that maps an
input sequence (In1, · · · , InK) to an output sequence
(Out1, · · · ,OutK).

convolutional codes. In particular, one can manually choose
the parameters of a sequential neural network to replicate any
convolutional encoder and decoder.

As illustrated in Figure 6, a sequential neural network
maps an input sequence (In1, · · · , InK) to an output sequence
(Out1, · · · ,OutK) in a sequential manner. For k = 1, · · · ,K,
the hidden state hk is updated as a parametric function f of the
previous hidden state hk−1 and the k-th input Ink. The role of
hidden state hk is to capture information on past and current
inputs (In1, · · · , Ink) that is required to generate the output
Outk. The k-th output Outk is a parametric function g of the
hidden state hk. Depending on which parametric functions f
and g are used, the sequential neural network can be an RNN,
an LSTM, or a GRU [7, 8, 9]. For example, an RNN maps
hk = σh(Vhk−1 +UInk + bh) ∈ RM where M denotes the
dimension of hidden state hk, σh denotes an activation func-
tion, and V ∈ RM×M ,U ∈ RM×|Ink|,bh ∈ RM are trainable
parameters. Similarly, Outk = σo(Whk + bo), where σo de-
notes an activation function and W ∈ R|Outk|×M ,bo ∈ R|Outk|

denote trainable parameters. Any convolutional encoder is a
special case of an RNN. For example, let

Ink = bk,Outk =

[
ck1
ck2

]
,hk =

sk1sk2
bk

 .
The rate-1/2 RSC code in Figure 2 can be represented as

hk = σ

1 1 1
1 0 0
0 0 0

hk−1 +

00
1

 Ink

 ,

Outk = σ

([
0 0 0
1 0 0

]
hk +

[
1
1

]
bk

)
,where

the i-th element of σ(x) is 1 if xi is odd and 0 otherwise. The
RNN class is the simplest class in sequential neural networks,
as it is a special case of the GRU and LSTM classes, which
are variants of RNNs. These variants of RNNs have been
applied to great successes, especially in the domain of natural
language processing. We explain some of the insights behind
those recent advances briefly in § VI, where we discuss future
research directions.

Regarding Viterbi and BCJR algorithms, it is proven in [10,
11] that there exist specific choices of the parameters and ac-
tivation functions of a sequential neural network that recovers
both of the decoders. This justifies our choice of sequential
neural networks in decoding convolutional codes in § IV-A
and in matching Turbo encoders in § IV-B.

5

IV. RECOVERING EXISTING ALGORITHMS WITH DEEP
LEARNING

The standard AWGN channel is the canonical setting most
widely studied in the literature, and improving upon the multi-
ple decades of finite block-length coding theory is challenging.
Instead, we first study the capability of deep learning in
matching the known performances of existing codes.

The first step towards discovering a novel code is to fix the
encoder as a convolutional code and recover the performance
of the optimal decoder, by training a neural network decoder
from samples (Figure 7). This is a necessary precursor to the
more challenging tasks of designing new codes by training
encoders and decoders jointly in § IV-B and shown in Fig-
ure 11. Without the capability to train an efficient decoder,
there is little hope in searching over neural networks for good
encoders.

A. Learning the BCJR algorithm for decoding convolutional
codes

Viterbi algorithm is a special case of dynamic programming
applied to hidden Markov models, discovered in [4]. No
algorithm can achieve a smaller BLock Error Rate (BLER).
A similar approach, known as BCJR algorithm introduced in
[5], achieves the best Bit Error Rate (BER). An example of a
rate-1/2 convolutional code is shown in Figure 2.

Fig. 7: The first step in designing new codes is to showcase that
efficient and reliable decoders can be trained from samples.
This is achieved by replacing the optimal decoder with a neural
network, training the parameters W using training samples,
and matching the optimal performance.

We first consider a simpler task of training a neural
network decoder from N labelled samples of the form
{(y(i),P(bk|y(i)))}Ni=1 for each k ∈ {1, . . . ,K}. The trans-
mitted symbols y(i) are the input to the neural network
(generated by drawing a random codeword and simulating the
channel), and the label P(bk|y(i)) (generated by running the
BCJR algorithm) is the target we want to predict. A more
challenging task of training without the help of the BCJR
algorithm is a challenging but necessary step, and is addressed
in the end of this section.

Our aim is to learn to mimic a dynamic programming
(i.e. the BCJR algorithm) from examples. Solving such well-
defined mathematical problems with deep learning has been
recently studied in the machine learning community. This
includes clustering under stochastic block models [12], trav-
eling salesman problems [13], graph matching [14], and other
combinatorial problems [15]. There are two main challenges
in such endeavor. First, we want the end product to be an
algorithm. This requires generalization beyond the examples
shown in the training. It has been reported in [15] that neural

network based solutions such as those in [13] do not gener-
alize, especially in the size of the problem. This is especially
concerning as training over a large dimensional examples is
prohibitably slow. A key idea to overcome this challenge
is sequential neural networks, as demonstrated in [15]. The
recurrent structure is critical in achieving generalization to
larger problems. We utilize this strength of sequential neural
networks, on top of the fact that they match the structure of
the encoder (i.e. convolutional codes) as well as the structure
of the optimal decoder (i.e. BCJR decoder), to achieve strong
generalization over the size of the problem (i.e. block length).

The second challenge is in choosing the right training
examples. In the above mathematically defined problems, we
have the freedom to generate (a possibly infinite number
of) training examples. However, selecting the right training
examples is critical in efficient training. [15] demonstrates that
for the traveling salesman problem, choosing examples that are
difficult enough allows the training to converge much faster.
In our communication setting, we propose a novel scheme
for choosing such training examples by fully utilizing the
mathematical description of our problem. This turns out to
be critical in achieving the accuracy we want in Figure 9 (left
panel). Further, this principle turns out to be universally crucial
for all scenarios we consider including joint encoder/decoder
training (§ IV-B) and training feedback codes (§ V-B).

Architecture. To recover the performance of the BCJR al-
gorithm with a trained neural network, we propose using
bidirectional Gated Recurrent Units (bi-GRU). Let y =
((y11, y12), . . . , (yK1, yK2)) ∈ R2×K denote the received
symbols (as defined in § II-A) and let fW(y) = b̂ ∈ RK

denote the output of the neural network with a parameter
W. The following loss function requires an oracle access to
the optimal BCJR algorithm in order to achieve the desired
performance, and solves for

minimizeW E
[K∑

k=1

(
b̂k − P(bk = 1|y)

)2]
, (1)

where the expectation is over the samples used in training,
and the conditional probability is evaluated using the BCJR
algorithm. This is a standard quadratic loss for a regression
problem.
Results. Consider decoding convolutional codes under the
Additive White Gaussian Noise (AWGN) channel with a
specific Signal-to-Noise Ratio (SNR) defined as -10 log10 σ

2

where σ2 is the variance of the Gaussian noise in the channel
(assuming the transmitted sequence x satisfis E[x2] = 1).
A standard machine learning approach is to train on example
sequences from the same channel and the same SNR as it
will be tested on. This fails to achieve the BCJR performance
as shown in Figure 9 (top panel). Perhaps surprisingly, there
exists an empirically optimal training SNR (0dB in the rate-
1/2 example below) that is different from the testing SNRs.
Further, this optimal training SNR primarily only depends on
the rate of the code.

We give a rule for choosing such training examples, bor-
rowing information theoretic insight. Intuitively, we aim to
train on examples that are just difficult enough (close to the

6

y11, y12 yK1, yK2

b̂1 b̂K

Layer Output dimension
(# of units, dimension)

Input (K, 2)
1st bi-GRU (K, 400)

1st Batch Normalization (K, 400)
2nd bi-GRU (K, 400)

2nd Batch Normalization (K, 400)
Dense (sigmoid) (K, 1)

Fig. 8: Neural decoder architecture in [16] for the rate 1/2-RSC
code in Figure 3.

decision boundaries) so that no training time is wasted (on
easy examples). Typically, this requires adaptive schemes, as
the decision boundary is not known. However, as the model
is mathematically precise in the channel decoding, we do
not need adaptive schemes to figure out where the decision
boundary is. Instead, we harness information theoretic insights
to prescribe an analytically chosen training SNR level (0dB in
this example with rate 1/2 codes) as follows. We parametrize
the noise we add in the training examples by their SNR. To
find the right training SNR, we need to know the (average)
distance from a codeword to the decision boundary, which
changes for different encoding schemes. To get a universal rule
of thumb, we consider the ideal codewords with maximum
distance between neighboring codes (such as the Gaussian
code book). For a given code rate r, this ideal distance to
the boundary can be translated into

SNRtrain = 10 log10(2
2r − 1) , (2)

and is shown in black line named “Theoretical limit” in Figure
9 (bottom panel). This is derived from the sphere packing
bound (and also Shannon capacity of the Gaussian channel).
As typical codes have smaller inter-codeword distances than
the ideal code, the empirical best choice of training SNR is
slightly larger (but close to the theoretical prediction), shown
in grey.1 Similar efforts towards understanding optimal choices
of training data for training decoders have been taken in [17],
and active learning approaches were explored in [18].

One would claim that the BCJR algorithm is recovered
only if a neural decoder trained at a small block length

1The codes from [16] are available at
https://github.com/deepcomm/RNNViterbi

BER

(test) SNR

Fig. 9: Neural decoder performance for the rate 1/2-RSC code
in Figure 2. (Top) Neural decoder trained at a mismatched
0dB SNR improves upon a standard matched training, when
trained and tested with block length K = 100. (Bottom) The
region of optimal training SNR is shown in grey as a function
of the rate of the code. It is close to an information theoretic
prediction shown in black line.

(test) SNR

BER

Fig. 10: The neural decoder trained on K = 100 sequences
generalizes to match the BCJR decoder when tested on block
length K = 10, 000 sequences.

can be applied to a larger block lengths. Figure 10 shows
how such generalization in block length is achieved by the
proposed approach. Such generalization property is one of the
main challenges in recovering existing algorithms with deep
learning.

Related work. Building upon the above neural decoder, one

7

can immediately decode Turbo codes as shown in [16]. How-
ever, this requires access to the BCJR algorithm. The question
of whether this is necessary was resolved in [19], where a
standard cross entropy loss of `(b̂k, bk) = −bk log(b̂k) −
(1 − bk) log(1 − b̂k) was used (with no oracle access to
the BCJR) on a training data of the form {(b(i),y(i))}Ni=1.
This is a standard loss used in training binary classifiers. To
achieve the performance of the Turbo decoder without access
to the BCJR decoder, an additional technique is necessary:
using multi-dimensional vectors to encode the posterior beliefs
from one iteration to the next. The standard Turbo decoder
encodes its posterior belief as a scalar valued log-likelihood,
when going from one iteration to the next. Using multi-
dimensional posterior beliefs allows the neural network to
search over a larger class of functions that can potentially
encode more information between iterations, thus achieving
the performance of a Turbo decoder without the help of BCJR
codes.

Following [16], [20] compares the capability of various
neural networks in achieving Viterbi performance on convolu-
tional codes and proposes a new training method for learning
Viterbi decoders for convolutional codes with a long memory.
[21] studies non-AWGN channels (e.g., time varying channels
or channels with memory) and explores neural decoders that
match Viterbi performance.

First attempts to design neural decoders used general pur-
pose neural networks. With no structural insights to guide
the training process, typical approaches in this direction were
limited to small block lengths. [22] designs a neural network
decoder that can closely match the optimal performance of
MAP decoder for the Polar code of a fixed size of 16 bits. In
a series of work, [23, 24, 25, 26] introduce trainable weights
to the popular belief propagation decoder and trains those
parameters via supervised training with examples of pairs of
noisy codewords and the true message bit sequence. Decoders
for several High Density Parity Code (HDPC) codes (e.g.,
BCH(127,106), BCH(63,36), BCH(63,45)) are considered in
[23], where belief propagation decoders are known to have
inferior performances. Near MAP performances were achieved
on HDPC codes in the subsequent work [27]. A similar idea
of weighted belief propagation is used in [28] for (128,64)
and (256,128) polar codes, and CRC-polar concatenated codes
in [29]. [26] demonstrates near MAP performances on the
(32, 16) Reed–Muller code. [30] uses reinforcement learning
to find the best decoder for a given scenario, achieving near
optimal performances on BCH and Reed-Muller codes.

General purpose neural network decoder architectures have
also been proposed, without exploiting any specific structure of
the encoder (other than linearity). In [31] the idea of syndrome
decoding is used to avoid overftting to the codewords shown in
the training. Perhaps surprisingly, RNNs are shown to achieve
the best performance in this unstructured setting also (when
trained and tested with BCH codes).

B. Learning Turbo codes

Given the success in learning decoders, a natural question
is whether we can learn both the encoder and the decoder

via deep learning and recover the performance of existing
codes. We model both the encoder and the decoder as neural
networks, as illustrated in Figure 11. When trained with the
right neural architectures and the right training methodology,
the pair of encoder and decoder achieves the reliability of
Turbo codes under the AWGN channel.

Fig. 11: Both the encoder and the decoder are modeled as
neural networks, while maintaining the sequential structure,
and the parameters V and W are trained using training
samples for AWGN channels.

For the architectures, sequential neural networks, such as an
Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs), are natural choices for both the encoder
and the decoder, (as explained in § II and § III). However,
the accuracy is significantly worse when compared to Turbo
codes (see the performance of CNN-AE in Figure 14). We
propose a novel architecture inspired by Turbo codes, called
Turbo Autoencoder (TurboAE), which harmoniously combines
the CNN architecture with the interleaver of Turbo codes for
the encoder [32]2. Correspondingly, we model the decoder as a
layered CNNs with an alternating application of the interleaver
and the deinterleaver, inspired by the Turbo decoder.

Training two neural networks jointly is challenging. Bor-
rowing ideas from alternating gradient methods used in train-
ing Generative Adversarial Networks (GAN) [33, 34], we
propose the following training strategies: first, we train the
encoder and the decoder via two alternating gradient descents.
We update the decoder for a fixed encoder for a larger number
of iterations than the number of iterations used when updating
the encoder. This prevents the encoder from chasing after a
mismatched decoder. Such two-timescale gradient methods are
successful in solving a certain class of minimax optimization
problems, like those in training GANs [35]. Secondly, the SNR
of the training examples are carefully chosen, similarly as in
§ IV-A. Lastly, it is critical to use a order of a magnitude larger
batch size (compared to when training only the decoder). Such
a benefit of a larger batch size has been observed empirically
in other domains where alternating gradient methods are used
(e.g. in training GANs [36]).

Setup. Concretely, we consider learning a rate-1/3 code for
K = 100 information bits, i.e., the encoder maps b ∈
{0, 1}100 to a codeword x = (x1,x2,x3) ∈ R3×100, and the
decoder maps y = (y1,y2,y3) ∈ R3×100 to b̂ ∈ {0, 1}100,
where yi = xi + zi for i.i.d. Gaussian noise sequence zi
for i = 1, 2, 3. We compare against existing codes, including
Turbo, polar, and LDPC codes [6, 37, 38].

Architecture. TurboAE consists of a channel encoder and a
decoder. Each is modeled as a neural network. The design is

2Implementation of [32] is available at
https://github.com/yihanjiang/Turboae.

8

inspired by rate-1/3 Turbo encoders and Turbo decoders. As
shown in Figure 12, the neural encoder of TurboAE combines
the interleaver and convolutional neural networks (CNNs); it
consists of three trainable CNN encoding blocks followed
by a power normalization layer. Input to the first two CNN
encoding blocks is the original bit sequence, while input to the
last CNN block is an interleaved bit sequence. The detailed
architecture of each CNN block is shown in the table in
Figure 12, where the filter size of each CNN layer is five.

Encoder Layer Output dimension
Block CNNi Input (K,1)
(i = 1, 2, 3) CNN + ReLU (K,100)

CNN + ReLU (K,100)
Linear + ELU (K,1)

Fig. 12: The encoder architecture in Turbo Autoencoder for a
rate-1/3 code.

Decoder Layer Output dimension
Block CNNi Input (K,7)

(i = 1, · · · , 12) CNN + ReLU (K,100)
CNN + ReLU (K,100)
CNN + ReLU (K,100)
CNN + ReLU (K,100)
CNN + ReLU (K,100)
Linear + ELU (K,1) for i = 1, · · · , 11

(K,5) for i = 12

Fig. 13: The decoder architecture in Turbo Autoencoder for a
rate-1/3 code.

The neural decoder of TurboAE consists of several lay-
ers of convolutional neural networks with interleavers and
de-interleavers in between, as shown in Figure 13. Let
y1,y2,y3 ∈ RK denote noisy versions of x1,x2,x3 ∈ RK ,
respectively. The decoder generates an estimate b ∈ {0, 1}K
based on y1,y2,y3 via multiple iterations of CNNs. Two types
of decoders are alternatively applied, CNNi and CNNi+1,
with an interleaver and de-interleaver in between, for i ∈

{1, 3, 5, 7, 9, 11}. The first decoder, CNNi, takes received
signals y1, y2 and the prior p of size (K, f). Standard Turbo
decoders use f = 1 as the prior belief for each information bit,
which represents a scalar valued log-likelihood ratio. However,
we let f = 5 as we observe that f > 1 significantly improves
the accuracy of the final encoder-decoder pair. Such over-
parametrization is known to improve the loss landscape in
training and achieve a better generalization, in the machine
learning literature [39, 40, 41]. Conceptually, similar to Turbo
decoders, the CNNi generates the posterior belief q of size
(K, f) given the prior belief p and y1,y2 as inputs.

The second decoder, CNNi+1, then takes the interleaved
signal π(y1), received symbols y3, and interleaved prior p
and generates the posterior belief q, also of size (K, f). The
first iteration takes p0 = 0 (of size (K, f)) as a prior, and
the final CNN layer CNN12 generates a posterior of size
(K, 1), which is passed through a sigmoid function to generate
b̂ =round(sigmoid(q)).

As the CNNs have enough representation power to mimic
convolutional codes and BCJR decoders (see §III), The pro-
posed architecture can in principle mimic Turbo encoders and
decoders. However, training TurboAE architectures from data
requires the following additional techniques, to ensure that we
learn to exploit the full potential of the long-range correlations
provided by the interleavers.
• Alternating the training of the encoder and the

decoder. Let V and W denote the parameters in the
encoder and the decoder neural networks, respectively.
Stochastic gradient descent is used to train V and W,
which solves

minimizeV,W E
[K∑

k=1

`(bk, sigmoid(qk))
]
,

where we use a cross-entropy loss `(bk, sigmoid(qk)) =
−{bk log(sigmoid(qk)) + (1− bk) log(1− sigmoid(qk)} ,
and the expectation is over the samples used in
the training. As opposed to updating V and W
simultaneously, as in [42], we alternate the training
of V and W to prevent converging to a bad local
optimum [43] [44]. The decoder and the encoder are
trained asymmetrically, which is critical in achieving
an improved accuracy. The decoder W is updated for
a larger number of iterations than the encoder V is
(e.g., W is updated with 500 examples, V with 100
examples).

• Different training noise levels for the encoder and
decoder. It has been shown empirically that it is best
to train the decoder at a lower training SNR than the
SNR it will be tested on SNR [16, 44]. However, in joint
encoder-decoder training setting, as the encoder is evolv-
ing over the training process (and corresponding decision
boundaries between codewords also shifting), [32] trains
the decoder at various SNRs (random selection from -1.5
to 2 dB). We refer to §IV-A for the insight in how to
choose the training SNRs.

• Large batch size. A large batch size is critical in our
training. TurboAE trained with a mini-batch size less than

9

500 achieves a noticeably worse accuracy.
Result. Figure 14 shows a BER vs. SNR graph for Tur-
boAE, with widely used baseline codes including Turbo, polar,
LDPC, and tail-biting convolutional codes (TBCCs) generated
via Vienna 5G simulator [45] [46] for block length 100 and
code rate 1/3. CNN-AE is a trained CNN-based encoder-
decoder architecture that does not use an interleaver. This
shows that simply replacing the encoder and decoder with
general-purpose neural networks does not achieve a high
accuracy.

TurboAE has two versions. TurboAE-continuous, reviewed
in this tutorial, enforces a soft power constraint and allows
real-valued codewords. TurboAE-binary, on the other hand,
enforces the codewords to be binary. Both versions of Tur-
boAE are shown to perform comparable to Turbo codes at a
low SNR, while at a high SNR (over 2 dB with BER < 10−5),
performance is worse than LDPC and polar codes.

BER

SNR
Fig. 14: TurboAE recovers the reliability of modern codes for
moderate block length (100 information bits, rate 1/3) in low
and mid-range of SNRs

The BERs of TurboAE, Turbo code, and CNN-AE vs. the
block length are shown in Figure 15 (top panel), where the
SNR of the AWGN channel is fixed at 2dB. As block length
increases, improved reliability can be achieved, which we refer
to as the block length gain. Modern codes that have a long-
range memory, such as Turbo codes, achieve this block length
gain, while convolutional codes do not. TurboAE also exploits
a long-term memory by the embedded interleaver and achieves
the block length gain, while a direct application of well-
known neural architectures (e.g., CNN-AE) tends to exploit
only a short-range memory and does not achieve the block
length gain. In Figure 15 (bottom panel), the reliability of
TurboAE with and without a random interleaver is shown,
which demonstrates that the random interleaver is critical in
achieving the accuracy of Turbo codes.

Related work. [42] introduces a new framework for end-to-
end joint training of the encoder and the decoder. It is shown
that thus trained encoder and decoder can recover the accuracy
of a Hamming code for a short information block length (K =
4, n = 7). However, these general purpose neural networks do
not scale to larger block lengths, as no structure is imposed.
Addressing this scaling challenge, [32] imposes the sequential
structure with an interleaver, recovering the accuracy of turbo
codes on significantly longer block lengths.

As opposed to fully training both the encoder and decoder
end-to-end, [47] applies deep learning to the polar code

BER

Block length K

BER

SNR

Fig. 15: (Top) The error probability of TurboAE (at SNR
2dB) decreases as block length K increases. (Bottom) The
interleaver is critical in achieving the reliability of TurboAE.

construction (encoder side) tailored to the traditional belief
propagation decoder. [48] uses reinforcement learning and
genetic algorithm-based approaches to construct linear codes
and polar codes. Similarly, [49] shows that polar codes con-
structed based on the genetic algorithm for (plain) successive
cancellation list decoding achieve a reliability comparable to
polar codes with CRC-aided SCL decoding.

V. NEW RESULTS ON NON-AWGN CHANNELS

On several channels that are not AWGN or even point-to-
point, we often lack the technical tools to design good codes.
Neural networks provide a promising alternative approach.
On non-AWGN channels, we demonstrate that trained neural
decoders are more robust to mismatched channel models than
the standard Turbo decoders in § V-A. Further, when we can
obtain training samples from such non-standard channels, neu-
ral decoders can adapt to new channels without any knowledge
of the mathematical descriptions of the channel.

We next consider in § V-B the Gaussian noise channel
with output feedback, whose study was initiated by Shannon;
feedback is known theoretically to improve reliability of
communication, but linear coding methods to incorporate the
feedback have provably inferior performance compared to non-
linear codes [50]. The space of non-linear codes is challenging

10

to explore with human ingenuity. We break this gridlock by
training neural encoders and decoders from samples.

A. Neural decoder for non-AWGN channels

In practical wireless communications, the channels do not
exactly match the mathematical models. Neural decoders are
shown to have superior robustness and adaptivity relative
to existing decoders when the channel deviates from the
AWGN channels. Robustness refers to the ability of a decoder
trained for a particular channel (e.g., AWGN) to work well,
without re-training, when the test channel deviates from the
training channel. Adaptivity refers to the decoder’s ability to
adapt to various non-AWGN channel models, by training with
examples from those channels.

Fig. 16: Trained neural decoders exhibit superior robustness
and adaptivity.

Figure 17 (top) shows that without any re-training, neural
decoders trained on AWGN is robust against a channel that
adds an i.i.d. noise according to the T-distribution (we use
standard Turbo encoder in this example). Further, investiga-
tions reveal that Turbo decoders are (sometimes mistakenly)
over-confident about some received symbols, and the propaga-
tion of such confident mis-information hurts the performance
significantly. On the other hand, neural decoders are inherently
conservative, making it robust against changes in the channel.

In Figure 17 (bottom), we demonstrate adaptivity results
on bursty noise channels, where, with a small probability,
a high-variance noise is added to the received symbol. This
channel model captures how radar signals (which are bursty)
can create an interference for wireless systems. For bursty
noise channels, heuristic decoders are used in practice; the
received symbols with high magnitudes are first thresholded
before passing through the Turbo decoder. The performance
of two such heuristics are shown in the figure as “Saturating
Turbo Decoder” (which shrinks large magnitude signals) and
“Erasure Turbo Decoder” (which sets large magnitude signals
to zero). The performance of the “Turbo Decoder” tailored for
the AWGN channel is shown as a reference. A neural decoder
trained on AWGN channels is robust as expected (shown as
“AWGN Neural Decoder”). The figure shows that the “Bursty
Neural Decoder” trained on the bursty channel adapts to the
new channel and achieves the best performance.

Related work. Traditional decoding algorithms, such Viterbi
and BCJR algorithms, require the knowledge on the channel
model (i.e., P(y|x) where x and y denote transmitted and
received symbols, respectively). For i.i.d. AWGN channels,
the noise variance fully characterizes the channel model,
and it is assumed to be readily available at the receiver.
On the other hand, for non-AWGN channels, the receiver
often do not have the full knowledge on the channel model.
In addition, decoding algorithm becomes more complicated

BER

SNR

(a) Robustness result on T-Distribution channels

BER

SNR

(b) Adaptivity result on bursty noise channels

Fig. 17: Neural network based decoders for Turbo codes are
more robust when tested on T-distribution channels (top) and
adapt to bursty noise channels to outperform heuristics used
in practice (bottom).

as channel models become complicated; for example, the
complexity of Viterbi algorithm increases exponentially in the
memory of a channel (for channels with memory). To address
these challenges, [21] proposes ViterbiNet which maintains
the structure of Viterbi algorithm while the component of
Viterbi algorithm that depends on the channel knowledge
(computation of likelihood for each symbol) is replaced by
a trainable neural network. It is shown that ViterbiNet is
robust to the uncertainty in channel models. For example,
ViterbiNet trained online based on recent decoding decisions
closely achieves the accuracy of the optimal Viterbi algorithm
that knows the precise (time-varying) channel model. [51, 52]
also investigates deep learning based decoders for non-AWGN
channels.

B. Learning codes for channels with output feedback

The advantage of deep learning for communication systems
is that training can be done for channels for which analytically
designing reliable codes is challenging. One such example is
the output feedback channel in Figure 18, where the received
symbols are sent back to the transmitter. Due to the natural
sequential nature of this channel, sequential neural networks
provide a promising direction for discovering a new code.

11

Fig. 18: End-to-end deep learning based communication sys-
tem for channels with output feedback: both the encoder and
decoder are modelled as neural networks and the parameters
V and W are trained from samples.

In [53], novel codes based on RNNs are shown to operate
significantly better (several orders of magnitude improvement
in accuracy for certain regimes) than the state of the art on
the AWGN channel with (noisy) output feedback.3

Setup. Modern wireless communication involves feedback
from receiver to transmitter. The feedback can be in several
forms (e.g., the received value itself or the acknowledgment
of reception). Among several channel models, we consider
channels with output feedback proposed by Shannon. As
illustrated in Figure 19, both channels from/to the transmitter
to/from the receiver are modeled as AWGN channels. At time
i, the decoder receives yi = xi + zi, where zi ∼ N (0, σ2),
and transmits yi back to the encoder with a unit-step delay.
At time i, the encoder receives ỹi−1 = yi−1 + wi−1 for
wi−1 ∼ N (0, σ2

F), which is an AWGN-added version of yi−1.
Formally, an encoder is a function that sequentially maps the
information bit sequence b ∈ {0, 1}K and the feedback signals
ỹi−11 = (ỹ1, · · · , ỹi−1) received thus far to a transmit signal
xi. The encoder is a mapping fi : (b, ỹi−11) 7→ xi ∈ R, i ∈
{1, · · · , n} . Without loss of generality, the average power
of x is constrained to one, i.e., (1/n)E[‖x‖2] ≤ 1, where
x = (x1, · · · , xn) and the expectation is over the randomness
in choosing the information bits b uniformly at random and
the randomness in the noisy feedback signals (ỹ1, · · · , ỹn).
A decoder is a function that maps the received sequence
y = (y1, · · · , yn) into estimated information bit sequence
g : y 7→ b̂ ∈ {0, 1}K .

Fig. 19: An AWGN channel with noisy output feedback

3Implementation of [53] is available at https://github.com/hyejikim1/
Deepcode,https://github.com/yihanjiang/feedback code.

[54] shows that the capacity of the channel remains un-
changed in the presence of output feedback. However, ac-
curacy in the finite block length regime can in theory in-
crease significantly, as demonstrated by the celebrated result
of Schalkwijk and Kailath (S-K scheme) [55]. In practice,
however, the S-K scheme is sensitive to the finite machine
precision and noise in the feedback [55, 56]. We demonstrate
that a trained pair of an encoder and a decoder outperforms
the S-K scheme in accuracy (for k = 50 and code rate
1/3 (n = 3k)) for the channels with output feedback.

...

Architecture. Both the encoder and the decoder are modeled
as recurrent neural networks, as illustrated in Figures 20
and 21. This framework and the corresponding newly discov-
ered code via deep learning is referred to as DeepCode. The
rate 1/3 encoder operates in two phases. In the first phase, the
encoder generates an uncoded transmission sequence of length
K in RK , which is an output of a non-uniform and learnable
power allocation applied to the information bit sequence. In
the second phase, the encoder generates a coded transmission
sequence of length 2K via an RNN followed by a learnable
power allocation block. Each j-th RNN cell generates a pair
of coded symbols (xj,1, xj,2) ∈ R2 as a function of the
hidden state of the RNN, input information bit bj , ỹj − xj
(the estimated noise added to the j-th transmission in phase
1) and (ỹj−1,1−xj−1,1, ỹj−1,2−xj−1,2) (the estimated noise
added to the (j − 1)-th transmission in phase 2).

Layer Output dimension
Input (K, 4)

RNN (tanh) (K, 50)
Dense (sigmoid) (K, 2)
Normalization (K, 2)

Fig. 20: The encoder architecture of the rate-1/3 DeepCode
in [53]

The decoder architecture is shown in Figure 21. Let y =
(y1, · · · , yK , y1,1, y1,2, · · · , yK,1, yK,2) ∈ R3K denote the
received sequence, i.e., yj = xj + zj , yj,1 = xj,1 + zj,1,
and yj,2 = xj,2+zj,2, where zj , zj,1, zj,2 denote the Gaussian
noise added in the AWGN channel for j = 1, · · · ,K. The
decoder maps y to b̂ ∈ {0, 1}K via two-layered bidirectional
GRUs, where the input to the k-th first-layer GRU cell is a
tuple of three received symbols, (yk, yk,1, yk,2).

The encoder and the decoder are trained jointly via back
propagation through time (on the entire input message bit
sequence) to minimize the binary cross-entropy loss function.

12

Layer Output dimension
Input (K, 3)

bi-GRU (K, 100)
Batch Normalization (K, 100)

bi-GRU (K, 100)
Batch Normalization (K, 100)

Dense (sigmoid) (K, 1)

Fig. 21: The decoder architecture of the rate-1/3 DeepCode
in [53]

Result. The BER and BLER of DeepCode and several base-
lines are shown in Figure 22 for channels with noiseless
feedback (i.e., σ2

F = 0) for input block length K = 50 and
code rate 1/3. The S-K scheme uses a practical choice of
MATLAB implementation with a precision of 64 bits to repre-
sent floating-point numbers. Since the scheme is very sensitive
to finite numerical precision, numerical errors dominate the
performance of the S-K scheme, as shown in Figure 22. At
a moderate SNR of 2 dB, DeepCode outperforms the S-K
scheme by three orders of magnitude in BER.

In Figure 22 (bottom), the BLER of DeepCode is shown
together with the state-of-the-art polar, LDPC, and convo-
lutional codes (from [57]) that do not use feedback. No-
tably, DeepCode significantly improves over all state-of-the-
art codes of similar block-lengths and the same rate. In
addition, the theoretical estimate of the best code (with no
efficient decoding schemes) for channels without feedback is
shown as a reference, which lies between an approximate
achievable BLER (labelled Normapx) and a converse to the
BLER (labelled Converse) from [58, 59].

Related work. End-to-end learning of codes have been studied
in several settings, such as OFDM [60], one-bit quantization
channels [61], and optical communications [62]. Taking a step
further, exploiting the advantage of end-to-end trainability,
several works have proposed learning frameworks for joint
source channel coding [63, 64, 65].

VI. DISCUSSION

Adapting recent advances in deep learning for building
reliable communication systems is challenging but promising.
From a deep learning perspective, the challenges are unique:

BER

SNR = −10 log10 σ2

BLER

SNR = −10 log10 σ2

Fig. 22: Deepcode outperforms the baseline of S-K and Turbo
code by several orders of magnitude in BER, on block-length
50 and noiseless feedback in BER (top) and BLER (bottom).
DeepCode also outperforms all state-of-the art codes (that do
not use feedback) in BLER (bottom).

we have access to potentially infinite training samples and the
models are mathematically completely defined, but codebooks
are exponentially large and we desire generalization in block
lengths for efficient training. These challenges need to be
handled via careful design of the neural network architecture,
choice of training block length and SNR, and choice of the
loss function and appropriate regularizers; we have seen the
important role of insights from information and coding theory
in successfully conducting these steps.
Looking Forward. In this article we have used vanilla RNNs
to model both encoders and decoders of sequential codes. In
deep learning literature, there is an important variant of vanilla
RNNs – known as GRU [8] (and LSTM [9]) – which are
proposed to mainly overcome the short memory limitations of
RNNs. Specifically: GRU follows the same basic structure of
an RNN as in Figure 6, where a hidden state hk is updated
over time based on hk−1 and Ink. The key difference is that
GRU includes “gating”: a reset gate rk and an update gate
zk are used in updating the hk. The hidden state hk is now
updated as:

h̃k = φh(WhInk + Uh(rk � hk−1) + bh),

hk = zk � hk−1 + (1− zk)� h̃k,

for trainable parameters Wh, Uh, bh and an activation function
φh, where � refers to Hadamard product. A reset gate rk

13

is defined as rk = σg(WrInk + Urhk−1 + br) for trainable
parameters Wr, Ur, br and an activation function σg . Similarly,
an update gate zk is parameterized as zk = σg(WzInk +
Uzhk−1+ bz) for trainable parameters Wz, Uz, bz and an acti-
vation function σg . The role of the reset gate is to control the
amount of influence of the previous hidden state in generating
the candidate hidden state h̃k. The role of the forget gate is to
determine to which extent hk just maintains hk−1 and reflect
the new candidate hidden state h̃k. What is important is these
gates depend on the input and the previous state and thus the
gating operation has the ability to change over time. In the
context of sequential encoders, this means a GRU (and an
LSTM) can represent a convolutional code with dynamically
varying memory, and this variation can be made to functionally
depend on an aspect of the communication scheme (example:
feedback symbols). We can make an analogy to switched linear
systems, where it is known that state dependent switching
allows long term dependence of the state and output on the
original input; this connection along with a learning theoretic
study of GRUs and gated recurrent networks is made in
[66, 67]. How to harness this added capability of GRUs in
communication schemes (to further enhance the performance
of sequential encoding and decoding schemes) is a promising
open direction.

Another promising open direction involves studying deep
learning architectures that could enhance and strengthen the
other coding theoretic structures (cf. taxonomy in Figure 1);
early work exploring the role of neural networks in decoding
polar codes [68, 69, 70] is an example of this direction of
research.

VII. ACKNOWLEDGEMENT

This work is supported by NSF grants CNS-2002932 and
CNS-2002664 and a gift from Intel.

REFERENCES

[1] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-
agenet large scale visual recognition challenge. Inter-
national Journal of Computer Vision, 115(3):211–252,
2015.

[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119, 2013.

[3] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[4] Andrew Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE transactions on Information Theory, 13(2):260–
269, 1967.

[5] Lalit Bahl, John Cocke, Frederick Jelinek, and Josef
Raviv. Optimal decoding of linear codes for minimizing
symbol error rate (corresp.). IEEE Transactions on
information theory, 20(2):284–287, 1974.

[6] Claude Berrou, Alain Glavieux, and Punya Thitima-
jshima. Near shannon limit error-correcting coding and
decoding: Turbo-codes. 1. In Proceedings of ICC’93-
IEEE International Conference on Communications, vol-
ume 2, pages 1064–1070. IEEE, 1993.

[7] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[8] Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre,
F Bougares, H Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for
statistical machine translation. In Conference on Empir-
ical Methods in Natural Language Processing (EMNLP
2014), 2014.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9:1735–80, 12 1997.

[10] Xiao-An Wang and S. B. Wicker. An artificial neural net
viterbi decoder. IEEE Transactions on Communications,
44(2):165–171, Feb 1996.

[11] Murat Hüsnü Sazlı and Can Işık. Neural network
implementation of the bcjr algorithm. Digital Signal
Processing, 17(1):353 – 359, 2007.

[12] Joan Bruna and X Li. Community detection with graph
neural networks. Stat, 1050:27, 2017.

[13] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina,
and Le Song. Learning combinatorial optimization algo-
rithms over graphs. In Advances in Neural Information
Processing Systems, pages 6348–6358, 2017.

[14] Alex Nowak, Soledad Villar, Afonso S Bandeira, and
Joan Bruna. Revised note on learning algorithms for
quadratic assignment with graph neural networks. arXiv
preprint arXiv:1706.07450, 2017.

[15] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh,
and Pramod Viswanath. Graph2seq: Scalable learning
dynamics for graphs. arXiv preprint arXiv:1802.04948,
2018.

[16] Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan,
Sewoong Oh, and Pramod Viswanath. Communication
algorithms via deep learning. In International Conference
on Learning Representations, 2018.

[17] Meryem Benammar and Pablo Piantanida. Optimal
training channel statistics for neural-based decoders. In
2018 52nd Asilomar Conference on Signals, Systems, and
Computers, pages 2157–2161. IEEE, 2018.

[18] Ishay Be’ery, Nir Raviv, Tomer Raviv, and Yair Be’ery.
Active deep decoding of linear codes. arXiv preprint
arXiv:1906.02778, 2019.

[19] Yihan Jiang, Sreeram Kannan, Hyeji Kim, Sewoong Oh,
Himanshu Asnani, and Pramod Viswanath. Deepturbo:
Deep turbo decoder. In 2019 IEEE 20th International
Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pages 1–5. IEEE, 2019.

[20] Daniel Tandler, Sebastian Dörner, Sebastian Cammerer,
and Stephan ten Brink. On recurrent neural networks
for sequence-based processing in communications. In

14

53rd Asilomar Conference on Signals, Systems, and
Computers, pages 537–543, 2019.

[21] Nir Shlezinger, Nariman Farsad, Yonina C Eldar, and
Andrea J Goldsmith. Viterbinet: A deep learning based
viterbi algorithm for symbol detection. IEEE Transac-
tions on Wireless Communications, 2020.

[22] Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and
Stephan ten Brink. On deep learning-based channel
decoding. In Information Sciences and Systems (CISS),
2017 51st Annual Conference on, pages 1–6. IEEE, 2017.

[23] Eliya Nachmani, Yair Be’ery, and David Burshtein.
Learning to decode linear codes using deep learning. In
2016 54th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pages 341–346.
IEEE, 2016.

[24] Eliya Nachmani, Elad Marciano, Loren Lugosch, War-
ren J Gross, David Burshtein, and Yair Be’ery. Deep
learning methods for improved decoding of linear codes.
IEEE Journal of Selected Topics in Signal Processing,
12(1):119–131, 2018.

[25] Tomer Raviv, Nir Raviv, and Yair Be’ery. Data-driven
ensembles for deep and hard-decision hybrid decoding.
arXiv preprint arXiv:2001.06247, 2020.

[26] Mengke Lian, Fabrizio Carpi, Christian Häger, and
Henry D Pfister. Learned belief-propagation decoding
with simple scaling and snr adaptation. In 2019 IEEE
International Symposium on Information Theory (ISIT),
pages 161–165. IEEE, 2019.

[27] Eliya Nachmani, Yaron Bachar, Elad Marciano, David
Burshtein, and Yair Be’ery. Near maximum likeli-
hood decoding with deep learning. arXiv preprint
arXiv:1801.02726, 2018.

[28] Weihong Xu, Xiaohu You, Chuan Zhang, and Yair
Be’ery. Polar decoding on sparse graphs with deep
learning. In 2018 52nd Asilomar Conference on Signals,
Systems, and Computers, pages 599–603. IEEE, 2018.

[29] Nghia Doan, Seyyed Ali Hashemi, Elie Ngomseu Mam-
bou, Thibaud Tonnellier, and Warren J Gross. Neural
belief propagation decoding of crc-polar concatenated
codes. In ICC 2019-2019 IEEE International Conference
on Communications (ICC), pages 1–6. IEEE, 2019.

[30] Fabrizio Carpi, Christian Häger, Marco Martalò, Ric-
cardo Raheli, and Henry D Pfister. Reinforcement learn-
ing for channel coding: Learned bit-flipping decoding. In
2019 57th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pages 922–929.
IEEE, 2019.

[31] Amir Bennatan, Yoni Choukroun, and Pavel Kisilev.
Deep learning for decoding of linear codes-a syndrome-
based approach. In 2018 IEEE International Symposium
on Information Theory (ISIT), pages 1595–1599. IEEE,
2018.

[32] Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram
Kannan, Sewoong Oh, and Pramod Viswanath. Turbo
autoencoder: Deep learning based channel codes for
point-to-point communication channels. In Advances
in Neural Information Processing Systems, pages 2754–
2764, 2019.

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Ad-
vances in neural information processing systems, pages
2672–2680, 2014.

[34] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong
Oh. Pacgan: The power of two samples in generative
adversarial networks. In Advances in neural information
processing systems, pages 1498–1507, 2018.

[35] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local
nash equilibrium. In Advances in neural information
processing systems, pages 6626–6637, 2017.

[36] Andrew Brock, Jeff Donahue, and Karen Simonyan.
Large scale gan training for high fidelity natural image
synthesis. arXiv preprint arXiv:1809.11096, 2018.

[37] Erdal Arikan. Channel polarization: A method for
constructing capacity-achieving codes. In 2008 IEEE
International Symposium on Information Theory, pages
1173–1177. IEEE, 2008.

[38] David JC MacKay and Radford M Neal. Near shannon
limit performance of low density parity check codes.
Electronics letters, 33(6):457–458, 1997.

[39] Simon S Du and Jason D Lee. On the power of
over-parametrization in neural networks with quadratic
activation. arXiv preprint arXiv:1803.01206, 2018.

[40] Shiyu Liang, Ruoyu Sun, and R Srikant. Revisit-
ing landscape analysis in deep neural networks: Elim-
inating decreasing paths to infinity. arXiv preprint
arXiv:1912.13472, 2019.

[41] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli,
Yann LeCun, and Nathan Srebro. Towards understanding
the role of over-parametrization in generalization of
neural networks. arXiv preprint arXiv:1805.12076, 2018.

[42] Timothy O’Shea and Jakob Hoydis. An introduction
to deep learning for the physical layer. IEEE Trans-
actions on Cognitive Communications and Networking,
3(4):563–575, 2017.

[43] Fayçal Ait Aoudia and Jakob Hoydis. End-to-end learn-
ing of communications systems without a channel model.
In 2018 52nd Asilomar Conference on Signals, Systems,
and Computers, pages 298–303. IEEE, 2018.

[44] Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram
Kannan, Sewoong Oh, and Pramod Viswanath. Learn
codes: Inventing low-latency codes via recurrent neural
networks. arXiv preprint arXiv:1811.12707, 2018.

[45] Martin Klaus Muller, Fjolla Ademaj, Thomas Dit-
trich, Agnes Fastenbauer, Blanca Ramos Elbal, Armand
Nabavi, Lukas Nagel, Stefan Schwarz, and Markus Rupp.
Flexible multi-node simulation of cellular mobile com-
munications: the Vienna 5G System Level Simulator.
EURASIP Journal on Wireless Communications and Net-
working, 2018(1):17, September 2018.

[46] Bashar Tahir, Stefan Schwarz, and Markus Rupp. Ber
comparison between convolutional, turbo, ldpc, and po-
lar codes. In 2017 24th International Conference on
Telecommunications (ICT), pages 1–7. IEEE, 2017.

15

[47] Moustafa Ebada, Sebastian Cammerer, Ahmed Elkelesh,
and Stephan ten Brink. Deep learning-based polar
code design. In 2019 57th Annual Allerton Conference
on Communication, Control, and Computing (Allerton),
pages 177–183. IEEE, 2019.

[48] Lingchen Huang, Huazi Zhang, Rong Li, Yiqun Ge, and
Jun Wang. AI coding: Learning to construct error cor-
rection codes. arXiv preprint arXiv:1901.05719, 2019.

[49] A. Elkelesh, M. Ebada, S. Cammerer, and S. t. Brink.
Decoder-tailored polar code design using the genetic
algorithm. IEEE Transactions on Communications,
67(7):4521–4534, July 2019.

[50] Y. H. Kim, A. Lapidoth, and T. Weissman. Error
exponents for the gaussian channel with noisy active
feedback. In 2010 IEEE Information Theory Workshop
on Information Theory (ITW 2010, Cairo), pages 1–3,
Jan 2010.

[51] Nariman Farsad and Andrea Goldsmith. Neural network
detection of data sequences in communication systems.
IEEE Transactions on Signal Processing, 66(21):5663–
5678, January 2018.

[52] Nariman Farsad, Nir Shlezinger, Andrea J. Goldsmith,
and Yonina C. Eldar. Data-driven symbol detection
via model-based machine learning. arXiv preprint
arXiv:2002.07806, 2020.

[53] Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh,
and Pramod Viswanath. Deepcode: Feedback codes
via deep learning. In Advances in neural information
processing systems, pages 9436–9446, 2018.

[54] Claude Shannon. The zero error capacity of a noisy chan-
nel. IRE Transactions on Information Theory, 2(3):8–19,
1956.

[55] J Schalkwijk and Thomas Kailath. A coding scheme for
additive noise channels with feedback–i: No bandwidth
constraint. IEEE Transactions on Information Theory,
12(2):172–182, 1966.

[56] R. G. Gallager and B. Nakiboglu. Variations on a
theme by schalkwijk and kailath. IEEE Transactions on
Information Theory, 56(1):6–17, Jan 2010.

[57] HiSilicon Huawei. Performance evaluation of channel
codes for control channel. 3GPP TSG-RAN WG1 #87
Reno, U.S.A., November 14-18, 2016, R1-1611257.

[58] Yury Polyanskiy, H Vincent Poor, and Sergio Verdú.
Channel coding rate in the finite blocklength regime.
IEEE Transactions on Information Theory, 56(5):2307,
2010.

[59] Tomaso Erseghe. On the evaluation of the polyanskiy-
poor-verdu converse bound for finite block-length coding
in AWGN. 61:6578–6590, 01 2014.

[60] Alexander Felix, Sebastian Cammerer, Sebastian Dörner,
Jakob Hoydis, and Stephan ten Brink. Ofdm-autoencoder
for end-to-end learning of communications systems.
arXiv preprint arXiv:1803.05815, 2018.

[61] Eren Balevi and Jeffrey G Andrews. Autoencoder-based
error correction coding for one-bit quantization. arXiv
preprint arXiv:1909.12120, 2019.

[62] Boris Karanov, Mathieu Chagnon, Félix Thouin, To-
bias A. Eriksson, Henning Bülow, Domaniç Lavery,

Polina Bayvel, and Laurent Schmalen. End-to-end deep
learning of optical fiber communications. J. Lightwave
Technol., 36(20):4843–4855, Oct 2018.

[63] Kristy Choi, Kedar Tatwawadi, Tsachy Weissman, and
Stefano Ermon. Necst: Neural joint source-channel
coding. arXiv preprint arXiv:1811.07557, 2018.

[64] Nariman Farsad, Milind Rao, and Andrea Goldsmith.
Deep learning for joint source-channel coding of text.
In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2326–
2330. IEEE, 2018.

[65] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz. Deep
joint source-channel coding for wireless image trans-
mission. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4774–4778, May 2019.

[66] Ashok Vardhan Makkuva, Sewoong Oh, Sreeram Kan-
nan, and Pramod Viswanath. Learning in gated neural
networks. AISTATS, 2020.

[67] Ashok Makkuva, Pramod Viswanath, Sreeram Kannan,
and Sewoong Oh. Breaking the gridlock in mixture-of-
experts: Consistent and efficient algorithms. In Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97, pages 4304–4313, 2019.

[68] Sebastian Cammerer, Fayçal Ait Aoudia, Sebastian
Dörner, Maximilian Stark, Jakob Hoydis, and Stephan ten
Brink. Trainable communication systems: Concepts and
prototype. arXiv preprint arXiv:1911.13055, 2019.

[69] Sebastian Cammerer, Sebastian Dörner, Jakob Hoydis,
and Stephan ten Brink. End-to-end learning for physical
layer communications. In The International Zurich
Seminar on Information and Communication (IZS 2018)
Proceedings, pages 51–52. ETH Zurich, 2018.

[70] Sebastian Cammerer, Tobias Gruber, Jakob Hoydis, and
Stephan Ten Brink. Scaling deep learning-based decod-
ing of polar codes via partitioning. In GLOBECOM
2017-2017 IEEE Global Communications Conference,
pages 1–6. IEEE, 2017.

