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Abstract

Off-policy evaluation (OPE) in both contextual bandits and reinforcement learning
allows one to evaluate novel decision policies without needing to conduct explo-
ration, which is often costly or otherwise infeasible. The problem’s importance
has attracted many proposed solutions, including importance sampling (IS), self-
normalized IS (SNIS), and doubly robust (DR) estimates. DR and its variants
ensure semiparametric local efficiency if Q-functions are well-specified, but if they
are not they can be worse than both IS and SNIS. It also does not enjoy SNIS’s
inherent stability and boundedness. We propose new estimators for OPE based
on empirical likelihood that are always more efficient than IS, SNIS, and DR and
satisfy the same stability and boundedness properties as SNIS. On the way, we
categorize various properties and classify existing estimators by them. Besides
the theoretical guarantees, empirical studies suggest the new estimators provide
advantages.

1 Introduction

Off-policy evaluation (OPE) is the problem of evaluating a given policy (evaluation policy) using data
generated by the log of another policy (behavior policy). OPE is a key problem in both reinforcement
learning (RL) [7, 13–15, 17, 23, 32] and contextual bandits (CB) [5, 19, 28] and it finds applications
as varied as healthcare [18] and education [16].

Methods for OPE can be roughly categorized into three types. The first approach is the direct
method (DM), wherein we directly estimate the Q-function using regression and use it to directly
estimate the value of the evaluation policy. The problem of this approach is that if the model is wrong
(misspecified), the estimator is no longer consistent.

The second approach is importance sampling (IS; aka Horvitz-Thompson), which averages the data
weighted by the density ratio of the evaluation and behavior policies. Although IS gives an unbiased
and consistent estimate, its variance tends to be large. Therefore self-normalized IS (SNIS; aka
Hájek) is often used [28], which divides IS by the average of density ratios. SNIS has two important
properties: (1) its value is bounded in the support of rewards and (2) its conditional variance given
action and state is bounded by the conditional variance of the rewards. This leads to increased stability
compared with IS, especially when the density ratios are highly variable due to low overlap.

The third approach is the doubly robust (DR) method, which combines DM and IS and is given by
adding the estimated Q-function as a control variate [5, 7, 25]. If the Q-function is well specified, DR
is locally efficient in the sense that its asymptotic MSE achieves the semiparametric lower bound
[33]. However, if the Q-function is misspecified, DR can actually have worse MSE than IS and/or
SNIS [12]. In addition, it does not have the boundedness property.

To address these deficiencies, we propose novel OPE estimators for both CB and RL that are
guaranteed to improve over both (SN)IS and DR in terms of asymptotic MSE (termed intrinsic
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Table 1: Comparison of policy evaluation methods. The notation (*) means proposed estimator.
The notation # means partially satisfied, as discussed in the text. (S)IS and SN(S)IS refer either to
stepwise or non-stepwise.

DM (S)IS SN(S)IS DR SNDR MDR REG(*) SNREG(*) EMP(*)
Consistency
Local efficiency
Intrinsic efficiency # #
Boundedness 1 1 2 2 1
Stability # #

efficiency) and at the same time also satisfy the same boundedness and stability properties of SNIS,
in addition to the consistency and local efficiency of existing DR methods. See Table 1. Our general
strategy to obtain these estimators is to (1) make a parametrized class of estimators that includes IS,
SNIS, and DR and (2) choose the parameter using either a regression way (REG) or an empirical
likelihood way (EMP). The benefit of these new properties in practice is confirmed by experiments in
both CB and RL settings.

2 Sequential Decision Processes and Off Policy Evaluation

A sequential decision process is defined by a tuple (X ,A, P,R, P0, γ), where X and A are the state
and action spaces, Pr(x, a) is the distribution of the bounded random variable r(x, a) ∈ [0, Rmax]
being the immediate reward of taking action a in state x, P (·|x, a) is the transition probability
distribution, P0 is the initial state distribution, and γ ∈ [0, 1] is the discounting factor. A policy
π : X × A → [0, 1] assigns each state x ∈ X a distribution over actions with π(a|x) being the
probability of taking actions a into x. We denoteHT−1 = (x0, a0, r0, · · · , xT−1, aT−1, rT−1) as a
T-step trajectory generated by policy π, and define RT−1(HT−1) =

∑T−1
t=0 γtrt, which is the return

of trajectory. Our task is to estimate
βπT = E[RT−1(HT−1)] (policy value).

We further define the value function V π(x) and Q-function Qπ(x, a) of a policy π, respectively, as
the expectation of the return of a T -step trajectory generated by starting at state x and state-action
pair (x, a). Note that the contextual bandit setting is a special case when T = 1.

The off-policy evaluation (OPE) problem is to estimate β∗ = βπeT for the evaluation policy πe from n

observation of T -step trajectories D = {H(i)
T−1}ni=1 independently generated by the behavior policy

πb. Here, we assume an overlap condition: for all state-action pair (x, a) ∈ X ×A if πb(a|x) = 0
then πe(a|x) = 0. Throughout, expectations E[·] are taken with respect to a behavior policy. For any
function of the trajectory, we let

En[f(HT−1)] = n−1
∑n
i=1 f(H(i)

T−1).

Asmse[·] denotes asymptotic MSE in terms of the first order; i.e., Asmse[β̂] = MSE[β̂] + o(n−1).

The cumulative importance ratio from time step t1 to time step t2 is

ωt1:t2 =
∏t2
t=t1

πe(at|xt)/πb(at|xt),
where the empty product is 1. We assume that this weight is bounded for simplicity.

2.1 Existing Estimators and Properties

We summarize three types of estimators. Some estimators depend on a model q(x, a; τ) with
parameter τ ∈ Θτ for the Q-function Qπe(x, a). We say the model is correct or well-specified if
there is some τ0 such that Qπe(x, a) = q(x, a; τ0) and otherwise we say it is wrong or misspecified.
Throughout, we make the following assumption about the model
Assumption 2.1. (a1) Θτ is compact, (a2) |q(x, a; τ)| ≤ Rmax.

Direct estimator: DM is given by fitting τ̂ , e.g., by least squares, and then plugging this into

β̂dm = En

[∑
a∈A

πe(a|x(i)
0 )q(x

(i)
0 , a; τ̂)

]
. (1)
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When this model is correct, β̂dm is both consistent for β∗ and locally efficient in that its asymptotic
MSE is minimized among the class of all estimators consistent for β∗ [19, 33].
Definition 2.1 (Local efficiency). When the model q(x, a; τ) is well-specified, the estimator achieves
the efficiency bound.

However, all of models are wrong to some extent. In this sense, even if the sample size goes to
infinity, β̂dm might not be consistent.
Definition 2.2 (Consistency). The estimator is consistent for β∗ irrespective of model specification.

EMP = REG = DR〉

IS, SNIS

(a) Well-specified

EMP = REG〉

IS, SNIS, DR

(b) Misspecified

Figure 1: Order of
asymptotic MSEs

Importance sampling estimators: IS and step-wise IS (SIS) are defined
respectively as

β̂is = En

[
ω0:T−1

∑T−1
t=0 γ

trt

]
, β̂sis = En

[∑T−1
t=0 ω0:tγ

trt

]
.

The weights ω0:t are assumed known here as is common in RL; otherwise
they can either be estimated directly or chosen by optimal balance [1, 8, 9].
Both IS and SIS satisfy consistency but the MSE of SIS estimator is
smaller than regular IS estimator by the law of total variance [27]. The
self-normalized versions of these estimators are:

β̂snis =
En

[
ω0:T−1

∑T−1
t=0 γtrt

]
En[ω0:T−1]

, β̂snsis = En

[
T−1∑
t=0

ω0:t

En[ω0:t]
γtrt

]
.

SN(S)IS have two advantages over (S)IS. First, they are both 1-bounded
in that they are bounded by the theoretical upper bound of reward.

Definition 2.3 (α-Boundedness). The estimator is bounded by α
∑T−1
t=0 γtRmax.

1-boundedness is the best we can achieve where α-boundedness for any α > 1 is a weaker property.
Second, their conditional variance given state and action data are no larger than the conditional
variance of any reward, to which we refer as stability.

Definition 2.4 (Stability). Let Dx,a = {(x(i)
t , a

(i)
t ) : i ≤ n, t ≤ T − 1} denote that action-state

data. If the conditional variance of
∑T−1
t=1 γtr

(i)
t , given Dx,a, is bounded by σ2, then the conditional

variance of the estimator, given Dx,a, is also bounded by σ2.

Unlike efficiency, boundedness and stability are finite-sample properties. Notably (S)IS lacks both of
these properties, which explains its unstable performance in practice, especially when density ratios
can be very large. While boundedness can be achieved by a simple truncation, stability cannot.

Doubly robust estimators: A DR estimator for RL [7, 32] is given by fitting τ̂ and plugging it into

β̂dr = β̂d({q(x, a; τ̂)}T−1
t=0 ),

where for any collection of functions {mt}T−1
t=0 (known as control variates) we let

β̂d({mt}T−1
t=0 ) = En

[
T−1∑
t=0

γtω0:trt − γt
(
ω0:tmt(xt, at)− ω0:t−1

(∑
a∈A

mt(xt, a)πe(a|xt)

))]
.

(2)
The DR estimator is both consistent and locally efficient. Recently, this approach to efficient OPE
has been extended to Markov decision process [10] and infinite-horizon problems [11]; in this paper
we focus on the more general sequential decision process. Instead of using a plug-in estimate of τ
in eq. 2, [4, 6, 26] further suggest that to pick τ̂ to minimize an estimate of the asymptotic variance
of β̂d({q(x, a; τ)}T−1

t=0 ), leading to the MDR estimator [6] for OPE. However, DR and MDR satisfy
neither boundedness nor stability. Replacing, ω0:t with its self-normalized version ω0:t/En [ω0:t]
in (2) leads to SNDR [24, 32] (aka WDR), but it only satisfies these properties partially: it’s only
2-bounded and partially stable (see Appendix B).

Moreover, if the model is incorrectly specified, (M)DR may have MSE that is worse than any of the
four (SN)(S)IS estimators. [12] also experimentally showed that the performance of β̂dr might be
very bad in practice when the model is wrong.

We therefore define intrinsic efficiency as an additional desiderata, which prohibits this from occurring.
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Definition 2.5 (Intrinsic efficiency). The asymptotic MSE of the estimator is smaller than that of any
of β̂sis, β̂is, β̂snsis, β̂snis, β̂dr, irrespective of model specification.

MDR can be seen as motivated by a variant of intrinsic efficiency against only DR (hence the #
in Table 1). Although this is not precisely proven in [6], this arises as a corollary of our results.
Nonetheless, MDR does not achieve full intrinsic efficiency against all above estimators.

3 REG and EMP for Contextual Bandit

None of the estimators above simultaneously satisfy all desired properties, Definitions 2.1–2.5. In the
next sections, we develop new estimators that do. For clarity we first consider the simpler CB setting,
where we write (x, a, r) and w instead of (x0, a0, r0) and w0:0. We then start by showing how a
modification to MDR ensures intrinsic efficiency. To obtain the other desiderata, we have to change
how we choose the parameters. Regarding the intuitive detailed explanation, refer to Appendix A.

3.1 REG: Intrinsic Efficiency

When T = 1, β̂d(m) in (2) becomes simply

β̂d(m) = En [wr −F(m)] , (3)

where F(m(x, a)) = wm(x, a) −
{∑

a∈Am(x, a)πe(a|x)
}

. By construction, E[F(m)] = 0 for
every m. (M)DR, for example, use m(x, a; τ) = q(x, a; τ).

Instead, we let
m(x, a; ζ1, ζ2, τ) = ζ1 + ζ2q(x, a; τ),

for parameters τ and ζ = (ζ1, ζ2). This new choice has a special property: it includes both IS and DR
estimators. Given any τ , setting ζ1 = 0, ζ2 = 0 yields IS and setting ζ1 = 0, ζ2 = 1 gives (M)DR.
This gives a simple recipe for intrinsic efficiency: estimate the variance of β̂d(ζ1 + ζ2q(x, a; τ)) and
minimize it over τ, ζ . Because β̂d(m) is unbiased, its variance is simply E

[
{wr −F(m)}2

]
− β∗2.

Therefore, over the parameter spaces Θτ the (unknown) minimal variance choice is

(ζ∗, τ∗) = arg min
ζ∈R2,τ∈Θτ

E
[
{wr −F(ζ1 + ζ2q(x, a; τ))}2

]
. (4)

We let the REG estimator be β̂reg = β̂d(ζ̂1 + ζ̂2q(x, a; τ̂)) where we choose the parameters by
minimizing the estimated variance:

(ζ̂, τ̂) = arg min
ζ∈R2,τ∈Θτ

En

[
{wr −F(ζ1 + ζ2q(x, a; τ))}2

]
. (5)

To establish desired efficiencies, we prove the following theorem indicating that our choice of
parameters does not inflate the variance. Note that it is not obvious because the plug-in some
parameters generally causes an inflation of the variance.
Theorem 3.1. When the optimal solution (ζ∗, τ∗) in (4) is unique,

Asmse[β̂reg] = n−1 min
ζ∈R2,τ∈Θτ

E
[
{wr −F(ζ1 + ζ2q(x, a; τ))}2 − β∗2

]
.

Remark 3.1. For ζ = (β∗, 0), this asymptotic MSE is the same as the one of SNIS, var[w(r − β∗)].

From Theorem 3.1 we obtain the desired efficiencies. Importantly, to prove this, we note
how the asymptotic MSEs of each of (SN)(S)IS and DR can be represented in the form
n−1E

[
{wr −F(ζ1 + ζ2q(x, a; τ))}2 − β∗2

]
for some ζ and τ .

Corollary 3.1. The estimator β̂reg has local and intrinsic efficiency.
Remark 3.2 (Comparison to MDR). REG is like MDR with an expanded model class. This class is
carefully chosen to guarantee intrinsic efficiency. In addition, as another corollary, we have proven
partial intrinsic efficiency for MDR against DR (just fix ζ = (0, 1) in (5)) where [6] only proved
consistency of MDR. However, neither MDR nor REG satisfies boundedness and stability.
Remark 3.3 (SNREG). Replacing weights w by their self-normalized version w/En[w] in REG
leads to SNREG. We explore this estimator in Appendix A and show it only gives 2-boundedness, does
not give stability, and limits REG’s intrinsic efficiency to be only against SN(S)IS and SNDR.
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3.2 EMP: Intrinsic Efficiency, Boundedness, and Stability

We next construct an estimator satisfying intrinsic efficiency as well as boundedness and stability. The
key idea is to use empirical likelihood to choose the parameters [29–31]. Empirical likelihood is a
nonparametric MLE commonly used in statistics [21]. We consider the control variatem(x, a; ξ; τ) =
ξ + q(x, a; τ) with parameters ξ, τ and q(x, a; τ) = t(x, a)>τ , where t(x, a) is a dτ -dimensional
vector of linear independent basis functions not including a constant. Then, an estimator for β is
defined as

β̂emp = En
[
ĉ−1κ̂(x, a)πe(a|x)r

]
, where

κ̂(x, a) = {πb(a|x)[1 + F(m(x, a; ξ̂, τ̂))]}−1, ĉ = En

[
{1 + F(m(x, a; ξ̂, τ̂))}−1

]
,

ξ̂, τ̂ = arg max
ξ∈R,τ∈Θτ

En[log{1 + F(m(x, a; ξ, τ))}]. (6)

This is motivated by solving the dual problem of the following optimization problem formulated by
the empirical likelihood:

max
κ

n∑
i=1

log κ(i), s.t.
n∑
i=1

κ(i)πb(a
(i)|x(i)) = 1,

n∑
i=1

κ(i)πb(a
(i)|x(i))F(m(x(i), a(i); ξ, τ)) = 0.

The objective in an optimization problem (6) is a convex function; therefore, it is easy to solve. Then,
the estimator β̂emp has all the desirable finite-sample and asymptotic properties.

Lemma 3.1. The estimator β̂emp satisfies 1-boundedness and stability.

Theorem 3.2. The estimator β̂emp has local and intrinsic efficiency, and

Asmse[β̂emp] = n−1 min
ζ∈R,τ∈Rdτ

E
[
{wr −F(ζ + q(x, a; τ))}2 − β∗2

]
. (7)

Here, we have assumed the model is linear in τ . Without this assumption, Theorem 3.2 may not
hold. In the following section, we consider how to relax this assumption while maintaining local and
intrinsic efficiency.

3.3 Practical REG and EMP

While REG and EMP have desirable theoretical properties, both have some practical issues. First, for
REG, the optimization problem in (5) may be non-convex if q(x, a; τ) is not linear in τ , as is the case
in our experiment in Sec. 5.1 where we use a logistic model with 216 parameters. (The same issue
exists for MDR.) Similarly, EMP estimator has the problem that there is no theoretical guarantee for
intrinsic efficiency when q(x, a; τ) is not linear in τ . Therefore, we suggest the following unified
practical approach to selecting τ in a way that maintains the desired properties.

First, we estimate a parameter τ in q(x, a; τ) as in DM to obtain τ̂ , which we assume has a limit,
τ̂

p→ τ † . Then, we consider solving the following optimization problems instead of (5) and (6) for
REG and EMP, respectively

ζ̂ = arg min
ζ∈R2

En

[
{wr −F(m(x, a; ζ, τ̂))}2

]
, ξ̂ = arg max

ξ∈R2

En[log{1 + F(m(x, a; ξ, τ̂))}],

where m(x, a; ζ, τ̂) = ζ1 + ζ2q(x, a; τ̂) or m(x, a; ξ, τ̂) = ξ1 + ξ2q(x, a; τ̂). This is a convex
optimization problem with two dimensional parameters; thus, it is easy to solve.

Here, the asymptotic MSE of practical β̂reg and β̂emp are as follows.

Theorem 3.3. The above plug-in-τ versions of β̂reg and β̂emp still satisfy local and intrinsic efficiency,
and β̂emp satisfies 1-boundedness and partial stability. Their asymptotic MSEs are

n−1 min
ζ∈R2

E
[{
wr −F(ζ1 + ζ2q(x, a; τ †))

}2 − β∗2
]
. (8)

As a simple extension, we may consider multiple models for the Q-function. E.g, we can have two
models q1(x, a; τ1) and q2(x, a; τ1) and let m(x, a; ζ, τ̂) = ζ1 + ζ2q1(x, a; τ̂1) + ζ3q2(x, a; τ̂2). Our
results easily extend to provide intrinsic efficiency with respect to DR using any of these models.
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4 REG and EMP for Reinforcement learning

We next present how REG and EMP extend to the RL setting. Some complications arise because of
the multi-step horizon. For example, IS and SIS are different as opposed to the case T = 1.

4.1 REG for RL

We consider an extension of REG to a RL setting. First, we derive the variance of β̂d({mt}T−1
t=0 ).

Theorem 4.1. The variance of β̂d({mt}T−1
t=0 ) is n−1E[v({mt}T−1

t=0 )], where v({mt}T−1
t=0 ) is

T−1∑
t=0

γ2tω2
0:t−1var

(
E[
T−1∑
k=t

γk−tωt:krk−t|Ht]−

{
ωt:tmt(xt, at)−

∑
a∈A

mt(xt, a)πe(a|xt)

}
|Ht−1

)
.

(9)

To derive REG, we consider the class of estimators β̂d({mt}T−1
t=0 ) where mt is mt(xt, at; ζ) =

ζ1t + ζ2tq(xt, at; τ̂) for all 0 ≤ t ≤ T − 1. Then, we define an estimator ζ̂ and the optimal ζ∗ as

ζ̂ = arg min
ζ∈R2

En[v({mt(xt, at; ζ)}T−1
t=0 )], ζ∗ = arg min

ζ∈R2

E[v({mt(xt, at; ζ)}T−1
t=0 )]. (10)

REG is then defined as β̂T−1
reg = β̂d({ζ̂1t + ζ̂2tq(x, a; τ̂)}T−1

t=0 ), where following our discussion in
Section 3.3, τ̂ is given by fitting as in DM/DR. Theoretically, we could also choose τ to minimize
eq. (9), but that can be computationally intractable.

A similar argument to that in Section 3.1 shows that a data-driven parameter choice induces no
inflation in asymptotic MSE. Therefore, the asymptotic MSE of the estimator β̂reg is minimized
among the class of estimators β̂d({ζ1t + ζ2tq(xt, at; τ̂)}T−1

t=0 )). This implies that the asymptotic
MSE of β̂reg is smaller than β̂sis and β̂dr because β̂sis corresponds to the case ζt = (0, 0) and β̂dr

corresponds to the case ζt = (0, 1). In addition, we can prove that the estimator β̂T−1
reg is more

efficient than β̂snsis. To prove this, we introduce the following lemma.
Lemma 4.1.

Asmse[β̂snis] = n−1
T−1∑
t=0

E

[
γ2tω2

0:t−1var

(
ωt:t

(
E

[
T−1∑
k=t

γk−tωt+1:krk−t|Ht

]
− β∗t

)
|Ht−1

)]
,

where β∗t = E[ω0:trt].

We note that setting ζt = (β∗t , 0) in eq. (9) recovers the above. This suggests the following theorem.

Theorem 4.2. The estimator β̂T−1
reg is locally and intrinsically efficient.

Remark 4.1. Practically, when the horizon is long, there may be too many parameters to optimize,
which can causes overfitting. That is, although there is no inflation in MSE asymptotically, there
may be issues in finite samples. To avoid this problem, some constraint or regularization should be
imposed on the parameters. Here we will consider the estimator β̂kreg (0 ≤ k ≤ T − 1) given by
β̂d({mt(xt, at; ζ̂)}T−1

t=0 ) for the constrained control variates:

mt(xt, at; ζ) =

{
ζt1 + ζt2q(xt, at; τ̂) (0 ≤ t < k),

ζk1 + ζk2q(xt, at; τ̂) (k ≤ t ≤ T − 1).

The estimator β̂T−1
reg corresponds to the originally introduced estimator. We can also obtain theoretical

guarantees of β̂kreg for k 6= T − 1. For details, see Appendix C.

4.2 EMP for RL

First, we define a control variate:

g(Dx,a; ξ, τ̂) =
T−1∑
t=0

γt

(
ω0:tmt(xt, at; ξ, τ̂)− ω0:t−1

{∑
a∈A

mt(xt, a; ξ, τ̂)πe(a|xt)

})
.
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Table 2: SatImage (RMSE×1000 )

Behavior policy DM1 DM2 IS SNIS DR MDR REG EMP

0.7πd + 0.3πu 18.1 12.2 6.7 4.0 3.0 3.8 2.8 2.8
0.4πd + 0.6πu 49.2 30.5 12.0 5.6 5.0 5.3 4.4 4.4
0.0πd + 1.0πu 128.6 71.7 26.0 12.7 18.0 14.4 13.6 13.7

Table 3: Pageblock (RMSE×1000 )

Behavior policy DM1 DM2 IS SNIS DR MDR REG EMP

0.7πd + 0.3πu 21.8 2.6 8.5 3.4 1.4 2.3 1.5 1.4
0.4πd + 0.6πu 32.4 5.6 13.4 4.0 2.7 3.4 2.5 2.4
0.0πd + 1.0πu 62.0 16.0 27.2 6.5 7.2 6.4 4.9 4.9

Table 4: PenDigits (RMSE×1000 )

Behavior policy DM1 DM2 IS SNIS DR MDR REG EMP

0.7πd + 0.3πu 8.1 8.2 6.1 2.8 1.5 2.2 1.4 1.4
0.4πd + 0.6πu 19.4 17.4 10.7 3.9 2.2 3.4 2.1 2.0
0.0πd + 1.0πu 58.6 56.0 29.6 9.9 11.1 9.4 9.4 9.5

By setting mt(xt, at; ξ, τ̂) = ξ1t + ξ2tq(xt, at; τ̂), define ξ̂;

ξ̂(τ̂) = arg max
ξ∈R2

En[log{1 + g(Dx,a; ξ, τ̂)}].

Then, an estimator β̂T−1
emp is defined as

β̂T−1
emp = En

[
T−1∑
t=0

ω0:tγ
trt

ĉ−1

1 + g(Dx,a; ξ̂, τ̂)

]
, ĉ = En

[
1

1 + g(Dx,a; ξ̂, τ̂)

]
.

This estimator has the same efficiencies as β̂T−1
reg because the asymptotic MSE is the same. Impor-

tantly, the estimator β̂T−1
emp also satisfies a 1-boundedness and stability.

Theorem 4.3. The asymptotic MSE of the estimator β̂T−1
emp is the same as that of β̂T−1

reg . Hence, it is
also locally and intrinsically efficient. It also satisfies 1-boundeness and stability.

5 Experiments

5.1 Contextual Bandit

We evaluate the OPE algorithms using the standard classification data-sets from the UCI repository.
Here, we follow the same procedure of transforming a classification data-set into a contextual bandit
data set as in [5, 6]. Additional details of the experimental setup are given in Appendix E.

We first split the data into training and evaluation. We make a deterministic policy πd by training
a logistic regression classifier on the training data set. Then, we construct evaluation and behavior
policies as mixtures of πd and the uniform random policy πu. The evaluation policy πe is fixed at
0.9πd + 0.1πu. Three different behavior policies are investigated by changing a mixture parameter.

Here, we compare the (practical) REG and EMP with DM, SIS, SNIS, DR, and MDR on the evaluation
data set. First, two Q-functions q̂1(x, a), q̂2(x, a) are constructed by fitting a logistic regression in
two ways with a l1 or l2 regularization term. We refer them as DM1 and DM2. Then, in DR, we
use a mixture of Q-functions 0.5q̂1 + 0.5q̂2 as m(x, a). For MDR, we use a logistic function as
m(x, a) and we use SGD to solve the resulting non-convex high-dimensional optimization (e.g.,
for SatImage we have 6(number of actions) × 36(number of covariates) parameters). We use
m(x, a; ζ) = ζ>(1, q̂1, q̂2) in REG and m(x, a; ξ) = ξ>(1, q̂1, q̂2) in EMP.

The resulting estimation RMSEs (root mean square error) over 200 replications of each experiment
are given in Tables 2–4, where we highlight in bold the best two methods in each case. We first
find that REG and EMP generally have overall the best performance. Second we see that this arises
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Table 5: Windy GridWorld (RMSE)

Size DM SIS SNSIS DR MDR REG EMP

250 2.9 0.64 0.49 0.17 0.28 0.09 0.09
500 2.8 0.53 0.34 0.11 0.21 0.06 0.06
750 2.6 0.39 0.29 0.09 0.14 0.05 0.05

Table 6: Cliff Walking (RMSE)

Size DM SIS SNSIS DR MDR REG EMP

1000 7.7 3.6 2.9 2.5 2.3 2.1 2.1
2000 6.0 3.2 2.4 2.3 2.2 1.6 1.5
3000 6.8 3.1 2.2 2.2 2.0 1.2 1.1

Table 7: Mountain Car (RMSE)

Size DM SIS SNSIS DR MDR REG EMP

1000 9.8 4.2 3.7 1.9 1.9 1.7 1.7
2000 10.6 3.3 2.9 1.6 1.6 1.2 1.2
3000 8.2 2.4 1.8 1.4 1.5 1.0 1.0

because they achieve similar RMSE to SNIS when SNIS performs well and similar RMSE to (M)DR
when (M)DR performs well, which is thanks to the intrinsic efficiency property. Whereas REG’s and
EMP’s intrinsic efficiency is visible, MDR still often does slightly worse than DR despites its partial
intrinsic efficiency, which can be attributed to optimizing too many parameters leading to overfitting
in the sample size studied.

5.2 Reinforcement Learning

We next compare the OPE algorithms in three standard RL setting from OpenAI Gym [3]: Windy
GridWorld, Cliff Walking, and Mountain Car. For further detail on each see Appendix E. We again
split the data into training and evaluation. In each setting we consider varying evaluation dataset
sizes. In each setting, a policy πd is computed as the optimal policy based on the training data using
Q-learning. The evaluation policy πe is then set to be (1−α)πd+απu, where α = 0.1. The behavior
policy is defined similarly with α = 0.2 for Windy GridWorld and Cliff Walking and with α = 0.15
for Mountain Car. We set the discounting factor to be 1.0 as in [6].

We compare the (practical) REG, EMP with k = 2 with DM, SIS, SNSIS, DR, MDR on the evaluation
data set generated by a behavior policy. A Q-function model is constructed using an off-policy TD
learning [27]. This is used in DM, DR, REG, and EMP. For MDR, we use a linear function for
m(x, a) in order to enable tractable optimization given the many parameters due to long horizons.

We report the resulting estimation RMSEs over 200 replications of each experiment in Tables 5–7.
We find that the modest benefits we gained in one time step in the CB setting translate to significant
outright benefits in the longer horizon RL setting. REG and EMP consistently outperform other
methods. Their RMSEs are indistinguishable except for one setting where EMP has slightly better
RMSE. These results highlight how the theoretical properties of intrinsic efficiency, stability, and
boundedness can translate to improved performance in practice.

6 Conclusion and Discussion

We studied various desirable properties for OPE in CB and RL. Finding that no existing estimator
satisfies all of them, we proposed two new estimators, REG and EMP, that satisfy consistency,
local efficiency, intrinsic efficiency, 1-boundedness, and stability. These theoretical properties also
translated to improved comparative performance in a variety of CB and RL experiments.

In practice, there may be additional modifications that can further improve these estimators. For
example, [32, 35] propose hybrid estimators that blend or switch to DM when importance weights are
very large. This reportedly works very well in practice but may make the estimator inconsistent under
misspecification unless blending vanishes with n. In this paper, we focused on consistent estimators.
Also these do not satisfy intrinsic efficiency, 1-boudedness, or stability. Achieving these properties
with blending estimators remains an important next step.
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