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Abstract
This paper studies a nonlinear dynamical phenomenon called the multiple firing event
(MFE) in a spatially heterogeneous stochastic neural field model, which is extended
from that in our previous paper (Li et al. in J Math Biol 78:83–115, 2018). MFEs
are a partially synchronized spiking barrages that are believed to be responsible for
the Gamma oscillation. Rigorous results about the stochastic stability and the law of
large numbers are proved, which further imply the well-definedness and computability
of many quantities related to MFEs. Then we devote to study spatial and temporal
properties ofMFEs.Our key finding is thatMFEs are spatially correlated but the spatial
correlation decays quickly. Detailedmathematical justifications aremade based on our
qualitative models that aim to demonstrate the mechanism of MFEs.

Keywords Neural field model · Stochastic stability · Multiple firing events · Spatial
correlation

Mathematics Subject Classification 92B25 · 60J28 · 60J27

1 Introduction

The dynamics of a single neuron is relatively simple and has been well studied for
decades. Many models such as the Hodgkin-Huxley model can well describe the bio-
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physical process of a neuronal spike. However, a mathematical study of interactions of
inhibitory and excitatory neuron populations is much harder, as they can produce very
rich spiking patterns ranging from independent spiking activities to full synchroniza-
tions like the PINGmechanism (Börgers et al. 2005; Börgers and Kopell 2003, 2005).
Among numerous spiking patterns generated by different mechanisms, one nonlinear
emergent phenomenon called the multiple firing event (MFE) is particularly interest-
ing. In an MFE, a large amount of local neurons, but not the entire local population,
fire a spike during a relatively small time window and form a rapid spiking barrage.
This spiking activity lies between two extremes (homogeneity and synchrony), and
have been reported in many experimental studies about different neuronal networks
in the real brain (Beggs and Plenz 2003; Churchland et al. 2010; Mazzoni et al. 2007;
Petermann et al. 2009; Plenz et al. 2011; Samonds et al. 2006; Shew et al. 2011; Yu
and Ferster 2010; Yu et al. 2011). It is also believed that such semi-synchronized
burst is responsible for the Gamma oscillation in the brain (Börgers et al. 2005; Hen-
rie and Shapley 2005; Rangan and Young 2013a, b). Early mathematical studies of
MFEs can be found in Chariker and Young (2015), Newhall et al. (2010), Rangan and
Young (2013a), Rangan and Young (2013b), Zhang et al. (2014a) for various different
integrate-and-fire models.

The purpose of this paper is to investigate several spatial and temporal properties
of MFEs in spatially heterogeneous neuron populations. This has not been properly
addressed by pioneer studies (Chariker and Young 2015; Li et al. 2018; Newhall et al.
2010; Rangan and Young 2013b; Zhang et al. 2014a). To do so, we need a suitable
neural field model that can both produce desired MFEs and make analytical studies
feasible. Neuronal models with plenty of anatomical and physiological details (ionic
channels, dendritic tree, spatial structure of axon, synapse .etc) involved are usually
too complex to study, especially when applying to a large-scale network. On the other
end of the spectrum, mean field models such as Wilson–Cowan model (1972; 1973)
and various population density models (Cai et al. 2006, 2004; Haskell et al. 2001) are
often to simple to reflect many emergent spiking dynamics including MFEs.

The first part of this paper introduces a neural field model that aims to strike a
balance between biological accuracy andmathematical/computational tractability.We
include some spatial structures to the stochastic model studied in our earlier paper (Li
et al. 2018). More precisely, we consider the coupling of finitely many local neuron
populations, each of which is described by a stochastic model studied in Li et al.
(2018). This is a biologically plausible extension because the real cerebral cortex
consists of numerous relatively homogeneous local structures, while the neuronal
activities in different local structures can be very different. Take the visual cortex as
an example again. The pinwheel formation makes responses to stimulus orientation
very different in orientation columnswith different orientation preferences, even if they
are spatially close to each other (Hubel 1995; Kaschube et al. 2010). Different from
many detailed spiking neuron models, some mathematical properties of this neural
field model can be rigorously proved. We first follow the approach as in Li et al.
(2018) to prove the existence and uniqueness of an invariant probability measure, and
the exponential speed of convergence to this invariant measure. Then we prove the
law of large numbers of a class of sample-path dependent observables by constructing
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a martingale difference sequence. The well-definedness and computability of many
quantities related to the spike count correlation follows from the law of large numbers.

Then our study focuses onmultiple firing events (MFEs) produced by our stochastic
neural field model. As introduced before, anMFE is a partially synchronous spike bar-
rage that involves a proportion of a local neuron population. The MFE is an important
network feature and plays a significant role in the network’s dynamics. For example, in
Li et al. (2018), we have observed that strong MFEs can significantly divert a network
model from its mean field approximation. The neural field model introduced in this
paper is spatially heterogeneous. It can produce rich spike patterns, including MFEs
with different degrees of synchrony within a local population, and MFEs with various
spatial correlations betweendifferent local populations. In addition, our networkmodel
is fairly mathematically tractable, which makes a deeper study of MFEs possible.

The first study on MFEs attempts to reveal its mechanism. Heuristically, an MFE
is caused by recurrent excitations that are terminated by the later onset of network
inhibitions. Due to the significant complexity of working on a network model directly,
we propose two qualitative models that help us to understand the properties of MFEs.
The first qualitative model is an SIR disease model that describes the average trend of
neuronal activities during an MFE. The pending postsynaptic kicks are like infected
patients that can “infect” other neurons and make them fire a spike. Once a neuron
spikes, it jumps to the refractory state and is “immuned” from further “infections”.
With this SIR model, we can prove that the slower onset of inhibitory spikes is always
responsible for a stronger synchronization. Then, to depict a caricature of stochastic
properties of MFEs, we construct a Galton–Waston branching process that terminates
at a random time. The branching process corresponds to the recurrent excitation, while
the random termination time approximates the onset of the network inhibition. This
model well captures the diversity of sizes of MFEs.

We then carry out a numerical study on temporal and spatial properties ofMFEs.The
numerical study is done by simulating a number of networks with different magnitudes
of local and long distance synchronizations. The correlation of spike count among
different local populations are estimated by Monte Carlo simulations. Our numerical
simulation results show that MFEs in nearest-neighbor local populations are highly
correlated. However, this correlation decays quickly with increasing distance between
two local populations. No significant correlation between MFEs is observed if two
local populations are 5–10 “blocks” away. This is consistent with the experimental
observations that the Gamma rhythm is very local in many scenarios (Goddard et al.
2012; Lee et al. 2003; Menon et al. 1996). Of course this study does not exclude the
possibility that a neuronal network with a more heterogeneous architecture or multiple
types of inhibitory neurons could steadily generate smaller MFEs with less volatility
and stronger spatial correlation. But we believe our study can shed some light to the
population spiking dynamics of neuronal networks that include large and relatively
homogeneous local populations, such as the visual cortex.

These numerical observations can be analytically justified by the qualitative models
of MFEs mentioned above. The SIRmodel is used to explain the mechanism of spatial
correlations of MFEs. We find that an MFE is very likely to induce another MFE in
a neighboring local population, although the initial profile may be fairly different.
The Galton–Waston branching process helps us to explain the possible mechanism of
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the spatial correlation decay. One salient feature of MFEs is its diversity. When start-
ing from the same profile, the spike count of an MFE can have very high volatility,
measured by the coefficient of variation. This high coefficient of variation is justified
analytically by studying a Galton–Waston branching process. The volatility signif-
icantly decreases when the MFE is so large that it is close to a synchronous spike
volley, which means the branching process has used up all neurons and has to stop.
We believe that this diversity at least partially contributes to the quick decay of spatial
correlations in our model. This is consistent with our numerical simulation result, in
which the most synchronous network has the slowest decay of the spatial correlation.

We remark that this paper is not a trivial extension of Li et al. (2018). The model
studied in this paper is a spatially heterogeneous version of that proposed in Li et al.
(2018). And we need to include the stochastic stability result, which follows a similar
approach as in Li et al. (2018), for the sake of completeness of the paper. However,
the main focus of these two papers are very different. Paper Li et al. (2018) mainly
compares the network model and its several mean-field approximations. MFEs (or
correlated spiking activities in general) are observed in Li et al. (2018) but have not
been fully addressed. In this paper, we focus on properties, statistics, and mecha-
nism related to MFEs. This has not been done in either (Li et al. 2018) or other
pioneer work (Chariker and Young 2015; Rangan and Young 2013a, b). In addition,
the law of large numbers of sample-path dependent observables proved in Sect. 3 is
also new.

Finally, we would like to refer Newhall et al. (2010), Zhang et al. (2014a), Zhang
et al. (2014b)) for some earlier attempts of studying the mechanism of MFEs. They
investigated a class of simple and spatially homogeneous integrate-and-fire model that
can produce MFEs, and proposed a coarse-grained model reduction. In their model,
spikes take effects instantaneouslywithout anydelay.HenceMFEcanbe approximated
by a map from the pre-event voltage distribution to the post-event voltage distribu-
tion. Later, it has been discovered in Chariker and Young (2015), Li et al. (2018)
that the synapse delay actually plays a significant role in the excitatory-inhibitory
competition and should not be neglected. Also, none of those earlier work considers
spatial factors. Our study is further developed from these important earlier investiga-
tions conducted by Young, Rangan and their collaborators. Both the synapse delay
and the spatial factor are incorporated into our stochastic neural field model. Hence
our study can cover more detail and allow more rigorous analysis than these pioneer
works.

The organization of this paper is as follows. Section 1 is the introduction. We
provide the mathematical description of the neural field model in Sect. 2. Section3 is
devoted to the proof of the stochastic stability and the law of large numbers, which
gives the well-definedness of observables studied in the later part of the paper. The
reader who is not interested in technical details can skip this section. Then we provide
five network examples with distinct features in Sect. 4 for later investigations. Two
qualitative models, the SIR model and the branching process model of MFE, are
proposed and studied in Sect. 5. Section6 is devoted to the spatial correlation. We
demonstrate both phenomena and mechanisms of spatial correlations of MFEs in
different local populations. Section7 is the conclusion.
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2 Stochastic model of many interacting neural populations

We consider a stochastic model that describes the interaction of many local popula-
tions in the cerebral cortex. Each local population consists of hundreds of interacting
excitatory and inhibitory neurons. The setting of this model is quite generic, but it
aims to describe some of the spiking activities of realistic brain parts. In particular,
one can treat a local population as an orientation column in the primary visual cortex.
We will only prescribe the rules of external inputs and interactions between neurons.
All spatial and temporal correlated spiking activities in this model are emergent from
interactions of neurons.

2.1 Model description

We consider anM×N array of local populations of neurons, each of which are homo-
geneous and densely connected by local circuitries. In addition, neurons in nearest
neighbor of local populations are connected. Each local population consists of NE

excitatory neurons and NI inhibitory neurons. We have the following assumptions
in order to describe activities of this population by a Markov process. The dynamics
in each local population follows the rule as given in Li et al. (2018). The interaction
between local populations only occurs between nearest neighbors.

• Themembrane potential of each neuron can only take finitelymany discrete values.
• The external inputs to neurons are in the form of independent Poisson processes.
The rate of Poisson kicks to all neurons of the same type in each local population
is a constant.

• A neuron spikes when its membrane potential reaches a given threshold. After a
spike, a neuron stays at a refractory state for an exponentially distributed amount
of time.

• When an excitatory (resp. inhibitory) spike occurs at a local population, a set
of postsynaptic neurons from this local population and its nearest neighbor local
populations are randomly chosen. After an exponenitally distributed random time,
the membrane potential of each chosen postsynaptic neuron goes up (resp. down).

More precisely, we consider M × N local populations {Lm,n} with m = 1, . . . ,M
and n = 1, . . . ,N. Lm,n and Lm′,n′ are considered to be nearest neighbors if and only
if |n − n′| = 1, m = m′ or |m − m′| = 1, n = n′. For each (m, n), denote the set of
indices of its nearest neighbor local populations by N (m, n). Each population Lm,n

consists of NE excitatory neurons, labeled as

(m, n, 1), (m, n, 2), . . . , (m, n, NE )

and NI inhibitory neurons, labeled as

(m, n, NE + 1), (m, n, NE + 2), . . . , (m, n, NE + NI ).

In other words, each neuron has a unique label (m, n, k). The membrane potential of
neuron (m, n, k), denoted V(m,n,k), takes value in a finite set
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� := {−�r ,−�r + 1, . . . ,−1, 0, 1, 2, . . . , �} ∪ {R},
where� and�r are two integers for the threshold potential and the inhibitory reversal
potential, respectively. When V(m,n,k) reaches �, the neuron fires a spike and resets
its membrane potential to R. After an exponentially distributed amount of time with
mean τR , V(m,n,k) leaves R and jumps to 0.

We first describe the external current that models the input from other parts of
the brain or the sensory input. As in Li et al. (2018), the external current received
by a neuron is modeled by a homogeneous Poisson process. The rate of this Poisson
process is identical for the same type of neurons in the same local population. Neurons
in different local populations receive different external inputs, whichmakes this model
spatially heterogeneous. More precisely, we assume the rate of such Poisson kick to an
excitatory (resp. inhibitory) neuron in local population Lm,n to be λE

m,n (resp. λI
m,n).

When a kick is received by a neuron (m, n, k) that is not at stateR, V(m,n,k) jumps up
by 1 immediately. If it reaches �, a spike is fired. Neurons at state R do not respond
to external kicks.

The rule of interactions among neurons is the following. We assume that a postsy-
naptic kick from an E (resp. I) neuron takes effect after an exponentially distributed
amount of time with mean τE (resp. τI ). To model this delay effect, we describe
the state of neuron (m, n, k) by a triplet (V(m,n,k), HE

(m,n,k), H
I
(m,n,k)), where HE

(m,n,k)

(resp. H I
(m,n,k)) denotes the number of received E (resp. I) postsynaptic kicks that has

not yet taken effect. Further, we assume that the delay of postsynaptic kicks are inde-
pendent. Therefore, two exponential clocks corresponding to excitatory and inhibitory
kicks are associated to each neuron, with rates HE

(m,n,k)τ
−1
E and H I

(m,n,k)τ
−1
I respec-

tively. When the clock corresponding to excitatory (resp. inhibitory) kicks rings, an
excitatory (resp. inhibitory) kick takes effect according to the rules described in the
following paragraph.

Let Q, Q′ ∈ {E, I }. When a postsynaptic kick from a neuron of type Q takes effect
at a neuron of type Q′ after the delay time as described above, the membrane potential
of the postsynaptic neuron, say neuron (m, n, k), jumps instantaneously by a constant
SQ′,Q if V(m,n,k) �= R. No change happens if V(m,n,k) = R. If after the jump we have
V(m,n,k) ≥ �, neuron (m, n, k) fires a spike and jumps to stateR. Same as in Li et al.
(2018), if constant SQ′,Q is not an integer, we let u be a Bernoulli random variable
with P[u = 1] = SQ′,Q − ⌊SQ′,Q

⌋
that is independent of all other random variables

in the model. Then the magnitude of the postsynaptic jump is set to be the random
number

⌊
SQ′,Q

⌋+ u.
It remains to describe the connectivity within and between local populations. We

assume that each local population is densely connected and homogeneous, while dif-
ferent local populations are heterogeneous in a way that the external currents are
different. For example, each local population can be thought as an orientation col-
umn in the primary visual cortex. Hence nearest-neighbor populations receive very
different external drives due to their different orientational preferences. Same as in
Li et al. (2018), the connectivity in our model is random and time-dependent. For
Q, Q′ ∈ {E, I }, we choose two parameters PQ,Q′ , ρQ,Q′ ∈ [0, 1] representing the
local and external connectivity, respectively. When a neuron of type Q′ in a local
population Lm,n fires a spike, every neuron of type Q in the local population Lm,n
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is postsynaptic with probability PQ,Q′ , while every neuron of type Q in the nearest-
neighbor populations Lm′,n′ receives this postsynaptic kick with probability ρQ,Q′ . In
other words, neurons of the same type in the same local population are assumed to be
exchangeable.

Comparing with the stochastic integrate-and-fire model introduced in Li et al.
(2018), one simplification we made is the independence of the strength of postsy-
naptic kicks on membrane potential. In the real brain, it is known that the reverse
potential of inhibitory neurons are much closer to the reset potential than its excitatory
counterpart. Hence the inhibition is stronger to neurons with higher membrane poten-
tial. Theoretically this should enhance MFEs, because inhibitory kicks tend to pack
non-firing neurons closer, which makes the next MFE larger. But our simulation found
that this is not the primary factor comparingwith the very sensitive dependence ofMFE
characteristics on synapse delay times τE and τI . We drop the voltage-dependency
on postsynaptic kicks because this can significantly simplify two qualitative models
proposed in Sect. 5 that aim to investigate the mechanism of MFEs.

2.2 Commonmodel parameters for simulations

Although our theoretical results are valid for all parameters, in numerical simulations
we will stick to the following set of parameters in order to be consistent with Li
et al. (2018). Throughout this paper, we assume that NE = 300, NI = 100 for
the size of local populations, � = 100, �r = 66 for thresholds, PEE = 0.15,
PI E = PE I = 0.5 and PI I = 0.4 for local connectivity. The connectivity to nearest
neighbors are assumed to be proportional to the corresponding local connectivity. We
set two parameters ratioE and ratioI and let ρQE = ratioE PQE , ρQI = ratioI PQI

for Q = I , E . Further, we assume that ratioI = 0.6ratioE as inhibitory neurons are
known to bemore “local”. Strengths of postsynaptic kicks are assumed to be SEE = 5,
SI E = 2, SE I = 3, and SI I = 3.5. The length of the refractory period is τR = 4ms.
Since AMPA synapses act faster than GABA synapses, in general τE is assumed to
be faster than τI . Values of τE and τI are two changing parameters that are used to
control the degree of synchrony of MFEs produced by the network. External drive
rates λE

m,n and λI
m,n are determined when describing examples with different spatial

structures.

3 Stochastic stability and law of large numbers

The aim of this section is to prove several probabilistic results of the model presented
in Sect. 2. Readers who are not interested in theoretical results can skip this section
and jump to Sect. 4. The stochastic stability theorem (Theorem 3.1) roughly follows
the same approach in our previous paper (Li et al. 2018). We include this result for
the sake of completeness of this paper. The law of large numbers for sample-path
dependent observables (Theorem 3.3) is new. As a corollary of law of large numbers,
we have well-defined and computable local and global firing rates, and the spike count
correlation between local populations.
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3.1 Stochastic stability

The neural field model described above generates a Markov jump process �t on a
countable state space

X = (� × Z+ × Z+)M×N×(NE+NI ).

By the stochastic stability, we mean the existence, uniqueness, and ergodicity of the
invariant measure for �t . Note that X has infinite many states. Hence the existence of
an invariant probability measure of �t is not guaranteed.

The state of a neuron (m, n, k) is given by the triplet (V(m,n,k), HE
(m,n,k), H

I
(m,n,k)),

where V(m,n,k) ∈ � and HE
i , H I

i ∈ Z+ := {0, 1, 2, . . .}. The transition probabilities
of �t are denoted by Pt (x, y), i.e.,

Pt (x, y) = P[�t = y | �0 = x].

If μ is a probability distribution on X, the left operator of Pt acting on μ is

μPt (x) =
∑

y∈X
μ(y)Pt (y, x).

Similarly, the right operator of Pt acting on a real-valued function η : X → R is

Ptη(x) =
∑

y∈X
Pt (x, y)η(y).

For any probability distribution μ and any real-valued function η on X, we take the
convention that

μ(η) =
∑

x∈X
η(x)μ(x).

Finally, if Z is an observable related to�t , throughout this sectionwe denote the condi-
tional expectation with respect to initial value (resp. initial distribution)E[Z | �0 = x]
(resp. E[Z | �0 ∼ μ]) by Ex[Z ] (resp. Eμ[Z ]).

Define the total number of pending excitatory (resp. inhibitory) kicks at a state
x ∈ X as

HE (x) =
M∑

m=1

N∑

n=1

NE+NI∑

k=1

HE
(m,n,k)

and

H I (x) =
M∑

m=1

N∑

n=1

NE+NI∑

k=1

H I
(m,n,k).
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LetU (x) = HE (x)+H I (x)+1. For any signed distributionμ on the Borel σ -algebra
of X, denoted by B(X), we define the U -weighted total variation norm to be

‖μ‖U =
∑

x∈X
U (x)|μ(x)|,

and let

LU (X) = {μ on X | ‖μ‖U < ∞}.

In addition, for any function η(x) on X, we let

sup
x∈X

|η(x)|
U (x)

be the U -weighted supreme norm.

Theorem 3.1 �t admits a unique invariant probability distribution π ∈ LU (X). In
addition, there exist constants C1, C2 > 0 and r ∈ (0, 1) such that

• (a) for any initial distribution μ, ν ∈ LU (X),

‖μPt − νPt‖U ≤ C1r
t‖μ − ν‖U ;

• (b) for any function η with ‖η‖U < ∞,

‖Ptη − π(η)‖U ≤ C2r
t‖η − π(η)‖U .

Theorem 3.1 also implies the exponential decay of correlation. Let ξ and η be
two observables on X and μ be a probability distribution on X. The time correlation
function of ξ and η with respect to μ is defined as

Cμ
ξ,η =

∑

x∈X
(Ptη)(x)ξ(x)μ(x) −

(
∑

x∈X
(Ptη)(x)μ(x)

)(
∑

x∈X
ξ(x)μ(x)

)

.

The following corollary holds.

Corollary 3.2 Let μ ∈ LU (X) and ξ , η be two functions on X such that ‖ξ‖∞ < ∞
and ‖η‖U < ∞. Then

|Cμ
ξ,η(t)| ≤ 2C1‖ξ‖∞‖η‖U‖μ‖Urt ,

where constants C1 < ∞ and r ∈ (0, 1) are from Theorem 3.1.
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3.2 Law of large numbers

Let t2 > t1 ≥ 0 be two arbitrary times. A function Y is said to be a sample-path
dependent observable on [t1, t2) if it maps a sample path of �t between t1 and t2 to a
real number. In other words, Y is a function from CX([t1, t2)) toR, where CX([t1, t2))
is the collection of càdlàg paths from t1 to t2 onX. A sample-path dependent observable
is said to beMarkov if its law only depends on the initial value�t1 . Obvious examples
of sample-path dependent observables is the number of visits of �t to a given set A
during a time span [t1, t2).

Let T > 0 be a given time window size. Let Y1,Y2, . . . ,Yn, . . . be a sequence of
sample-path dependent observables on [0, T ), [T , 2T ), . . . , [(n − 1)T , nT ) respec-
tively. Define

Eπ [Y1] = E[Y ({�t |0 ≤ t < T }) | �0 ∼ π ]

as the expectation of Y1 with respect to the invariant probability measure.
The following law of large numbers holds for any sequence of Markov sample-path

dependent observables with finite moments.

Theorem 3.3 Let Y1,Y2, . . . ,Yn, . . . be a sequence of Markov sample-path dependent
observables of �t on [0, T ), [T , 2T ), . . . , [(n − 1)T , nT ), . . .. Assume there exists
M < ∞ such that E[Y 2

k | �(k−1)T = x] < M for any x ∈ X. Then

lim
N→∞

1

N

N∑

n=1

Yn = Eπ [Y1]

almost surely.

Theorem 3.3 guarantees that the local/global firing rate and the spike count correla-
tion between local populations are well defined and computable. Let Lm,n be a given
local population. For Q ∈ {E, I }, let NQ

(m,n)([a, b]) be the number of neuron spikes
fired by type Q neurons in Lm,n on the time interval [a, b]. As discussed in Li et al.
(2018), the mean firing rate of the local population (m, n) is defined to be

FQ
m,n = 1

t
Eπ [NQ

(m,n)([0, t))],

where Eπ is the expectation with respect to the invariant probability measure π . This
definition is independent of t by the invariance of π .

Let T be a fixed time window size, for Q1, Q2 ∈ {E, I }, we can further define
the covariance of spike count between Q1-population in Lm,n and Q2-population in
Lm′,n′ as

covQ1,Q2
T (m, n;m′, n′)=Eπ [NQ1

(m,n)([0, T ))NQ2
(m′,n′)([0, T ))]−T 2NQ1NQ2F

Q1
m,n F

Q2
m′,n′ .
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The Pearson correlation coefficient of spike count can be defined similarly. For
Q1-population in Lm,n and Q2-population in Lm′,n′ , we have

ρ
Q1,Q2
T (m, n;m′, n′) = covQ1,Q2

T (m, n;m′, n′)
σ
Q1
T (m, n)σ

Q2
T (m′, n′)

,

where

σ
Q
T (m, n) =

√
varπ (NQ

(m,n)([0, T )))

for Q ∈ {E, I }.
One can also consider the correlation of the total spike count between two local

populations. Let N(m,n)([0, T )) be the total number of excitatory and inhibitory spikes
produced by Lm,n on [0, T ) when starting from the steady state. Then the correlation
covT (m, n;m′, n′) and the Pearson correlation coefficient ρT (m, n;m′, n′) can be
defined analogously.

The following corollaries imply that the mean firing rate and the spike count cor-
relation are computable.

Corollary 3.4 For Q ∈ {E, I }, 1 ≤ m ≤ M, and 1 ≤ n ≤ N, the local firing rate
FQ
m,n < ∞. In addition, for any initial value x ∈ X,

lim
t→∞

NQ
(m,n)([0, t))

NQt
= FQ

(m,n)

almost surely.

Corollary 3.5 For Q1, Q2 ∈ {E, I }, 1 ≤ m,m′ ≤ M, and 1 ≤ n, n′ ≤ N, the
covariance covQ1,Q2

T (m, n;m′, n′) < ∞. In addition, for any initial value x ∈ X,

lim
K→∞

1

K

K−1∑

k=0

NQ1
(m,n)([kT , (k + 1)T ))NQ2

(m′,n′)([kT , (k + 1)T )) = Eπ

[
NQ1

(m,n)([0, T ))NQ2
(m′,n′)([0, T ))

]

almost surely. In other words covQ1,Q2
T (m, n;m′, n′) is computable.

Corollary 3.6 For 1 ≤ m,m′ ≤ M, and 1 ≤ n, n′ ≤ N, the covariance
covT (m, n;m′, n′) < ∞. In addition, for any initial value x ∈ X,

lim
K→∞

1

K

K−1∑

k=0

N(m,n)([kT , (k + 1)T ])N(m′,n′)([kT , (k + 1)T )) = Eπ

[
N(m,n)([0, T ])N(m′,n′)([0, T ])]

almost surely. In other words covT (m, n;m′, n′) is computable.
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It follows from Corollaries 3.4–3.6 that the Pearson correlation coefficient
ρ
Q1,Q2
T (m, n;m′, n′) (resp. ρT (m, n;m′, n′)) is also computable, as the standard devi-

ation σ
Q
T (m, n) (resp. σT (m, n)) is a special case of the square root of the covariance

covQ1,Q2
T (m, n;m′, n′) (resp. covT (m, n;m′, n′)).

3.3 Probabilistic preliminaries

Let 
n be a Markov chain on a countable state space (X ,B) with a transition kernel
P(x, ·). Let W : X → [1,∞) be a real-valued function. Assume 
n satisfies the
following conditions.

(a) There exist constants K ≥ 0 and γ ∈ (0, 1) such that

(PW )(x) ≤ γW (x) + K

for all x ∈ X .
(b) There exists a constant α ∈ (0, 1) and a probability distribution ν on X so that

inf
x∈C P(x, ·) ≥ αν(·),

with C = {x ∈ X |W (x) ≤ R} for some R > 2K/(1 − γ ), where K and γ are
from (a).

Then the following result follows from Hairer and Mattingly (2011).

Theorem 3.7 Assume (a) and (b). Then 
n admits a unique invariant probability
measure π ∈ LW (X). In addition, there exist constants C,C ′ > 0 and ρ ∈ (0, 1)
such that (i) for all μ, ν ∈ LW (X),

‖μPn − νPn‖W ≤ Cρn‖μ − ν‖W ,

and (ii) for all ξ with ‖ξ‖W < ∞,

‖Pnξ − π(ξ)‖W ≤ C ′ρn‖ξ − π(ξ)‖W .

The following result was proved in Meyn and Tweedie (2009) and Hairer and
Mattingly (2011) using different methods. Note that the original result in Hairer and
Mattingly (2011), Meyn and Tweedie (2009) is for a generic measurable state space.
The result applies to countable state space with the Borel σ -algebra (which is essen-
tially the discrete σ -algebra). There is no additional assumption about W besides
measurability. But assumption (a) basically means W is a Lyapunov function when
its value is large enough. A heuristic interpretation of Theorem 3.7 is that the Markov
chain is drifted to the “bottom” of a Lyapunov functionW . Then assumption (b) guar-
antees independent trajectories of 
n can couple with a strictly positive probability.
This is usually called the coupling approach. See Hairer (2010) for the full detail.
Comparing with spectrum methods, the advantage of this coupling approach is that
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the stochastic stability can be proved under much weaker assumptions. However, the
coupling approach usually only guarantees exponential speed of convergence at some
rate. It is difficult to relate this exponential rate, e.g., r in Theorem 3.1, to model
parameters.

We also need the following law of large numbers formartingale difference sequence
to prove Theorem 3.3. Let Fn be a filtration on a probability space �. A sequence of
random variables Xn is said to be a martingale difference sequence if E[|Xn|] < ∞
and E[Xn |Fn−1] = 0.

Theorem 3.8 (Theorem 3.3.1 of Stout 1974) Let Xn be a martingale difference
sequence with respect to Fn. If

∞∑

n=1

E[|Xn|2]
n2

< ∞,

then

1

N

N∑

n=1

Xn → 0 a.s.

3.4 Proof of results

For a step size h > 0 that will be described later, we define the time-h sample chain
as �h

n = �nh . The superscript h is dropped when it leads to no confusion. Recall that
U (x) = HE (x) + H I (x) + 1. The following two lemmas verify conditions (a) and
(b) for Theorem 3.7.

Lemma 3.9 For h > 0 sufficiently small, there exist constants K > 0 and γ ∈ (0, 1),
such that

PhU ≤ γU + K .

Proof During (0, h], let Nout be the number of pending kicks from HE (x) and H I (x)
that takes effect and Nin be the number of new spikes produced. We have

PhU (x) = Ex[U (�h)] = U (x) − Ex[Nout ] + Ex[Nin].

The probability that an excitatory (resp. inhibitory) pending kick takes effect on
(0, h] is (1 − e−h/τ E

) (resp. (1 − e−h/τ I
)). Hence for h sufficiently small, we have

Ex[Nout ] ≥ (HE (x) + H I (x))(1 − e−h/max{τ E ,τ I }) ≥ 1

2max{τ E , τ I } h (U (x) − 1).

For a neuron (m, n, k), after each spike it spends an exponentially distributed ran-
dom time with mean τR at state R. Hence the number of spikes produced by neuron
(m, n, k) is at most

1 + E[Pois(h/τR)] = 1 + h/τR,
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where Pois(λ) is a Poisson random variable with rate λ. Hence

Ex[Nin] ≤ MN(NE + NI ) · (1 + h/τR).

The proof is completed by letting

γ = 1 − h/(2max{τ E , τ I }) and K = MN(NE + NI ) · (1 + h/τR) + h

2max{τ E , τ I } .

�

For b ∈ Z+, let

Cb = {x ∈ X|HE (x) + H I (x) ≤ b}.

Lemma 3.10 Let x0 be the state that H E = H I = 0 and V(m,n,k) = R for all
1 ≤ m ≤ M, 1 ≤ n ≤ N, and 1 ≤ k ≤ NE + NI . Then for any h > 0, there exists a
constant δ = δ(b, h) depending on b such that there exists a constant c > 0 depending
on b and h such that,

Ph(x, x0) > c for all x ∈ Cb

Proof For each x ∈ Cb, it is sufficient to construct an event that moves from x to x0
with a uniform positive probability. Below is one of many possible constructions.

(i) On (0, h/2], a sequence of external Poisson kicks drives each V(m,n,k) to the
threshold value �, hence puts V(m,n,k) = R. Once at R, V(m,n,k) remains there
before t = h. In addition, no pending kicks take effect on (0, h/2].

(ii) All pending kicks at state x take effect on (h/2, h]. Obviously this has no effect
on membrane potentials.

Since b is bounded, the number of pending kicks is less than b+MN(NE + NI ) <

∞. It is easy to see that this event happens with positive probability. �

Lemmas 3.9 and 3.10 together imply Theorem 3.1.

Proof of Theorem 3.1 The proof of Theorem 3.1 is identical to that of Theorem 2.1 in
Li et al. (2018). We need to carry out the following three steps.

(i) Choose the step size h as inLemma3.9.ApplyLemmas3.9, 3.10, andTheorem3.7
to show that �h admits a unique invariant probability distribution πh in LU (X).
Note that X is countable so there is no need to check the measurability condition
in Theorem 3.7 (b).

(ii) Show that �t satisfies the “continuity at zero” condition. For any probability
distributionμ onX, limt→0 ‖μPt −μ‖T V = 0, where ‖·‖T V is the total variation
norm.

(iii) Use the “continuity at zero” condition and the fact that Q is dense in R to show
that πh must be invariant for Pt . Then show that the convergence result still holds
for �t .
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We refer the proof of Theorem 2.1 in Li et al. (2018) for full details. �

Proof of Corollary 3.2 It is easy to see that

|Cμ
ξ,η(t)| =

∑

x∈X
ξ(x)

(

(Ptη)(x) −
∑

x∈X
(Ptη)(x)μ(x)

)

μ(x)

≤ ‖ξ‖∞
∑

x∈X

(
∑

x∈X
|η|(x)|δxPt − μPt |(x)

)

μ(x)

≤ ‖ξ‖∞‖η‖U
∑

x∈X

(
∑

x∈X
U (x)|δxPt − μPt |(x)

)

μ(x)

= ‖ξ‖∞‖η‖U
∑

x∈X
‖δxPt − μPt‖Uμ(x).

Then by Theorem 3.1, we have

|Cμ
ξ,η(t)| ≤ ‖ξ‖∞‖η‖UC1r

t ·
∑

x∈X
‖δx − μ‖Uμ(x)

≤ ‖ξ‖∞‖η‖UC1r
t ·
∑

x∈X
(U (x) + ‖μ‖U )μ(x)

= 2C1‖ξ‖∞‖η‖U‖μ‖Urt .

This completes the proof. �

Proof of Theorem 3.3 Since Y1,Y2, . . . ,Yn, . . . are Markov sample-path dependent
observables, Ex[Yn] only depends on �(n−1)T . Denote Zn = E[Yn | �(n−1)T ] for
n ≥ 1. It is easy to see that Zn is a deterministic function about �(n−1)T .

Let Fn be the σ -field generated by {�0,�T , . . . , �nT }. Let Wn = Yn − Zn .
Then Wn is a martingale difference sequence because E[Wn |Fn−1] = 0. Since
E[W 2

n | �(n−1)T ] < E[Y 2
n | �(n−1)T ] < M uniformly, we have the uniform bound

∞∑

n=1

E[W 2
n ]

n2
≤ Mπ2

6
< ∞.

By Theorem 3.8, we have

lim
N→∞

1

N

N∑

n=1

Wn = 0

almost surely.
Recall that Zn is a deterministic function of �(n−1)T . By theorem 3.1, �t admits a

unique invariant probability measure π . In addition, π is the ergodic invariant prob-
ability measure of the time-T sample chain �T

n . Apply the law of large numbers for
Markov process to �T

n and Zn , we have
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lim
N→∞

1

N

N∑

n=1

Zn = Eπ [Z1]

almost surely. By the law of total expectation, Eπ [Z1] = Eπ [Y1].
Combine two limits, we have

lim
N→∞

1

N

N∑

n=1

Yn = Eπ [Y1].

This completes the proof. �

Proof of Corollary 3.4 By the invariance of π , for any local population Lm,n and any
Q ∈ {E, I }, we have

FQ
m,n = Eπ [NQ

(m,n)([0, 1))].

For every x ∈ X we have

Ex[NQ
m,n([0, 1))] ≤ NQ(1 + E[ Pois(1/τR)]) = NQ(1 + 1/τR).

Thus FQ
m,n = Eπ [NQ

(m,n)([0, 1))] < ∞.

It remains to prove the law of large number. Since Ex[NQ
m,n([0, 1))] is bounded

independent of x, it is sufficient to prove

lim
K→∞

NQ
(m,n)([0, K ))

NQK
= FQ

(m,n)

almost surely for integers K . Define the mean spike count in a unit time interval by

Yn = 1

NQ
NQ

(m,n)([n − 1, n)).

It is easy to see that Yn is aMarkov sample-path dependent observable because the dis-
tribution of Yn only depends on the initial state�(n−1)T . In addition, for any�(n−1)T ,

E[Y 2
n | �(n−1)T ] ≤ E[(1 + Pois(1/τR))2] < ∞

uniformly. Corollary 3.4 then follows from Theorem 3.3. �

Proof of Corollary 3.5 The boundedness is similar as that in the proof of Corollary 3.4.
For every x ∈ X we have the uniform bound

Ex[NQ1
m,n([0, T ))NQ2

m′,n′([0, T ))] ≤ NQ1NQ2(1 + E[ Pois(T /τR)])2 < ∞.
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Combine with Corollary 3.4 that the mean firing rate is bounded, it is easy to see that
covQ1Q2

T (m, n;m′, n′) must be finite.
For the law of large numbers, define a sequence Yk, k ≥ 1 such that

Yk = NQ1
(m,n)([(k − 1)T , kT ))NQ2

(m′,n′)([(k − 1)T , kT )).

By Hölder’s inequality, we have

E[|Yk |2 | �(n−1)T ] ≤E
[
(NQ1

(m,n)([(k−1)T , kT )))4 | �(n−1)T
]1/2

E
[
(NQ2

(m′,n′)([(k−1)T , kT )))4 | �(n−1)T
]1/2

.

Same as before, we have uniform bounds

E

[
(NQ1

(m,n)([kT , (k + 1)T )))4 | �(n−1)T

]
≤ E

[(
1 + Pois

(
T

τR

))4]

< ∞

and

E

[
(NQ2

(m′,n;)([kT , (k + 1)T )))4 | �(n−1)T

]
≤ E

[(
1 + Pois

(
T

τR

))4]

< ∞.

The proof is then completed by applying Theorem 3.3. �

The proof of Corollary 3.6 is identical to that of Corollary 3.5. We leave the detail

to the reader.

4 Numerical examples with different spiking patterns

As introduced before, the neural field model �t can produce semi-synchronous spike
volleys, called the multiple-firing events (MFEs). Because of the spatial heterogeneity
of �t , patterns of MFEs produced by �t consist of two factors: the degree of local
synchrony and the spatial correlation. By adjusting parameters, we can change not
only the degree of synchrony of MFEs within a local population, but also the spike
count correlation between MFEs produced by two local populations. As mentioned
in the introduction, these local and global MFE patterns are emergent from network
activities. One goal of this paper is to interpret how these emergent patterns arise from
the interaction of neurons. It is not practical to test all possible parameters. In this
section, we demonstrate five representative network examples corresponding to five
different local and global MFE patterns.

4.1 Parameters of example networks

Wewill use common parameters prescribed in Sect. 2.2. In addition, we useN = M =
3 in all five examples. For the sake of simplicity, 9 populations are label as 1, 2, . . . , 9
from upper left corner to lower right corner. In order to have heterogeneous external
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drive rates, we assume that λE
m,n = λI

m,n = λEven if (n − 1)M + m is even, and
λE
m,n = λI

m,n = ζλEven if (n − 1)M + m is odd. This alternating external drive rates
mimic the sensory input to the visual cortex if a local population models an orientation
column. The main varying parameters in our numerical examples are the strength
of nearest-neighbor connectivity ratioE , the ratio of external drive rates in nearest
neighbors ζ , and the synapse delay time τE , τI after the occurrence of a spike. We first
follow the idea of Li et al. (2018) to produce three examples with “homogeneous”,
“regular”, and “synchronized” patterns respectively by varying the synapse delay time.
Then we change ratioE and external drive rates for the “regular” network to produce
two more examples with different global synchrony. As in Li et al. (2018), we replace
a single τ E by two synapse times τ EE and τ I E to denote the expected delay times after
an excitatory spike takes effect in excitatory and inhibitory neurons, respectively. The
network characterization, the notation, and parameters of each example is presented
in the following table.

Notation Network characterization τEE (ms) τI E (ms) τI (ms) ratioE ζ

HOM “Homogeneous” neural field 4 1.2 4.5 0.1 11/12
SYN Synchronized neural field 0.9 0.9 4.5 0.15 11/12
REG1 “Regular” neural field. Weak nearest

neighbor connectivity. Low
fluctuation in external drive.

1.6 1.2 ms 4.5 0.05 11/12

REG2 “Regular” neural field. Strong
nearest neighbor connectivity. Low
fluctuation in external drive.

1.6 1.2 4.5 0.15 11/12

REG3 “Regular” neural field. Strong
nearest neighbor connectivity. High
fluctuation in external drive.

1.6 1.2 4.5 0.15 1/2

4.2 Statistics and raster plots of example networks

We first present mean firing rates of the five example networks. Mean firing rates of
the central local population L(2,2) under different external drive rates are plotted in
Fig. 1. The firing rate plot is consistent with that studied in Li et al. (2018).

The detailed spiking pattern is a more interesting subject. We can see that the
raster plots generated by networks HOM and SYN are not very different from what
we have presented in Li et al. (2018). In the HOM network, the spike train is quite
homogeneous and MFEs are not very prominent. The SYN network produces almost
synchronized MFEs in all local populations. Since in these two networks the spiking
pattern has no significant difference across local populations, we only show the raster
plot of the central local population L2,2 in Fig. 2.

The threeREG networks exhibit clear spatial heterogeneities. Different spike count
correlations among different local populations are observed when parameters change.
With higher ratioE (ratioE = 0.15), MFEs in all 9 blocks are quite correlated (Fig. 3
middle panel). When ratioE = 0.05, much less correlation among MFEs is seen.

123



Stochastic neural field model: multiple firing events and…

Fig. 1 Mean firing rate at the central local population verses λEven for all five networks. The drive rate at
even-indexed local populations increases from λEven = 1000 to 8000 spikes/s

And the raster plot also looks less synchronized (Fig. 3 left panel). If the long range
connectivity remains ratioE = 0.15 but we drive odd-indexed local populations only
half strong as even-indexed local populations, the correlation among MFEs appears
to be between the previous two cases (Fig. 3 right panel). From the three raster plots
presented in Fig. 3, we can conclude that both stronger long range connectivity and
more homogeneous drive rate contribute to stronger correlations of MFEs among
different local populations. A natural question is how such correlated spiking activity
changes when two local populations that are further apart. We will extensively study
this issue in Sect. 6.

5 Mechanism of multiple firing events

The raster plots in Figs. 2 and 3 clearly demonstrate multiple firing events (MFEs)
within local populations. As described before, in an MFE a proportion of the popu-
lation, but not all of them, fire a spike in a relatively short time window. The spiking
pattern of MFEs observed in our paper is consistent with earlier numerical results in
Chariker and Young (2015), Rangan and Young (2013a, b). The heuristic reason of the
occurrence of MFEs is quite straightforward. AnMFE is a milder version of the PING
mechanism (Börgers and Kopell 2003). Inhibitory (GABAergic) synapses in a popu-
lation usually act a few milliseconds more slowly than excitatory (AMPA) synapses.
As a result, an excitatory spike excites many postsynaptic neurons quickly and forms
a cascade, which will be terminated when the pending inhibitory kicks take effect.
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Fig. 2 Raster plot of the central local population of SYN andHOM networks. The drive rate at even-indexed
local populations is λEven = 6000 spikes/s. The index of neuron (m, n, k) is [(n−1)M+m](NE +NI )+k

However, very limited mathematical justification is available so far. Early works that
attempt to investigate the mechanism of MFEs usually assume that a synapse takes
effect instantaneously without a delay (Newhall et al. 2010; Zhang et al. 2014a, b). It
makes the analysis easier but ignore the significant dependence of MFEs on synapse
delay times. It was numerically shown later that strength of MFEs is extremely sensi-
tive with respect to small changes of the synapse delay times τE and τI (Chariker and
Young 2015; Li et al. 2018). Hence it is necessary to incorporate more details into the
modeling and treat the excitatory-inhibitory interplay during an MFE as a dynamical
process.

This section is devoted to the study of possible mechanism of MFEs in one
local population. Two qualitative models are proposed to depict a caricature of the
excitatory-inhibitory interactions during an MFE. We will apply results in this section
to study the mechanism of spatial correlation of MFEs in our neural field model.

5.1 The SIRmodel

The mechanism of an MFE in a local population is a dynamical process that lasts only
a fewmilliseconds. The excitatory neurons stimulate each other and form an avalanche
of spikes. Many inhibitory spikes are also induced by these excitatory spikes, which
eventually act on the excitatory population and terminate the avalanche.

In this subsection, we propose an SIR disease model for a qualitative description
of the excitatory-inhibitory interaction during an MFE. The heuristic description is
as follows. When an excitatory spike is fired but has not yet affected its postsynaptic
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Fig. 3 Raster plot of the full population of three REG networks. The drive rate at even-indexed local
populations is λEven = 6000 spikes/s. The index of neuron (m, n, k) is [(n − 1)M + m](NE + NI ) + k

neurons, it is like an “infected patient” (I) of a disease. If a neuron has high membrane
potential such that it can reach the threshold after receiving an excitatory kick, it is
labeled as “susceptible” (S). Further, after a spike is fired, the neuron reaches the
refractory state, becomes “recovered” (R) and is immuned from further “infections”.
Therefore, the interplay of excitatory and inhibitory populations largely mimics an
SIR disease model.

The main changing parameters in our SIR model are τE and τI . Other parameters
like NE , NI , SEE , .etc are same as in the network model. This system contains six
variables GE ,GI , HE , HI , RE , and RI . Variables GE and GI are the numbers of
excitatory and inhibitory neurons that are located in the “gate area”, which means their
membrane potentials lie within one excitatory spike from the threshold. We denote the
set of neurons in this “gate area” by GE and GI when it does not lead to confusions.
GE and GI correspond to “susceptible population” in the SIR model. Variables HE

and HI are the “effective number” of excitatory and inhibitory neuronswho just spiked
but the spikes have not taken effects yet. If, for example, 50% of postsynaptic kicks
from a neuron spike have already taken effects, the “effective number” of this pending
kick is 0.5. HE and HI play the role of “infected people” in the SIRmodel. Finally, RE

and RI are the number of excitatory and inhibitory neurons that are at refractory, or
the “recovered” population in the SIRmodel. Since we only study the dynamics of one
MFE, we assume that a neuron stays atR after a spike. Let cE , cI be two parameters
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that will be described later. The following dynamical system describes time evolution
of HE , HI ,GE ,GI , RE , and RI during an MFE.

dHE

dt
= −τ−1

E HE + τ−1
E PEE HEGE + λE

SEE
GE

dGE

dt
= cE max

{
τ−1
E PEE SEE HE + λE − τ−1

I PE I SE I HI , 0
}

· (NE − GE − RE )

− τ−1
I PE I max

{
SE I

SEE
, 1

}
HIGE −

(
τ−1
E PEE HE + λE

SEE

)
GE

dRE

dt
= τ−1

E PEE HEGE + λE

SEE
GE

dHI

dt
= −τ−1

I HI + τ−1
E PI E HEGI + λI

SI E
GI

dGI

dt
= cI max

{
τ−1
E PI E SI E HE + λI − τ−1

I PI I SI I HI , 0
}

· (NI − GI − RI )

− τ−1
I PI I max

{
SI I
SI E

, 1

}
HIGI −

(
τ−1
E PI E HE + λI

SI E

)
GI

dRI

dt
= τ−1

E PI E HEGI + λI

SI E
GI

(5.1)

We emphasis that the aim of this SIR model is to qualitatively describe the excitatory-
inhibitory interplay, instead of making any precise predictions. Some parameters in this
model are difficult to calculate. The first equation in (5.1) describes the rate of change of
HE , which decreases with rate τ−1

E . The source of input to HE is neurons in the “gate area”
GE . We assume that neurons in GE have uniformly distributed membrane potentials. The
second equation describes the rate of change of GE . The source of GE is neurons that
are not at GE or RE . We assume that the upward drift of GE is proportional to both the
number of relevant neurons and the net current, if the net current is positive. We denote the
coefficient of this proportion by parameter cE . The downward drift ofGE comes from both
spiking neurons that receive excitatory kicks and neurons dropping below the “gate area”
when receiving inhibitory input. This is represented by the last two terms in the second
equation in (5.1). The third equation in (5.1) is about RE , whose increase rate equals the
rate of producing new spikes. The case of inhibitory neurons is analogous, represented by
the last three equations in (5.1) about HI ,GI , RI , where the parameter cI stands for the
coefficient of net current for inhibitory neurons.

The most salient feature of this SIR system is its very sensitive dependence of MFE
sizes on τE and τI . When τI is much larger than τE , one can expect larger MFE sizes
for both populations. This is demonstrated in Fig. 4. We assume that τE = 2 ms and plot
the mean MFE size with varying τI . The initial condition is HE = 0,GE = 20, RE =
0, HI = 0,GI = 5, and RI = 0. We showed three cases with varying drive rates, where
λE = λI = 0, 2000, and 4000. The sizes of MFE produced by excitatory and inhibitory
populations are RE (T ) and RI (T ) respectively, where T is the minimum of 20 ms and
the first local minimum of HE (t). The reason of looking for the local minimum is because
when the network is driven, this ODE model might generate a “second wave” after the
first MFE. Figure 4 confirms two observations in our simulation results of the full network
model. First, MFE sizes of both excitatory and inhibitory populations increase quickly
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Fig. 4 Event size versus τI in one local population

with larger τI . Secondly, the network tends to produce bigger MFEs when it is strongly
driven by external signals. These observations are consistent with numerical results of the
network model.

In the limiting senario when τ−1
I is very small, we have the following theorem.

Theorem 5.1 Assume τE = 1, λE = λI = 0. Let δE = cE SEE , δI = cE SI E , m =
min{δE , PEE },

α = PEE N
2
Ee

−NEm,

and

β = NI

(
e−δI NE + e−PI E NE

)
.

Assume NE > m. Let the initial condition be (H0, 0, 0, 0, 0, 0) for H0 > α. Then there
exist constants C and T , such that when τI > C and t > T , we have RE (t) > NE − α

and RI (t) > NI − β.

Proof Let δE = cE SEE PEE , δI = cE SI E PI E , τE = 0, τE = 1, τI = ∞, and λE = λI =
0. Let (H0, 0, 0, 0, 0, 0) be the initial condition. Then the ODE system becomes

dHE

dt
= −HE + PEE HEGE

dGE

dt
= δE HE (NE − GE − RE ) − PEE HEGE

dRE

dt
= PEE HEGE

dHI

dt
= −HI + PI E HEGI

dGI

dt
= δI HE (NI − GI − RI ) − PI E HEGI
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dRI

dt
= PI E HEGI .

Let uE = GE + RE and vE = HE − RE , we have

dHE

dt
= −HE + PEE HE (uE + vE − HE )

duE

dt
= δE HE (NE − uE )

dvE
dt

= −HE ,

with HE (0) = vE (0) = H0 and uE (0) = 0. Divide duE/dt by dvE/dt , we have

duE

dvE
= δE (uE − NE ), uE (H0) = 0.

Solving this initial value problem, one obtains

uE (vE ) = NE (1 − eδE (vE−H0)).

Similarly, divide dHE/dt by dvE/dt , we have

dHE

dvE
= 1 − PEE (uE + vE − HE ), HE (H0) = H0.

This is a first order linear equation. The solution is

HE (vE ) = NE + vE + NE

δE − PEE

(
PEEe

δE (vE−H0) − δEe
PEE (vE−H0)

)
.

Therefore, equation

dvE
dt

= −HE (vE ), vE (0) = H0

becomes an autonomous equation. Let −R∗ be the greatest root of HE (vE ) that is less
than H0. It is easy to check that R∗

E < NE . Hence as t → ∞ we have vE (t) → R∗. This
implies HE (t) → 0 and RE (t) → R∗ as t → ∞.

It remains to estimate R∗. We have

HE (−NE ) ≤ NE

δE − PEE

(
PEEe

δE (−NE−H0) − δEe
(−NE−H0)

)
< 0.

On the other hand, let A = NE + H0 − α, we have

HE (−NE + α) = α + NEe
−PEE A + PEE NE

δE − PEE
(e−δE A − e−PEE A).
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By the mean value theorem, we have

HE (−NE + α) ≥ α + NEe
−PEE A − PEE NE Ae

−Am,

where m = min{δE , PEE }. Since A > NE by the assumption of the theorem, we have

HE (−NE + α) ≥ α − PEE N
2
Ee

−mNE > 0

provided NEm > 1. By the intermediate value theorem, R∗ must be between NE and
NE − α. This implies RE (∞) = R∗ > NE − α.

It remains to check RI (∞). Let B = R∗ + H0. Recall that we have

uE (∞) = NE (1 − e−δE B).

On the other hand, if we treat HE (t) as a time-dependent variable, we have

uE (∞) = NE

(
1 − e−δE

∫∞
0 HE (s)ds

)
.

This implies

∫ ∞

0
HE (s)ds = B.

Now let uI = RI + GI , we have

duI

dt
= λI HE (t)(NI − uI ),

which is again a separable equation. This implies

uI (∞) = NI (1 − e−δI B).

Finally, we have

dGI

dt
= duI

dt
− PI E HEGI ,

which is a first order linear equation. Consider the initial condition GI (0) = uI (0) = 0,
we have

ePI E
∫∞
0 HE (s)dsG I (∞) = uI (∞).

Therefore, we have

RI (∞) = NI − NI e
−δI B − e−PI E B NI (1 − e−δI B) > NI − NI (e

−δI B + e−PI E B).
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Since B = R∗ + H0 > NE − α + H0 > NE , we have

RI (∞) ≥ NI − NI (e
−δI NE + e−PI E NE ) = NI − β.

The theorem then follows by the definition of limit and the continuous dependency of the
solution on parameters. �


Theorem5.1 implies that as long as τI is sufficiently large, even if without external drive,
most neuronswill eventually spike provided that there are enough pending excitatory spikes
in the beginning. Note that m is typically not a very small number (≈ 0.1 in our case).
Hence α and β are both very small numbers.

Needless to say, this theoretical result only describes the limit senario in which τI is
extremely slow. Usually much stronger assumptions are needed to prove theorems rig-
orously. In the real brain, GABA is only a few milliseconds slower than AMPA. Hence
a more realistic τI is only 2–3 times larger than τE . Theorem 5.1 should be interpreted
together with the continuous dependency on parameters of ordinary differential equations.
When τI is very large, almost all neurons participate in an MFE. And obviously only a
few neurons have chance to spike if τI is much smaller than τE . Then because of the con-
tinuous dependency on parameters, there must exists a pair of (τE , τI ) that can produce
desired MFE size in the SIR model above. Our simulation shows that in practice, when
τI is about 5 times larger than τE , an MFE is close to a fully synchronized spike volley
(network SYNC). And moderate sizedMFE are produced when τI is 2–3 times larger than
τE (network REG1 ∼ 3).

5.2 The branching process model

The SIR model describes the trend of pending number of spikes during an MFE, but not
its stochastic properties. However, later we will see that the fluctuation of MFE sizes plays
a significant role in the mechanism of spatial correlation decay. In this subsection, we
introduce another qualitative process that aims to depict a caricature of an MFE from a
probabilistic point of view.

Consider two integer-valued processes with a “switch” (Y E
t , Y I

t , St ) that describes the
pending excitatory spikes, pending inhibitory spikes, and the value of the “switch”, respec-
tively. St = 1means the switch is on, and anMFE is running. A random clock is associated
with the switch when it is on, whose ringing time is a random variable � that is inde-
pendent of Y E

t and Y I
t . The switch is turned off when either (1) this clock rings or (2)

Y E
t or Y I

t is greater than or equal to NE or NI , respectively. In other words, � repre-
sents the arrival time of inhibitory flux generated by the network. In this subsection we
further assume that T is an exponential random variable with mean aτI , where a is a
constant.

When the switch is on, Y E
t (resp. Y I

t ) evolves according to the following rules. For
0 < h � 1,

Y E
t+h =

{
Y E
t + i − 1 with probability Y E

t τ−1
E pEi · h + o(h)

Y E
t with probability 1 − Y E

t τ−1
E · h + o(h)
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(resp.

Y I
t+h =

⎧
⎪⎪⎨

⎪⎪⎩

Y I
t + i with probability Y E

t τ−1
E pIi · h + o(h)

Y I
t − 1 with probability Y I

t τ−1
I · h + o(h)

Y I
t with probability 1 − (Y E

t τ−1
E + Y I

t τ−1
I ) · h + o(h)

)
for i = 0, 1, . . . , NE (resp. i = 0, 1, . . . , NI ), where pEi (resp. pIi ) is the probability

that a binomial distribution B(NE , δE ) (resp. B(NI , δI )) equals i , and δE , δI are twomodel
parameters. In other words Y E

t is a continuous-time Galton–Watson branching process,
while Y I

t is driven by Y E
t .

If the switch is off, the reproduction is stopped and the time evolution of Y E
t (resp. Y I

t )
becomes

Y E
t+h =

{
Y E
t − 1 with probability Y E

t τ−1
E · h + o(h)

Y E
t with probability 1 − Y E

t τ−1
E · h + o(h)

.

(resp.

Y I
t+h =

{
Y I
t − 1 with probability Y I

t τ−1
I · h + o(h)

Y I
t with probability 1 − Y I

t τ−1
I · h + o(h)

.

) In other words the cumulated pending spikes will take effect at random times and even-
tually disappear.

Finally, when the switch is off, it waits for a random time period T before being turned
on again. When the switch is on, another MFE starts to evolve as described above.

It remains to describe the “neuron spikes” generated by Y E
t and Y I

t . Let X
E
t (resp. X I

t )
be a point process that takes value on R+ × {1, . . . , NE } (resp. R+ × {1, . . . , NI }). If Y E

t
(resp. Y I

t ) changes its value (resp. jumps down by one) at time t , XE
t (resp. X I

t ) produces
a point at (t, uE ) (resp. (t, uI )), where uE (resp. uI ) is a uniformly distributed random
variable on {1, . . . , NE } (resp. {1, . . . , NI }).

Similar to the SIR model, it is not easy to determine many parameters in this branching
process model. Therefore, it only attempts to capture main qualitative features of an MFE.
When anMFE starts, excitatory neurons excite themselves so thatmore andmore excitatory
neurons spike. This cascade of excitatory spikes behaves like a branching process. This
recurrent excitation is eventually curbed by inhibitory kicks (which are assumed to be
slower). It’s not easy to model the second phase in a mathematical tractable way. In our
branching process model, we mimic this phase by terminating the branching process at a
random time �.

The branching processmodel can also qualitatively demonstrate the dependency ofMFE
sizes on τE and τI . When τI is sufficiently long, the branching process keeps evolving. A
branching process approaches to infinity if it does not extinct. The extinction probability

of Y E
t (assuming τI = ∞) is s

Y E
0∗ , where H0 is the number of pending kicks at t = 0,

and s∗ is the smallest root of (1 − δE + δEs)NE = s on [0, 1]. (See Athreya et al. 2004
for standard results of Galton–Waston branching processes.) It is easy to see that s∗ is
very small if NEδE � 1. For example, if NE = 300, we have s∗ = 0.0586 when
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Fig. 5 The fake “raster plot” generated by point processes XE
t and X I

t . Parameters are chosen as τE = 2
ms, τI = 4 ms, δE = 0.01, δI = 0.02. The termination time � is the minimum of an exponential random
variable with mean 4 ms, Y E

t reaches NE/2, and Y I
t reaches NI /2. T equals 10 ms plus an exponential

random variable with mean 5 ms

δE = 0.01 and s∗ = 0.00237 when δE = 0.02. Therefore, if τI is large, Y E
t (resp. Y I

t ) has
high probabilities to reach NE (resp. NI ), which produces a full synchronization. This is
consistent with observations of our network model and the result of Theorem 5.1.

In practice, (XE
t , X I

t ) are able to produce raster plots that look very similar to those
produced by the real networkmodel. In Fig. 5, we demonstrate a fake “raster plot” produced
by the XE

t and X I
t . Many MFEs can be observed in this figure.

6 Spatial correlation of multiple firing events

Asmentioned in Sect. 4,MFEs generated by different local populations are very correlated.
(See Fig. 3.) We call such correlated MFEs among different local populations the spatial
correlation. One interesting observation is that under “reasonable” parameter settings, this
correlated spiking activity can only spread to several blocks away. The aim of this section
is to investigate two questions: (i) What is the mechanism of this spatial correlation? and
(ii) How far away could this spatial correlation spread? We describe our quantification
and numerical results of spatial correlations in Sects. 6.1 and 6.2. Studies of mechanisms
of spatial correlations and the spatial correlation decay are based on the qualitative MFE
models studied in Sect. 5, which are carried out in Sects. 6.3 and 6.4, respectively.

6.1 Quantifying spatial correlations

The quantification of spatial correlations relies on the ergodicity of the Markov process. It
follows from Corollary 3.5 that for any two local populations (m, n) and (m′, n′) and any
Q1, Q2 ∈ {E, I },we havewell-defined and computable covariance covQ1,Q2

T (m, n;m′, n′)
and Pearson’ correlation coefficient ρQ1,Q2

T (m, n;m′, n′). By Corollary 3.6, the covariance
covT (m, n;m′, n′) and correlation coefficient ρT (m, n;m′, n′) for the total spike count
between two local population (regardless the synapse type) are also well defined and
computable. We can use a long trajectory of �t to generate large sample of spike counts
in time bins to compute these quantities.

It remains to comment on the size of a time window T . An ideal time window should
be large enough to contain an MFE, but not as large as the time between two consecutive
MFEs. There is no silver lining of time-window size that fits all parameter sets. A (very)
rough estimate is that T should be greater than the maximum of NQ i.i.d exponential

random variables with mean τQ , but less than �/λ
Q
m,n + τR. It is well known that the

maximum of NQ i.i.d exponential random variables with mean τQ , denoted by Z , can be
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represented as the sum of independent exponential random variables Z = ξ1 + · · · + ξNQ ,
where exponential random variable ξk has mean τQ

k . Hence the expectation of Z is τQHNQ ,
where {Hn} is the Harmonic number Hn =∑n

k=1
1
k .

It is clear that HNQ τQ overestimates because an MFE may not involve all neurons.
At the same time, it also underestimates because it takes some time for the cascade of
excitatory spikes to excite all neurons participating in an MFE. But our simulations shows
that the qualitative properties of the spatial correlation is not very sensitive with respect
to the choice of time-window size. For the parameters of a “regular” network, we have
H300τEE ≈ 10 ms. Also we have �/λE + τR ≈ 19 ms if λE = 6000 (strong drive).
Hence we choose T = 15 ms in our simulation works.

6.2 Spatial correlation decay

Our key observation is that in many settings, the spatial correlation decays quickly when
two local populations are further apart. As discussed in the last subsection, we choose
T = 15 ms as the size of a time window. Since the qualitative result for the spatial
correlation among E–E, E–I .etc are the same, we select ρT (m, n;m′, n′) as the metrics
of the spatial correlation. All cases of ρ

Q1,Q2
T (m, n;m′, n′), Q1, Q2 ∈ {E, I } have little

qualitative difference.
In order to effectively simulate large scale neural fields in which two local populations

can be far apart, we choose to study an 1-D network with M = 1. The length of array is
chosen to be N = 22 in all of our simulations. We will compare the Pearson’s correlation
coefficient between local populations L1,2 and L1,k for k = 2, . . . , 21. The reason of doing
this is to exclude the boundary effect at L1,1 and L1,22. In our simulation, we run 240
independent long-trajectories of�t . In each trajectory, spike counts in 2000 time windows
are collected after the process is stabilized. The result of this simulation is presented
in Fig. 6. We find that in all five example networks, the spike count correlation decays
quickly with increasing distance between local populations. In the homogeneous network
HOM, correlation is only observed for nearest neighbor local populations. In three regular
networks REG1, REG2, and REG3, no significant correlations are observed when two
local populations are 4–8 blocks away. The speed of correlation decay is higher when
external drive rates have higher difference (REG1) and when the external connection is
weaker (REG3). The synchronized network SYN has the slowest decay rate and obvious
fluctuations induced by alternating external drive rate at local populations. If one local
population models a hypercolumn in the visual cortex, our simulation suggests that the
Gamma wave does not have significant correlation at two locations that are 2–4 mm away.
This is consistent with experimental observations.

6.3 Mechanism of spatial correlation

The mechanism of the spatial correlation between neighboring local populations can be
explained by our SIR model introduced in Sect. 5. When many local populations form a
M×N array, an SIR system with 6MN variables can be derived using the same approach
as in Sect. 5. Let m = 1, . . . ,M and n = 1, . . . ,N be indice of local populations. The
SIR system contains variables Hm,n

E ,Gm,n
E , Rm,n

E , Hm,n
I ,Gm,n

I , Rm,n
I , whose roles are the

same as in Eq. (5.1). For the sake of simplicity denote
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Fig. 6 Change of spike count correlation coefficient with increasing distance between to local populations.
Correlation coefficients are measured between L1,2 and L1,k for k = 2, . . . , 21 in five example networks

Jm,n
Q1Q2

= PQ1Q2H
m,n
Q2

+ ρQ1Q2

∑

(m′,n′)∈N (m,n)

Hm′,n′
Q2

.

For each (m, n), the time evolution of variables Hm,n
E ,Gm,n

E , Rm,n
E , Hm,n

I ,Gm,n
I , Rm,n

I are
given by equations

dHm,n
E

dt
= −τ−1

E Hm,n
E + τ−1

E Jm,n
EE Gm,n

E + λE

SEE
Gm,n

E

dGm,n
E

dt
= cE max

{
τ−1
E SEE J

m,n
EE + λE − τ−1

I SE I J
m,n
E I , 0

}
· (NE − Gm,n

E − Rm,n
E

)

− τ−1
I max

{
SE I

SEE
, 1

}
Jm,n
E I Gm,n

E −
(

τ−1
E Jm,n

EE + λE

SEE

)
Gm,n

E

dRm,n
E

dt
= τ−1

E PEE J
m,n
EE + λE

SEE
Gm,n

E

dHm,n
I

dt
= −τ−1

I Hm,n
I + τ−1

E Jm,n
I E Gm,n

I + λI

SI E
Gm,n

I

dGm,n
I

dt
= cI max

{
τ−1
E SI E J

m,n
I E + λI − τ−1

I SI I J
m,n
I I , 0

}
· (NI − Gm,n

I − Rm,n
I

)

− τ−1
I max

{
SI I
SI E

, 1

}
Jm,n
I I Gm,n

I −
(

τ−1
E Jm,n

I E + λI

SI E

)
Gm,n

I

dRm,n
I

dt
= τ−1

E Jm,n
I E Gm,n

I + λI

SI E
Gm,n

I .

(6.1)

A direct analysis of Eq.6.1 is too complicated to be interesting. But the numerical result
reveals the mechanism of spatial correlation. For the sake of simplicity we consider two
local populations, say populations L1,1 and L1,2. Assume that the local population L1,1

is ready for an MFE with initial condition HE = 1,GE = 30, RE = 0, HI = 0,GI =
10, RI = 0, while L1,2 has a very different profile with HE = 0,GE = 10, RE = 0, HI =
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Fig. 7 Event size versus τI for two local populations

0,GI = 2, RI = 0. We further assume that τE = 2 ms and λE = λI = 0. It is easy to see
that without L1,1, L1,2 will not have any spikes because it is not driven. We compare the
“event size” of excitatory and inhibitory populations at L1,1 and L1,2, which is measured
at time T = 20 ms. This is demonstrated in Fig. 7. With strong connectivity ratioE = 0.15,
the MFE in local population L1,1 will induce an MFE at local population L1,2, even if
local population L1,2 has much fewer neurons at the “gate area”.

We believe that this is themechanism of spatial correlations in ourmodel.When anMFE
occurs in one local population, it sends excitatory and inhibitory input to its neighboring
local populations. If the membrane potential of a neighboring local population is properly
distributed, an MFE at its neighbor will be induced by this spiking activity. Similar to the
case of one local population, the size of an MFE sensitively depends on the excitatory and
inhibitory synapse delay times. Slower inhibitory synapses always correspond to bigger
MFEs in both local populations.

6.4 Mechanism of spatial correlation decay

Our final task is to investigate the mechanism of spatial correlation decay, as described in
Fig. 6, where the spatial correlation of MFEs can only spread to several local populations
away.

Why the spatial correlation can not spread to very far away? We believe that (at least
in this model) such correlation decay is due to the volatility of spike count in MFEs. The
excitatory-inhibitory interplay during an MFE occurs at a very fast time scale with lots
of randomness involved. As a result, the spike count in a local population usually has
large variance. The variance will be even larger if the external drive rate is heterogeneous.
Therefore, even if the initial distributions of the membrane potential and the external drive
rates are identical throughout all local populations, the voltage distribution will be very
different after the first MFE in each local population. Hence the next wave of MFEs in
different local populationswill be less coordinated,which destroys the synchronization.We
believe this high volatility of MFE sizes significantly contributes to the spatial correlation
decay. As shown in Fig. 6, in examples REG1 and REG2, λE

m,n and λI
m,n have very small

difference in different local populations. But the spatial correlation decay is still strong.
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This also explains why the SYN network has the weakest spatial correlation decay. When
the sizes of MFEs are close to the size of the entire local population, there will be much
less variation in the after-event voltage distribution because most neurons have just spiked.
Hence the voltage distributions in different local populations are relatively similar in an
SYN network, which contributes to the observed slower decay of the spatial correlation.

This explanation is supported by both analytical calculation and numerical simulation
result.We did the following numerical simulation to investigate the volatility ofMFE sizes.
Assume M = N = 1, λE = λI = 3000, and the initial voltage distribution is generated
in the following way: With probability 0.2, the neuron membrane potential is uniformly
distributed on {0, 1, . . . , 80}. With probability 0.8, the neuron membrane potential takes
the integer part of a normal random variable with mean 0 and standard deviation 20. This
initial voltage distribution roughly mimics the voltage distribution after a large MFE. The
synapse delay times are τE = 2 ms and τI = 1−9 ms. For each τI = 1.0, 1.1, . . . , 9.0, we
simulate this model repeatedly for 10,000 times and count the number of excitatory spikes
of the first MFE. Then we plot the meanMFE size and the coefficient of variation (standard
deviation divided by mean) of the spike count samples for each τI . Note that the coefficient
of variation is a better metrics than the standard deviation as it is a dimensionless number
that measures the relative volatility of an MFE.

Of course this study does not exclude the situation that in amore heterogeneous network
or a network with multiple types of inhibitory neurons, MFEs can be reliably generated
with much smaller variance. And the spatially correlation of MFEs can be bigger than
demonstrated in this paper. But we believe our study at least shed some light to the study
of neuronal networks with relatively large, dense, and homogeneous local populations,
such as the visual cortex. And the diversity of MFE sizes should partially contributes to the
mechanism of spatial correlation decay of Gamma rhythm that is experimentally observed.

This numerical result is shown in Fig. 8. We can see that when τI become larger, the
MFE size increases and the coefficient of variation decreases. This decrease is a finite size
effect. In the extreme case an MFE becomes a fully synchronized spike volley. But even
the size of such a spike volley can not be much larger than the number of neurons. Only a
very small number of neurons have the chance to spike twice in a spike volley, even if in
the most synchronized network. This gives a smaller variance of MFE sizes. The change
of coefficient of variation partially explains the observation in Fig. 6, in which the decay of
spatial correlation is weaker when the τI -to-τE ratio is larger (means the network is more
synchronized).

Fig. 8 Left: mean event size versus τI . Right: coefficient of variation versus τI
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It is difficult to directly study the MFE size distribution by working on the network
model. But our qualitative model in Sect. 5 can help us to explain the mechanism of
the high variance of MFE sizes. Recall that in Sect. 5.2, we model an MFE by stopping
a Galton–Watson branching process at a random time. Some calculation for a Galton–
Watson process will qualitatively explain the reason of high coefficient of variation of
sizes of MFEs.

To simplify the calculation, we only consider Y E
t and discretize it into a discrete-time

Galton–Watson process. Let Xi ∼ B(NE , δE ) be i.i.d Binomial random variables that
represent the numbers of new excitatory spike stimulated by an excitatory spike. Let Y E

n
be a branching process such that Y0 = 1 and

Y E
n+1 = X1 + · · · + XY E

n
.

Let � be a random time that is independent of all Xi and Y E
i , which is the approximate

onset time of network inhibition. Here we do not put any assumption on �. It is easy to
see that Y E

n mimics the Galton–Watson branching process Y E
t introduced in Sect. 5.2. The

“unit time” of Y E
n is τE .

Let the total number of spikes before step n be SEn = Y E
1 + · · · + Y E

n . Then the MFE
size equals

ST = Y E
1 + · · · + Y E

� .

Let

CV(X) =
√
E[(X − E[X ])2]

E[X ]
be the coefficient of variation of a positive-valued random variable X . The following
proposition is straightforward. Note that the bound of CV(X) does not depend on �.

Proposition 6.1 Let σ 2 = NEδE (1 − δE ) and μ = NEδE . Assume � has finite moment
generating function M�(t) such that M�(2 logμ) < ∞. We have

CV(S�) ≥ σ
√

μ − 1

μ
√

μ + 1
.

Proof The proof follows from straightforward elementary calculations. By the property of
the Galton–Watson process, we have

E[Y E
n ] = μn

and

Var[Y E
n ] = μn−1σ 2(1 + μ + · · · + μn−1) ≥ μ2n−2σ 2.

In addition, for n ≥ m we have

cov(Y E
m , Y E

n ) = = E[Y E
m Y E

n ] − E[Y E
m ]E[Y E

n ]
= μn−m

E[(Y E
m )2] − μm+n

≥ μn−m
E[Y E

m ]2 − μm+n = 0
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Therefore, we have

E[Sn] =
n∑

k=1

μk = μn+1 − 1

μ − 1

and

Var[Sn] ≥
n∑

k=1

Var[Y E
k ]

= σ 2(1 + · · · + μ2n−2) = σ 2 μ2n − 1

μ2 − 1
.

By the law of total expectation,

E[S�] = E

[
μ�+1 − 1

μ − 1

]
= μM�(logμ) − 1

μ − 1
.

By the law of total variance we have

Var[S�] ≥ E[Var[S�|�]] ≥ σ 2

μ2 − 1
E[μ2� − 1] = σ 2

μ2 − 1
(M�(2 logμ) − 1).

By Jensen’s inequality

M�(2 logμ) = E[(μ�)2] ≥ (E[μ�])2 = M�(logμ)2.

Let C = M�(logμ) > 1. We have

CV(S�) ≥ σ
μ − 1

μ
√

μ2 − 1
·
√
C2 − 1

C − μ−1

≥ σ
μ − 1

μ
√

μ2 − 1
·
√
C + 1

C − 1
≥ σ

√
μ − 1

μ
√

μ + 1
.

�

Note that the effective δE is usually a small number such that NEδE = O(1). For

example, if membrane potential is uniformly distributed on {0, 1, . . . , � − 1} then the
effective μ = NEδE is NE PEE SEE/� = 2.25 for the parameter set used in this paper.

This corresponds to σ
√

μ−1
μ

√
μ+1

≈ 0.4. According to the assumption in Sect. 5.2, this branching

process is terminated when Y E
n reaches NE . If this happens before�with high probability,

the coefficient of variation will be significantly smaller, as theMFE has to stop at that time.

7 Conclusion

In this paper we study a stochastic model that models a large and heterogeneous brain area
consisting of many relatively homogeneous local populations. Each local population has
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many densely connected excitatory and inhibitory neurons. In addition, nearest-neighbor
local populations are coupled. One can think of a local population as an orientation hyper-
column of the primary visual cortex. Similar to our previous paper (Li et al. 2018), one
salient feature of this model is the occurrence of multiple firing event (MFE), in which a
proportion of neurons in the population (but not all of them) spike in a small time window.
An MFE is an emergent neuronal activity that lies between full synchronization and inde-
pendent spiking, which is widely believed to be responsible for the Gamma rhythm in the
cortex.

We first work on the stochastic stability of the Markov process produced by this model.
This further allows us to rigorously prove the well-definedness and computability of many
observables related to the network dynamics, including MFEs. Then we propose two qual-
itative models to further investigate the mechanism of a MFE. The first model mimics
an SIR disease model, which treats a pending spike as an infected patient that can make
other neurons spike. The “infected” neuron jumps to the refractory state immediately and
is “immuned” from further postsynaptic kicks. The second model uses a Galton–Waston
branching process to address the recurrent excitatory during anMFE. This Galton–Waston
branching process is eventually terminated at a random time�, corresponding to the onset
of inhibition from the network.

Then we investigate the decay of spatial correlation of MFEs in the model. Our simula-
tion shows that correlatedMFEs can usually only spread to several local populations away.
This is consistent with the physiological fact that the Gamma rhythm is often very local.
We use the SIR model to explain why an MFE in a local population could induce a spike
barrage in its neighboring local populations. Further, we find that unless all MFEs are so
strong that it becomes fully synchronized spike volleys, the spike count in MFEs should
have a very high diversity. As a result, voltage profiles after an MFE are very different
among local populations, even if the external drive rate is fairly homogeneous. This diver-
sity ofMFEs at least partially explains the mechanism of the spatial correlation decay. This
mechanism is analytically justified by working on our branching process MFE model.
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