2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congreés et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

Automatic Safe Behaviour Tree Synthesis for Autonomous Agents

Tadewos G. Tadewos, Laya Shamgah, and Ali Karimoddini

Abstract— This paper proposes a systematic approach for
automatically generating a safe behaviour tree (BT) coordinator
to guide an autonomous vehicle to satisfy the goal of a
mission without violating the mission safety requirements. The
autonomous agent is assumed to have different capabilities to
execute multiple actions and operate in a dynamic environment
with moving obstacles. For this purpose, we develop a hierar-
chical and modular synthesis technique that generates safe and
reactive Behaviour Trees (BTs) composed of verified actions.
At a high level, the synthesized BTs generate a sequence of
actions to meet the goals of the mission. Then, the safety issues
for the generated BTs are addressed both at the action level
by using dynamic differential logic (DL) and globally at the
task (BTs) level by forcing a sequence of actions to respect
the safety requirement of the successor’s action. Adopting the
compositional property of the DL allows us to infer the safety
of a system from validating its components. Therefore, taking
advantages of DL’s compostitional property and BT’s modular
reactivity property, the proposed algorithm synthesizes a safe
and correct sequence of actions that can meet the goal and
safety requirements of a mission. The details of the developed
algorithms are illustrated through an example, verifying the
effectiveness of the proposed approach.

I. INTRODUCTION

With advances in technologies, nowadays robots are
equipped with advanced sensing, maneuvering, and comput-
ing capabilities that enable tasking the robots to accomplish
a sophisticated and increasingly complex mission in a dy-
namic environment [1], [2]. Different approaches exist in the
literature for tasking multi-agent systems including, but not
limited to, formal specification-guided tasking [3], [4], event-
based supervisory control [5]-[7], and mixed-integer linear
programming (MILP) [8]. A less computationally expensive
way to handle the increasing complexity of tasking multi-
agent systems is to employ behaviour trees (BTs) with
inherently hierarchical and reactive structures for high-level
controller synthesis [9], [10]. However, as the complexity of
assigned tasks increases, safety becomes a serious issue, i.e.,
how a robot can accomplish a task without violating a safety
constraint (like avoiding a collision or a restricted zone) and
simultaneously meeting the mission objectives.

In [11], a correct-by-construction BT synthesis technique
has been introduced, which mainly focuses on generating a
BT indirectly from fragmented (subset) LTL (Linear Tem-
poral Logic) specifications. Thus, safe BT generation is

The authors are with the Department of Electrical and Computer En-
gineering, North Carolina Agricultural and Technical State University,
Greensboro, NC 27411 USA.

Corresponding author: A. Karimoddini. Address: 1601 East Mar-
ket Street, Department of Electrical and Computer Engineering North
Carolina A&T State University Greensboro, NC, US 27411. Email:
akarimod@ncat .edu (Tel: +13362853313).

978-1-7281-1398-2/19/$31.00 ©2019 IEEE

limited to specifications expressible by fragmented LTL.
In [12], a model checker is used to verify system-level
fault tolerance property of a system by directly converting
BT models into a suitable syntax acceptable by a model
checker for safety analysis. In [13], a similar attempt has
been persuade to convert a BT into a process algebra model
followed by model checking techniques to validate an LTL
specification. In both cases, similar to all model checkers, the
techniques are vulnerable to the state explosion problem. In
[14], a model checker based slicing, a reduction method that
removes inactive parts of a program automatically, method is
utilized to formally verify a BT. Even though, this technique
can handle a larger model, still the state explosion problem
exists. In [15], Dynamic Logic (DL) in conjunction with
Satisfiability Modulo Theories (SMT) is used to generate a
safe controller from Counter Linear Temporal Logics over a
Constraint System (CLTLB(D)) specification. However, the
control strategy for this method has to be generated off-
line, and thus, an agent utilizing this algorithm cannot au-
tonomously alter the high-level plan to adapt to an emergent
scenario. In addition, the target specification is limited to
CLTLB(D).

To address the problem of safely in an autonomous system,
this paper develops a hierarchical structure where planing
is done at the high level and safety is guaranteed at the
low level. The high-level planning is done by synthesizing
a BT to satisfy the mission goal, while the safety of the
BT is guaranteed by verifying the low-level controllers for
individual actions using dynamic differential logic (DL) and
restricting the composition of actions in such a way that the
safety constraint of the successor action is respected by the
predecessor action. In general, it is not possible to guarantee
the safety of a system from the safety of its components.
However, dynamic differential logic (DL) [16], a formal
method we use to verify the safety of each action, has an
interesting compositional verification property where by only
verifying the components and the interactions among the
components, the entire BT can be proved to be safe.

The rest of the paper is organized as follows. We provide
the necessary preliminaries in Section II. In Section III,
the problem of synthesizing safe BT is formulated. Section
IV describes the proposed safe BT synthesis mechanism in
detail. Section V identifies and verifies safe actions. Section
VI illustrates the developed technique using a search and
delivery case study. Finally, Section VII concludes the paper.

II. BACKGROUND

This section provides the description of BT nodes and DL
operations.

2776

A. Behaviour Tree (BT)

Behavior Tree (BT) is an effective tool to capture the
decision making mechanism for an autonomous vehicle. As
the name implies, the structure of a BT is based on a tree
that can be represented with a directed acyclic graph (DAG)
to demonstrate control flows from top to bottom (parent to
child) among different types of nodes. At the top of the tree,
a root node exists that provides the activation clk for all
other nodes. In addition to a root node, a BT may contain
leaf and composite nodes.

Leaf nodes are terminal nodes that could act as a sensing
unit (condition nodes) or as a computing/actuation unit
(action nodes). A condition node checks the state of the
robot or the environment and return success only if the
condition is true. An action node performs an operation that
modifies/change the state of the robots or the environment.
Similarly, the action node returns success only if the opera-
tion is completed. Fig. 1.b, shows activation of action A; if
condition C is true.

Composite nodes provide the capability to compose mul-
tiple child nodes under a single parent. A sequence node
composes actions or sub-trees in an ordered fashion, where
activation is passed from one child to the next only if the
current node is completed with success. Otherwise, a failure
status is returned by the sequence node. A selector node
composes actions or sub-trees with priority where activation
of the next child is possible if the current node returns a
failure status. A selector node return success if only one
child node succeeds, otherwise it returns failure. A parallel
node provides the capability to execute actions/sub-trees
simultaneously. The success of a parallel node is determined
by a natural number N, which specifies how many children
are needed to succeed for the node to return success. If N
number of children succeed, then the node returns success,
otherwise it returns failure. Figures 1.a, 1.c, and 1.d show the
graphical representation of sequence, selector and parallel
nodes, respectively.

Generally, the execution of a BT is initiated by the root
node which sends a tick (enabling signal) with a certain
frequency to its children. Then, the enabled child activates
another child or returns its execution status as running,
failure, or success to its immediate parent. In this way, the
actions are executed from the bottom left of the BT, returning
success/failure to their parents.

By the proper combination of leaf nodes (actions and
condition nodes), and composite nodes (sequence, selector or
parallel nodes), a complex BT structure can be constructed
that is both modular and reactive and can effectively meet
the goal of a mission.

B. Dynamic Differential Logic (DL)

Dynamic differential logic (DL) models and formally
verifies a hybrid system by using a textual representation
known as Hybrid Program (HP) that provides flexibility
with an inherent compositional semantics. The syntax and
semantics of HP and DL are defined as follows:

Action n

Action 2

c) A selector node d) A parallel node with N action node

Fig. 1. Building blocks of Behavior Trees

Definition 1: Hybrid Programs (HP):

a,B | = 0;| m; =« 2 =01, 2] = 0, &x| MY
aU Bl a; 8] o

where «, 8 are HPs and v is a DL formula. Assignments
could be as simple as value updates like = := 6; which
assigns the value 6; to the state variable x or x := x that
assigns a random value * to . A differential equation update
is more complicated, z} := 6y, .-, 2], = 0, &x where
the set of ordinary differential equations (ODE) are evolved
for any duration of time within the evolution domain x. A
tests 7¢ evaluates the boolean value of i) without affecting
the state. The nondeterministic choice o U 3 selects « or
£ randomly. The sequential composition «; [executes «
followed by f. Finally, the repetition o™ execute « a finite
number of times.

Definition 2: Dynamic Logic (DL) formula:

6.9 | =@l ¥ AY| 3xg| [alg] (o) ¢

where the boxed modality [«]¢ always guarantees the satis-
faction of ¢ whenever the HP « is executed while the angle
modality («) ¢ guarantees the satisfaction of ¢ after execut-
ing the HP « at least once. In addition, logical operators
(—, A\, V), existential (J), and universal (V) quantifiers are
allowed.

DL verification is based on a compositional proof calculus
where the satisfaction of a specification is guaranteed by
individually verifying each action (component) and inferring
system-level safety (proving properties of its parts). The
calculus decomposes the system level DL formula [a]t)
symbolically into an equivalent formulas, e.g., [a1]d1 A
[aa]da A -+ - about subsystems «; of « and sub-properties
¢; of ¢. With this method, [a]¢ can be simply verified by
proving the individual sub-formulas, [c;]¢;, separately and
combining the results conjunctively.

III. PROBLEM FORMULATION

In this section, we use BTs to synthesize a sequence of
actions for an autonomous-agent over the following compo-
nents:

1) The term R represents an autonomous agent charac-
terized by the position P, = (ps,p,) and velocity
Vi = (Vg,vy,w,) pairs, where pg, py, Vs, Uy, wr
are the position of R along the x-axis, the position of
R along the y-axis, the linear velocity of R along x-
axis, the linear velocity of R along y-axis, and the
angular velocity of R, respectively. Here, the terms
agents, robots, and vehicles are used interchangeably.

2777

2) The set A is the agent action bank, which contains a set
of actions Ak, k=1,---, L, where L € N is the total
number of actions. We also define a safety constraint
associated with each action, ¢4_,, k= 1,---, L. Here,
the robot is assumed to perform a single action at a
time.

3) The set T' which includes a set of complex tasks 7},

j=1,--- N, where N € N is the number of tasks.
Each task Tj is associated with a safety property ¢r, ,
37 = 1.-. N. Furthermore, the accomplishment of

task 7T); with safety constraint ¢r,; can be captured
by meeting a condition C;. For example, if the task
Ty is to “reach a goal region” with safety constraint
(stj “avoid all obstacles”, then (7] is “being at the goal
region.” To reach the “goal” of a task T, depending
on the agent’s capability, a series of actions from the
action bank A should be completed, where the last
action should meet C}.

4) We define the set C' which includes a set of precon-
ditions éxp, Kk =1,---,L,and p = 1,---, Py, where
Py, is the number of preconditions for action Ay, and
Crp specifies pth preconditions for completing action
Ay, by robot R.

5) We define an operation R = con which cheeks if
the agent R at its current state satisfies the condition
con, where the condition con can be a condition for
a task, ie, Cj,j = 1,--- , N, or a precondition for
an action Cgp, k=1,---,L,and p=1,---,P,. We
also redefined the satisfiability operation for safety
constraint where ¢4,, = @g(its), k¥ = 1,---, L,
implies that the state of robot R after the execution
of action Ay, satisfies the safety requirement of
action A(rys). (As a trivial assumption, each
individual action Ay should not violate the task safety
requirement ¢r, ;).

Now the safe coordination of an agent can be described as:

Problem 1: Consider a Mission, which consists of sev-
eral tasks T;, j = 1,---,N, associated with a safety
constraint ¢r,,, j = 1,--+ , N, to be completed by a robot R,
that is capable of accomplishing actions Ay, k=1,--- | L.
Then, synthesize a BT for the robot R to meet the goal, C;,
of a set of tasks T; while simultaneously satisfying the safety
constraint ¢r,; of each task.

IV. AUTOMATIC SAFE BEHAVIOUR TREE SYNTHESIS

To address Problem 1, we propose to generate a sequence
of actions using Algorithm 1 to meet the goal of the mission
and satisfy the safety requirements. Given a mission in the
form of a set of tasks T}, j = 1,---, N, we generate the
BT for each task to satisfy the mission goal and meet the
safety requirements by selecting verified safe actions, Ay,
k=1,---,L.

A. Modular Synthesis of a BT

The process of generating a safe BT for a task 77 is given
in Algorithm 1. Algorithm 1 starts from the “goal” input,

which is described as the accomplishment of a “task” (Line
4). The algorithm then iteratively executes and updates the
BTs until a sequence of actions is obtained for the task 77,
which together realize the goal of the task, C; (Lines 6 to
15). As long as the condition —=(R = C;) is true, the BT
is tested to determine whether it is executable or not (Lines
7-9). If not, Line 10 identifies the cause, cy. The identified
cause will become a condition in a sub-tree to resolve the
problem by finding alternative actions (Line 11) to update
the BT, as it will be described in Algorithm 2. However,
after updating the BT, due to the addition of a new sub-
tree, Teubtree, @ conflict could arise. To resolve the conflict,
the function Con flict(7;) increases the priority of Tsuptree
by moving the subtree toward the left, e.g., opening a door
should be done when the robot arm is free either by putting
down the object or at a time that the arm is free (Lines 12-
14). Once, the goal of a task is achieved, i.e., the condition
(R |= () is met, the BT for the next task has to be initialized
(Lines 4-5) by incrementing the task index “i” (Line 16).

Algorithm 1: Main BT Synthesis and Execution

1 function Main BT Synthesis and Execution (T) ;
Input : T :set of tasks
Output: 7 = Operational BT

2 i =1 // Set task index to 1

3 while T'[i] # NULL do

4 C; = TVi] /igoal of task i

5 T < Cj,i =1/ Initialize the tree

6 while ~(R = C;) do

7 do

8 | 7« Ezecute(T)

9 while » = FExecutable;

10 ¢y + GetConditionToExpand(T)
//Identify the cause for not being executable

11 T, Teubtree < ExpandBT Safely(T,cs, da.,)
//Resolve the cause by Algorithm 2

12 while Con flict(T) do

13 ‘ T + IncreasePriority(Tsubtree)

14 end

15 end

16 i = i+1 // update the task index

17 end

As mentioned in the explanation of Algorithm 1, when a
task is not executable by an agent due to a condition (cause),
cy, Algorithm 2 will synthesize a sub-tree by identifying
proper actions from the agent’s action bank. In Line 2
of Algorithm 2, a set of actions LA are identified that
could satisfy the condition cy. In a loop (Lines 4-16), a
safety constraint test is performed for each suitable action
A, € LA, ie., we check if the selected action does not
violate the preconditions of the successor action (Line 5).
Then, the action that meets the safety criteria along with its
preconditions, ¢, are composed by a sequence node to from
Tseq (Lines 8 to 12). Further, 7T, is composed with Tge,
defined as ¢y (Line 3), by a selector node, to enforce the

2778

execution of 7., only in situations where cy is not satisfied
(Line 14).

Algorithm 2: Expanding the Behavior Tree

1 function ExpandBTSafely (7, ¢f, ds_sucessor):

Input : 7 = the BT to be expanded, c; = condition
(cause) for not being executable, @4, ...coo0r =
successor action safety constraint

Output: 7 = Safely Expanded BT

2 LA «+ GetActionwithPrecondtion(cy)
//1dentify actions that satisfy c;

3 7;654—-Cf

4 for A, € LA do

s | ifda, F A, oo, then
6 /I Action is selected only if successor safety
7 is not violated by action Ay
8 Toeq < 0
9 ¢, = GetPrecondtion for Action(Ay)
10 for ¢, in ¢ do
11 Tseq, — Sequence(Tseq, Crp)
//sequence BT with the condition of action
12 end
13 Tseq < Sequence(Tseq, Ak)
/I Generate a sequence subtree containing action
Ay, and its preconditions
14 Tsel — SGZSCtOT(Tsela Teeq)
15 break // Suitable action is found
16 end
17 end

18 T < Substitute(T,cy, Tser) // add the subtree to T
9 return 7, T

[

B. Modelling a BT Using DL Operations

In this section, we map each BT node to appropriate DL
operations, which enables us to take advantage of composi-
tional verification of DL and apply it to the modular structure
of BTs. The Sequence node is equivalent to a sequence
operation in DL, where the HP [«; ; - -] represents the
execution of actions «,3,--- in sequence. The Selector
node does not have an equivalent DL operation, but it can
be modeled by the nondeterministic DL operator U. The
difference between a Selector node and a nondeterministic
operation is that in a Selector node, actions are selected in a
sequence with the highest priority action first, while for the
nondeterministic DL operator, actions are selected randomly.
Even if from an operation point of view, they are not the
same, from a safety point of view, the nondeterministic
DL operator over-approximates the Selector node. Hence,
a Selector node can be modeled by a nondeterministic DL
operation [U /3] where « or § is executed randomly. The
action node directly represents a verified HP, [a]. For our
case, all HP actions have to be safe. The condition node
can be modeled by a conditional DL operation [?x], where
execution can only proceed if y is true. Assuming that there
is no dependency among the actions, the parallel node can

be modeled by a sequential operation [«; /3] where § is
executed after a.. The relation between the BT nodes and
their equivalence DL operation is given in Table I.

C. Safety Verification of a BT Modelled Via DL

Next, we show that the process for generating BTs in
Algorithm 1 respects safety requirements.

Theorem 1: Consider an autonomous agent R with a set
of actions A, which respect the safety constraint ¢ 4_,. Using
Algorithm 1 to synthesize a BT for a task T}, by composing
these safe actions, respects the task’s safety requirement,
¢Tej'

Proof: To generate a BT Algorithm 1 creates a se-
quence of actions, which can be modelled by DL operations
as ¢T§] - [?(¢A~k)) Ak; ?(QZ)A%)’ 7(¢5(k+*)7 Ak+* T }¢T§J‘
where k,x € 1---N, and (k + %) < N. As shown in
[16], applying the rules for [;], [?] and —, the sequence
of actions can be modelled as ¢4,, — [Ax] ¢a., wWhere
?(Pa,,) and ?(pg(r4s) are the same or ?(¢4,,) does not
violate ?(¢s(k4+). Then, by applying the DL compositional
property, as long as the execution of each action or operation
starts from a safe region, 7(¢a4,,), and it does not violate
the safety property at completion, ¢4, — [Ag]da.,. the
generated BT is guaranteed to be safe with respect to the
safety requirement, ¢, ;. []

Theorem 2: A safe BT is synthesizable for meeting the
goals of any task defined over the action bank A if for any
task/action (successor), (a) there is at least one action (prede-
cessor) for accomplishing each successor’s precondition, and
(b) the execution of the predecessor action does not violate
the safety requirement of the successor.

Proof: In [17], it is shown that if there is at least
one action (predecessor) for accomplishing each successor’s
precondition, Algorithm 1 terminates in finite time and
generates a dead-lock free, live-lock free, and finite time BT
that satisfies the goal, C}, of the task T}.

Further, based on Theorem 1, if the execution of the
predecessor action does not violate the safety requirement
of the successor, i.e., ?(¢4,,) does not violate ?(dg(xts),
the synthesized BT respects the task’s safety requirement,
¢Tej' u

V. SAFETY VERIFICATION OF REQUIRED ACTIONS

In this section, we explain the synthesis of safe actions
needed for a search and deliver mission that will be described
in Section VI.

A. MoveTo (Ay)

The navigation function for the robot is handled by the
MoveTo action which takes the destination as the input pa-
rameter. We adopt the formulation from [18] and implement
the navigation function based on dynamic window approach
(DWA). The DWA algorithm generates a safe trajectory at
every time instant that is uniquely identified by the linear
velocity v, and angular velocity w, based on the current
location of the autonomous vehicle. Without going into the
details, DWA generates safe trajectories in two steps: (i) first,

2779

TABLE I
BTS NODE AND THE CORRESPONDING DL REPRESENTATION TYPES

No | Node Type | DL equivalence | Description

1 Sequence a; B execute HP « and f3 in sequence

2 Selector auUp non-deterministically execute HP « or 3

3 Action @ a HP representing an action

4 Condition (?x;) U—x execute action « if condition x is true, otherwise it has no effect

by considering the dynamics of the robot, it identifies a set
of (v,,w,) pairs that are safe and feasible to be executed
in a short period of time, and (ii) it optimizes an objective
function, which takes into account the progress towards the
goal, forward speed of the agent, and the next obstacle along
with the robot’s trajectory.

In [19], the passive safety property (the ability of an agent
to safely stop before colliding with an obstacle) of DWA
has been proven. Hence, no additional safety verification is
needed. However, to generate a safe trajectory, the agent must
start operating in a safe region. Formulating this requirement
by DL operations, we have ¢4, — [MoveTo|¢4.,, which
means that if the agent starts from a region that satisfies
®4.,, then the action MoveTl o always preserves the safety
constraint, ¢4, .

B. Detect (As)

The action Detect does not affect the state of the au-
tonomous vehicle or the environment that the agent is oper-
ating, hence its safety is not required to be verified. However,
for the mission to be successful, the detection probability has
to be high.

C. PickUp (A3)

The PickUp action performs reaching, grasping, and lifting
operations in sequence or in order to pick an object. Since
the pickup operation does not depend on the kinematics of
the agent or the environment, verification is not required. As
a precondition for this action, “the agent should not carry
another object” and “the object of interest has to be identified
first.”

D. Deliver (Ay)

Similar to the Pickup action, the Deliver action performs
reaching and placing operations in sequence to place an
object at a predefined location. Again, the safety property for
this controller does not depend on the agent kinematics of the
robot, as such, there is no need for verification. Nonetheless,
for the Deliver action to succeed, the agent has to initially
“carry the object of interest”.

E. Search (As)

The Search action is defined as a parallel composition
of the Detect and Moveto actions. As the name implies,
the purpose of the search action is to locate an object by
moving around and performing detection while avoiding
obstacles (¢4,, = avoid obstacle). Using DL terminologies,
this can be modeled as a sequential operation Moveto
followed by Detect, executed repeatedly until the object of
interest is detected, i.e., Model 1: [?(—obj);t := 0;t' =

1; MoveT o; Detect&(t <= 1)]*, where the Moveto and
Detect actions are executed in sequence for at most 1
sec as expressed by the evolution domain &(t <= 1)
until the object of interest is detected. When the object
of interest is detected the DL operation ?(—obj) becomes
false and the execution stops. Since the search termi-
nates in a finite time, Model 1 can be represented as
¢$a., — [MoveToy, Detectedy; MoveT oo; Detecta; - -]
¢4, which can be reduced to ¢4 ., — [Moveto;|pa_, A
A, — [Detect;]pa... Therefore, since both actions are
safe, the search action is also safe.

Table II provides a summery of the basic actions, the
precondition for each action and the effect of the actions.

TABLE II
ACTION BANK ALONG WITH THEIR PRECONDITIONS AND THE EFFECTS

FOR THE CASE STUDY VI
Safe Action Bank

Actions | Description Precondition Effect
Ay MoveTo intially path is R at Np
(Np, path) collsion free
Ao Detect(m) - m 1s detected
As Deliver(o, p) R at Np oatp

m is detected
01s at R arm

Ay Pick(o) arm is free o1is at R arm
o is detected
As Search(o) intially path is o is detected

collsionfree

VI. CASE STUDY

Consider a search and delivery mission in which the
objective is to deliver an object o to a specific place marked
by m near position p. A robot R has to locate and pick the
object o and search for the marking m in the close vicinity
of p, N,,, before delivering the object o. Then, the problem is
that given the verified actions in Table II, we should generate
a safe BT using Algorithms 1 and 2 to achieve the task.

Algorithm 1 starts from the goal, “o at p”, i.e., the
object o should be at position p, as shown in Figure 2a.
Since, initially the goal is not satisfied and the gener-
ated BT (Line 8 of Algorithm 1) is not executable, the
function GetCondtionsToFExpand is called to identify the
preconditions (Line 10 of Algorithm 1). From Table II,
the Deliver action can meet the precondition, where the
EzpandBtSafely function (Line 11 of Algorithm 1) uses
this action to update the BT by composing the conditions
of Deliver action via a sequence node and the goal by
a selector node (Lines 8-14 of Algorithm 2) as shown in
Figure 2b. The expansion process is repeated and Figure 2c
shows the final BT after expanding the conditions that are
not satisfied.

2780

a) The Initial BT

0 atR m is
arm detected

b) After expanding condition (O at P)

Fig. 2.

c) After expanding condition (UAV at NP) and (m is detected)

Synthesizing a BT for the robot R to search and deliver an object to a particular position: (a) Algorithm 1 starts with the goal condition “o at
p”, (b) Algorithm 2 identify the action “Deliver” which can meet the goal condition, and hence, the action “

deliver” and its preconditions (being at Np,

detecting m, and O at R arm) are added as a subtree with a selector node, (c) Algorithm 2 expands the false preconditions (being at Np, detecting o, and

detecting m) to find the actions that can meet these preconditions.

Now, for a given task consisting of these actions, once the
BT is generated, we can map the corresponding nodes to the
DL operation and perform DL composition to guarantee the
safety of the generated tree. However, based on Theorem 1,
since the basic actions are safe, the synthesized BT is safe
hence, no further verification is needed. Also, according to
Theorem 2, the generated BT can meet the goals of the task.
Therefore, the BT can both simultaneously satisfy the goal
and safety requirements of a task.

VII. CONCLUSION

This paper developed a new automatic safe BT synthesis
technique to coordinate an autonomous agent, which has
different capabilities in terms of executing different tasks.
In the proposed framework, the synthesized BT acts as a
high-level planner that sequences verified actions to meet
the mission goal. Further, to verify the safety of the system
(synthesized BT) from its components, the compositional
verification property of DL was employed. This allowed
us to decouple the synthesis of a BT from verification
of its components. Future work includes implementing the
developed framework and extend the method to multi-agent
systems.

ACKNOWLEDGMENT

The authors would like to acknowledge the support from
the National Science Foundation under the award number
1832110 and Air Force Research Laboratory and OSD under
agreement number FA8750-15-2-0116.

REFERENCES

[1] B. Xin, G. Q. Gao, Y. L. Ding, Y. G. Zhu, and H. Fang, “Distributed
multi-robot motion planning for cooperative multi-area coverage,” in
2017 13th IEEE International Conference on Control Automation
(ICCA), July 2017, pp. 361-366.

[2] L. Shamgah, T. G. Tadewos, A. Karimoddini, and A. Homaifar, “Path
planning and control of autonomous vehicles in dynamic reach-avoid
scenarios,” in 2018 IEEE Conference on Control Technology and
Applications (CCTA), Aug 2018, pp. 88-93.

[3] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889-911, 2013.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

2781

L. Shamgah, T. G. Tadewos, A. Karimoddini, and A. Homaifar, “A
symbolic approach for multi-target dynamic reach-avoid problem,” in
2018 IEEE 14th International Conference on Control and Automation
(ICCA), June 2018, pp. 1022-1027.

P. Ramadge and W. Wonham, “The control of discrete event systems,”
vol. 77, no. 1, pp. 81-98, 01 1989.

M. Karimadini, A. Karimoddini, and H. Lin, “Modular cooperative
tasking for multi-agent systems,” in 2018 IEEE 14th International
Conference on Control and Automation (ICCA), June 2018, pp. 618—
623.

M. Karimadini, H. Lin, and A. Karimoddini, “Cooperative tasking
for deterministic specification automata,” Asian Journal of Control,
vol. 18, no. 6, pp. 2078-2087, 2016.

M. Darrah, W. Niland, and B. Stolarik, “Multiple uav dynamic task
allocation using mixed integer linear programming in a sead mission,”
in Infotech@ Aerospace, 2005, p. 7164.

A. Marzinotto, M. Colledanchise, C. Smith, and P. gren, “Towards
a unified behavior trees framework for robot control,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), May
2014, pp. 5420-5427.

T. G. Tadewos, L. Shamgah, , and A. Karimoddini, “On-the-fly
decentralized tasking of autonomous vehicles,” in Proc. of 58th IEEE
Conference on Decision and Control (CDC), 2019.

M. Colledanchise, R. M. Murray, and P. Ogren, “Synthesis of correct-
by-construction behavior trees,” in Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017,
pp. 6039-6046.

P. A. Lindsay, K. Winter, and N. Yatapanage, “Safety assessment using
behavior trees and model checking,” in 2010 8th IEEE International
Conference on Software Engineering and Formal Methods. 1EEE,
2010, pp. 181-190.

R. J. Colvin and I. J. Hayes, “A semantics for behavior trees using
csp with specification commands,” Science of Computer Programming,
vol. 76, no. 10, pp. 891-914, 2011.

N. P. Yatapanage, Slicing Behavior Trees for verification of large
systems. Griffith University, 2012.

R. R. da Silva, B. Wu, and H. Lin, “Formal design of robot integrated
task and motion planning,” in 2016 IEEE 55th Conference on Decision
and Control (CDC). 1EEE, 2016, pp. 6589-6594.

A. Platzer, Logical analysis of hybrid systems: proving theorems for
complex dynamics. Springer Science & Business Media, 2010.

M. Colledanchise, D. Almeida, and P. Ogren, “Towards blended
reactive planning and acting using behavior trees,” arXiv preprint
arXiv:1611.00230, 11 2016.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23-33, 1997.

S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer, “Formal
verification of obstacle avoidance and navigation of ground robots,”
The International Journal of Robotics Research, vol. 36, no. 12, pp.
1312-1340, 2017.

