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Abstract. Type-2 fuzzy logic controllers are capable of handling different types of uncertainties that naturally exist in most
practical situations. However, the high computation cost of type-2 fuzzy logic controllers is a bottleneck for practically applying
them to real-world applications. This paper introduces a novel approach for designing a computationally effective type-2 fuzzy
logic controller. For this purpose, on the antecedent side, interval type-2 fuzzy sets are employed to capture the signal readings,
which significantly reduce the computation costs while preserving the major advantages of general type-2 fuzzy logic systems.
On the consequent side, however, the Takagi-Sugeno-Kang (TSK) technique is integrated with the proposed controller to render
the control outputs in a parallel way. To further reduce the computation cost, the theory of uncertainty bounds is employed for the
output processing of the proposed controller. To develop this control structure, a decomposition technique is integrated to break
down the original type-2 fuzzy processes into type-1 and take advantage of type-1 fuzzy techniques, followed by an aggregation
mechanism to calculate the collective output. The approach is applied to the control of an inverted pendulum and cart model. The
simulation results of the developed interval type-2 fuzzy logic controller is compared with a type-1 TSK fuzzy logic controller
and a classical proportional derivative (PD) controller. From the results, we have found a 16.6% and 23.3% improvement in Root
Mean Square (RMS) error compared to type-1 TSK fuzzy logic controller and classical PD controller, respectively.
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1. INTRODUCTION

When practically implementing a controller, real-
world uncertainties challenge the modelling, analysis,
and performance of controlled systems. The uncertain-
ties may rise from several sources such as noise, pre-
cision of sensors and actuators as well as environmen-
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tal conditions. Type-2 fuzzy logic systems (FLSs), ini-
tially developed by Zadeh [1, 2], are the extended ver-
sions of type-1 FLSs and are unique in their ability to
model and handle uncertainties [3–5], while being able
to deal with complex control structures and linguistic
variables.

Nevertheless, despite the capabilities of a type-2
FLSs, efforts to use them for real-time control appli-
cations is relatively sparse and just recent [6–13]. The
main challenge which hinders the application of type-
2 FLSs for control applications is their large computa-
tion cost [14–20]. This computational cost can be best
explained by the “curse of dimensionality”, the term
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used for the explosion of combinatorial calculations
within the controller [21].

To facilitate the use of type-2 FLSs for control ap-
plications and reduce their computation cost, in this
paper, we propose an interval type-2 Takagi-Sugeno-
Kang (TSK) fuzzy logic controller (FLC) [22] in-
corporated with an aggregation approach inspired by
the uncertainty bounds method. Interval type-2 FLSs
[2, 21, 23–26] reduce the computational complexity of
the general type-2 FLSs, while preserving the major
advantages of general type-2 FLSs, particularly, the
ability of handling uncertainty [27–29]. To further re-
duce the computation cost, the proposed controller is
integrated with the TSK technique [30–32]. By ex-
pressing fuzzy rule outputs as a function of the inputs,
the TSK technique improves the processing time of
FLSs and enables the parallel processing of the fuzzy
rule outputs [30, 33]. Additional reduction in compu-
tation cost will be achieved by proposing an aggrega-
tion mechanism, which adopts the uncertainty bounds
technique [34, 35]. The proposed algorithm ultimately
requires little information (only the upper and lower
bounds for the input membership functions and rule
output constants) which significantly reduces the com-
putation cost for calculating the output control signal.

Thus, the contributions of this paper are the devel-
opment of a computationally effective interval type-
2 fuzzy logic control structure that is capable of cap-
turing input uncertainties and the development of an
algorithm that can be used for the implementation of
the proposed control structure. To capture input uncer-
tainties, the proposed control structure utilizes interval
type-2 fuzzy sets for describing the input space. Addi-
tionally, the control structure integrates interval type-2
antecedents with TSK rule outputs to enable parallel
processing of rule outputs. Unlike many other meth-
ods, the proposed technique does not require type re-
duction of the output fuzzy set since it directly gener-
ates a type-1 output fuzzy set. By using only the upper
and lower bounds of the firing levels and rule outputs
coefficients, the proposed technique is able to calcu-
late the output control signals. Compared to our pre-
liminary results in [26], the proposed algorithm in this
paper is more efficient as, instead of searching over

all combination of lower and upper membership val-
ues to find the bounds of the output interval, we have
integrated the proposed method with the uncertainty
bounds aggregation method. Furthermore, to evaluate
the performance of the proposed controller and its abil-
ity to capture input uncertainties, the fuzzy type-2 con-
troller is applied to the position control of an inverted
pendulum on a moving cart in a noisy environment.
The simulation results of the proposed IT2 TSK FLC
are then compared with a type-1 TSK FLC and a clas-
sical proportional derivative (PD) controller.

The rest of this paper is organized as follows. Sec-
tion 2 briefly discusses preliminaries and notations.
Section 3 details the development of the proposed
fuzzy type-2 controller and discusses its different parts
including the input processing, rule sets, output pro-
cessing, and uncertainty bounds aggregation. Section 4
demonstrates the simulation of an inverted pendulum
on a moving using the proposed IT2 TSK FLC, a type-
1 TSK FLC, and a proportional derivative (PD) con-
troller. The paper is concluded in Section 5.

2. PRELIMINARIES

The contribution of this paper is two fold. One, the
paper designs an IT2 TSK FLC that has a satisfac-
tory performance compared to the baseline controllers;
and second, the paper presents a new decomposition
method to easily incorporate an IT2 TSK FLC into the
overall control design methodology. The proposed de-
composition method also helps with explaining the op-
erations of a complex fuzzy model. Before, discussing
this decomposition technique, we first briefly reviews
different types of fuzzy sets (FSs), particularly Inter-
val Type-2 fuzzy sets, which are used throughout this
paper. Some of the notations are borrowed from [36]
and [23].

Definition 1. Type-1 Fuzzy Set
A type-1 fuzzy set is composed of pairs of (x, µA(x)),

in which for each member of domain, x ∈ X , a mem-
bership value µA(x) ∈ [0, 1] can be defined as fol-
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lows:

A = {(x, µA(x))|∀x ∈ X,µA(x) ∈ [0, 1]}

=
∑
x∈X

(x, µA(x)) (1)

Here, X is the universe of discourse and
∑

is the
collection of elements of the set.

Even though type-1 fuzzy sets provide a degree of
membership for all their elements, they are not capa-
ble of quantifying the level of uncertainty in the de-
gree of membership [21]. The uncertainty in the degree
of membership can be quantified using type-2 fuzzy
sets [37–42]. Type-2 fuzzy sets can be defined as fol-
lows:

Definition 2. Type-2 Fuzzy Set
A type-2 fuzzy set is composed of triples ((x, u), µÃ

(x, u)) in which for each member of domain x ∈ X ,
there exists a primary membership value, u ∈ Jx (Jx
is the range of primary membership for a given x) and
a secondary membership, µÃ(x, u). Mathematically, a
type-2 fuzzy set can be defined as follows:

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1],

µÃ(x, u) ∈ [0, 1]} =
∑
u∈Jx

∑
x∈X

((x, u), µÃ(x, u))

(2)

In general, using type-2 FLSs is computationally ex-
pensive. For reducing this computational burden, it is
common to use interval type-2 FLSs. Interval type-2
FLSs significantly reduce the computation costs while
maintaining major advantages of type-2 FLSs [27,29].

Definition 3. Interval Type-2 Fuzzy Set (IT2 FS)
An interval type-2 fuzzy set is a type-2 fuzzy set in

which the secondary membership values of it’s ele-
ments are always unity and is defined as:

Ã = {((x, u), 1)|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]}

=
∑
u∈Jx

∑
x∈X

((x, u), 1) (3)

IT2 FSs can be further simplified by employing em-
bedded IT2 FSs and embedded type-1 FSs, which next
will be defined.

Definition 4. Embedded Interval Type-2 FS (EIT2 FS)
An embedded interval type-2 FS is an interval type-

2 FS in which for all x ∈ X , the primary membership
is a single value:

Ãe = {((x, ux), 1)|∀x ∈ X,∃!ux ∈ Jx ⊆ [0, 1]}

=
∑
x∈X

((x, ux), 1) (4)

The following lemma describes that an IT2 FS can
be expressed as the union of EIT2 FSs.

Lemma 1. (IT2 to EIT2 FSs)
Any IT2 FS can be described by the collection

of (infinite) EIT2 FSs as Ã =
∑

j Ã
j
e if for any

((x, ux), 1) ∈ Ã, there exists a j, such that ((x, ux), 1) ∈
Ãj

e.

Proof. Since any member of Ã has been included at
least in one of Ãj

e, it follows that the collection of Ãj
e

results in Ã.

We can further simplify EIT2 FSs by employing
type-1 FSs, which can be defined as follows:

Definition 5. Embedded Type-1 FSs (ET1 FSs)
An embedded type-1 FS is an embedded interval

type-2 FS in which the secondary membership values
are dropped.

Ae = {(x, ux)|∀x ∈ X,∃!ux ∈ Jx ⊆ [0, 1]}

=
∑
x∈X

(x, ux) (5)

Lemma 2. (EIT2 to ET1 FSs)
Any EIT2 FS can be expressed using its correspond-

ing ET1 FS as Ãe = Ae × 1, where × denotes the
cartesian product.

Combining Lemmas 1 and 2, the following theorem
describes IT2 FSs based on ET1 FSs:

Theorem 1. (Decomposition of IT2 into ET1 FSs)
Any IT2 FS can be described by the collection of
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(infinite) ET1 FSs as Ã =
∑

j A
j
e × 1 if for any

((x, ux), 1) ∈ Ã, there exists a j, such that (x, ux) ∈
Aj

e.

Proof. From Lemma 1, we know that Ã can be de-
scribed by a collection of (infinite) EIT2 FSs as Ã =∑

j Ã
j
e. Based on Lemma 2, each EIT2 FSs can be

expressed using its corresponding ET1 FSs as Ãj
e =

Aj
e × 1. Substituting this value of Ãj

e, we obtain Ã =∑
j Ã

j
e =

∑
j A

j
e × 1.

By using the above theorem, we can decompose an
IT2 FS into type-1 FSs.

3. DEVELOPING THE PROPOSED IT2 TSK
FUZZY CONTROLLER

This section, discusses the internal structure and
block diagrams of the proposed controller in detail.
Figure 1 shows a typical feedback control loop in
which we have used our developed IT2 TSK fuzzy
logic controller.

Fig. 1. Feedback control using IT2 TSK FLC.

3.1. Interval Type-2 TSK FLC Structure

The basic idea for developing the proposed IT2 TSK
FLC is to use Theorem 1 to decompose interval type-
2 fuzzy sets into type-1 fuzzy sets for which we can
employ well-matured control techniques such as TSK
FLCs to design the controller.

The block diagram of the proposed type-2 TSK FLC
is shown in Fig. 2. For any set of crisp inputs, the
Fuzzifier block converts the crisp inputs into fuzzy in-
puts. The Rule Base block contains a set of rules in
the form of fuzzy If-Then statements, relating the in-
puts and outputs. Once the inputs are fuzzified, the Fir-
ing Level block calculates the firing levels based on the

predefined input interval type-2 membership functions
and the rule base. In parallel, the Rule Output block
takes the crisp inputs and calculates rule outputs, based
on the output membership functions and the rule base.
The Aggregator block combines the firing levels and
rule outputs into an aggregated type-1 fuzzy set. Fi-
nally, the Defuzzifier block converts the obtained type-
1 fuzzy set into a crisp output value. This control pro-
cess is detailed in the following sections.

Fig. 2. The proposed IT2 TSK FLC structure.

3.2. Interval Type-2 Fuzzification

3.2.1. Membership Decomposition
The proposed IT2 FLC perceives the environment

from a fuzzy perspective. The Fuzzifier block con-
verts the control inputs (sensor readings), which are
crisp values, to fuzzy values using the predefined fuzzy
type-2 memberships. Here, we use IT2 fuzzy sets to
describe the input space. Each input channel, Xi, can
be captured by ni membership functions (MFs) as fol-
lows:

Fi =

ni∑
j=1

Fi,j (6)

where Fi represents all interval type-2 membership
functions related to input channel Xi, including Fi,1,
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Fi,2,. . . , Fi,ni
. The subscript j in Fi,j is used to indi-

cate the jth individual MF in Fi.

Fig. 3. IT2 MFs for input channel xi.

For simplicity, the secondary membership values are
not shown as they are always unity. The distance be-
tween the upper and lower MFs represents the mea-
surement uncertainty of the inputs and is referred as
Footprint of Uncertainty (FOU).

Using lemma 1, each of the input interval type-2
MFs, Fi,j , can be broken down into a collection of
EIT2 membership sets F k

i,j as follows:

Fi,j =

ni,j∑
k=1

F k
i,j (7)

where F k
i,j represents a particular EIT2 MF in Fi,j ,

and ni,j represents the number of EIT2 MFs in Fi,j ,
which can be infinitely large in the case of connected
membership functions. A typical decomposition of an
IT2 FS to EIT2 FSs for an input Xi is shown in
Fig. 4. Now, following Theorem 1, for each member-
ship function, Fi,j , we arbitrarily pick one of EIT2
MFs, F k

i,j and will denote its corresponding EIT1
membership function as F ′i,j (Fig. 5). We can repeat
the same procedure for other inputs. This results in a
set of type-1 membership functions for all input vari-
ables for which we can apply a method similar to con-
ventional TSK fuzzy control techniques. Then, we will
aggregate the results for all possible choices of decom-
posed ET1 MFs.

3.2.2. Fuzzifying the input variables
The purpose of the Fuzzifier block is to map the

crisp input variables to fuzzy values with member-
ships ranging from 0 to 1. An illustrative example
shown in Fig. 6, which describes how crisp values
x1 ∈ X1 and x2 ∈ X2 can be mapped to fuzzy val-

Fig. 4. Decomposed IT2 MFs to EIT2 MF.

Fig. 5. A set of arbitrary choices of ET1 MFs.

ues using the selected ET1 MFs, is discussed in Sec-
tion 3.2.1. In Fig. 6a, the crisp value x1 belongs to
F ′1,1, F ′1,2, ... F ′1,j , ..., F ′1,n1

with the membership val-
ues of F ′1,1(x1) = 0.8, F ′1,2(x1) = 0.2, ... F1,j = 0,
..., F1,n1 = 0. These degrees of membership are called
fuzzified values of x1. A similar fuzzification process
is performed for x2 which is shown in Fig. 6b.

3.3. Rule Base

Fuzzy rule base is a collection of conditional state-
ments defining the outputs which have to be fired based
on the fuzzified inputs. The rules may be constructed
manually by an expert or by using data-driven ma-
chine learning algorithms [43], [44]. When creating
the rules, specially using manual techniques, it is es-
sential to have a previous knowledge about the sys-
tem and its reactions to different sets of inputs. Rules
of TSK FLSs have antecedents which are fuzzy sets
and consequents which are functions of the inputs
[30, 45]. In the proposed control technique, to cap-
ture input/output uncertainty, we use a first-order TSK
FLS for which we represent antecedents using interval
type-2 fuzzy sets and consequents using linear first-
order polynomial functions of the inputs. A general
multi-input-single-output type-2 TSK FLS rule with
M rules, each having p antecedents, can be expressed
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(a) (b)

Fig. 6. (a) Fuzzification of x1, (b) Fuzzification of x2.

as:

R`: IF x1 is F1
`, and x2 is F2

` and . . . and xp is Fp
`

THEN y` = c`0 + c`1x` + · · ·+ c`pxp

(8)

where R` is the `th rule and Fp
` is the activated anti-

cident interval type-2 fuzzy set for input channel xp,
which could be one of Fp,j , j=1, 2, . . . np. In order to
capture uncertainties in the outputs of of the FLC, the
coefficients are interval type-1 fuzzy sets, bounded by
c`i and c`i , as shown in Fig. 7. With this setup, the rule
output, y`, clearly is a type-1 fuzzy set.

Fig. 7. Rule output function constants for the `th rule.

Interpreting these rules over IT2 MFs would not be
easy. Therefore, instead of deriving the controller for
these interval type-2 TSK fuzzy rules, we decompose
the input membership functions into ET1 fuzzy sets
and the output coefficients into crisp values, and inter-
pret these rules over all possible choices of input ET1
fuzzy sets and crisp output coefficients, as described in
the following sections.

3.4. Firing Level

For each rule, we should calculate the firing level.
The firing level can be explained as the strength of a
fuzzy rule or its influence over all rules based on the
given inputs. For each rule,R`, its corresponding firing
level is calculated in the Firing Level block. As men-
tioned, we interpret these rules over decomposed ET1
fuzzy sets. For this purpose, the crisp inputs have to be
fuzzified in the form of F ′i,j(xi) as discussed in Sec-
tion 3.3. Then, for any multi-input-single-output sys-
tem with p inputs, we can calculate the firing level of
the `th rule using the t-norm operator as:

f `
′
= F1

`′(x1) ∗ F2
`′(x2) ∗ · · · ∗ Fp

`′(xp) (9)

For example, consider an FLS whose first rule, R1,
is

R1: IF x1 is F1,1 and x2 is F2,2

THEN y1 = c10 + c11x1 + c12x2

Also, consider the MFs of this FLS as Fig. 6. Now, for
the selected ET1 MFs shown in Fig. 6a, the firing level
of R1 can be calculated as

f1
′
= F ′1,2(x1) ∗ F ′2,2(x2) = 0.8 ∗ 0.6 = 0.48

Note that the firing levels are calculated using the
antecedent part of the conditional statements in each
rule. Next, we show how the consequent parts of the
rules are used for calculating the rule outputs.
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3.5. Interval Type-2 Output Processing

Similar to decomposing input memberships, we de-
compose type-1 output fuzzy sets into crisp values as
shown in Fig. 8. For each coefficient c`i , we pick a sin-
gle crisp value c`

′

i to be used in the calculation of the
rule output as shown in Fig. 8.

Fig. 8. Decomposing the type-1 FSs of the output coefficients into
crisp numbers.

Following this procedure, for an arbitrary selection
of crisp coefficients c`

′

0 , c`
′

1 ,. . . ,c`
′

p , the output for the
`th rule is:

y`
′
= c`

′

0 + c`
′

1 x1 + · · ·+ c`
′

p xp (10)

Performing the above procedure for all rules will re-
sult in crisp rule outputs y1

′
, y2

′
, . . . , yM

′
for rules R`

= 1, 2, . . . , M, for the chosen set of crisp output coeffi-
cients.

The OutputProcessing block takes the rule out-
puts and their respective firing levels and calculates the
weighted average output as follows:

Y
′

TSK =

∑M
i=1 f

i′yi
′∑M

i=1 f
i′

(11)

where, f i
′

is the firing level which was calculated in
Section 3.4 and yi

′
is the crisp rule output for the cho-

sen crisp coefficients. Using Equation 11, it is possible
to obtain a crisp output for a particular set of ET1 MFs
and crisp output coefficients values. However, differ-
ent choices of ET1 MFs and output coefficients results
in different crisp outputs. Hence, the aggregated out-
put will be the collection of all weighted outputs for all
possible combinations of ET1 MFs and output coeffi-
cients. All input fuzzy sets and output coefficients are

connected sets. Therefore, the collection of outputs for
different choices of ET1 MFs and output coefficients
form a connected IT1 fuzzy set, will be a connected
set, bounded by yl and yr, as shown in Fig. 9.

Fig. 9. The aggregated output for all possible choices of ET1 input
MFs and output coefficients.

The lower bound yl can be calculated as follows:

yl = min
fi,fi

{
Y

′

TSK =

∑M
i=1 f

i′yil∑M
i=1 f

i′

}
(12)

where yil are the minimum values for yi
′
, as calculated

in Equation 16, and f i and f i are the minimum and
maximum values of f i

′
, i = 1, . . . ,M . Similarly, the

upper bound can be found as follows:

yr = max
fi,fi

{
Y

′

TSK =

∑M
i=1 f

i′yir∑M
i=1 f

i′

}
(13)

where yir denotes the maximum values for yi
′
.

f `
′
= F `′

1 (x1) ∗ F `′

2 (x2) ∗ · · · ∗ F `′

p (xp) (14)

f `′ = F `′
1 (x1) ∗ F `′

2 (x2) ∗ · · · ∗ F `′
p (xp) (15)

yil = c`0 + c`1x1 + c`2x2 + · · ·+ c`pxp (16)

yir = c`0 + c`1x1 + c`2x2 + · · ·+ c`pxp (17)

In the above equations, F `′

p and F `′
p represent the lower

and upper ET1 MFs of the activated antecedent inter-
val type-2 fuzzy sets in the `th rule of the pth input
channel, which are the bounds of their corresponding
input IT2 MFs, Fp,j , as described in Section 3.3.

The question here is, what combination of minimum
and maximum values of f i

′
should be used to calculate

yl and yr. One way to answer this question is to find
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all possible combinations of minimum and maximum
values of f i

′
(total of 2M choices) to calculate yl and

yr. This would require too much computation particu-
larly for a large number of rules. Alternatively, we can
find approximate values of yl and yr using the method
of uncertainty bounds, which will be discussed in the
next section.

3.6. Applying Uncertainty Bounds

To approximate the upper and lower bounds of
weighted outputs, yl and yr, we integrate the uncer-
tainty bounds technique introduced in [34]. The pro-
posed control algorithm estimates yl and yr by calcu-
lating and averaging their respective upper and lower
bounds values, yl, yl, yr, and yr, as shown in Fig. 10.

Fig. 10. Visual overview of uncertainty bounds.

The inner upper and lower bounds (yl and yr), can
be calculated as follows:

yl = min{yll, yul} (18)

yr = max{ylr, yur} (19)

where,

yll =
f iy1l + · · ·+ fMyMl

f i + · · ·+ fM
(20)

yul =
f iy1l + · · ·+ fMyMl

f i + · · ·+ fM
(21)

ylr =
f iy1r + · · ·+ fMyMr

f i + · · ·+ fM
(22)

yur =
f iy1r + · · ·+ fMyMr

f i + · · ·+ fM
(23)

With the inner bounds calculated, the outer bounds,
yl and yr, can be calculated as follows:

yl = yl −

[ ∑M
i=1(f

i − f i)∑M
i=1 f

i ×
∑M

i=1 f
i
×

∑M
i=1 f

i(yil − y1l )×
∑M

i=1 f
i(yMl − yil )∑M

i=1 f
i(yil − y1l ) +

∑M
i=1 f

i(yMl − yil )

]
(24)

yr = yr +

[ ∑M
i=1(f

i − f i)∑M
i=1 f

i ×
∑M

i=1 f
i
×

∑M
i=1 f

i(yir − y1r)×
∑M

i=1 f
i(yMr − yir)∑M

i=1 f
i(yir − y1r) +

∑M
i=1 f

i(yMr − yir)

]
(25)

Now, the lower and upper bounds can be estimated
by taking the average of their respective lower and up-
per bounds as follows:

yl =
yl + yl

2
(26)

yr =
yr + yr

2
(27)

Fig. 11. Aggregated type-1 output fuzzy set and the defuzzified out-
put, y.

3.7. Defuzzification

The final step of developing the controller is to
defuzzifiy the aggregated type-1 fuzzy set, which is
shown in Fig. 11. The defuzzified crisp output is easily
computed by taking the average of the upper and lower
bounds, yr and yl, which were obtained in Equations
26 and 27, as follows:
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y =
yl + yr

2
(28)

The defuzzified crisp output, y, is then applied to the
plant as a control input.

3.8. Summerizing the Control Design Process

Computing the crisp output for all (infinite) possi-
ble combinations of the decomposed ET1 input MFs
and output coefficients is computationally expensive.
However, as it was presented in Section 3.6 and Sec-
tion 3.7, only the upper and lower bounds of input
membership functions and the coefficients of output
rules are required for calculating the crisp control out-
put. This significantly reduces the computation cost
and the processing time. Algorithm 1 describes an ef-
ficient way for generating the control output using the
proposed control structure.

4. SIMULATION RESULTS

In this section, we evaluate the performance of the
developed IT2 TSK FLC by implementing it for the
control of an Inverted Pendulum and a Cart System.
The objective of the controller is to balance the in-
verted pendulum in a noisy uncertain environment by
applying a control force to a moving cart that the pen-
dulum is attached to. The inverted pendulum will fall
down if the cart does not move appropriately to bal-
ance it. We have also compared the results of the de-
veloped IT2 TSK FLC with a type-1 TSK FLC and a
PD controller.

An inverted pendulum on a cart, shown in Fig. 12,
can be modeled as:

[


ẋ

ẍ

φ̇

φ̈

 =


0 1 0 0

0 −(I+hl2)b
I(H+h)+Hhl2

h2gl2

I(H+h)+Hhl2
0

0 0 0 1

0 −hlb
I(H+h)+Hhl2

hgl(H+h)

I(H+h)+Hhl2
0



x

ẋ

φ

φ̇



+


0

I+hl2

I(H+h)+Hhl2

0
hl

I(H+h)+Hhl2

F (29)

Algorithm 1 Interval type-2 TSK fuzzy control

Input: crisp input variables
Output: crisp output control signal and uncertainty range

Begin Procedure

For the given set of control inputs, compute lower and
upper bounds for the firing level of each rule (f i and f i),
i = 1, . . . ,M , using (14) and (15).

For the given set of control inputs, compute lower and
upper bounds for the rule outputs (yil and yir),
i = 1, ...,M , using (16) and (17).

Compute the inner uncertainty bounds (yl and yr) using
(18) and (19).

Compute the outer uncertainty bounds (yl and yr) using
(24) and (25).

Compute the lower and upper bounds for the output
signal.
(yl and yr) using (26) and (27).

Compute the output control signal, y, using (28).

Return output control signal, y.

Return uncertainty range, [yl, yr].

End Procedure

where, φ is the angle between the pendulum and the
system’s equilibrium position, x is the cart’s position,
F is the control force, H is mass of the cart, h is mass
of the pendulum, b is the coefficient of friction for the
cart, l is length of the pendulum and I is the moment of
inertia for the pendulum. The constant physical prop-
erties of the inverted pendulum and the cart are stated
in Table 1.

Table 1
Distance (x) traveled by the cart.

Physical property Value
H 0.5 Kg

h 0.2 Kg

b 0.1 N/m/sec

l 0.3 m

I 0.006 Kg.m
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Fig. 12. An inverted pendulum on a moving cart.

From this state-space model of the system, one can
find the system’s eigenvalues as:

λ = (0,−6.1301,−0.2498, 6.0067) (30)

Which shows that the open-loop system is unstable due
to an eigenvalue in the right-half of the S-plane.

In order to simulate the real-world uncertainties, we
have introduced noise, disturbance and unbalanced ini-
tial condition to the system. The noise introduced to
the system is a uniform random noise added to the sig-
nal readings of φ and the actuator signal, F . The range
and maximum amplitude of the noise injected to the
system is stated in Table 2. The disturbance is applied
to the actuator signal during the simulation time. Fur-
thermore, the initial state of the inverted pendulum is
deviated by φ(0) = 0.25 rad from its equilibrium po-
sition. The applied disturbance is shown in Fig. 13.
The initial conditions of the remaining state variables
were set at, φ̇ = 0 rad/s, x = 0m and ẋ = 0m/s.

Table 2
Uncertainty ranges due to noise

Variable Range
φ ±0.01 rad

F ±1N

4.1. Simulating the IT2 TSK FLC

The developed IT2 FLC was applied to the control
of the inverted pendulum and cart system described in
the previous section. The general control structure is
shown in Fig. 14. The controller’s inputs are φ, φ̇, and
ẋ, which are signals read from the system. The con-

Fig. 13. Disturbance force applied to the cart.

troller’s output is the force, F , which is applied to the
cart.

Fig. 14. Interval type-2 TSK FLC.

In our design, as shown in Figures 15a and 15c, the
memberships of φ and ẋ are composed of five fuzzy
sets: negative large (NL), negative small (NS), zero
(O), positive small (PS) and positive large (PL). On the
other hand, as shown in Fig. 15b, the memberships of
φ̇ are composed of three fuzzy sets: negative (N), zero
(O) and positive (P). For all inputs, an optimized FOU
for the membership functions is is obtained using ge-
netic algorithms.

The rule outputs are designed as:

y` = cQ1 φ+ cQ2 φ̇ (31)

where ` represents the number of rules, ` = 1, 2, . . . , 75,
and Q represents the label for output membership
functions including VS, S, M, L and VL. Note that
each rule output resembles a PD controller with c1 be-
ing the the proportional gain and c2 being the deriva-
tive gain. The upper and lower bounds for the coef-
ficients of the rule outputs are obtained through opti-
mization using genetic algorithms and are presented in
Table 3.

The rule base for controlling the inverted pendulum
and cart system using the developed IT2 TSk FLC is
presented in Table 4.
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(a) (b)

(c)

Fig. 15. (a) IT2 MFs for φ, (b) IT2 MFs for φ̇ and (c) IT2 MFs for ẋ.

Table 3
IT2 TSK rule output coefficient bounds

Rule Coefficients

c
Q
1

c
Q
1 c

Q
2 c

Q
2

R
ul

e
L

ab
el

s
(Q

)

VS 67.6 77.6 3 4
S 91.3 101.3 4.4 5.4
M 113.1 123.1 5.1 6.1
L 125.6 135.6 6.5 7.5

VL 183.8 193.8 9.3 10.3

4.2. Simulating the Type-1 TSK FLC

Here, we compare the performance of the devel-
oped IT2 TSK FLC structure, with a type-1 TSK FLC.
To make the comparison fair, the type-1 membership
functions of the type-1 TSK FLC are set at the cen-
ters of the footprints of the IT2 MFs of the IT2 TSK
FLC described in Section 4.1. These type-1 member-
ship functions are shown in Fig. 16.

The rule outputs for the type-1 TSK FLC are ex-
pressed in the form:

y` = cQ1 φ+ cQ2 φ̇ (32)

where ` represents the number of rules, ` = 1, 2, . . . , 75.
However, unlike the developed interval type-2 TSK
FLC, the output coefficients of a type-1 TSK FLC are

crisp values. Again, to make the comparison fair, the
output coefficients cQ1 and cQ2 are selected to be at the
centers of their corresponding rule output coefficients
presented in Table 3. These type-1 TSK rule output
coefficients are presented in Table 5.

The rule base which is used for the type-1 TSK FLC
is the same rule base used for the IT2 TSK FLC, and is
presented in Table 4. For obtaining the final crisp con-
trol output, weighted average defuzzification method
is used.

4.3. Simulating the Classical Proportional Derivative
(PD) Controller

The rule outputs of the IT2 TSK FLC are a function
of φ and φ̇. This resembles the output of a classical PD
controller. To evaluate the performance of the devel-
oped IT2 TSK FLC compared to a PD controller, we
also designed a PD controller for the inverted pendu-
lum and cart system. To make the comparison fair, the
gains for the proportional and derivative gains were set
at the average of the centers of the designed IT2 TSK
rule output coefficient bounds. The designed PD con-
troller, therefore, has the following structure:

F = 121.28φ+ 6.16φ̇ (33)



12 A. Hailemichael et al. / Developing a Computationally Effective Interval Type-2 TSK Fuzzy Logic Controller

(a) Type-1 MF for φ. (b) Type-1 MF for φ̇.

(c) Type-1 MF for ẋ.

Fig. 16. (a) Type-1 MF for φ, (b) Type-1 MF for φ̇ and (c) Type-1 MF for ẋ.

4.4. Results

The responses of the system when using the IT2
TSK FLC, type-1 TSK FLC and classical PD con-
troller are presented in Figures 17 and 18. From
Fig. 17, we can observe that the IT2 TSK FLC han-
dled uncertainties in φ as well as F and controlled the
inverted pendulum smoother than the other two types
of controllers. Even-though the initial condition of the
inverted pendulum was not at the equilibrium position,
the IT2 TSK FLC was capable of stabilizing the sys-
tem faster than the other controllers while maintaining
the smallest overshoot and fastest settling time.

Fig. 17. Pendulum angle (φ) vs. Time.

When an external disturbance force shown in Fig. 13
was applied to the system, the results presented in

Fig. 17 show that the IT2 TSK FLC returned the
inverted pendulum back to its equilibrium position
smoothly with the smallest overshoot, fastest rise time
and fastest settling time than the other two controllers.
Here, it can be observed that, in the presence of a dis-
turbance, the type-1 TSK FLC controlled the system
smoother than the classical PD controller.

The position of the cart throughout the simulation
time is shown in Fig. 18. It is presented in Table 6
that the distance traveled by the cart for stabilizing the
inverted pendulum throughout the simulation time is
the shortest when the IT2 TSK FLC is used. In all the
simulation results, even-though the IT2 TSK FLC per-
formed better than the other two controllers, the type-1
controller performed better than the PD controller.

Fig. 18. Cart position (x) vs. Time.
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Table 4
Rule base for the inverted pendulum problem

` φ φ̇ ẋ F ` φ φ̇ ẋ F

1 NL N NL V L 39 NS O PS S

2 NL N NS V L 40 NS O PL S

3 NL N O V L 41 NS P NL M

4 NL N PS L 42 NS P NS M

5 NL N PL L 43 NS P O M

6 NL O NL V L 44 NS P PS S

7 NL O NS V L 45 NS P PL S

8 NL O O V L 46 PS N NL S

9 NL O PS L 47 PS N NS S

10 NL O PL L 48 PS N O M

11 NL P NL V L 49 PS N PS M

12 NL P NS V L 50 PS N PL M

13 NL P O V L 51 PS O NL S

14 NL P PS L 52 PS O NS S

15 NL P PL L 53 PS O O M

16 O N NL S 54 PS O PS L

17 O N NS S 55 PS O PL L

18 O N O S 56 PS P NL S

19 O N PS S 57 PS P NS S

20 O N PL V S 58 PS P O M

21 O O NL S 59 PS P PS L

22 O O NS S 60 PS PS PL L

23 O O O V S 61 PL N NL L

24 O O PS S 62 PL N NS L

25 O O PL S 63 PL N O V L

26 O P NL V S 64 PL N PS V L

27 O P NS S 65 PL N PL V L

28 O P O S 66 PL O NL L

29 O P PS S 67 PL O NS L

30 O P PL S 68 PL O O V L

31 NS N NL L 69 PL O PS V L

32 NS N NS L 70 PL O PL V L

33 NS N O M 71 PL P NL L

34 NS N PS S 72 PL P NS L

35 NS N PL S 73 PL P O V L

36 NS O NL L 74 PL P PS V L

37 NS O NS L 75 PL P PL V L

38 NS O O M − − − − −

To quantify the performance improvement achieved
by using the IT2 TSK FLC, we have calculated the
Root Mean Square (RMS) error of the inverted pendu-
lum throughout the simulation time. As presented in
Table 7, the proposed IT2 TSK FLC has controlled the
system with the least RMS error than type-1 TSK FLC

Table 5
Type-1 rule output coefficient bounds

Rule Coefficients

c
Q
1

c
Q
2

R
ul

e
L

ab
el

s
(Q

)

VS 72.6 3.5
S 96.3 4.9
M 118.1 5.6
L 130.6 7

VL 188.8 9.8

Table 6
Distance (x) traveled by the cart.

Controller Type Distance (m)
IT2 TSK FLC 1.02

Type-1 TSK FLC 1.21

PD 1.32

or PD controller. From the simulation results, we have
found a 16.6% and 23.3% improvement in RMS error
when the proposed control structure is used instead of
a type-1 TSK FLC or a PD controller, respectively.

Table 7
RMS error for φ.

Controller Type RMS Error (rad)
IT2 TSK FLC 0.0320

Type-1 TSK FLC 0.0383

PD 0.0418

5. CONCLUSION

In this paper, we developed a novel and computa-
tionally effective IT2 TSK FLC structure that is capa-
ble of capturing input uncertainties. Additionally, an
algorithm that can be used for the implementation of
the proposed control structure was presented. The de-
veloped control structure and algorithm exploits the
ability of IT2 FLSs to measure and quantify uncer-
tainties for generating an improved control output. For
capturing uncertainties, the control structure utilizes
IT2 fuzzy sets for describing the input space. Addition-
ally, for enabling parallel processing of rule outputs,
IT2 antecedents of the rules were integrated with TSK
outputs. Furthermore, for making the developed con-
trol structure computationally effective, the type re-
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duction process of the FLC was bypassed using the un-
certainty bounds output processing technique.

Finally, for evaluating the performance of the devel-
oped IT2 TSK FLC, it was applied to the control of
an inverted pendulum on a moving cart system in the
presence of noise and disturbance. The simulation re-
sults were then compared with the results of a type-
1 TSK FLC and a classical PD controller. From the
simulation results, it was found that the developed IT2
TSK FLC was more stable and robust to external dis-
turbances and noises than a type-1 TSK FLC or a PD
controller. Future works includes extending the pro-
posed method to a general type-2 TSK FLC as well
as developing software libraries and toolboxes that can
ease the development and real-time implementation of
the proposed controllers.
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