2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congreés et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

On-the-Fly Decentralized Tasking of Autonomous Vehicles

Tadewos G. Tadewos, Laya Shamgah, and Ali Karimoddini

Abstract— This paper proposes a cooperative task allocation
and execution strategy for a group of agents with different
capabilities to accomplish a mission autonomously. For each
local agent, a hierarchical and modular Behavior tree (BT)
is synthesized to coordinate a sequence of actions to accom-
plish a task either individually or in collaboration with other
agents. To facilitate the coordination among agents and the
task assignment process, a market-based auction algorithm
is embedded in the developed framework. The details of the
developed algorithm are illustrated through different examples,
verifying the effectiveness of the proposed approach.

I. INTRODUCTION

Due to recent technological advancements, the adoption
of multi-agent systems to accomplish a task is becoming a
common trend in many application domains [1]-[3]. While
using multi-agent systems provides clear advantages in terms
of resilience, cost, speed, and coverage, it creates its own
challenges [4]. A major challenge for the deployment of
multi-agent systems is the task allocation problem, i.e.,
assigning tasks to agents with the objective of minimizing
the overall cost while maximizing resource utilization.

Different approaches exist in the literature for tasking
multi-agent systems including, but not limited to, formal
specification-guided tasking [5]-[7], event-based supervi-
sory control [8]-[11], and mixed-integer linear programming
(MILP) [12]. Most of these task allocation methods rely
on offline computations, requiring information about the
environment and all tasks in advance. Therefore, if new tasks
are introduced or if the environment changes, these methods
require redoing the entire process to include the new changes.

To address these challenges, in this paper, by adopting
a market based auction [13], [14] algorithm, we develop
an on-the-fly tasking mechanism by synthesizing Behavior
Trees (BTs) as local coordinators for autonomous vehicles.
By definition, BTs are graphical mathematical models for the
execution of tasks with inherent hierarchical, modular, and
reactive properties [15], [16], and hence, can serve as build-
ing blocks for autonomous decision making. These features
make BTs as ideal candidates to construct a modularized,
reactive, and scalable control structures to meet the goal of
a mission. In [17], assuming that a decomposable task and
the associated central (global) BT exist, a heuristic algorithm
has been used to generate local BTs for each agent to meet

The authors are with the Department of Electrical and Computer En-
gineering, North Carolina Agricultural and Technical State University,
Greensboro, NC 27411 USA.

Corresponding author: A. Karimoddini. Address: 1601 East Mar-
ket Street, Department of Electrical and Computer Engineering North
Carolina A&T State University Greensboro, NC, US 27411. Email:
akarimod@ncat .edu, Tel: (+1)336-285-3313.

978-1-7281-1398-2/19/$31.00 ©2019 IEEE

the goal of a task. However, the proposed mechanize does not
explain how the global BT is generated. In [18], a procedure
is provided to obtain a BT for a single robot that meets a
mission specification. Combining these two algorithms, it is
possible to use the algorithm proposed in [18] to generate
the global BT, and then, employ the method in [17] to
decompose the global BT to distribute the tasks among
available agents. However, this approach is not salable, it
does not consider the capacity and capability of the available
agents beforehand, and it is not computationally efficient as
the process consists of extra steps for obtaining the global
BT followed by decomposition stages.

To address these challenges, in this paper, we develop
a novel approach to directly synthesize the local BTs in a
distributed setting. The proposed method adopts a two-level
market based auctioning mechanism to distributively synthe-
size BTs for each agent with the objective of minimizing the
overall cost. In the proposed method, collaboration among
agents is needed only if a single robot cannot do the assigned
task alone, thus resource utilization is maximized leaving
other available robots for handling new tasks. The developed
method is illustrated and verified via several examples.

The rest of the paper is organized as follows. The back-
ground and necessary preliminaries are provided in Section
II. In Section III, the BT-based decentralized multi-agent
coordination problem is formulated. Section IV describes
our proposed approach for synthesizing decentralized BTs
in detail. Section V illustrates the proposed method using
several case studies. Finally, Section VI concludes the paper.

II. BACKGROUND

Behavior Tree (BT) is an effective tool to capture the
decision making mechanism for an autonomous vehicle. As
the name implies, the structure of a BT is based on a tree
that can be represented with a directed acyclic graph (DAG)
to demonstrate control flows from top to bottom (parent to
child) among different types of nodes. At the top of the tree,
a root node exists that provides the activation clk for all
other nodes. In addition to a root node, a BT may contain
leaf and composite nodes.

Leaf nodes are terminal nodes that could act as a sensing
unit (condition nodes) or as a computing/actuation unit
(action nodes). A condition node checks the state of the
robot or the environment and return success only if the
condition is true. An action node performs an operation that
modifies/change the state of the robots or the environment.
Similarly, the action node returns success only if the opera-
tion is completed. Fig. 1.b, shows activation of action A; if
condition C is true.

2770

v]

%m

a) A sequence node b) Execution of an Actionl based on C1

d) A parallel node with N action node

?

c) A selector node

Fig. 1: Building blocks of Behavior Trees

Composite nodes provide the capability to compose mul-
tiple child nodes under a single parent. A sequence node
composes actions or sub-trees in an ordered fashion, where
activation is passed from one child to the next only if the
current node is completed with success. Otherwise, a failure
status is returned by the sequence node. A selector node
composes actions or sub-trees with priority where activation
of the next child is possible if the current node returns a
failure status. A selector node return success if only one
child node succeeds, otherwise it returns failure. A parallel
node provides the capability to execute actions/sub-trees
simultaneously. The success of a parallel node is determined
by a natural number N, which specifies how many children
are needed to succeed for the node to return success. If N
number of children succeed, then the node returns success,
otherwise it returns failure. Figures 1.a, 1.c, and 1.d show the
graphical representation of sequence, selector and parallel
nodes, respectively.

Generally, the execution of a BT is initiated by the root
node which sends a tick (enabling signal) with a certain
frequency to its children. Then, the enabled child activates
another child or returns its execution status as running,
failure, or success to its immediate parent. In this way, the
actions are executed from the bottom left of the BT, returning
success/failure/running to their parents.

By the proper combination of leaf nodes (actions and
condition nodes), and composite nodes (sequence, selector or
parallel nodes), a complex BT structure can be constructed
that is both modular and reactive that can effectively meet
the goal of a mission.

III. PROBLEM FORMULATION

In this section, we use BTs to formulate the coordination
and tasking for multi-agent systems over the following
components:

1) The set R which includes a team of robots R =
{R1, - ,Rn}, where M € N is the number of
agents. Here, the terms agents, robots, and vehicles
are used interchangeably.

2) The set A is the global action bank and contains a set
of actions Ay, k =1,---, L, where L € N is the total
number of actions. We define a set of action capability
indicators a;x, i =1,--- , M,k =1,---, L, for which
a;, = 1 if the robot R; can accomplish Action Ay,
otherwise a;; = 0. Here, the robots are assumed to
perform single action at a time.

2771

3)

4)

5)

0)

7)

The set T which includes a set of complex Tasks (a
task can be decomposed into multiple set of actions
that could satisfy the same task goal in different ways
(19D T}, 5 =1,--- ,N, where N € N is the number
of tasks. The accomplishment of each task, T}, can
be captured by meeting a condition C;. For example,
if the task 73 is to “reach a goal region”, then C}
is “being at the goal region.” We also define a set of
task indicators x;;, ¢ = 1,--- ,M, j =1,--- , N, for
which x;; = 1 if the task T} is assigned to R; to
handle it individually or in collaboration with other
robots, otherwise x;; = 0. Similarly, we define a set of
action assignment indicators %5, i = 1,--- , M, j =
1,---,N,k=1,---,L, for which x;;, = 1 if action
Ay, of R; is assigned for task completion of T};. To
reach the “goal” of a task T, depending on the agent
that is responsible to handle the task, a series of actions
from the action bank A should be completed, where the
last action should meet C;. In our proposed framework,
only a robot that can accomplish an action which meets
C}, can be a candidate for being selected to handle T}.
Such a robot can complete an action to meet C';, and
may delegate the prerequisite actions to other agents if
necessary. Further, we define the indicators @z, ¢ =
1, M,5=1--- N, k =1,---,L, for which
a;;r = 1 if action Ay from robot R; is needed to
complete the task 77, otherwise a;j, = 0.

The set F" includes a set of values f;; : R x T'— R™
to describe the cost of handling the task T} by R;
based on performance, energy, and proximity. Robot
R; can accomplish the actions in T} individually or
delegate the actions to other robots if necessary. We
define a cost function f;k € N, which indicates the
cost of accomplishing an individual action Ay by the
agent RR;.

We define the set C' which includes a set of precon-
ditions Cipp, @ = 1,--- M, k = 1,---,L, and p =
1,---, P, where P} is the number of preconditions
for action Ay, and ¢;x,, specifies pth preconditions for
completing action Ay by robot R;. We also define
action status indicator ¢;;, where ¢;;, = 1 if action Ay
is executed and completed by R;, otherwise ¢;; = 0.

Consider a discrete clock clk with a granularity of
1sec, ie., clk = clk + 1 (this can be of smaller
step sizes if needed). The clock clk represents the
elapsed time starting from the first task announcement.
Then, we define Aty, 1 =1,--- , M, k=1,---,L,
which represents the duration the agent R; needs to
complete the action Aj. We also define an action
timeline indicator ¢;,, ¢ = 1,--- , M, 0o = 1,---O,
where O € N is the last sample time, and t;, = 1
during the time that R; is assigned to perform one of
the actions A, which takes R; for At;, time units.

We define an operation R; = con which checks if the
agent R;,7 = 1,---, M, satisfies the condition con
at its current state, where the condition con can be a

condition for a task, i.e., Cj, or a precondition for an
action, Cip.
Further, to do automatic tasking for multi-agent systems,
similar to [18], we need to make the following assumptions:

Assumption 1: Each agent can verify if an action has
succeeded, failed or if it is running.

Assumption 2: Each agent can verify if a condition is
true or false.

Assumption 3: For each goal and for each initial config-
uration of the agents, there exists a sequence of actions that
can be taken by the agents leading to the achievement of the
goal. This assumption guarantees that each goal is achievable
at least by one of the agents.

Assumption 4: The effect of the dynamic environment
can void the accomplishment of the actions at most a finite
number of times. This assumption is made to avoid sticking
in a live-lock of repeating an action and being voided by the
environment over and over, preventing the agent to achieve
its goal.

Assumption 5: Given two actions A; and Aj, if the
execution of A; requires the execution of A;, A; must
not require the execution of A;. This assumption prevents
deadlocks due to cyclic dependency.

Assumption 6: All actions are ultimately reversible. That
is, each action can be undone through a finite sequence of
actions.

Assumption T: For each action, there exists at least one
agent to achieve it, which can be accomplished by a low-
level controller embedded in the agent in a finite time.

Now, given R, T, F, A, C, and C, and making assump-
tions 1 — 7, the tasking problem for multi-agent systems can
be stated as:

Problem 1: Consider a Mission consists of several
tasks T;, j = 1,--- , N, to be completed by a set of robots
R;, v = 1,--- M, that (some of them) are capable of
accomplishing the actions Ay, k = 1,---, L, within Nt
time units to achieve the mission. Also, consider that there
is no order and dependency among the tasks, other than the
order in which tasks are issued (one at a time). Synthesize
decentralized BT; to coordinate the individual robots R; to
collectively achieve a set of tasks T.

IV. AUTOMATIC BEHAVIOR TREE SYNTHESIS

To address Problem 1, we propose a decentralized method
for generating the local BTs by combining a market-based
auctioning algorithm with a reactive BT synthesis technique,
so that the generated local BTs can collectively satisfy the
mission specification.

A. Task Assignment for Coordination of Multi Agent Systems

To fairly assign tasks and avoid conflicts, we adopt a
two-level market-based auctioning algorithm. Generally in
a market-based auctioning, even-though there is a collab-
oration among agents we assume each agent acts on its
own interest, i.e. to maximize the reward or to minimize
cost. An auctioning process has four steps, starting with
a task announcement by the coordinator (announcement

stage), followed by the bidding stage where capable agents
send a bid. Based on the cost, the auctioneer selects the
best agent (the selection stage) and finalize the auction by
forming a contract with the selected agent (contract stage).
In the proposed framework the Mission Controller (MC)
announces a task 7);, where capable agents (agents that can
meet C;), R;, ¢ = 1,---, M, participate in the bid. To
complete the task T;;, the candidate agent has to identify
the sequence of actions either from the local action bank or
by delegation, where these actions are used to estimate the
total cost f;; before issuing the bid. Based on the estimated
cost f;; from each agent, the M C' selects an agent and form
a contract. Mathematically, this is equivalent to:

M
Igi_lefijxij7 Vj
k¥ .
K3
M
subject tonij =1Vy
i

xij € {01 1}) VZ7.7 (1)

where f;; is the cost of task 7} when handled by R; and x;;
is an indicator that task T} is assigned to I;.

If an agent delegate an action to complete a task, then the
agent has to act as the auctioneer and perform a second level
auctioning to identify a suitable agent. Therefore, the total
cost for a task is the sum of local and delegated actions: f;; =
Zi:l dijk(&ikfik + (1 - dik)fD (ij))a \V/Z, j’ where fD (Z.]k)
is the cost of the delegated action Ay, for the task T} by R;,
provided that the involved robots are available to complete
the actions at the time they are needed. To check availability
of the robot, we introduce the function V(¢;,, Tj, Ai) where
clk(T;, Ay) represents the time that the action Ay, is needed
for the task 7. If t;, = 0 for clk > clk(T}, Ax) + Dty
then V(t;0, T}, Ai) = 1, otherwise it returns 0. In addition,
V(tio, T, Ax) returns the nearest time slot that the agent R;
can accomplish an action. This indeed is equivalent to the
following minimization:

M
fplijk) = glinzi?djkfdik
Tajk
d=1---M, d;&i,
M
subject to Zidjk =1Vy,k,
d

V(tao, Tj, Ar) =1 2

where fdk is the cost of action A; when done by Ry and
Z g5 indicates if action Ay, of task 7} is assigned to agent
Ry or not.

Once an action or a task is assigned to an agent, the
availability indicator t,, is updated from O to 1 for At,,
using the function V (£, At.y) to avoid double assignment.

B. Decentralized Behavior tree synthesis algorithm

The overall procedure to generate the BTs for individual
agents is explained in Algorithms 1 — 3. First, the mission

2772

controller announces a task 7} (level-I auctioning). Then, any
capable agent estimates the task cost and sends a bid. The
estimation of the cost is calculated starting from the goal
and recursively identifying the precondition of the successor
action until the action can be done at the current state of
the robot. Upon receiving the bid from the agents, the M C'
selects the best agent and form a contract (Algorithm 3).
The winning agent R; synthesizes a BT using Algorithm 1
while Algorithm 2 is used to identify actions locally or by
delegation (level-II auctioning) to meet the conditions needed
to complete the task.

Algorithm 1: Main BT Synthesis and Execution

1 function MainBTSynthesisandExecution (C;) ;
Input : C;: Condition for assigned task of agent 1
Output: 7;; = Syntheisized BT
2 771 < C]'
/I Start the BT for task T; from the condition C;, which is
used to cheek if the task is completed or not
3 7:1ll7; < Pav"allel(ﬁj,Taui)
/I Tau, represents all BTs of an agent running in parallel
to execute multiple tasks including bidding and auctioning
4 while T'rue do

5 do

6 r, Cik <+ Exzecute(T:;)

7 if R; = C; then

8 Set x;; =0 // Task T} is completed
9 break // End execution of T;;

10 end

11 while r = FExecutable;

12 cif < GetConditionToExpand(T;;)

//Identify the the reason why 75 is not executable
13 Tijs Tsubtree;; < ExpandTree(Ti;, cif)
//Resolve the cause by Algorithm 2

14 while Con flict(7;;) do

15 | T < IncreasePriority(Toubtree,,)

16 end

17 end

Assume that the task 77 is assigned to the robot R; as it
can meet the condition C;. Algorithm 1 then synthesizes
the local BTs. Algorithm 1 starts from the ‘“goal” input,
which describes the condition for the accomplishment of
a “task” indicated by the condition C; (Line 1). By first
assigning the condition C; to the BT (Line 2) (this condition
will be used to determine if the task is completed or not),
the algorithm iteratively updates the BT until a sequence
of actions is obtained which as a whole realizes the task
and achieves the goal (Lines 4-17). Since each task requires
its own BT, to execute multiple tasks, the BTs for each
task are composed in parallel with the existing BTs, Tg,
(Line 3). In a do while loop, the BT actions are tested to
determine whether they are executable (Lines 5-11). If the
condition R; = C}; is satisfied by the execution of the BT,
the agent is free to accept a new task (Lines 7-10). Otherwise,
if the BT is not executable, Line 12 identifies the cause of
failure, c;y. The identified cause will become a condition
in a subtree to resolve the problem by finding alternative
actions or other agents (Line 13), as will be described in
Algorithm 2. After updating the BT, due to the addition of

a new subtree, Tsubtmei]., a conflict could arise. To resolve
the conflict, the function con flict(7T;;) increases the priority
of ﬂubtree” by moving the subtree toward the left. As an
example, in response to avoid an obstacle the robot decides
to pick an obstacle (object), but picking up an object has to
be done if the robot arm is free.

Algorithm 2 essentially synthesizes a subtree that satisfies
the condition c¢;¢. In Line 2 of Algorithm 2, the function
Getlocal Actionwith Precondtion(.) returns the optimal ac-
tion, which satisfies the condition c;¢. If the returned action
is not empty, then the identified action A; along with its
preconditions, &, are composed by a sequence node to
form 7'56% (Lines 5-9). Further, 7'56% is composed with
Tsezij, defined as ¢;y (Line 3), by a selector node, to
enforce the execution of 7;8%. only in situations where
cis is not satisfied (Line 10). To avoid double assignment,
the time-line and availability indicators for RR; are also
updated (Lines 11-12). However, if no local action exists, the
AuctioningM odule (similar to Algorithm 3) is activated to
conduct an auction in pursuit of finding an agent that can
accomplish ¢;; (Lines 14-16). Finally, the condition ¢;s is
replaced with a sub-tree that can meet c;y (Line 17).

Algorithm 2: Expand Behavior Tree Module For R;

1 function ExpandBT (7y;, cif);

Input : c¢;; = condition (cause) for 7T not being executable

Output: 7;; = Expanded BT
2 Ap < GetLocal Actionwith Precondtion(c;¢)

/I 1dentify local actions that satisfy c;s
Tsel;; = Cif
if GetLocal ActionwithPrecondtion(c;y) # 0 then
cik = GetPrecondtion for Action(Ay)
for cirp in ci, do

7;6€1ij - Sequence(,rsﬁ%j) Cikp)
/I sequence BT with the condition of action

end
Tseq,; < Sequence(Tseq,;, Ak)

/I Generate a sequence subtree containing action

Ay and its preconditions
10 Tset;; < Selector(Tsey;s Tsea;;)
11 @(tio, T;, Ag) Il tio is set to 1 for At;, time units
12 set Ti56 = 1 // Action Ay of T is assigned to R;
13 end
14 else
15 AuctionModule_L2(c;5)
//If there is no action to meet a condition,
initialize the Level IIAuction Module for delegation

NS s W

e *®

16 end
17 Tij « Substitute(Tij, cif, Tset,;)

// add the subtree Tse1,; to Ti; replacing ciy
18 return Tij, Tsely,

Algorithm 3 performs an auction to find a suitable agent
following a standard market based auctioning mechanism
(Lines 2-6). The auction terminates with a contract (Line
6).

2773

Algorithm 3: Auctioning Module

1 function AuctioningModule (c;y) ;
Input : c¢;¢ : condition to be delegated
2 selectedy < ()
3 Announcing(c;y) //broadcasting condition ¢; s
4 s = ReceiveSubmission()
/l agents with the spesfied action replies
5 selectedy = Selection(s)
/I choose the agent that minimizes cost fl ¥
6 Contract(selectedy,c;f)

a) The Initial BT

c) After expanding condition (UAV at NP) and (m is
detected)

b) After expanding condition (O at P)

Fig. 2: Synthesizing a BT for a UAV to search and deliver
an object to a particular position

V. CASE STUDY
A. Single Agent: Search and Delivery UAV mission

The mission objective is to deliver an object o at a
specific place marked by m near position p. The UAV has to
search for the marking m in close vicinity of p, N, before
delivering the object o. Then, the problem is given the action
bank in Table I, generate a BT using Algorithms 1 & 2 to
achieve the task.

Algorithm 1 starts from the goal, “o at p”, i.e., the
object o should be at position p, as shown in Fig. 2a.
Since initially the goal is not satisfied yet and the gener-
ated BT (Line 6 of Algl) is not executable, the function
GetCondtionsToExpand is called to identify the precon-
ditions (Line 12). From Table I, the Deliver action can meet
the precondition of Algorithml and hence, the ExpandBt
function (Line 13) uses this action to update the BT by
composing the conditions of Deliver action via a sequence
node and the goal by a selector node (Lines 4-13 of Alg2) as
shown in Fig. 2b. Again since the preconditions, uav at N,
and m s detected, are not true, they have to be expanded,
following the same procedure, by their corresponding actions
MoveTo and Detect as shown in Fig. 2c.

Global Action Template
No Action Precondition Effect
1 MoveTo(p, path) path is uav at p
collsionfree
2 Detect(m) uav at Np m 1s detected
3 Deliver(z, m) uav at Np oatp
m is detected

TABLE I: Action templates for case study V-A

Mission
No | Task | Condition | Sequence of actions
1 T1 Ol Al, Ag, A2
2 T2 02 AG, 1447 Ag
3 T3 Cs As, Ay
4 Ty C4 A4
5 T5 05 AQ, Ag or A3, A7

TABLE II: Mission tasks expanded using Algorithm 1

Resource
No | Agent Agent capability - {Ag,(fij, OAtir})
1 UAWV; {A1,(0.1,3)}, {A2,(0.2,2) {4s, (0.6,2) }
2 UAV; | {As,(0.5,2)},{A4s5,(04,3)},{A7,(04,2)}
3 UAV3 {A43,(0.7,1)},{A4, (0.7, 1)}, {46, (1,4)}

TABLE III: Agents capability along with the cost , fij, and
duration, At;;, of an action Ay,

B. Multiple Agent Multiple Task

Given multiple, R = {UAV1,,UAV5,UAV3}, along
with their capabilities described by the action bank in Table
III, our aim is to synthesize BTs in a decentralized way to
satisfy the tasks listed in Column 2 of Table II. To avoid
repeating the procedure of generating a sequence of actions
for each task, explained in section V-A, each task is expanded
to a sequence of actions which is described in Column 3 of
Table IV. Then, following Algorithms 1 - 3, the details of the
BT generation are given in Table IV. As an example, consider
the expanded task 71 with the sequence A;, As, As (Row 1
of table IV), where U AV is the only candidate and winner
of Ty (since only UAV; can do the last action, i.e., As).
However, in task 77, action A5 cannot be executed by U AV;
because U AV; cannot perform action A3z which precedes
action A,. Hence U AV} initiates a level-two auctioning to
assign action A3z (Row 2 of table IV), where UAV, wins
the auction with minimum cost. Now the final action A;
in T can be handled by UAV;. This concludes the action
assignment for the task 77 with a total cost of 0.8 in the
time interval [1,8] (Row 3 of Table IV). The assignment
of all tasks follows the same procedure. Sometimes it may
be the case that agents are not available at the time a task
is requested, like in 75. When T3 is assigned, even though
UAV, is free, the available time before A3 of T, starts
execution is not enough to complete the action As of T3
completely. So action As is deferred to a later time (Row
9 of Table IV). This can be seen more clearly in Figure 3
which shows the tasks and UAVs’ assignments along with
time axis. The final task, 75, can be accomplished by U AV;

N O RN R

7 8 9 10 11 |12 |13 |14 15
T

2 X A6 A4 A3
Start of a task

x
I& x As
- UAv 1
T4
* 5 UAv 2
™ * UAV3

Fig. 3: Task assignment along a timeline

2774

Auctioning steps for assigning the tasks T1, - - -, TS
Step Task/ Action time Auctioneer Candidates Contract
1 T 1 MC, L1 {UAVy : Az, fi12 =0.2} -
2 A3 4 UAVl, L2 {UAVQ H f23 = 0.5, Clk}(Tl,Ag) = [4 - 6]} UAV2
{UAVs : fag = 0.7, clk(Ty, As) = [4 — 5]}
3 T MC, L1 - {UAVy : f11. = 0.8, clk(Ty,A,) =[1—38])}
4 T2 2]WC, L1 {UAVQ : A3, f23 = 0.5} -
{UAVg N A3, f33 = 07}
5 Ag 2 UAV,, L2 {UAV5 : f36 =1, clk(T>, Ag) = [2 — 6]} UAVy
6 A4 6 U.A‘/vz7 L2 {UAV3 H f34 = 0.7, Clk}(Tz, A4) = [6 - 7]} UAV3
7 T> MC, L1 {UAV; : fao = 2.2, clk(T2, Ay) = [2 - 9]} {UAV, : fao = 2.2, clk(T2, Ay) =[2-9])}
{UAV5 : f3o0 = 2.4, clk(T2, A) = [2 — 8]}
8 T3 3 MC, L1 {UAVy : Ay, f11 = 0.1} -
9 A5 3 U‘A‘/vl7 L2 {UAVz H f15 = 0.5, Clk(Tz,Af)) = [9 - 12]} UAV2
10 T3 MC, L1 {UAVy : f13 = 0.6, clk(T3,A,) = [10 — 15]} {UAV; : f13 = 0.6, clk(T3, A.) = [3 —15]}
11 T4 4 1\40, L1 {UAV3 : A4, f34 = 07} {UAV3 : f34 = 0.7, Clk‘(T4, A*) - [4 — 8])}
12 T5 5]VIC, L1 {UAVl H f15 = 0.8, Clk(Tg;,Ag) = [9 - 12]} {UAVQ H f25 = ()‘97 Clk(T;g,A*) = [5 — 12])}
{UAV2 B f25 = 0.97 Clk(Tr), A*) = [13 — 16])}

TABLE 1IV: Task Assignment: 77 represents task 1, "M C, L1” represents level-one auctioning by the mission controller

and "U AV, L2” represents level-two auctioning by an agent

and UAV; in a non-unique way. This shows that tasks are
not necessarily a fixed sequence of actions rather multiple
capable agents can do a task in different ways to meet the
goal.

VI. CONCLUSION

This work developed a new BT-based automatic tasking,
synthesis, and execution framework for the coordination of
heterogeneous agents with different capabilities to meet the
goal of a series of tasks. In the proposed framework there are
two-levels of auctioning where agents compete to win either
a task (has to be expanded into a sequence of actions) or
an action. Further, collaboration among agents is on a need
basis, i.e., if an agent lacks the capability to perform an
action, that action could be completed by delegation. Future
work includes implementation of the proposed framework
using the Robot Operating System (ROS) on real robots,
and performing complexity analysis.

ACKNOWLEDGMENT

The authors would like to acknowledge the support from
the National Science Foundation under the award number
1832110 and Air Force Research Laboratory and OSD under
agreement number FA8750-15-2-0116.

REFERENCES

[1] A. Macwan, J. Vilela, G. Nejat, and B. Benhabib, “A multirobot path-
planning strategy for autonomous wilderness search and rescue,” IEEE
transactions on cybernetics, vol. 45, no. 9, pp. 1784-1797, 2014.

[2] K. Vinh, S. Gebreyohannes, and A. Karimoddini, “An area-

decomposition based approach for cooperative tasking and coordi-

nation of uavs in a search and coverage mission,” in 2019 IEEE

Aerospace Conference, March 2019, pp. 1-8.

L. Shamgah, T. G. Tadewos, A. Karimoddini, and A. Homaifar, “Path

planning and control of autonomous vehicles in dynamic reach-avoid

scenarios,” in 2018 IEEE Conference on Control Technology and

Applications (CCTA), Aug 2018, pp. 88-93.

[4] R. M. Murray, “Recent Research in Cooperative Control of

Multivehicle Systems,” Journal of Dynamic Systems, Measurement,

and Control, vol. 129, no. 5, pp. 571-583, 05 2007. [Online].

Available: https://doi.org/10.1115/1.2766721

A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality

and robustness in multi-robot path planning with temporal logic

constraints,” The International Journal of Robotics Research, vol. 32,

no. 8, pp. 889-911, 2013.

[3

[5

—

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

2775

L. Shamgah, T. G. Tadewos, A. Karimoddini, and A. Homaifar, “A
symbolic approach for multi-target dynamic reach-avoid problem,” in
2018 IEEE 14th International Conference on Control and Automation
(ICCA), June 2018, pp. 1022-1027.

I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Decentral-
ized multi-agent control from local Itl specifications,” in 2012 IEEE
51st IEEE Conference on Decision and Control (CDC), Dec 2012, pp.
6235-6240.

Y. Liu, M. Ficocelli, and G. Nejat, “A supervisory control method for
multi-robot task allocation in urban search and rescue,” in 2015 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Oct 2015, pp. 1-6.

P. Ramadge and W. Wonham, “The control of discrete event systems,”
vol. 77, no. 1, pp. 81-98, 01 1989.

M. Karimadini, A. Karimoddini, and H. Lin, “Modular cooperative
tasking for multi-agent systems,” in 20/8 IEEE 14th International
Conference on Control and Automation (ICCA), June 2018, pp. 618—
623.

M. Karimadini, H. Lin, and A. Karimoddini, “Cooperative tasking
for deterministic specification automata,” Asian Journal of Control,
vol. 18, no. 6, pp. 2078-2087, 2016.

M. Darrah, W. Niland, and B. Stolarik, “Multiple uav dynamic task
allocation using mixed integer linear programming in a sead mission,”
in Infotech@ Aerospace, 2005, p. 7164.

M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. J.
Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.0O4CH37566),
vol. 1, Sep. 2004, pp. 698-705 vol.1.

N. Kalra, R. Zlot, M. B. Dias, and A. Stentz, “Market-based multirobot
coordination: A comprehensive survey and analysis,” CARNEGIE-
MELLON UNIV PITTSBURGH PA ROBOTICS INST, Tech. Rep.,
2005.

A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards
a unified behavior trees framework for robot control,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2014, pp. 5420-5427.

T. G. Tadewos, L. Shamgah, , and A. Karimoddini, “Automatic safe
behaviour tree synthesis for autonomous agents,” in Proc. of 58th IEEE
Conference on Decision and Control (CDC), 2019.

M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. Oegren,
“The advantages of using behavior trees in mult-robot systems,” in
Proceedings of ISR 2016: 47st International Symposium on Robotics.
VDE, 2016, pp. 1-8.

M. Colledanchise, D. Almeida, and P. Ogren, “Towards blended
reactive planning and acting using behavior trees,” arXiv preprint
arXiv:1611.00230, 11 2016.

G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive
taxonomy for multi-robot task allocation,” The International Journal
of Robotics Research, vol. 32, no. 12, pp. 1495-1512, 2013. [Online].
Available: https://doi.org/10.1177/0278364913496484

