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Abstract— With advances in technologies, robots can be em-
ployed in collaboration with human for completing the shared
objective(s). This paper proposes a novel time-variant human
cognitive performance modeling approach for human-robot col-
laborative actions. The proposed model considers human cog-
nitive performance as a function of human cognitive workload,
robot performance, and human physical performance. Novel
about the proposed model is its ability to relate human cognitive
workload and the task complexity to a utilization factor which
is functionally correlated with the robot’s mistake probability.
The developed model is validated via a simulation environment
and confirms that if the task complexity or the robot’s mistake
probability increases, human cognitive performance reduces
over time.

I. INTRODUCTION

The rapid developments in robotic technologies have laid
the grounds for the use of robots to develop a variety
of applications based on human-robot interactions. These
applications range from manufacturing, packaging, health
care, warehouse management, and cybersecurity, to their
economic impacts on future developments and intellectual,
cognitive skills, such as decision-making [1]-[5]. It is not
far that humans and robots will collaborate at the workspace
to achieve common goal(s) to improve the efficiency in
handling the shared tasks in a human-friendly and secure
work environment. The integration of human decision mak-
ing into a human-robot collaboration (HRC) framework
minimizes the chances of deviations in job handling from the
expected/desired behaviors through conceptual coordination
against the involved uncertainties [6]-[10].

In an HRC framework, both physical and decision-making
activities are shared among the human(s) and the robot(s).
Several approaches for the development of an HRC frame-
work based on the physical performance of the human
operators have been proposed in the literature [11]-[13].
Among these are the verbal and non-verbal human-agent
autonomy [14], [15], integrated physical collision avoidance
systems [16], trust-based collaborative frameworks for crit-
ical decision-making [17], avoidance of faults, and unnec-
essary shutdowns [18], [19]. An HRC framework can also
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be used for enabling remote control of task execution using
perception-based methodologies, such as Attention Guided
Imitation Learning (AGIL), numerical potential field algo-
rithm [20], [21]. The electroencephalogram (EEG) signals
have been used as direct inputs to model an active Brain-
Computer Interaction (BCI) to control robot operation in
[22]-[28]. A practical HRC framework should provide intu-
itive information about the performance of the human-robot
collaboration that is not possible by considering physical
performance only. Human cognitive performance should also
be taken into account for the improvement in HRC. Cognitive
science has the potential in the decision-making/thought
process for HRC [11]. Techniques involving the cognitive
responses to humanoids in HRC frameworks have been used
to develop an understanding of security, autonomy, the per-
formance of the robots, and cognitive trust in their operation
over time. For example in [29], [30], a Dynamic Bayesian
Network (DBN) approach has been used to implement a
cognitive task allocation methodology. In [11], the authors
have proposed a linear relationship between human cognitive
performance and robot performance, but no mathematical
relationship has been considered to address the effects of task
complexity and human utilization on cognitive performance.

This research proposes a novel time-variant mathematical
model for an effective human cognitive performance model
within an HRC framework. It considers human cognitive per-
formance as a function of human cognitive workload, robot-
added workload, and human physical workload. The human
cognitive workload is formulated in terms of maximum and
minimum bounds of cognitive workload, human utilization
factor, and the complexity of tasks. Human utilization has
been quantified and directly related to the robot’s mistake
probability that defines the robot performance. The proposed
model considers the cognitive workload as the dominant
factor in quantifying human cognitive performance. Further,
the developed model takes into account the effect of human
physical and robot performances on human cognitive per-
formance. Simulation results and performance analysis have
been provided for a real-life scenario in the manufacturing
industry. Besides, the effect of change of robot performance
on human cognitive performance is investigated.

The organization of the remaining parts of this research
work is as follows. Human-robot collaboration setting is
discussed in Section II. In Section III, the proposed human
performance model has been presented, and human physical
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performance model and cognitive workload model have been
provided. The simulation scenario for the implementation of
the proposed model along with its performance analysis have
been presented in Section IV. Finally, the concluding remarks
are provided in Section V.

II. HUMAN-ROBOT COLLABORATION SETTING

Consider a human-robot collaboration (HRC) scenario,
where a human and a robot are collaborating to perform
a shared task. In this HRC setting, the robot can be utilized
to perform repeated routine work while human intelligence
can handle more complex tasks such as decision-making.
For example, the human operator can supervise the robot to
complete the assigned tasks by guiding the robot via cog-
nitive signals and helping the robot by physically changing
the object orientation appropriately so the robot can pick
the object easily. The robot performs the task based on
instructions received from the human in the form of cognitive
signals. The more the robot can perform a task successfully,
the less human supervision is required. Conversely, if the
robot mistake rate increases, more assistance from the human
operator is needed. Fig. 1 shows a symbolic diagram for
an HRC setting, in which a robot transfers heavy objects
from the source conveyor belt to the destination (packaging)
conveyor belt. The human operator supervises the robot
and observes (takes feedback from) the robot’s actions,
the source where the robot has to pick objects, and the
destination where the robot delivers objectives for packaging.
If the robot commits a mistake in picking/placing the objects
from/in wrong conveyors, the human operator sends the robot
corrective cognitive signals (e.g., in the form of push-button,
vocal, or EEG signals) to correct its actions and guide it
for successful completion of the task. Once the object is
available on the destination conveyor, the human operator
controls the conveyor to transfer it out of the workspace.
Robot performance is measured in terms of its capability to
accommodate a human operator’s instruction(s). Therefore,
the robot performance has a significant impact on the human
cognitive workload during the collaboration between the
human operator and a robot. The robot performance, Rp(t),
for a given time instant ¢ depends on its success in the
completion of tasks, which can be modeled as:

SR(t — 1) — (1 — PmR)DR(t - 1)

Sr(t—1)
where Rpnq, 1S the maximum value of the robot perfor-
mance, P,,r is the robot’s mistake probability, Sr(t — 1)
is the source rate (the feeding rate of source conveyor) and
Dpg(t — 1) is the delivery rate (percentage of items being
handled by the robot and put on the destination conveyor) at
the preceding time instant.

RP(t) - RP,maz_

ey

III. HUMAN PERFORMANCE MODELING

In this section, we model human performance. In par-
ticular, we provide a model for human cognitive perfor-
mance, which indicates its cognitive capability to perform
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Fig. 1: A human-robot collaboration (HRC) setting.
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the mental work [11]. A human’s cognitive performance is
at a maximum when it is subjected to a minimum workload,
no fatigue, and maximum robot performance. On the other
hand, human performance will be minimum when the human
is experiencing maximum workload and fatigue level, and
minimum robot performance. If the robot did not perform the
immediate preceding task satisfactorily, the human operator
instructs it to make a correction. The interactions between
human and robot increase human utilization factor and
cognitive workload.

A. Human Physical Performance Model

A human’s physical performance can be related to the
muscular contraction and expansion system and can be tied
to the fatigue level of the muscles and their recovery. The
fatigue and recovery models of muscles affect the human
physical performance that can be modeled as [11]:

F’mal‘,iso(t) - Fth
MVC — Fy

where Pp(t) is the human physical performance at time
instant ¢ and [}, stands for the threshold force which is
calculated at the equilibrium point where the fatigue and
the recovery balance out each other. Fj,, 4z is0(t) stands for
the maximum value of isometric force. The isometric force,
Fiso(t), is generated when the human muscles apply force
but the length of muscles does not change [11]. Maximum
Voluntary Contraction (MVC) stands for the maximum value
of isometric force that one can produce at rest or the initial
state (at zero-level of fatigue) [11]. Clearly, Fqz,is0(t) de-
creases over time due to muscle fatigue. Adopted from [11]-
[13], we use the following first-order Euler approximation to
represent the dynamic calculation of the maximum isometric
force:

Pp(t) = 6)

B F(t—1)

Fmaac,zso(t) = Fmax,zso(t - 1) - Cmeaz”SO(t o 1>T‘/C’
+ CT(MVC - Fmaz,iso(t - 1))

3)

where Cy and C), stand for the fatigue and recovery con-
stants, respectively, and F'(t) denotes the real-time applied
force that reduces over time due to increase in fatigue levels.

In this model, continuous-time fatigue and recovery pro-
cesses are used to represent the dynamic evolution of the
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maximum isometric force. It can be verified in Eq. 3 that
fatigue increases when muscles continuously apply the force.
On the other hand, when no force is used or if the applied
force is relatively small, the muscles will recover, i.e.,
MV C — Fia0.is0(t — 1) will be increased.

Frnaz,iso(t) is maximum when the human operator starts
the task, i.e. Fiyag,is0(t = 0) = MV C. Therefore, based on
Eq. 2, Pp(t = 0) = 1 at the beginning when Fy,q4.i50(t =
0) = MVC [11], but then it reduces to zero when
Finaz,iso = Fyn. Further, it can be verified that in Eq. 2,
the isometric force is affected by the fatigue level. Higher
fatigue levels result in lower isometric force, which in turn
will reduce the overall human performance values.

B. Human Cognitive Workload Model

The cognitive workload refers to the amount of mental
work to be performed in a given period. A human operator’s
performance degrades for high cognitive workloads and/or
while handling complex tasks. During the inactive mode
(when no cognitive work is performed), the human operator’s
cognitive performance level gradually increases. This recov-
ery process can improve the cognitive performance up to
the Optimum Level of Arousal (OLA) point [11], [31], [32].
Here, we model the human operator’s cognitive workload for
a given time, C,(t), as a function of the complexity of the
task(s) to be performed and the human operator’s utilization
factor as:

Cw (1) :<CW,maw - CW,min)(liL(ié()(t))l*C(t) "
L—u(t), o
(W)C( ) + CW,min

where Cyw, min and Cyy,mqq are the minimum and maximum
cognitive workloads respectively, which may vary from per-
son to person, depending on the individual’s capabilities to
handle the tasks. C'(¢) is the complexity of the task (a relative
value between 0 to 1) being handled at time ¢ and u(t) is the
human operator’s utilization factor which can be captured as:

u(t) = ult — 1) + Au(t) )

where Awu(t) stands for the change in the utilization factor
which is a function of the robot’s mistake probability for a
given time as:

Por(t) —u(t—1)

Ault) = ©)

where 7 is a positive integer number representing the time
constant. In other words, 7 is the time that the human
operator takes to respond to the changes in the robot’s
mistake probability, thereafter the effect of changes in robot’s
mistake probability appears in human operator utilization
factor.

Remark 1. If the human operator is doing the same task all
the time, then the value of C(t) will be a constant number,
otherwise its value changes depending on the complexity of

the task being handled at each time instant.

Remark 2. In the proposed HRC framework, individual
tasks are assumed to be independent events. Further, a task
either can be failed by the robot, which requires human
operator’s intervention, or it will be successfully handled by
the robot, which does not need the human operator to be
utilized. This allows us to use a binomial form in Eq. 4 to
describe the human cognitive workload based on successfully
handled tasks and failed ones.

C. Human Cognitive Performance Model

Human(s) cognitive workload primarily impact(s) its cog-
nitive performance. Further, human physical workload or the
additional workload due to mistakes of the robot affect the
cognitive performance of the robot as well. Incorporating
all these factors, human cognitive performance, Cp(t) for a
given time, can be modeled as:

CP (t) = CP,maz - OéCw (t) - ﬁHw (t) - fYHR(t) (7)

where C'pnqe 1s the maximum cognitive performance for
a given time, H,(¢) is the human physical workload for
a given time, Hp(t) is the additional workload added due
to mistakes of the robot, and «, (3, and 7 are positive real
numbers with o + 3+~ = 1.

The human physical workload and the additional workload
due to mistakes of the robot can be indirectly estimated from
the human physical performance and the robot performance
for a given time is as follows:

HW (t) = PP,mam - PP(t) (8)

HR(t) = RP,ma:c - RP(t) (9)

where P, ;40 and Rp 4. are the maximum human physical
performance and robot’s maximum performance, respec-
tively. Pp(t) and Rp(t) have been derived in Eq. 2 and
Eq. 1, respectively.

IV. ANALYZING THE HUMAN COGNITIVE
PERFORMANCE WITHIN THE PROPOSED HRC
SETTING

Consider a manufacturing workspace in which a human
operator and a robot can collaboratively work to transfer
the produced items as shown in Fig. 2. The source con-
veyor carries the incoming boxes to the workspace, and
the destination conveyor moves the inspected items to the
packaging area. The robot’s task is to physically move the
objects from source conveyor to packing conveyor based on
the human’s instructions. The human operator supervises and
instructs the robot to complete its task correctly. The human
operator is assumed to help the robot by physically changing
the object orientation appropriately so the robot can pick
the object easily. Also, the human operator is involved in
(minimal) physical activity, such as regulating the speed of
the destination conveyor, maintaining the logs, etc.
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Fig. 2: A human-robot collaboration scenario: robot transfers heavy objects from the ‘“source” conveyor belt to the
“destination” conveyor belt, and the human operator guides the robot to successfully complete the task.

TABLE I: Human Cognitive Performance Simulation
Parameters

Name & Symbol of Parameters Value
Fatigue constant, C'y 10-4
Recovery constant, C, 24 x 1071
MVC 200
Minimum threshold force, F}j, 151.9
Time constant, 7 10
Max cognitive workload, Cw,max 1
Min cognitive workload, Cyw,min 0
Cognitive workload co-efficient, o 0.7
Physical workload co-efficient, 3 0.1
Additional robot workload co-efficient, v | 0.2

To simulate this scenario, we use the derived set of
equations from Eq. 1 to Eq. 9 in which the simulation
parameters are chosen as summarized in Table I. Some of
the parameters’ values including Cf, C,, MV C, and Fy,
are set similar to those in [11]. Since in human cognitive
performance, the human cognitive workload is a dominant
factor, in Eq. 7, the value of « is selected larger than the
values for /3 and ~.

The simulation runs over an operating period of ten hours
with the sample time of 30 minutes. The minimum level
of human cognitive performance, C'p(t), at any given hour
is assumed to be more than 0.2, below which the human
operator is considered to be incapable of performing the
cognitive workload. In order to maintain simplicity, the
robot’s mistake probability has been assumed to be constant
over time.

The simulations are performed using three different task
complexity values, C(t) = 0.1,0.4, and 0.7, each simulated

for three different values of robot performance, Rp(t) =
0.7,0.5, and 0.1. The simulation results are provided using
three different task complexity values, C'(¢t) = 0.1,0.4 and
0.7 in Fig. 3, Fig. 4, and Fig. 5 respectively for each Rp(t) =
0.7,0.5, and 0.1.

Analyzing the results of the three subplots in Fig. 3,
it can be seen that for a fixed value of task complexity,
the human cognitive performance, Cp(t), decreases, while
its utilization factor, u(t), increases for decreasing values
of robot performance, Rp(t). For higher values of Rp(t),
higher values of C'p(t) are observed, at the corresponding
time instants. For example, in the case when Rp(t) =
0.1, the robot is making mistakes frequently and requires
assistance from the human operator much often, resulting
in lower values for Cp(t) than those for the case when
Rp(t) = 0.7, at the corresponding time instants. Similar
trends are observed in the comparison of the three subplots
in Fig. 4 and Fig. 5.

The impact of task complexity on the performance values
can be analyzed by comparing the results in the subplots
in Fig. 3a, Fig. 4a, and Fig. 5a for similar values of robot
performance. The results reveal that for a fixed value of robot
performance, the values for human cognitive performance,
Cp(t), decrease, while the utilization factor, u(t), increases
for increasing values of task complexity, C'(¢). For lower
values of C'(t), higher values of C'p(t) are observed at the
corresponding time instants. For example, in the case when
C(t) = 0.7, the robot requires frequent instructions from the
human operator, resulting in a lower value for C'p(t) than
the case when C(¢) = 0.1 at the corresponding time instants.
Similar trends are observed in the comparison of the other
corresponding subplots shown in these figures, i.e., Fig. 3b,
Fig. 4b and Fig. 5b as well as Fig. 3c, Fig. 4c and Fig. 5c.

Furthermore, it can be observed that in the subplots Fig.
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Fig. 5: The change of physical performance (===@®), cognitive workload (===MH), robot performance (===), cognitive
performance (===4), and utilization factor (== A) are represented over time for the task complexity, C'(t) = 0.7.

4c, Fig. 5b and Fig. 5c, the maximum operating time t,,,4, 1S
less than the ninth hour. This is because the human operator’s
cognitive capabilities have exhausted already, i.e., the overall
human cognitive performance values, C'p(t), are below 0.2.

V. CONCLUSIONS

In this paper, a dynamical human cognitive performance
model has been proposed for a Human-Robot Collaboration
(HRC) framework. This model has been simulated for a
shared task between a human operator and a robot. Sim-
ulation results have been used to validate the proposed
collaboration model and analyze the effects of variations
in the values of the involved parameters. A mathematical
representation of human cognitive performance has been pro-
vided in terms of the associated human physical workload,
robot added workload, and human cognitive workload. Also,
the complexity of tasks at hand and the associated human
utilization factor for different values of human capabilities
have been considered to model the HRC framework.

Simulation results show that for a fixed complexity of the
task, a decrease in robot performance increases human uti-
lization factor and the associated cognitive workload, which
in turn degrades the human cognitive performance. It has
also been shown that human cognitive workload decreases
as the robot performance improves. For fixed values of
robot performance, the human utilization factor increases as
the task complexity increases which in turn increases the
human cognitive workload and degrades the human cognitive
performance.
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