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ABSTRACT There are many cases in which our understanding of a system may be limited due to its
complexity or lack of access into the entire system, leaving us with only partial system knowledge. This
paper proposes a novel systematic active-learning method for realizing a partially-known Discrete Event
System (DES). The proposed technique takes the available information about the system into account by
tabularly capturing the known data from the system, and then, discovers the unknown part of the system
via an active-learning procedure. For this purpose, a series of tables will be constructed to first infer the
information about the system from the available data, and if unavailable, the developed algorithm collects
the information through basic queries made to an oracle. It is proven that the developed technique returns a
language-equivalent finite-state automaton model for the system under identification after a finite number
of iterations. A real-world illustrative example is provided to explain the details of the proposed method.

INDEX TERMS Discrete event systems, partially-known systems, active-learning, complex systems,
systems identification, automata theory, manufacturing systems, automotive industries.

I. INTRODUCTION
The complexity of engineered systems has significantly
increased over the years, creating a considerable need for
multiresolution methods of analysis, design, and testing in
order to control low-level dynamics to achieve fine require-
ments while supervising the high-level behaviors to fulfill
the logical specifications. The Discrete Event System (DES)
framework, in which the high-level behaviors of the system
are captured by sequences of events (abrupt and distinct
changes in the system and its operation modes), has gained
much attention due to its innate ability to represent the logical
behavior of complex systems in an abstract, yet effective way.
Many different methods have been studied to model DES
such as Petri Nets [1]–[8], Process Algebra [9], [10], and
Automata Theory [11], [12]. The benefit of modeling a DES
as an automaton is that it provides an intuitive and visual
representation of the system that is amenable to composition
operations as well as analysis [13], [14].
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Analytical tools have been developed to analyze the afore-
mentioned modeling methods such as observers [15]–[17],
diagnosers [18]–[20], and supervisors [21]–[24]. Most of
these methods assume perfect knowledge about the system,
which, realistically, may not always be readily accessible for
analysis.

Learning unknown DES has a wide field of applications in
literature ranging from robotics and control systems to data
mining, and many other interesting applications [25], [26].
Generally speaking, learning algorithms fall into two
different types of categories [27]: active [25], [28] and pas-
sive [29], [30]. Unlike passive learning techniques, active-
learning algorithms engage in choosing examples that are
believed to provide sufficient information by actively making
queries regarding the existence (or nonexistence) of strings in
the language of the DES system being assessed.

Different active-learning techniques for automata in liter-
ature have been considered when addressing learning DES
such as L∗ [28], NL∗ [31], and Homing-Sequences [32].
All of these techniques assume initially completely unknown
systems which, in practice, might not always be the case.
However, with these methods, it is not possible to utilize the
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FIGURE 1. Symbolic representation of learning strategies for a partially known system: (a) ignoring
the known information and applying a learning technique for both the known and unknown parts,
and (b) taking into account the known information about the system, and then begin to explore and
learn only the unknown part.

already known information about the system. In other words,
employing [28], [31], [32] in order to identify a partially-
known system, one should ignore the already known infor-
mation and inefficiently treat the system as a completely
unknown system, imposing more computation and interac-
tions (queries to the oracle) to the active learning process
(see Figure 1.a for symbolic visualization of this approach).
Compared to [28], [31], [32], we develop a novel method that
can be applied to partially known systems, by efficiently tak-
ing into account the known part, followed by identifying the
unknown portion (see Figure 1.b for symbolic visualization
of the proposed approach).

Therefore, this paper proposes a novel approach for
learning partially-known systems. Inspired by L∗-Algorithm
[28], [33], we develop an active-learning technique to explore
the unknown portion of a given partially-known system. The
proposed technique, first examines the rich set of information
readily provided from the known part of the system and
captures this information in the form of a Boolean table where
the rows and columns are associated with the existence of
different strings. Then, to explore the unknown part of the sys-
tem, if the information cannot be inferred from the available
data, the proposed technique makes basic queries to an oracle
to assess the existence of particular strings that can assist in
completing the information about the unknown part. These
queries aid in the further construction of a series of tables
until an automaton is built which is language-equivalent
to the original partially-known system under identification.
We have proven that such a language-equivalent automaton
can be constructed in a finite number of iterations. Illustrative
examples are provided to detail the steps of the developed
algorithms.

The organization of the remainder of this paper is as
follows: Section II formulates the problem of learning
a partially-known DES system and provides preliminary

definitions and notations. In Section III, we develop an effec-
tive technique for learning a partially-known DES system.
Section IV provides a simplified real-world illustrative exam-
ple to explain the details and different steps of the proposed
algorithms. Section V concludes the paper.

II. PROBLEM FORMULATION
Consider the system modeled by a nondeterministic automa-
ton G as follows:

G = (X , 6, δ, x0) (1)

where X is the state space, 6 is the event set, δ : X ×
6 → 2X is the transition relation, and x0 is the initial state.
The sequence of events forms a string, and a set of strings
forms a language. With the abuse of notation, we use e ∈ s
to say that the event e belongs to the string s if the event e is
one of the events forming the string s. The length of a string s
is shown by |s|. The concatenation of the strings s1 and s2 is
denoted by s1.s2. Let 6n

= {e1.e2 · · · en | ei ∈ 6} for n ∈ N,
where 60

= ε. Then, 6∗ denotes all possible finite-length
strings over 6 including the zero-length string ε.
The transition relation δ can be recursively extended to

strings by revising its definition as δ : X × 6∗ → 2X

where δ(x, s.e) =
⋃

y∈δ(x,s)
δ(y, e). The language L(G(x)) =

{s ∈ 6∗ | δ(x, s) is defined} includes the strings that can be
executed by G from x. The language of G, denoted by L(G),
is the sequence of strings that can be generated by G from
x0, i.e., L(G) = L(G(x0)) = {s ∈ 6∗ | δ(x0, s) is defined}.
Automata G1 and G2 are language-equivalent if L(G1) =
L(G2). Consider the string s = sp.u.ss, then sp and ss
are called the prefix and suffix of the string s, respectively.
We say that s1 ≤ s2 if s1 is a prefix of s2. The sets Pre(L)
and Suf (L) contain all prefixes and suffixes of L, respec-
tively. The language L is said to be prefix/suffix-closed if all
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FIGURE 2. A partially known DES system G whose subautomaton G′ is
known.

prefixes/suffixes of all strings in the language L are also
members of this language. The languageL(G)/s = {t ∈ 6∗ |
s.t ∈ L(G)} is the set of all strings in L(G) that occur after
s ∈ L(G).
Definition 1: G1 = (X1, 61, δ1, x01 ) is a sub-automaton

of G2 = (X2, 62, δ2, x02 ), shown by G1 v G2, if and only if
x01 = x02 , 61 = 62, X1 ⊆ X2, and for any x1, x2 ∈ X1 ⊆ X2
and for any e ∈ 62 with x2 ∈ δ1(x1, e), then x2 ∈ δ1(x1, e).
It can be verified that for G1 v G2, we have δ1 ⊆ δ2 and

L(G1) ⊆ L(G2).
Problem 1: Consider a discrete event system G, whose

sub-automaton G′ is known. Given the known part, G′, con-
struct a language-equivalent model of G.

III. THE PROPOSED ACTIVE-LEARNING METHOD
Consider a partially-known system G as shown in Figure 2,
which contains information and behavior we already know,
the sub-automaton G′, as well as hidden behavior we do not,
the gray area of G. To identify such a partially-known system
and address Problem 1, we first capture the information about
the known part in Section III-A, and then in Section III-B,
we explore the unknown part of the system.

A. CAPTURING THE INFORMATION ABOUT THE
PARTIALLY-KNOWN PART OF THE SYSTEM
The proposed method seeks to take advantage of and uti-
lize the information about the known portion of the system
that is readily available to us. For this purpose, to extract
the information from the known part of the system G′ =
(X ′, 6, δ′, x0), we form a series of tables V ′i = (S ′,E ′i ,T

′),
where E ′i (a nonempty, finite, suffix-closed set) consists of
the labels of the table columns; S ′ (a nonempty, finite, prefix-
closed set) and S ′.6 − S ′ are two disjoint sets which include
the labels for the rows of the table, and T ′ is a function
mapping the set of ((S ′.6 ∪ S ′).E ′i ) to {0, 1} determining the
elements of the table. For any row label s ∈ S ′.6∪S ′ and any
column label t ∈ E ′i , we have:

T ′(s.t) =

{
1, if s.t ∈ L(G′)
0, otherwise

(2)

To show the elements of a row in the table in
the form of an ordered pair, we define the function
row(s) = (T ′(s.t1),T ′(s.t2), · · · ,T ′(s.t|E ′i |)), where tj ∈ E ′i
is the label of the j-th column in E ′i .

Now, to form the Table V ′i = (S ′,E ′i ,T
′), we set

S ′ = Pre(6`), where ` should be selected in away that strings
in S ′ will reach all states in G′, which can be found as:

` = max
x∈X ′

min
s∈Sxx0
|s| (3)

where Sxx0 = {u | u ∈ L(G′), x ∈ δ′(x0, u)}.
We propose the following lemmas:
Lemma 1: All states in G′ are reachable by strings in

S ′ = Pre(6`), i.e., X ′ = {x ∈ δ′(x, s) | s ∈ S ′}.
Proof: For any x ∈ X ′, there is a string s = argmin

u∈Sxxo

|u|,

where x ∈ δ′(x0, s). By construction (See (3)), |s| ≤ `, and
hence, s ∈ 6|s| ⊆ S ′. �
For the first Table V ′1 = (S ′,E ′1,T

′), we set E ′1 = {ε}, and
thenwill fill the TableV ′1 using T

′ accordingly.We then check
if Table V ′1 is consistent:
Definition 2: The Table V ′i = (S ′,E ′i ,T

′) is said to be
consistent iff:

∀s1, s2 ∈ S ′ with row(s1) = row(s2)

⇒ row(s1.σ ) = row(s2.σ ),∀σ ∈ 6 (4)
If the Table V ′i = (S ′,E ′i ,T

′) is not consistent, it means
that there are two strings s1, s2 ∈ S ′, t ∈ E ′i , σ ∈ 6 such that
row(s1) = row(s2) but T ′(s1.σ.t) 6= T ′(s2.σ.t). To resolve
this inconsistency, it is sufficient to add σ.t to E ′i+1 and then
fill the new Table V ′i+1 using T

′. For example, in Figure 8.a,
the Table V ′1 is not consistent due to the fact that row(a) = 1
and row(aa) = 1 while row(a.a) = 1 and row(aa.a) = 0.
Therefore, to fix this problem, we set E ′2 = E ′1 ∪ {a} in V

′

2
and then fill the Table V ′2 accordingly (see Figure 8.b). This
process of finding and resolving inconsistencies in a table can
be done for a finite number of times and will eventually result
in a consistent table as it is shown in Lemma 4. Before that,
we need to prove the following lemmas:
Lemma 2: In V ′i = (S ′,E ′i ,T

′), if T ′(s) = 0, then s is a
zero-row, i.e., row(s) = (0, · · · , 0).

Proof: If T ′(s) = 0, it means that s /∈ L(G′),
which in turn means that δ′(x0, s) is not defined. There-
fore, for any other t ∈ E ′i , δ

′(x0, s.t) =
⋃

y∈δ′(x0,s)
δ′(y, t)

is not defined as δ′(x0, s) is not defined. Hence, row(s) =
(T ′(s.t1), · · · ,T ′(s.t|E ′i |)) = (0, · · · , 0). �
Lemma 3: In the Table V ′i = (S ′,E ′i ,T

′), the number of
distinguished non-zero rows in S ′ is less than or equal to the
number of states of G′.

Proof: Consider a row label t for a non-zero row. Since
t is a non-zero row, based on Lemma 2, we have T ′(t) 6= 0,
meaning that δ′(x0, t) is defined, i.e., t ∈ L(G′). For each
s ∈ S ′, row(s) 6= row(t), there exists u ∈ E ′i such that
T ′(t.u) 6= T ′(s.u), which is equivalent to δ′(x0, t.u) 6=
δ′(x0, s.u). This can only happen when there exists a state
x ∈ {δ(x0, t) −

⋃
s∈S ′

δ(x0, s)}, i.e., x ∈ X ′ is a distinguished

state, which is not reachable by s ∈ S ′. This means that any
pair of distinguished non-zero rows in S ′ corresponds to two
distinguished states in G′. Since, there are only |X ′| states
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in G′, there will be at most |X ′| number of distinguished non-
zero rows in S ′. �
Lemma 4: A Table V ′i = (S ′,E ′i ,T

′) can be made consis-
tent within a finite number of iterations.

Proof: Consider the labels t and s for non-zero distin-
guished rows with row(t) = row(s). Assume that the Table V ′i
is not consistent as there exist u ∈ E ′i and σ ∈ 6 such that
T (tσ.u) 6= T (sσ.u). To fix this inconsistency, we should add
σ.u toE ′i+1, and then fill the TableV

′

i+1 = (S ′,E ′i+1,T
′) using

T ′. In this updated table, since T (t.σu) 6= T (s.σu), row(t) =
(T (t.e1), · · · ,T (t.σu)) and row(s) = (T (s.e1), · · · ,T (s.σu))
are no longer the same. This process, therefore, adds at least
one distinguished row to S ′. However, based on Lemma 3,
the number of distinguished non-zero rows of S ′ is bounded
by |X ′|. Therefore, one needs to resolve the inconsistency
with this procedure at most for |X ′| times. �
Next, we check if the Table V ′i = (S ′,E ′i ,T

′) is closed:
Definition 3: The Table V ′i = (S ′,E ′i ,T

′) is said to be
closed iff:

∀t ∈ (S ′.6 − S ′) with row(t) 6= (0, · · · , 0),

∃s ∈ S ′ such that row(s) = row(t) (5)
If the Table V ′i = (S ′,E ′i ,T

′) is not closed, it means that
there is a string t ∈ (S ′.6 − S ′) where row(t) does not match
any row(s) for all s ∈ S ′. To make this table closed, the string
t must be added to S ′, and the table must be extended and
filled accordingly.
Lemma 5: The Table V ′i = (S ′,E ′i ,T

′) is closed.
Proof: By contradiction, assume that V ′i is not closed,

i.e., there exists t ∈ S ′.6 − S ′ such that row(t) 6= (0, · · · , 0)
and row(t) 6= row(s) for all s ∈ S ′. Since row(t) 6= 0, then
based on Lemma 2, we have T ′(t.ε) = T ′(t) = 1, concluding
that t ∈ L(G′). Since row(t) 6= row(s) for all s ∈ S ′,
this means that for each s ∈ S ′, there exists u ∈ E ′i such
that T ′(t.u) 6= T ′(s.u), which is equivalent to δ′(x0, t.u) 6=
δ′(x0, s.u). This can only happen when there exists a state
x ∈ δ(x0, t) −

⋃
s∈S ′

δ(x0, s), i.e., x ∈ X ′ is not reachable by

s ∈ S ′. This contradicts Lemma 1. �
Algorithm 1 details the process of capturing the informa-

tion about the known part of the system, G′, which starts
by initialization of S ′ and E ′i by setting S ′ = Pre(6`) and
E ′1 = ε, followed by constructing V ′1 = (S ′,E ′1,T

′).
Then, through an iterative process, the table is made con-
sistent. Lemma 4 shows that the consistency while-loop in
Algorithm 1 (lines 5-10) terminates after a finite number of
iterations. At the end, Algorithm 1 returns the Table V ′ =
(S ′,E ′,T ′), which is consistent. Also, in Lemma 5, it was
shown that V ′ = (S ′,E ′,T ′) is closed. For the Table V ′ =
(S ′,E ′,T ′) which is complete (closed and consistent), we can
construct the automaton G(V ′) = (X ′v, 6, δ

′
v, x0

′
v), where

X ′v = {row(s) | s ∈ S
′,T ′(s) = 1}

δ′v(row(s), σ ) = row(s.σ )

x0′v = row(ε) (6)

Algorithm 1 Capturing the Partially-Known Information
1: input: G′ = (X ′, 6, δ′, x0), the partially known part of

the automaton
2: output: The complete Table V ′ = (S ′,E ′,T ′) which

captures the known part G′

3: initialization: S ′ = Pre(6`) and E ′1 = ε
4: Fill the the Table V ′1 = (S ′,E ′1,T

′)
5: while V ′i = (S ′,E ′i ,T

′) is not consistent do
6: Find s1, s2 ∈ S ′, σ ∈ 6, and e ∈ E ′i such that
row(s1) = row(s2) but T ′(s1.σ.e) 6= T ′(s2.σ.e);

7: E ′i+1 = E ′i ∪ {σ.e}
8: Form the new Table V ′i+1 = (S ′,E ′i+1,T

′) and fill it
up over (S ′ ∪ S ′.6).E ′i+1

9: Set i = i+ 1;
10: end while
11: return: V ′ = V ′i = (S ′,E ′i ,T

′)

For example, Figure 9 shows an automaton for the complete
Table V ′3 in Figure 8.c.
The table V ′ = (S ′,E ′,T ′) captures the information about

G′ as its corresponding automatonG(V ′) andG′ are language
equivalent as it is stated in the following theorem:
Theorem 1: The automaton G(V ′) = (X ′v, 6, δ

′
v, x0

′
v),

which corresponds to the complete Table V ′ = (S ′,E ′,T ′),
and G′ = (X ′, 6, δ′, x0) are language-equivalent.

Proof: Consider any string s = σ1 · · · σn ∈ L(G′).
Let s(i) = σ1 · · · σi, i = 1, . . . , n. In G′, as a finite
state automaton, for any string s(i − 1), there exists a min-
imal length string u ≤ ` such that δ′(x0, s(i − 1)) =
δ′(x0, u) = row(u) ∈ X ′v, where u ∈ S ′, as u ∈
Pre(6`). Therefore, for the transition δ′(δ′(x0, s(i − 1)), σi)
= δ′(δ′(x0, u), σi), we have δ′v(x0v, s(i)) = δ′v(δ

′
v(x0v, u), σi)

= δ′v(row(u), σi) = row(uσi). Note that row(uσi) =
(T ′(uσi),T ′(uσi.e2), · · · ,T ′(uσi, e|E ′|)), ei ∈ E ′, and
row(uσi) 6= (0, · · · , 0) as uσi ∈ L(G′) and hence T ′(uσi) =
1. Moreover, since |u| ≤ `, row(u) ∈ X ′v, as u ∈ S ′ =
Pre(6`). Therefore, uσi ∈ S ′.6 − S and row(uσi) ∈ X ′v,
otherwise for uσi, there is no s ∈ S ′ so that row(s) = row(uσi),
which contradicts the completeness of V ′. Since row(uσi) ∈
X ′v, we can conclude that δ′(x0, s(i)) = δ′v(row(u), σi) =
row(uσi) is defined and s(i) ∈ L(G(V ′)). Conversely, and
with a similar argument, it can be proven that for any
s = σ1 · · · σn ∈ L(G(V ′)), it is also in L(G′). �

B. ACTIVE-LEARNING OF THE UNKNOWN PART
Now that we have information about the known part of the
system captured by V ′, it is time to explore the unknown
part of G. For this purpose, inspired by [28], we propose
an active-learning approach (Algorithm 2), that can reveal
the information about the unknown part and construct an
automatonGt which is language-equivalent toG. This will be
accomplished through basic queries proposed to a minimally
adequate oracle that is only able to provide yes or no answers
to two types of queries:
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• Membership query: in which the algorithm asks whether
a string s belongs to L(G).

• Equivalence query: in which the algorithm asks whether
L(G) = L(Gt ). If not, the oracle returns a counterex-
ample cex that is in the symmetric difference betweenG
and Gt .

The collected and inferred information will be sorted in a
series of Tables Vi = (Si,Ei,T ). The Table Vi = (Si,Ei,T )
has a structure similar to the previous section with the column
label set Ei and the row label sets Si and Si.6−Si. We fill the
tables using T . For any row label s ∈ (Si.6 ∪ Si) and column
label t ∈ Ei, the table entry T (s.t) can be found as:
• T (s.t) = 1 if s.t ∈ L(G)
• T (s.t) = 0 if s.t /∈ L(G)
To determine the value of T (s.t), the algorithm first

explores if the value of T (s.t) can be found in or inferred
from the existing information. If not, then the algorithm treats
T (s.t) as a membership query to the oracle.
Now, to form Vi = (Si,Ei,T ), i ≥ 1, the algorithm first

starts with V1 = V ′. Recall that the Table V ′ contains all
information about the known part. If a transition δ′(x0, s) was
observed in G′, we let T ′(s) = 1 in V ′. This will not change
in V , i.e., T (s) = 1. The problem, however, is when there was
no transition δ′(x0, s) in G′ and we let T ′(s) = 0 based on the
information from the known part. While such a transition did
not exist inG′, it may exist inG. Therefore, we need to check
all the zero elements in V1. The set of all zero elements in V1
is called Z , which can be defined as:

Z = {s.t | s ∈ (S1 ∪ S1.6), t ∈ E1, T ′(s.t) = 0} (7)

To check zero elements inV1, we shouldmakemembership
queries T (s) for all s ∈ Z and update them in V1. For this
purpose, we form the set ZM for the updated values:

ZM = {z ∈ Z | T (z) = 1} (8)

In addition to updating the table for elements in ZM , any
member of ZM could serve as a counterexample. To make
the process more efficient, we chose one of the strings with
the shortest length in ZM that is not already in S1 as the
counterexample, called zcex . To include the information about
a counterexample in the constructed tables, the counterex-
ample and all of its prefixes should be added to S2, i.e.,
S2 = S1 ∪ Pre(zcex). The table should then be extended
across (S2 ∪ S2.6).E2 using the function T . For example,
in Figure 10.a, Z is constructed from V1 representing its
elements s.t , s ∈ S1 ∪ S1.6 and t ∈ E1, where T ′(s.t) = 0.
Membership queries of the elements in Z are then performed
to form ZM . The shortest string in ZM not in S1 is aaa. The
Table V2, shown in Figure 10.b, is updated for the elements
in ZM and strings in Pre(zcex = aaa) are added to S2, and the
table is extended accordingly.

Every time that a counterexample is included in the table,
it should be checked for consistency and closedness, defined
in (4) and (5), respectively. If the Table Vi = (Si,Ei,T ) is not
consistent, it means that there are two strings s1, s2 ∈ Si and

t ∈ Ei, σ ∈ 6 such that row(s1) = row(s2) but T (s1σ.t) 6=
T (s2σ.t). To make the table consistent, we should add σ.t to
Ei and then fill the table using T . If the Table Vi = (Si,Ei,T )
is not closed then it means that there is a string t ∈ (Si.6−Si)
where row(t) does not match any row(s) for all s ∈ S. Tomake
the observation table closed, the string t must be added to Si
and the table must be extended and filled accordingly. For
example, in Figure 10.d, V4 is not closed because row(aab)
does not match any row in S4. To make it closed, we add
row(aab) to S5 and extend the table over (S5 ∪ S5.6).E5
accordingly.
Lemma 6: A Table Vi = (Si,Ei,T ) can be made closed

within a finite number of iterations.
Proof:Assume that the TableVi is not closed as there is a

string t ∈ (Si.6 − Si) where row(t) 6= 0 and row(t) 6= row(s)
for all s ∈ Si. To fix this problem, the string t should be
added to Si. This process therefore adds a new distinguished
row t to Si. Recall in Lemma 3 that for V ′, the number
of distinguished non-zero rows of S ′ is bounded by |X ′|.
This same statement is similarly applicable to V where the
number of distinguished non-zero rows of S is bounded by
|X |. Therefore, the closedness needs to be checked with this
procedure at most for |X | times. �
Once the Table Vi = (Si,Ei,T ) is both consistent and

closed, we are then able to use the table to build a correspond-
ing automaton G(Vi) = (Xi, 6, δi, x0i), where:

Xi = {row(s) | s ∈ Si,T (s) = 1}

δi(row(s), σ ) = row(s.σ )

x0i = row(ε) (9)

Once the automaton G(Vi) is constructed, the algorithm
makes an equivalence query to the oracle. In the case where
L(G(Vi)) 6= L(G), the oracle provides a counterexam-
ple, cex. In this situation, the counterexample and all of
its prefixes should be added to Si+1, and the table must
again be checked for consistency and closedness. Otherwise,
if L(G(Vi)) = L(G), the algorithm returns Gt = G(Vi) as the
learned DES system.

Algorithm 2 details the entire process for learning the
unknown part of the system. The algorithm is initiated with
V ′ (the information about the known part of the system),
and then forms a series of Tables Vi = (Si,Ei,T ). First the
algorithm forms the set Z (the set of zero elements) and finds
those elements that should be updated, ZM . Next, zcex , a string
with the shortest length in ZM , is found and then zcex and all
its prefixes are added to S2. Then, the rest of information
about the unknown part of the system is explored in two
loops. The inner-loop checks for completeness (closedness
and consistency) of the tables. Once a Table Vi is made com-
plete, then an automaton G(Vi) will be constructed and then
in the outer-loop, an equivalence query is made to the oracle.
IfL(G(Vi)) 6= L(G), the oracle returns a counterexample cex.
The counterexample and all its prefixes should be added to
Si+1 and the table should be checked again for completeness.
If the oracle returns the equivalence query with ‘‘Yes’’, then
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Algorithm 2 Active-Learning of the Unknown Information
1: input: The complete Table V ′ for the known part, and the

event set 6
2: output: The complete automatonGt with L(Gt ) = L(G)
3: Set V1 = (S1,E1,T ) = V ′

4: Find Z = {s.t | s ∈ (S1 ∪ S1.6), t ∈ E1, T ′(s.t) = 0}
5: Form ZM = {z | T (z) = 1} using membership queries

and update the table with T (z) = 1 for elements z ∈ ZM .
6: Find zcex = argmin

z∈ZM
|z| | z /∈ S1

7: Set S2 = S1 ∪ Pre(zcex) and E2 = E1
8: Fill the Table V2 over (S2 ∪ S2.6).E2 using membership

queries
9: while Vi(Si,Ei,T ) is not complete do

10: if Vi is not consistent then
11: Find s1, s2 ∈ Si, σ ∈ 6 and e ∈ Ei such that

row(s1) = row(s2) but T (s1.σ.e) 6= T (s2.σ.e);
12: Set Ei+1 = Ei ∪ σ.e and Si+1 = Si;
13: Set i = i+ 1;
14: Form the new Table Vi and fill it up over (Si ∪

Si.6).Ei using membership queries;
15: end if
16: if Vi is not closed then
17: Find s1 ∈ S and σ ∈ 6 such that row(s1.σ )
18: is different from row(s) for all s ∈ Si;
19: Set Si+1 = Si ∪ {s1.σ }, Ei+1 = Ei;
20: Set i = i+ 1;
21: Form the new Table Vi and fill it up
22: over (Si ∪ Si.6).Ei using membership queries;
23: end if
24: end while
25: Construct the automaton G(Vi)
26: Ask equivalence query if L(G(Vi)) = L(G).
27: if The oracle replies with the counterexample cex then
28: Set Si+1 = Si ∪ Pre(cex), Ei+1 = Ei;
29: Set i = i+ 1;
30: Form the new Table Vi and fill it up over
31: (Si ∪ Si.6).Ei using membership queries;
32: Go to line 8.
33: end if
34: return: Gt = G(Vi)

the constructed automaton Gt will be returned as a DES
model which captures the information about the system G,
as proven in next theorem:
Theorem 2: Algorithm 2 returns Gt after a finite number

of iterations, such that L(Gt ) = L(G).
Proof: Algorithm 2 has two loops. In the inner-loop,

the algorithm checks for completeness (closedness and con-
sistency) of the table. In Lemmas 4 and 6, it was shown
that the process for making a table consistent and closed
will be terminated after a finite number of iterations. For the
outer-loop, the algorithm checks for equivalence of the con-
structedmodel and the original system. If there is a mismatch,
the algorithm returns a counterexample. The counterexample,

FIGURE 3. The process of testing ECU-OEM integration described in
Section IV through interactions between the OEM and Supplier
Companies.

FIGURE 4. A test stand for testing integration of an ECU with an OEM
system [34].

along with all its prefixes, will be added to Si+1, adding
new non-zero rows in the table (states in Gt ), so that the
updated table can take into account the information about
the counterexample. Each time that the outer-loop handles a
counterexample, at least one distinguished non-zero row will
be added to Si. Based on Lemma 3, the number of distin-
guished non-zero rows in Si is bounded. Hence, the outer-loop
cannot continue returning the counterexamples forever, and
after a finite number of iterations, the outer-loop terminates,
returning the equivalence query with ‘‘Yes.’’ �

C. COMPUTATION REDUCTION
The proposed algorithm takes advantage of information

about the known part of the system, and reduces the num-
ber of queries to the oracle to identify the unknown part.
Therefore, we quantify the computation reduction resulted
from the proposed algorithm in terms of the reduction in
the number of queries. Before calculating the computation
reduction, we need the following definition and lemmas.
Definition 4: The deterministic automaton G′ = (X ′, 6,

δ′, x0) is the canonical recognizer of L(G), if L(G′) =
L(G) and for any other automaton G′′(X ′′, 6, δ′′, x0) with
L(G′′) = L(G), we have |X ′| ≤ |X ′′|.
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FIGURE 5. The flowchart describing the procedure for testing the
integration of an ECU and an OEM system.

FIGURE 6. A partially-known automaton, G, where its known part is
represented by the subautomaton G′ , shown by solid arrows and circles,
and the unknown portion of the system is represented by gray dashed
lines.

Lemma 7: Consider G′′ = (X ′′, 6, δ′′, x0) as the canoni-
cal recognizer of L(G′). The number of distinct rows in V ′,
resulted from Algorithm 1, is at least n′′ = |X ′′|.

Proof: By construction, G′ is consistent with T ′, i.e., for
any s ∈ (S ′ ∪ S ′.6) and e ∈ E ′, δ′(x0, s.e) is defined if
and only if T ′(s.e) = 1. Since G′′ and G′ are language-
equivalent, if δ′(x0, s.e) is defined, then δ′′(x0, s.e) is also
defined. Now, assume two distinguished states q1 and q2
in G′′, that are reachable from x0 by s1, s2 ∈ Pre(6`),
i.e., δ′′(x0, s1) = q1 and δ′′(x0, s2) = q2. Since G′′ is the
canonical recognizer of L(G′), there exists e ∈ 6 such that
δ′′(δ′′(x0, s1), e) 6= δ′′(δ′′(x0, s2), e), which is the equiva-
lent of saying δ′′(x0, s1.e) 6= δ′′(x0, s2.e). By construction,
S ′ = Pre(6`) contains s1 and s2. Since, V ′ is consistent,

FIGURE 7. A Table V ′ containing n′′ distinguished rows, which can be
distinguished by at least 2n′′ − 1 1-elements.

and since for e ∈ 6 we have δ′′(x0, s1.e) 6= δ′′(x0, s2.e),
there exists e′ ∈ E ′ such that δ′′(x0, s1.e′) 6= δ′′(x0, s2.e′),
concluding that row(s1) 6= row(s2), resulting in two distinct
rows in S ′. Therefore, V ′ has at least n′′ = |X ′′| distinct
rows. �
Theorem 3: Consider G′′ = (X ′′, 6, δ′′, x0) as the canon-

ical recognizer of L(G′), where n′′ = |X ′′|. Compared to the
original L∗ algorithm, Algorithms 1 and 2 reduce the number
of membership queries by at least 2n′′ − 1.

Proof:Given a canonical recognizerG′′, we can see from
Lemma 3 that in the worst case scenario, there will be n′′

distinguished non-zero rows in S ′. In order to distinguish each
distinct non-zero row with minimum number of 1-elements,
at most n′′ columns are needed in V ′, with each subsequent
column after the first column containing a single 1-element
(See Fig. 7). Hence, Table V ′ contains at least 2n′′ − 1 of
1-elements. According to Algorithms 1 and 2, to identify the
unknown part of the system, we only need to inquire about
the 0-elements, as the 1-elements are already considered
known information. Therefore, equivalent to the number of
1-elements, i.e., 2n′′ − 1, the number of queries will be
reduced from the original L∗ algorithm, which inquires about
all parts of the system (known and unknown). �

IV. ILLUSTRATIVE EXAMPLE
The automotive industry has grown in a way that cur-
rently, approximately 90% of all recent vehicle innovations
depend upon Electronic Control Units (ECUs) and their soft-
ware [35]. With software becoming a major force of innova-
tion, original equipmentmanufacturers (OEMs) and suppliers
have had to grow and place more focus on system integra-
tion [36]. An example of such an occurrence would be where
an ECU Supplier needs to test their ECU with an OEM’s
system. Due to intellectual property (IP) rights, OEMs are not
in a position to reveal the complete model of their systems,
but allow the ECU Supplier to perform black-box testing of
the ECU while integrated with the OEM’s system and then
return the test results back to the Supplier’s developers [37].
This process is shown in Figure 3, through which the Sup-
plier Company’s ECU software makes queries to the OEM’s
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FIGURE 8. Constructing a complete table for G′ as the known part of system G, given in Figure 6: (a) V ′1 is
initialized and constructed by setting S′ = Pre(6`) and E ′1 = ε and then V ′1 is filled using T ′ accordingly, (b)
V ′1 is not consistent, which is fixed by setting E ′2 = E ′1 ∪ {a}, and then, V ′2 is filled accordingly, (c) V ′2 is not
consistent, which is fixed by setting E ′3 = E ′2 ∪ {aa} and then V ′3 is filled accordingly.

FIGURE 9. The automaton G(V ′) constructed by Equation (6) from
Table V ′3 located in Figure 8.c.

system and the OEM Company conducts relevant tests and
replies to the queries.

In this section, partially knowing the software system
model of the integrated system of an ECU connected to an
OEM test system, we employ the proposed technique in this
paper to actively learn the behavior of the entire integrated
system through interactions with the OEM Company which
answers the queries about the proprietary system.

A. THE STRUCTURE OF AN ECU INTEGRATED WITH
AN OEM SYSTEM
Consider an ECU Supplier needing to test their ECU inte-
grated with an OEM through a setup shown in Figure 4
in order to confirm accurate system integration. A simpli-
fied flowchart for ECU software system integration into an
OEM’s system is shown in Figure 5. Many OEMs test system
integration in different ways. An example of an integrated
testing process is described in Figure 5, which begins with the
ECU Supplier initializing and uploading the code to the ECU
(States 1 and 2, respectively). If the upload is successful, then
the Supplier will immediately be able to compile the ECU
testing simulation code (State 6) and begin to run the simu-
lation tests (State 7). However, if a problem occurs with the
upload of initial code creating a warning or failure, the system
then logs that failure and updates the failure logging database
(State 5) as the OEM overwrites their code to the ECU (State
3) in hopes of rectifying the failure. The code is then again

checked for errors and if it passes, the system will proceed to
testing and simulation (States 6 and 7). If the code raises a
warning flag, the system logs the error for analysis (State 4)
and proceeds to update the failure/warning database. If the
system completely fails, the ECU defaults into a complete
failure mode (State 8) and the system continues to monitor
the faulty behavior of the ECU. The process in Figure 4 can
be modeled by the automaton G, shown in Figure 6, with the
event set 6 = {a, b}, where ‘a’ and ‘b’ represent ‘‘continue
testing’’ and ‘‘log data/failure/warning,’’ respectively.

Due to proprietary reasons, the ECU Supplier has no
knowledge of the OEM’s system and only knows their part of
the ECU system, shown by solid circles (states) and arrows
(transitions), captured by the subautomaton G′. The OEM’s
proprietary part (unknown to the ECU Supplier) is shown by
gray dashed arrows and circles in Figure 6. The Supplier,
however, has the opportunity to test the ECU system and
make queries to the OEM company for the executed tests as
described in Figure 3. For this purpose, we apply the proposed
algorithm in this paper to capture the known part of the system
and actively learn the unknown part, as described in the next
subsections.

B. CAPTURING THE INFORMATION ABOUT THE KNOWN
PART (ECU Side) OF THE ECU-OEM INTEGRATED SYSTEM
Starting with Algorithm 1, in order to capture the known
information and using (3), we can find ` = 2 as the length
of the longest acyclic path in G′, for which we can form
Pre(6`) = {ε, a, b, aa, ab, ba, bb}. Then, we initialize V ′1
by setting S ′1 = Pre(6`) and E ′1 = {ε}, and then, we fill
the Table V ′1 using T ′ accordingly. It can be verified that
the Table V ′1 is not consistent as row(a) = row(aa) but
row(aa) 6= row(aaa) as T ′(a.ε.a) 6= T ′(aa.ε.a), and hence
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FIGURE 10. Constructing a complete table for the partially known system G, given in Figure 6: (a) V1 = V ′ , Z includes the zero elements of V ′ ,
membership queries of the elements in Z are then performed to form ZM , and V1 is updated, (b) zcex is found to be {aaa} so the strings in
Pre(zcex = aaa) are added to S2, and V2 is updated, (c) V2 is not consistent so in V3, we set E3 = E2 ∪ {b} and then V3 is filled accordingly, (d) V3 is not
consistent so in V4, we set E4 = E3 ∪ {ab} and then V4 is filled accordingly, (e) V4 is not closed so in V5, abb is added to S5 and then V5 is extended and
filled accordingly, (f) V5 is not consistent so in V6, we set E6 = E5 ∪ {aab} and then V6 is filled accordingly, (g) V6 is not closed so in V7, aabb is added to
S7 and then V7 is extended and filled accordingly, (g) V7 is not closed so in V8, aabbb is added to S8 and then V8 extended and filled accordingly, which
becomes a complete table. The membership queries are shown in red.

we set E ′2 = E ′1 ∪ {a} in V ′2 and then fill the Table V ′2
accordingly. V ′2 is still not consistent as row(ε) = row(a)
but row(ε.a.a) 6= row(a.a.a) as T ′(ε.a.a) 6= T ′(a.a.a), and
so we must set E ′3 = E ′2 ∪ {aa} in V ′3 and then fill the
Table V ′3 accordingly. V

′
= V ′3 is now complete (closed and

consistent). This process can be followed in Figure 8.

C. LEARNING THE UNKNOWN PART (OEM Side) OF THE
ECU-OEM INTEGRATED SYSTEM
The Table V ′, containing the information regarding the
known part of the system, can now be used for the initial-
ization of the active-learning Algorithm 2 for the unknown
part of the system G. We begin by setting V1 = V ′ and
gathering all zero elements in V1 to construct the set Z .
Then, ZM = {aaa, aab, aaaa, aaba, aaaaa, aabaa} is
constructed using membership queries on the Z elements.
Then, V2 is constructed by including zcex = aaa, a string

with the shortest length in ZM , as a counterexample. For this
purpose, zcex = aaa and its prefixes are added to S2, forming
S2 = S1 ∪ Pre(zcex), and then, Table V2 is extended across
(S2∪S2.6).E2 using the function T . We can see that Table V2
is not consistent as row(a) = row(aa) but row(a.b) 6=
row(aa.b) as T (a.b.ε) 6= T (aa.b.ε), which is fixed by setting
E3 = E2∪{b} in V3 and then filling the Table V3 accordingly.
Table V3 is not consistent since row(a) = row(aaa) but
row(a.ab) 6= row(aaa.ab) as T (a.a.b) 6= T (aaa.a.b), which
is fixed by setting E4 = E3 ∪ {ab} in V4 and then filling the
Table V4 accordingly. Table V4 is not closed as row(aab) in
(S4.6 − S4) is not in S4, which is fixed by setting S5 = S4 ∪
{aab} and then extending and filling S5 accordingly. Table V5
is not consistent since row(ε) = row(aaa) but row(ε.aab) 6=
row(aaa.aab) as T (ε.a.ab) 6= T (aaa.a.ab), which is fixed
by setting E6 = E5 ∪ {aab} in V6 and then filling the
Table V6 accordingly. Table V6 is not closed as row(aabb) in
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FIGURE 11. The automaton Gt , constructed for the complete Table V8
in Figure 10.h. The automaton Gt is language-equivalent to the original
system G, given in Figure 6.

(S6.6 − S6) is not in S6, which is fixed by setting S7 =
S6 ∪ {aabb} and then extending and filling S7 accordingly.
Table V7 is not closed as row(aabbb) in (S7.6 − S7) is not
in S7, which is fixed by setting S8 = S7 ∪ {aabbb} and
then extending and filling S8 accordingly. This process can
be followed in Figure 10. The Table V8 in Figure 10 is now
complete (closed and consistent) for which Gt = G(V8)
is constructed and shown in Figure 11 which is language-
equivalent to G. While the Supplier may not have exact
insight into the OEM’s system, they would still be able to test
proper integration methods based upon a language equivalent
model that would function similarly to the true ECU-OEM
integrated system.

V. CONCLUSION
In this paper, a novel method was developed to learn a
partially-known DES system. The developed method first
captures the known part of the system in a tabular form, and
then utilizes a novel active-learning technique to discover
the unknown part of the system and construct a language-
equivalent model through (membership and equivalence)
queries made to an oracle. The information is collected in a
series of tables until the table is complete and the equivalence
query is replied by ‘‘Yes’’. It was proven that the algorithms
will terminate after a finite number of iterations and eventu-
ally returns a correct automaton which is language-equivalent
to the original system. It was also proven that the proposed
algorithms are able to reduce the number of membership
queries.
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