
On-the-Fly Decentralized Tasking of Autonomous Vehicles

Tadewos G. Tadewos, Laya Shamgah, and Ali Karimoddini

Abstract— This paper proposes a cooperative task allocation
and execution strategy for a group of agents with different
capabilities to accomplish a mission autonomously. For each
local agent, a hierarchical and modular Behavior tree (BT)
is synthesized to coordinate a sequence of actions to accom-
plish a task either individually or in collaboration with other
agents. To facilitate the coordination among agents and the
task assignment process, a market-based auction algorithm
is embedded in the developed framework. The details of the
developed algorithm are illustrated through different examples,
verifying the effectiveness of the proposed approach.

I. INTRODUCTION

Due to recent technological advancements, the adoption
of multi-agent systems to accomplish a task is becoming a
common trend in many application domains [1]–[3]. While
using multi-agent systems provides clear advantages in terms
of resilience, cost, speed, and coverage, it creates its own
challenges [4]. A major challenge for the deployment of
multi-agent systems is the task allocation problem, i.e.,
assigning tasks to agents with the objective of minimizing
the overall cost while maximizing resource utilization.

Different approaches exist in the literature for tasking
multi-agent systems including, but not limited to, formal
specification-guided tasking [5]–[7], event-based supervi-
sory control [8]–[11], and mixed-integer linear programming
(MILP) [12]. Most of these task allocation methods rely
on offline computations, requiring information about the
environment and all tasks in advance. Therefore, if new tasks
are introduced or if the environment changes, these methods
require redoing the entire process to include the new changes.

To address these challenges, in this paper, by adopting
a market based auction [13], [14] algorithm, we develop
an on-the-fly tasking mechanism by synthesizing Behavior
Trees (BTs) as local coordinators for autonomous vehicles.
By definition, BTs are graphical mathematical models for the
execution of tasks with inherent hierarchical, modular, and
reactive properties [15], [16], and hence, can serve as build-
ing blocks for autonomous decision making. These features
make BTs as ideal candidates to construct a modularized,
reactive, and scalable control structures to meet the goal of
a mission. In [17], assuming that a decomposable task and
the associated central (global) BT exist, a heuristic algorithm
has been used to generate local BTs for each agent to meet

The authors are with the Department of Electrical and Computer En-
gineering, North Carolina Agricultural and Technical State University,
Greensboro, NC 27411 USA.

Corresponding author: A. Karimoddini. Address: 1601 East Mar-
ket Street, Department of Electrical and Computer Engineering North
Carolina A&T State University Greensboro, NC, US 27411. Email:
akarimod@ncat.edu, Tel: (+1)336-285-3313.

the goal of a task. However, the proposed mechanize does not
explain how the global BT is generated. In [18], a procedure
is provided to obtain a BT for a single robot that meets a
mission specification. Combining these two algorithms, it is
possible to use the algorithm proposed in [18] to generate
the global BT, and then, employ the method in [17] to
decompose the global BT to distribute the tasks among
available agents. However, this approach is not salable, it
does not consider the capacity and capability of the available
agents beforehand, and it is not computationally efficient as
the process consists of extra steps for obtaining the global
BT followed by decomposition stages.

To address these challenges, in this paper, we develop
a novel approach to directly synthesize the local BTs in a
distributed setting. The proposed method adopts a two-level
market based auctioning mechanism to distributively synthe-
size BTs for each agent with the objective of minimizing the
overall cost. In the proposed method, collaboration among
agents is needed only if a single robot cannot do the assigned
task alone, thus resource utilization is maximized leaving
other available robots for handling new tasks. The developed
method is illustrated and verified via several examples.

The rest of the paper is organized as follows. The back-
ground and necessary preliminaries are provided in Section
II. In Section III, the BT-based decentralized multi-agent
coordination problem is formulated. Section IV describes
our proposed approach for synthesizing decentralized BTs
in detail. Section V illustrates the proposed method using
several case studies. Finally, Section VI concludes the paper.

II. BACKGROUND

Behavior Tree (BT) is an effective tool to capture the
decision making mechanism for an autonomous vehicle. As
the name implies, the structure of a BT is based on a tree
that can be represented with a directed acyclic graph (DAG)
to demonstrate control flows from top to bottom (parent to
child) among different types of nodes. At the top of the tree,
a root node exists that provides the activation clk for all
other nodes. In addition to a root node, a BT may contain
leaf and composite nodes.

Leaf nodes are terminal nodes that could act as a sensing
unit (condition nodes) or as a computing/actuation unit
(action nodes). A condition node checks the state of the
robot or the environment and return success only if the
condition is true. An action node performs an operation that
modifies/change the state of the robots or the environment.
Similarly, the action node returns success only if the opera-
tion is completed. Fig. 1.b, shows activation of action A1 if
condition C1 is true.

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 2770

Fig. 1: Building blocks of Behavior Trees

Composite nodes provide the capability to compose mul-
tiple child nodes under a single parent. A sequence node
composes actions or sub-trees in an ordered fashion, where
activation is passed from one child to the next only if the
current node is completed with success. Otherwise, a failure
status is returned by the sequence node. A selector node
composes actions or sub-trees with priority where activation
of the next child is possible if the current node returns a
failure status. A selector node return success if only one
child node succeeds, otherwise it returns failure. A parallel
node provides the capability to execute actions/sub-trees
simultaneously. The success of a parallel node is determined
by a natural number N, which specifies how many children
are needed to succeed for the node to return success. If N
number of children succeed, then the node returns success,
otherwise it returns failure. Figures 1.a, 1.c, and 1.d show the
graphical representation of sequence, selector and parallel
nodes, respectively.

Generally, the execution of a BT is initiated by the root
node which sends a tick (enabling signal) with a certain
frequency to its children. Then, the enabled child activates
another child or returns its execution status as running,
failure, or success to its immediate parent. In this way, the
actions are executed from the bottom left of the BT, returning
success/failure/running to their parents.

By the proper combination of leaf nodes (actions and
condition nodes), and composite nodes (sequence, selector or
parallel nodes), a complex BT structure can be constructed
that is both modular and reactive that can effectively meet
the goal of a mission.

III. PROBLEM FORMULATION

In this section, we use BTs to formulate the coordination
and tasking for multi-agent systems over the following
components:

1) The set R which includes a team of robots R =
{R1, · · · , RM}, where M ∈ N is the number of
agents. Here, the terms agents, robots, and vehicles
are used interchangeably.

2) The set A is the global action bank and contains a set
of actions Ak, k = 1, · · · , L, where L ∈ N is the total
number of actions. We define a set of action capability
indicators âik, i = 1, · · · ,M , k = 1, · · · , L, for which
âik = 1 if the robot Ri can accomplish Action Ak,
otherwise âik = 0. Here, the robots are assumed to
perform single action at a time.

3) The set T which includes a set of complex Tasks (a
task can be decomposed into multiple set of actions
that could satisfy the same task goal in different ways
[19]) Tj , j = 1, · · · , N , where N ∈ N is the number
of tasks. The accomplishment of each task, Tj , can
be captured by meeting a condition Cj . For example,
if the task T1 is to “reach a goal region”, then C1

is “being at the goal region.” We also define a set of
task indicators xij , i = 1, · · · ,M , j = 1, · · · , N , for
which xij = 1 if the task Tj is assigned to Ri to
handle it individually or in collaboration with other
robots, otherwise xij = 0. Similarly, we define a set of
action assignment indicators x̂ijk, i = 1, · · · ,M , j =
1, · · · , N , k = 1, · · · , L, for which xijk = 1 if action
Ak of Ri is assigned for task completion of Tj . To
reach the ”goal” of a task Tj , depending on the agent
that is responsible to handle the task, a series of actions
from the action bank A should be completed, where the
last action should meet Cj . In our proposed framework,
only a robot that can accomplish an action which meets
Cj , can be a candidate for being selected to handle Tj .
Such a robot can complete an action to meet Cj , and
may delegate the prerequisite actions to other agents if
necessary. Further, we define the indicators âijk, i =
1, · · · ,M , j = 1, · · · , N , k = 1, · · · , L, for which
âijk = 1 if action Ak from robot Ri is needed to
complete the task Tj , otherwise âijk = 0.

4) The set F includes a set of values fij : R× T → R+

to describe the cost of handling the task Tj by Ri

based on performance, energy, and proximity. Robot
Ri can accomplish the actions in Tj individually or
delegate the actions to other robots if necessary. We
define a cost function f̂ik ∈ N, which indicates the
cost of accomplishing an individual action Ak by the
agent Ri.

5) We define the set Ĉ which includes a set of precon-
ditions ĉikp, i = 1, · · · ,M , k = 1, · · · , L, and p =
1, · · · , Pk, where Pk is the number of preconditions
for action Ak, and ĉikp specifies pth preconditions for
completing action Ak by robot Ri. We also define
action status indicator ĉik where ĉik = 1 if action Ak

is executed and completed by Ri, otherwise ĉik = 0.
6) Consider a discrete clock clk with a granularity of

1sec, i.e., clk = clk + 1 (this can be of smaller
step sizes if needed). The clock clk represents the
elapsed time starting from the first task announcement.
Then, we define 4tik, i = 1, · · · ,M , k = 1, · · · , L,
which represents the duration the agent Ri needs to
complete the action Ak. We also define an action
timeline indicator tio, i = 1, · · · ,M , o = 1, · · ·O,
where O ∈ N is the last sample time, and tio = 1
during the time that Ri is assigned to perform one of
the actions A∗, which takes Ri for 4ti∗ time units.

7) We define an operation Ri |= con which checks if the
agent Ri, i = 1, · · · ,M , satisfies the condition con
at its current state, where the condition con can be a

2771

condition for a task, i.e., Cj , or a precondition for an
action, cikp.

Further, to do automatic tasking for multi-agent systems,
similar to [18], we need to make the following assumptions:

Assumption 1: Each agent can verify if an action has
succeeded, failed or if it is running.

Assumption 2: Each agent can verify if a condition is
true or false.

Assumption 3: For each goal and for each initial config-
uration of the agents, there exists a sequence of actions that
can be taken by the agents leading to the achievement of the
goal. This assumption guarantees that each goal is achievable
at least by one of the agents.

Assumption 4: The effect of the dynamic environment
can void the accomplishment of the actions at most a finite
number of times. This assumption is made to avoid sticking
in a live-lock of repeating an action and being voided by the
environment over and over, preventing the agent to achieve
its goal.

Assumption 5: Given two actions Ai and Aj , if the
execution of Ai requires the execution of Aj , Aj must
not require the execution of Ai. This assumption prevents
deadlocks due to cyclic dependency.

Assumption 6: All actions are ultimately reversible. That
is, each action can be undone through a finite sequence of
actions.

Assumption 7: For each action, there exists at least one
agent to achieve it, which can be accomplished by a low-
level controller embedded in the agent in a finite time.

Now, given R, T, F, A, C, and Ĉ, and making assump-
tions 1− 7, the tasking problem for multi-agent systems can
be stated as:

Problem 1: Consider a Mission consists of several
tasks Tj , j = 1, · · · , N , to be completed by a set of robots
Ri, i = 1, · · · ,M , that (some of them) are capable of
accomplishing the actions Ak, k = 1, · · · , L, within 4tik
time units to achieve the mission. Also, consider that there
is no order and dependency among the tasks, other than the
order in which tasks are issued (one at a time). Synthesize
decentralized BTi to coordinate the individual robots Ri to
collectively achieve a set of tasks Tk.

IV. AUTOMATIC BEHAVIOR TREE SYNTHESIS

To address Problem 1, we propose a decentralized method
for generating the local BTs by combining a market-based
auctioning algorithm with a reactive BT synthesis technique,
so that the generated local BTs can collectively satisfy the
mission specification.

A. Task Assignment for Coordination of Multi Agent Systems

To fairly assign tasks and avoid conflicts, we adopt a
two-level market-based auctioning algorithm. Generally in
a market-based auctioning, even-though there is a collab-
oration among agents we assume each agent acts on its
own interest, i.e. to maximize the reward or to minimize
cost. An auctioning process has four steps, starting with
a task announcement by the coordinator (announcement

stage), followed by the bidding stage where capable agents
send a bid. Based on the cost, the auctioneer selects the
best agent (the selection stage) and finalize the auction by
forming a contract with the selected agent (contract stage).
In the proposed framework the Mission Controller (MC)
announces a task Tj , where capable agents (agents that can
meet Cj), Ri, i = 1, · · · ,M , participate in the bid. To
complete the task Tij , the candidate agent has to identify
the sequence of actions either from the local action bank or
by delegation, where these actions are used to estimate the
total cost fij before issuing the bid. Based on the estimated
cost fij from each agent, the MC selects an agent and form
a contract. Mathematically, this is equivalent to:

min
xij

M∑
i

fijxij , ∀j

subject to
M∑
i

xij = 1 ∀j

xij ∈ {0, 1}, ∀i, j (1)

where fij is the cost of task Tj when handled by Ri and xij

is an indicator that task Tj is assigned to Ri.
If an agent delegate an action to complete a task, then the

agent has to act as the auctioneer and perform a second level
auctioning to identify a suitable agent. Therefore, the total
cost for a task is the sum of local and delegated actions: fij =∑L

k=1 âijk(âikf̂ik+(1− âik)fD(ijk)),∀i, j, where fD(ijk)
is the cost of the delegated action Ak for the task Tj by Ri,
provided that the involved robots are available to complete
the actions at the time they are needed. To check availability
of the robot, we introduce the function ∇(tio, Tj , Ak) where
clk(Tj , Ak) represents the time that the action Ak is needed
for the task Tj . If tio = 0 for clk ≥ clk(Tj , Ak) + 4tik,
then ∇(tio, Tj , Ak) = 1, otherwise it returns 0. In addition,
∇(tio, Tj , Ak) returns the nearest time slot that the agent Ri

can accomplish an action. This indeed is equivalent to the
following minimization:

fD(ijk) = min
x̂djk

M∑
d

x̂djkf̂dk,∀k

d = 1 · · ·M, d 6= i,

subject to
M∑
d

x̂djk = 1 ∀j, k,

∇(tdo, Tj , Ak) = 1 (2)

where f̂dk is the cost of action Ak when done by Rd and
x̂djk indicates if action Ak of task Tj is assigned to agent
Rd or not.

Once an action or a task is assigned to an agent, the
availability indicator t∗o is updated from 0 to 1 for 4t∗o
using the function ∇̂(t∗o,4t∗k) to avoid double assignment.

B. Decentralized Behavior tree synthesis algorithm

The overall procedure to generate the BTs for individual
agents is explained in Algorithms 1 − 3. First, the mission

2772

controller announces a task Tj (level-I auctioning). Then, any
capable agent estimates the task cost and sends a bid. The
estimation of the cost is calculated starting from the goal
and recursively identifying the precondition of the successor
action until the action can be done at the current state of
the robot. Upon receiving the bid from the agents, the MC
selects the best agent and form a contract (Algorithm 3).
The winning agent Ri synthesizes a BT using Algorithm 1
while Algorithm 2 is used to identify actions locally or by
delegation (level-II auctioning) to meet the conditions needed
to complete the task.

Algorithm 1: Main BT Synthesis and Execution

1 function MainBTSynthesisandExecution (Cj) ;
Input : Cj : Condition for assigned task of agent i
Output: Tij = Syntheisized BT

2 Tij ← Cj

// Start the BT for task Tj from the condition Cj , which is
used to cheek if the task is completed or not

3 Talli ← Parallel(Tij , Talli)
// Talli represents all BTs of an agent running in parallel
to execute multiple tasks including bidding and auctioning

4 while True do
5 do
6 r, ĉik ← Execute(Tij)
7 if Ri |= Cj then
8 Set xij = 0 // Task Tj is completed
9 break // End execution of Tij

10 end
11 while r = Executable;
12 cif ← GetConditionToExpand(Tij)

//Identify the the reason why Ti is not executable
13 Tij , Tsubtreeij ← ExpandTree(Tij , cif)

//Resolve the cause by Algorithm 2
14 while Conflict(Tij) do
15 Tij ← IncreasePriority(Tsubtreeij)
16 end
17 end

Assume that the task Tj is assigned to the robot Ri as it
can meet the condition Cj . Algorithm 1 then synthesizes
the local BTs. Algorithm 1 starts from the “goal” input,
which describes the condition for the accomplishment of
a “task” indicated by the condition Cj (Line 1). By first
assigning the condition Cj to the BT (Line 2) (this condition
will be used to determine if the task is completed or not),
the algorithm iteratively updates the BT until a sequence
of actions is obtained which as a whole realizes the task
and achieves the goal (Lines 4-17). Since each task requires
its own BT, to execute multiple tasks, the BTs for each
task are composed in parallel with the existing BTs, Talli

(Line 3). In a do while loop, the BT actions are tested to
determine whether they are executable (Lines 5-11). If the
condition Ri |= Cj is satisfied by the execution of the BT,
the agent is free to accept a new task (Lines 7-10). Otherwise,
if the BT is not executable, Line 12 identifies the cause of
failure, cif . The identified cause will become a condition
in a subtree to resolve the problem by finding alternative
actions or other agents (Line 13), as will be described in
Algorithm 2. After updating the BT, due to the addition of

a new subtree, Tsubtreeij , a conflict could arise. To resolve
the conflict, the function conflict(Tij) increases the priority
of Tsubtreeij by moving the subtree toward the left. As an
example, in response to avoid an obstacle the robot decides
to pick an obstacle (object), but picking up an object has to
be done if the robot arm is free.

Algorithm 2 essentially synthesizes a subtree that satisfies
the condition cif . In Line 2 of Algorithm 2, the function
GetlocalActionwithPrecondtion(.) returns the optimal ac-
tion, which satisfies the condition cif . If the returned action
is not empty, then the identified action Ak along with its
preconditions, ĉikp, are composed by a sequence node to
form Tseqij (Lines 5-9). Further, Tseqij is composed with
Tselij , defined as cif (Line 3), by a selector node, to
enforce the execution of Tseqij only in situations where
cif is not satisfied (Line 10). To avoid double assignment,
the time-line and availability indicators for Ri are also
updated (Lines 11-12). However, if no local action exists, the
AuctioningModule (similar to Algorithm 3) is activated to
conduct an auction in pursuit of finding an agent that can
accomplish cif (Lines 14-16). Finally, the condition cif is
replaced with a sub-tree that can meet cif (Line 17).

Algorithm 2: Expand Behavior Tree Module For Ri

1 function ExpandBT (Tij , cif);
Input : cif = condition (cause) for Tj not being executable
Output: Tij = Expanded BT

2 Ak ← GetLocalActionwithPrecondtion(cif)
// Identify local actions that satisfy cif

3 Tselij ← cif
4 if GetLocalActionwithPrecondtion(cif) 6= ∅ then
5 cik = GetPrecondtionforAction(Ak)
6 for cikp in cik do
7 Tseqij → Sequence(Tseqij , cikp)

// sequence BT with the condition of action
8 end
9 Tseqij ← Sequence(Tseqij , Ak)

// Generate a sequence subtree containing action
Ak and its preconditions

10 Tselij ← Selector(Tselij , Tseqij)
11 ∇̂(tio, Tj , Ak) // tio is set to 1 for 4tik time units
12 set x̂ijk = 1 // Action Ak of Tj is assigned to Ri

13 end
14 else
15 AuctionModule L2(cif)

//If there is no action to meet a condition,
initialize the Level IIAuction Module for delegation

16 end
17 Tij ← Substitute(Tij , cif , Tselij)

// add the subtree Tselij to Tij replacing cif
18 return Tij , Tselij

Algorithm 3 performs an auction to find a suitable agent
following a standard market based auctioning mechanism
(Lines 2-6). The auction terminates with a contract (Line
6).

2773

Algorithm 3: Auctioning Module

1 function AuctioningModule (cif) ;
Input : cif : condition to be delegated

2 selectedf ← ∅
3 Announcing(cif) //broadcasting condition cif
4 s = ReceiveSubmission()

// agents with the spesfied action replies
5 selectedf = Selection(s)

// choose the agent that minimizes cost f̂if
6 Contract(selectedf , cif)

Fig. 2: Synthesizing a BT for a UAV to search and deliver
an object to a particular position

V. CASE STUDY

A. Single Agent: Search and Delivery UAV mission

The mission objective is to deliver an object o at a
specific place marked by m near position p. The UAV has to
search for the marking m in close vicinity of p, Np, before
delivering the object o. Then, the problem is given the action
bank in Table I, generate a BT using Algorithms 1 & 2 to
achieve the task.

Algorithm 1 starts from the goal, “o at p”, i.e., the
object o should be at position p, as shown in Fig. 2a.
Since initially the goal is not satisfied yet and the gener-
ated BT (Line 6 of Alg1) is not executable, the function
GetCondtionsToExpand is called to identify the precon-
ditions (Line 12). From Table I, the Deliver action can meet
the precondition of Algorithm1 and hence, the ExpandBt
function (Line 13) uses this action to update the BT by
composing the conditions of Deliver action via a sequence
node and the goal by a selector node (Lines 4-13 of Alg2) as
shown in Fig. 2b. Again since the preconditions, uav at Np

and m is detected, are not true, they have to be expanded,
following the same procedure, by their corresponding actions
MoveTo and Detect as shown in Fig. 2c.

Global Action Template
No Action Precondition Effect
1 MoveTo(p, path) path is uav at p

collsionfree
2 Detect(m) uav at Np m is detected
3 Deliver(i,m) uav at Np o at p

m is detected

TABLE I: Action templates for case study V-A

Mission
No Task Condition Sequence of actions
1 T1 C1 A1, A3, A2

2 T2 C2 A6, A4, A3

3 T3 C3 A5, A1

4 T4 C4 A4

5 T5 C5 A2, A8 or A3, A7

TABLE II: Mission tasks expanded using Algorithm 1

Resource
No Agent Agent capability - {Ak,(f̂ij ,4tik})
1 UAV1 {A1, (0.1, 3)}, {A2, (0.2, 2) {A8, (0.6, 2)}
2 UAV2 {A3, (0.5, 2)}, {A5, (0.4, 3)}, {A7, (0.4, 2)}
3 UAV3 {A3, (0.7, 1)}, {A4, (0.7, 1)}, {A6, (1, 4)}

TABLE III: Agents capability along with the cost ,f̂ij , and
duration, 4tij , of an action Ak

B. Multiple Agent Multiple Task

Given multiple, R = {UAV 11, UAV2, UAV3}, along
with their capabilities described by the action bank in Table
III, our aim is to synthesize BTs in a decentralized way to
satisfy the tasks listed in Column 2 of Table II. To avoid
repeating the procedure of generating a sequence of actions
for each task, explained in section V-A, each task is expanded
to a sequence of actions which is described in Column 3 of
Table IV. Then, following Algorithms 1 - 3, the details of the
BT generation are given in Table IV. As an example, consider
the expanded task T1 with the sequence A1, A3, A2 (Row 1
of table IV), where UAV1 is the only candidate and winner
of T1 (since only UAV1 can do the last action, i.e., A2).
However, in task T1, action A2 cannot be executed by UAV1

because UAV1 cannot perform action A3 which precedes
action A2. Hence UAV1 initiates a level-two auctioning to
assign action A3 (Row 2 of table IV), where UAV2 wins
the auction with minimum cost. Now the final action A1

in T1 can be handled by UAV1. This concludes the action
assignment for the task T1 with a total cost of 0.8 in the
time interval [1, 8] (Row 3 of Table IV). The assignment
of all tasks follows the same procedure. Sometimes it may
be the case that agents are not available at the time a task
is requested, like in T3. When T3 is assigned, even though
UAV2 is free, the available time before A3 of T1 starts
execution is not enough to complete the action A5 of T3

completely. So action A5 is deferred to a later time (Row
9 of Table IV). This can be seen more clearly in Figure 3
which shows the tasks and UAVs’ assignments along with
time axis. The final task, T5, can be accomplished by UAV1

Fig. 3: Task assignment along a timeline

2774

Auctioning steps for assigning the tasks T1, · · · , T5
Step Task/ Action time Auctioneer Candidates Contract

1 T1 1 MC, L1 {UAV1 : A2, f̂12 = 0.2} -
2 A3 4 UAV1, L2 {UAV2 : f̂23 = 0.5, clk(T1, A3) = [4− 6]} UAV2

{UAV3 : f̂33 = 0.7, clk(T1, A3) = [4− 5]}
3 T1 MC, L1 - {UAV1 : f11 = 0.8, clk(T1, A∗) = [1− 8])}
4 T2 2 MC, L1 {UAV2 : A3, f̂23 = 0.5} -

{UAV3 : A3, f̂33 = 0.7}
5 A6 2 UAV2, L2 {UAV3 : f̂36 = 1, clk(T2, A6) = [2− 6]} UAV3

6 A4 6 UAV2, L2 {UAV3 : f̂34 = 0.7, clk(T2, A4) = [6− 7]} UAV3

7 T2 MC, L1 {UAV2 : f22 = 2.2, clk(T2, A∗) = [2− 9]} {UAV2 : f22 = 2.2, clk(T2, A∗) = [2− 9])}
{UAV3 : f32 = 2.4, clk(T2, A∗) = [2− 8]}

8 T3 3 MC, L1 {UAV1 : A1, f̂11 = 0.1} -
9 A5 3 UAV1, L2 {UAV2 : f̂15 = 0.5, clk(T2, A5) = [9− 12]} UAV2

10 T3 MC, L1 {UAV1 : f13 = 0.6, clk(T3, A∗) = [10− 15]} {UAV1 : f13 = 0.6, clk(T3, A∗) = [3− 15]}
11 T4 4 MC, L1 {UAV3 : A4, f̂34 = 0.7} {UAV3 : f34 = 0.7, clk(T4, A∗) = [4− 8])}
12 T5 5 MC, L1 {UAV1 : f15 = 0.8, clk(T5, A8) = [9− 12]} {UAV2 : f25 = 0.9, clk(T5, A∗) = [5− 12])}

{UAV2 : f25 = 0.9, clk(T5, A∗) = [13− 16])}

TABLE IV: Task Assignment: T1 represents task 1, ”MC, L1” represents level-one auctioning by the mission controller
and ”UAV∗, L2” represents level-two auctioning by an agent

and UAV2 in a non-unique way. This shows that tasks are
not necessarily a fixed sequence of actions rather multiple
capable agents can do a task in different ways to meet the
goal.

VI. CONCLUSION

This work developed a new BT-based automatic tasking,
synthesis, and execution framework for the coordination of
heterogeneous agents with different capabilities to meet the
goal of a series of tasks. In the proposed framework there are
two-levels of auctioning where agents compete to win either
a task (has to be expanded into a sequence of actions) or
an action. Further, collaboration among agents is on a need
basis, i.e., if an agent lacks the capability to perform an
action, that action could be completed by delegation. Future
work includes implementation of the proposed framework
using the Robot Operating System (ROS) on real robots,
and performing complexity analysis.

ACKNOWLEDGMENT

The authors would like to acknowledge the support from
the National Science Foundation under the award number
1832110 and Air Force Research Laboratory and OSD under
agreement number FA8750-15-2-0116.

REFERENCES

[1] A. Macwan, J. Vilela, G. Nejat, and B. Benhabib, “A multirobot path-
planning strategy for autonomous wilderness search and rescue,” IEEE
transactions on cybernetics, vol. 45, no. 9, pp. 1784–1797, 2014.

[2] K. Vinh, S. Gebreyohannes, and A. Karimoddini, “An area-
decomposition based approach for cooperative tasking and coordi-
nation of uavs in a search and coverage mission,” in 2019 IEEE
Aerospace Conference, March 2019, pp. 1–8.

[3] L. Shamgah, T. G. Tadewos, A. Karimoddini, and A. Homaifar, “Path
planning and control of autonomous vehicles in dynamic reach-avoid
scenarios,” in 2018 IEEE Conference on Control Technology and
Applications (CCTA), Aug 2018, pp. 88–93.

[4] R. M. Murray, “Recent Research in Cooperative Control of
Multivehicle Systems,” Journal of Dynamic Systems, Measurement,
and Control, vol. 129, no. 5, pp. 571–583, 05 2007. [Online].
Available: https://doi.org/10.1115/1.2766721

[5] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[6] L. Shamgah, T. G. Tadewos, A. Karimoddini, and A. Homaifar, “A
symbolic approach for multi-target dynamic reach-avoid problem,” in
2018 IEEE 14th International Conference on Control and Automation
(ICCA), June 2018, pp. 1022–1027.

[7] I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Decentral-
ized multi-agent control from local ltl specifications,” in 2012 IEEE
51st IEEE Conference on Decision and Control (CDC), Dec 2012, pp.
6235–6240.

[8] Y. Liu, M. Ficocelli, and G. Nejat, “A supervisory control method for
multi-robot task allocation in urban search and rescue,” in 2015 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Oct 2015, pp. 1–6.

[9] P. Ramadge and W. Wonham, “The control of discrete event systems,”
vol. 77, no. 1, pp. 81–98, 01 1989.

[10] M. Karimadini, A. Karimoddini, and H. Lin, “Modular cooperative
tasking for multi-agent systems,” in 2018 IEEE 14th International
Conference on Control and Automation (ICCA), June 2018, pp. 618–
623.

[11] M. Karimadini, H. Lin, and A. Karimoddini, “Cooperative tasking
for deterministic specification automata,” Asian Journal of Control,
vol. 18, no. 6, pp. 2078–2087, 2016.

[12] M. Darrah, W. Niland, and B. Stolarik, “Multiple uav dynamic task
allocation using mixed integer linear programming in a sead mission,”
in Infotech@ Aerospace, 2005, p. 7164.

[13] M. G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. J.
Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 1, Sep. 2004, pp. 698–705 vol.1.

[14] N. Kalra, R. Zlot, M. B. Dias, and A. Stentz, “Market-based multirobot
coordination: A comprehensive survey and analysis,” CARNEGIE-
MELLON UNIV PITTSBURGH PA ROBOTICS INST, Tech. Rep.,
2005.

[15] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards
a unified behavior trees framework for robot control,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 5420–5427.

[16] T. G. Tadewos, L. Shamgah, , and A. Karimoddini, “Automatic safe
behaviour tree synthesis for autonomous agents,” in Proc. of 58th IEEE
Conference on Decision and Control (CDC), 2019.

[17] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. Oegren,
“The advantages of using behavior trees in mult-robot systems,” in
Proceedings of ISR 2016: 47st International Symposium on Robotics.
VDE, 2016, pp. 1–8.

[18] M. Colledanchise, D. Almeida, and P. Ogren, “Towards blended
reactive planning and acting using behavior trees,” arXiv preprint
arXiv:1611.00230, 11 2016.

[19] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive
taxonomy for multi-robot task allocation,” The International Journal
of Robotics Research, vol. 32, no. 12, pp. 1495–1512, 2013. [Online].
Available: https://doi.org/10.1177/0278364913496484

2775

