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The aim of this paper is to investigate various information-theoretic measures, including entropy, mutual
information, and some systematic measures that are based on mutual information, for a class of struc-
tured spiking neuronal networks. In order to analyze and compute these information-theoretic measures
for large networks, we coarse-grained the data by ignoring the order of spikes that fall into the same
small time bin. The resultant coarse-grained entropy mainly captures the information contained in the
rhythm produced by a local population of the network. We first show that these information theoretical
measures are well-defined and computable by proving stochastic stability and the law of large numbers.
Then we use three neuronal network examples, from simple to complex, to investigate these
information-theoretic measures. Several analytical and computational results about properties of these
information-theoretic measures are given.
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1. Introduction

There has been a long history of researchers using information
theoretic measures, such as entropy and mutual information, to
study activities of neurons (Strong et al., 1998; Nemenman et al.,
2004; Borst et al., 1999). It is important to understand how neu-
ronal networks, including our brains, encode and decode informa-
tion. It is well known that neurons transmit information by time
series of spike trains. A common approach to estimate neuronal
entropy is to divide the time series of spike trains into a collection
of binary ‘‘words”. More precisely, the time axis is divided into
many time windows with m ‘‘sub-windows”. A sub-window takes
value 1 if a spike is recorded in it and 0 otherwise. This gives a bin-
ary ‘‘word” withm ‘‘letters”. Entropy is then estimated through fre-
quencies of those ‘‘words”.

However, estimating entropy becomes difficult for larger neu-
ronal networks. If one considers the time series generated by each
neuron separately, then one needs to consider all possible values of
a large vector of ‘‘words”, which grows exponentially with the net-
work size. If one considers the time series of all spikes produced by
the neuronal network, the time window has to be extremely small
to avoid two spikes falling into the same bin. Either approach
makes a practical sample size much smaller than the number of
possible configurations. This makes estimating entropy very diffi-
cult, in spite of many results on estimations in the undersampled
regime (Nemenman et al., 2004; Strong et al., 1998; Strong et al.,
1998).

The first aim of this paper is to study information theoretic mea-
sures of a structured neural network model introduced in Li et al.
(2019) and Li and Hui (2019). Neurons in this network have
integrate-and-fire dynamics. Both the configuration of neurons
and the rule of interactions among neurons are simplified to make
the model mathematically and computationally tractable. It was
shown in Li et al. (2019) and Li andHui (2019) that thismodel is still
able to produce a rich dynamics of spiking patterns. In particular,
this model can produce multiple firing events (MFEs), which are
partially synchronized spiking activities that have been observed
in other more realistic models (Rangan and Young, 2013; Aaditya
and Young, 2013; Chariker and Young, 2015; Chariker et al.,
2016). The only difference is that postsynaptic neurons in this paper
are given by a fixed connection graph rather than decided on-the-fly.

To study information theoretical measures for large networks,
we need to consider the coarse-grained entropy instead. The idea
is still to divide a time series of spikes into many time windows
and construct ‘‘words”. But different from traditional approaches,
herewe do not distinguish the order of spikes that fall into the same
time window. This method has some similarities to the multiscale
entropy analysis used in many applications (Costa et al., 2005). In
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a large neuronal network, the spike count in a time window can be
large. Hence we use a partition function to further reduce the total
number of possible ‘‘words”. In addition, we prove a law of large
numbers of spike counts, which says that the coarse-grained
entropy defined in this paper is both well-defined and computable.

The biological motivation of our definition is that MFEs pro-
duced by a neuronal network can have fairly diverse spiking pat-
terns (See Fig. 5 and Fig. 6). In addition, it has been argued that
some information in the brain is indeed communicated through
resonance or synchronization of the Gamma oscillation (Hahn
et al., 2018; Hahn et al., 2014), which is believed to be modeled
by MFEs in neuronal network models (Aaditya and Young, 2013;
Chariker and Young, 2015). This prompts us to study information
contained in those spiking volleys. By collecting spike counts in
time windows, we are able to obtain the uncertainty of a spiking
pattern. Heuristically, if a spiking pattern is completely homoge-
neous, it contains little information from a coarse-grained sense,
as the spike count in a time window has little variation. Same thing
happens if the spiking activity is completely synchronized, at
which we have ‘‘all-or-none” spike count in a time window. In con-
trast, the spiking pattern contains more information if it consists of
MFEs, which are only partially synchronized and have high varia-
tion in the degree of synchronizations. This is confirmed by our
numerical study.

The definition of coarse-grained entropy can be extended to
multiple local populations. This gives the concept of mutual infor-
mation, which measures the amount of information shared by two
local populations of a neuronal network. To numerically study the
mutual information, we introduce three cortex models, from sim-
ple to complicated. The first model only has two interconnected
hypercolumns, with no geometry structure. The second model
aims to describe two layers of a piece of the cortex, each of which
consists of many hypercolumns. We are interested in the effect of
feedforward and feedback connections expressed in information
theoretical measures. The third model is about layer 4 and layer
6 of the primary visual cortex. In addition to hypercolumns, there
are orientation columns in both layers and long range connections
in layer 6. Control parameters are magnitudes of feedforward con-
nections, feedback connections, and long range connections. Our
simulation shows that suitable feedforward and feedback connec-
tions can enhance mutual information between the two layers.

The second aim of this paper is to quantify some systematic
measures, such as degeneracy and complexity, for spiking neuronal
networks. These systematic measures are proposed in the study of
systems biology (Gerald and Gally, 2001; Rangan and Young, 1999;
Whitacre, 2010) and quantified for ODE-modeled networks in our
earlier work (Li et al., 2012; Li and Yi, 2016). Both degeneracy
and complexity can be measured by a linear combination of
mutual information between components of a network. The intro-
duction of coarse-grained entropy makes these systematic mea-
sures both well-defined and computable.

Biologically speaking, the degeneracy measures the ability of
structurally different components of a neuronal network to per-
form similar functions on a certain target. And the (structural)
complexity measures how different components in a neuronal net-
work functionally depend on each other. In this paper, degeneracy
and complexity are defined using the coarse-grained entropy. We
also prove that a neuronal network with high degeneracy must
be (structurally) complex. Finally, the dependency of degeneracy
and complexity on certain network parameters is studied for our
cortex models.

The organization of this paper is as follows: Section 2 defines
our structured spiking neuronal network and three cortex models
that are used in later numerical studies. Section 3 defines the
coarse-grained entropy and proves the law of large numbers of
spike counts, which implies that the coarse-grained entropy is
well-defined and computable. Section 4 and 5 study mutual infor-
mation and systematic measures, respectively. Section 6 is the
conclusion.

2. Structured spiking neural network model

It is well-known that the cerebral cortex has many substruc-
tures. In particular, a functional organization called cortical column
or hypercolumn is believed to be the ‘‘functional unit of informa-
tion processing”. Neurons in the same hypercolumn usually have
similar receptive fields. In the visual cortex, a hypercolumn can
be further divided into many orientation columns. Each orientation
column only responds to stimulations with a certain orientation.
This motivates us to propose a structured spiking neural network
model that has two scales at the level of individual neurons and
hypercolumns, respectively.

2.1. Network description

We consider a large population of neurons that is divided into
many local structures (hypercolumns or orientational hyper-
columns), called local populations. The following assumptions are
made in order to describe the neuronal activity of this population
by a mathematically tractable Markov process. Note that the first
three assumptions are identical to those in our earlier papers (Li
et al., 2019; Li and Hui, 2019).

� The membrane potential of a neuron takes finitely many dis-
crete values.

� External synaptic input to each neuron is modeled by an inde-
pendent Poisson process. Rates of Poisson processes are identi-
cal in the same local population.

� A neuron spikes when its membrane potential reaches a certain
threshold. A post-spike neuron stays in a refractory state for an
exponentially distributed random time.

� The set of postsynaptic neurons is given by a graph G.

The detailed description of this model is divided into the follow-
ing aspects.

Neuron indices. Consider a neuronal network model with K
local populations, denoted by L1; � � � ; LK . Each local population has
NE excitatory neurons and NI inhibitory neurons. A type Q neuron
in local population Lk is denoted as neuron ðk;n;QÞ, where
k 2 f1; � � � ;Kg;Q 2 fE; Ig, and n 2 f1; � � � ;NQg. The triplet ðk;n;QÞ
is called the label of a neuron. We further assign an integer-
valued index, denoted by idðk;n;QÞ, to neuron ðk;n;QÞ, such that

idðk;n;QÞ ¼ ðk� 1ÞðNE þ NIÞ þ nþ NE1fQ¼Eg:

In other words, id is a function from the set of labels, denoted by
L ¼ fðk;n;QÞ j1 6 k 6 K;1 6 n 6 NQ ;Q 2 fE; Igg, to the set of
indices, denoted by ID ¼ f1; � � � ;KðNE þ NIÞg. We call a neuron with
index i ‘‘neuron i” when it does not lead to confusions. For each
index i 2 ID, we denote Labeli as the label of the corresponding
neuron. Obviously Labeli is the inverse function of id from the set
of indices to the set of labels. A connection graph G is said to be sta-
tic if the edge set E is fixed, and random if E is updated after each
spike.

Connection graph. The connection graph of the neural network
is a directed graph G ¼ ðV ; EÞ with V ¼ ID. The edge set E is a col-
lection of ordered pairs of neurons such that

E � ðpre;postÞ jpre 2 V ;post 2 V ; pre– postf g;

where pre and post are indices of presynaptic and postsynaptic neu-
rons, respectively. For each ðpre;postÞ 2 E, when neuron pre fires a
spike, its postsynaptic neuron post receives the spike and changes
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its membrane potential. The collection of postsynaptic neurons
(resp. presynaptic neurons) of a neuron with index i is denoted by
PoðiÞ (resp. PrðiÞ).

Single neuron state. We denote the membrane potential of a
neuron with label i 2 ID by

Vi 2 C :¼ f�Mr ;�Mr þ 1; . . . c;�1;0;1;2; . . . c;Mg [ fRg;

where M;Mr 2 Nþ denote the threshold for spiking and the reversal
potential, respectively. R represents the refractory state. When Vi

reaches M, a neuron fires a spike, and instantaneously moves to
the refractory state R. At the refractory state, a neuron stays inac-
tive for an exponentially distributed amount of time with mean
sR > 0. After that, Vi is reset to 0.

External drive. Sources of stimuli that a neuron receives can be
divided into external drives and postsynaptic kicks from in-
network neurons. The external drive comes from outside of the
neuronal network in this model, either from sensory input or from
other parts of the brain. We assume that neurons of the same type
in a local population receive external drive with the same rate, and
we model external drives to excitatory and inhibitory neurons in
local population Ll by Poisson kicks with rates klE; k

l
I > 0 respec-

tively, for l 2 f4;6g. More precisely, assume the label of neuron
i 2 ID is Labeli ¼ ðk;n;QÞ. Then the time that neuron i receives
external kicks is given by a Poisson process with rate kkQ . If
Vi –R when neuron i receives an external kick, Vi immediately
increases by 1.

Neuron spikes and postsynaptic kicks.
When neuron i fires a spike immediately after Vi reaches the

threshold, all postsynaptic neurons in PoðiÞ receive a postsynaptic
kick. The effect of a postsynaptic kick is delayed by an i.i.d. expo-
nentially distributed random time with mean sE; sI > 0, for E, I
kicks, respectively. When the delay is over, the kick takes effect
instantaneously to neuron j 2 PoðiÞ if Vj –R. After the postsynaptic
kick, Vj jumps by SQQ 0;Q ;Q 0 2 fE; Ig, where Q and Q 0 represent the
neuron types of j and i respectively. SQQ 0 is the strength of a postsy-
naptic kick, which is positive if Q 0 ¼ E, and negative if Q 0 ¼ I. If
Q 0 ¼ E and Vj jumps to P M, neuron j jumps to R instead and fires
a spike. If Q 0 ¼ I and Vj jumps to < �Mr , it takes value Vj ¼ �Mr .

It remains to discuss non-integer SQQ 0. We let SQQ 0 ¼ pþ u where
p ¼ bSQQ 0c is the largest integer smaller than SQQ 0 and u is a Ber-
noulli random variable taking value in f0;1g such that
P½u ¼ 1� ¼ SQQ 0 � p.

Markov process
Because of the delay of postsynaptic kicks, the state of neuron i

is denoted by a triplet ðVi;H
E
i ;H

I
iÞ. We use HE

i (HI
i respectively) to

store the number of E (I respectively) kicks received from PrðiÞ that
have not taken effects. It is easy to see that the model described
above generates a Markov process, denoted by Xt , on the state
space

X :¼ ðC�Nþ �NþÞKðNEþNIÞ:

A state x 2 X has the form

x ¼ fðVi;H
E
i ;H

I
iÞgi2ID:

The transition probability of Xt is denoted by

Ptðx; yÞ ¼ P½Xt ¼ y jX0 ¼ x�:

A probability measure p on X is said to be invariant if p ¼ pPt ,
where pPt is given by the left operator of Pt

pPtðxÞ ¼
X
y2X

pðyÞPtðy;xÞ:

Throughout this paper, we denote the conditional probability
P½� j lawðX0Þ ¼ l� by Pl½�� for the sake of simplicity, where l is a
probability measure on X, and lawðX0Þ ¼ l means the initial distri-
bution of Xt is l.
2.2. Visual cortex models I-III

We use the following three visual cortex models, from simple to
complicated, to demonstrate numerical results in this paper. Model
parameters are largely consistent with earlier modeling result (Li
et al., 2019; Chariker et al., 2016). In particular, (Chariker et al.,
2016) explains how model parameters are determined based on
existing modeling work and experimental studies. The first model
(Model I) only has two local populations, one feedforward layer
and one feedback layer. No spatial factor is considered in this
model. The second model (Model II) has one feedforward layer
and one feedback layer. Each layer consists of 16 local populations
(hypercolumns). Each neuron inModel II has a coordinate. And the
connection graph G is generated according to locations of neurons.
Model III, the most complicated model, has the same layers, hyper-
columns, and neuron coordinates as in Model II. Each hyper-
column of Model III has 4 orientational columns. The connection
graph G depends on both location and orientation. We use a sim-
pler model to illustrate entropy and mutual information, and dis-
cuss the role of mutual information by showing numerical
results for more complicated models. Model III is mainly used to
demonstrate degeneracy and complexity, which are two system-
atic measures defined on complex biological networks. In all three
models, we choose M ¼ 100;Mr ¼ 66;NE ¼ 300;NI ¼ 100;
sR ¼ 2:5 ms, SEE ¼ 5:0; SIE ¼ 2:3; SEI ¼ �3:5, and SII ¼ �3:0 unless
further specified. Other parameters including the number of local
populations K, the connection graph G, delay times sE and sI , and
external drive rates k1E ; k

1
I ; � � � ; k

K
E ; k

K
I , will be prescribed when intro-

ducing each model.
Model I. In the first model we have K ¼ 2. Two local popula-

tions represent the feedforward and feedback layer respectively.
We set kiQ ¼ 5000 for i ¼ 1;2 and Q ¼ E; I. The connection graph
G is a spatially homogeneous random graph. For each pair of
i; j 2 ID, let Labeli ¼ ðki;ni;QiÞ and Labelj ¼ ðkj; nj;QjÞ. The connec-
tion probability is divided into three cases: (i) PQjQi

for ði; jÞ 2 E if

ki ¼ kj (intra-layer connection), (ii) Pf
QiQj

for ði; jÞ 2 E if ki ¼ 1;

kj ¼ 2 (feedforward connection), and Pb
QjQi

for ði; jÞ 2 E if

ki ¼ 2; kj ¼ 1 (feedback connection). In this model, we choose

parameters PEE ¼ 0:15; PIE ¼ 0:5; PEI ¼ 0:5, and PII ¼ 0:4; Pf
EI ¼ Pf

II ¼
Pb
EI ¼ Pb

II ¼ 0. In other words inhibitory neurons only connect to

neurons in the same layer. We set Pf
EE ¼ qf PEE; P

f
IE ¼ qf PIE; P

b
EE ¼

qbPEE, and Pb
IE ¼ qbPIE. Parameters qf and qb represent the strength

of feedforward and feedback connection respectively. Without fur-
ther specification, synapse delay times are chosen to be
sE ¼ 2:0 ms and sI ¼ 4:5 ms. qb and qf are two main control
parameters in Model I.

Model II. In the second model we have K ¼ 32, with the first 16
local populations as hypercolums at the feedforward layer and the
rest are hypercolumns in the feedback layer. We set kiQ ¼ 5000 for

i ¼ 1;2; � � � ;15;16 and kiQ ¼ 4500 for i ¼ 17;18; � � � ;31;32;Q ¼ E; I.
Each neuron has a location coordinate. We assume neurons in a
local population form a 10� 10 lattice. At each lattice point, there
are three E neurons and one I neuron. We assume one local popu-
lation represents neurons in one hypercolumn of the visual cortex
with a size 0:25 mm. In other words the grid size of this lattice is
25 lm, and the boundary neurons are 12:5 lm away from their
nearest local boundary. Local populations in each layer is a 4� 4
array. The connection graph is based on the types and locations
of each pair of neurons. See Fig. 1 for the layout of this model.



Fig. 2. The layout of neurons in one hypercolumn.
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For each pair of i; j 2 ID, let Labeli ¼ ðki;ni;QiÞ and
Labelj ¼ ðkj;nj;QjÞ. The connection radius belongs to one of the
three cases: (i) fi; jg 2 E with radius LQiQj

if kiand kj are either both
6 16 or both> 16 (intra-layer connection), (ii) fi; jg 2 E with radius

LfQiQj
if ki 6 16; kj > 16 (feedforward connection), and (iii) fi; jg 2 E

with radius LbQiQj
if ki > 16; kj 6 16 (feedback connection). Connec-

tion radii are LEE ¼ LIE ¼ 0:15 mm, LEI ¼ LII ¼ 0:10 mm,

LfEI ¼ LfII ¼ LbEI ¼ LbII ¼ 0:10 mm.
The actual connection probability is the product of a baseline

connection probability pQiQj
(resp. pf

QiQj
; pb

QiQj
) as defined in Model

I and the probability density function of a normal distribution with

a standard deviation LQiQj
(resp. LfQiQj

; LbQiQj
). More precisely, the

probability that neurons i and j at the same layer are connected is

pQiQj

exp � d2

2L2QiQj

� �
ð2pL2QiQj

Þ

where d is the distance between the two neurons in question. Cases
of feedforward and feedback connection probabilities are analo-
gous. Baseline connection probabilities are pEE ¼ 0:01,
pIE ¼ 0:035;pEI ¼ 0:03; pII ¼ 0:03. Again, I neurons only have intra-

layer connections so pf
EI ¼ pf

II ¼ pb
EI ¼ pb

II ¼ 0. The rule of feedforward
and feedback connection probability is analogous to those of Model

I. We have pf
QE ¼ qf pQE and pb

QE ¼ qbpQE for Q ¼ I; E. qf and qb are
two control parameters.

Model III. Then we add orientation columns into the model in
order to model two layers in the primary visual cortex. In this
model, each hypercolumn in Model II is further divided into four
orientation columns that resemble the pinwheel structure (Hubel,
1995; Kang et al., 2003; Kaschube et al., 2010). The layout of orien-
tation columns is demonstrated in Fig. 2. We assume the visual
stimulation is vertical. The external drive rates to orientational col-
umns with preferences 0 deg, 45 deg, 90 deg, and 135 deg are mul-
tiplied by coefficient 1:0;0:6;0:2, and 0:6 respectively.

We also add long-range excitatory connections that hits neu-
rons with the same orientation preference to the feedback layer.
The presence of long-range connections is consistent with experi-
mental studies (Stettler et al., 2002; Gilbert and Wiesel, 1989;
Malach et al., 1993), which show that many connections are
between neurons with the same orientation preference. The con-
nection probability is given by a linear function. For a pair of neu-
rons i; j 2 ID, the probability of having long range connection is

pQiQj
Clongð1� 0:5dÞ;

if Qi ¼ E;d > 2LEE, and neuron i; j have the same orientation prefer-
ence, where the baseline connection probability pQiQj

is the same as
Fig. 1. Left: Layout of Model II. Each layer consists of 4� 4 hypercolumns. Right: Geomet
inhibitory neuron.
before, d is the distance between the two neurons in question, and
Clong is a parameter that controls the strength of long range connec-
tions. Here we assume that the probability of having long range con-
nectionsdecreases linearly and becomes zero if d is larger than2mm.

Other configurationsofModel III are identical to thoseofModel II.
2.3. Firing rate and spiking pattern in models

In this subsection we will show some simulation results about
our visual cortex models. The first result is about the mean firing
rate. Fig. 3 gives mean firing rates of Model I versus the back-
ground drive rate kiE ¼ kiI ¼ k for i ¼ 1;2 when k increases from
1000 to 8000. We can see an increase of empirical firing rate with
the background drive. This is consistent with our previous results
in Li et al. (2019) and Li and Hui (2019). The heat map of firing rates
in the most complicated model (Model III) is demonstrated in
Fig. 4. We can clearly distinguish orientation columns in the heat
map. The vertical-preferred orientation columns have the highest
firing rate, while the horizontal-preferred orientation columns fire
the slowest. See caption of Fig. 4 for the choice of control
parameters.

The spiking pattern is another important feature of spiking
neuron models, as neurons pass information through spike trains.
Similar to many pervious studies, all visual cortex models in our
study exhibit partial synchronizations. Due to recurrent excita-
tion, neurons tend to form a series of spike volleys, each of which
involves neurons from a proportion of the total population. This
ry of each hypercolumn. Each lattice point is occupied by 3 excitatory neurons and 1



Fig. 3. E-population and I-population mean firing rates in layer 4 and 6 when k changes from 1000 to 8000. Parameters are qf ¼ qb ¼ 0:6, sE ¼ 2:0; sI ¼ 4:5.

Fig. 4. Heat map for E and I firing rates of Model III. Parameters are qf ¼ qb ¼ 0:6; sE ¼ 2:0; sI ¼ 4:5.

W. Li, Y. Li / Journal of Theoretical Biology 501 (2020) 110310 5



Fig. 5. Three raster plots for layer 4 of Model I without feedforward or feedback connection. Top: sE ¼ 4:5 ms, sI ¼ 4:5 ms. Middle: sE ¼ 2:0 ms, sI ¼ 4:5 ms. Bottom:
sE ¼ 0:9 ms, sI ¼ 4:5 ms.

Fig. 6. Top. Two raster plots for the (2,2) hypercolumn in layer 4 (bottom) and the same hypercolumn in layer 6 (top). qb ¼ qf ¼ 0. sE ¼ 2:0 ms, sI ¼ 4:5 ms. Time span 2–3 s.
Bottom. Same parameters but with intra-layer connections qb ¼ qf ¼ 0:6.
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phenomenon is known as the multiple firing event (MFE), which
is believed to be responsible for the Gamma rhythm (Rangan and
Young, 2013; Aaditya and Young, 2013; Chariker and Young,
2015. Fig. 5) demonstrates raster plots produced by Model I.
We can see from Fig. 5 that MFEs lie between homogeneous spik-
ing activities and full synchronizations. In addition, the main con-
trol parameter of MFE sizes is the ratio sI=sE. Higher sI-to-sE ratio
is responsible for more synchronized spike activities. The mecha-
nism of the dependence of MFE sizes on the synapse delay time is
addressed in Li and Hui (2019). Longer sI means E-cascade can
last longer time, which contributes to larger MFE sizes. In
Fig. 6, we can see raster plots of ð2;2Þ hypercolumn in the feed-
forward and feedback layer produced by Model II. Top and bot-
tom plots are the cases with and without synapse connections
between these two layers, respectively. When the feedforward
and feedback connection is turned on, one can see some correla-
tions between MFEs. Later we will use mutual information to
quantify such correlation.
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3. Coarse-grained entropy and law of large numbers

3.1. Coarse-grained entropy and coarse-grained information theoretic
measures.

Let T > 0 be a time window size that is associated to a coarse-
grained information theoretic measure. Let

SP ¼ Rþ � ID

be the configuration space of neuron spikes. A spike s 2 SP has the
form s ¼ ðt; nÞ, where t is the time of a spike, and n is the index of the
spiking neuron. Let S½0;TÞ ¼ fs1; � � � ; sZg be set of spikes produced by
Xt within the time window ½0; TÞ, where si 2 SP denotes the i-th
spike within this time window. (Note that we ignore the order of
spikes with in ½0; TÞ.) Z is a random variable that represents the total
spike count on ½0; TÞ. Let

SPT ¼ E [
[
nP1

fSPgn

be the configuration space of neural spike trains, where E represents
an empty spike train, and fSPgn is the collection of unordered n-
sets of elements in SP. Finally, we let D ¼ f0;1; � � � ;Rg be a dic-
tionary set that consists of countably many distinct integers
0;1; � � � ;R. (R could be infinity.) A function f : SPT ! D is a
coarse-grained mapping that maps a spike train to an element in
D. For example, the simplest coarse-grained function is the number
of spikes of Xt on the interval ½0; TÞ. In this case we have R ¼ 1.

For i 2 D, let

pi ¼ Pp½fðS½0;TÞÞ ¼ i�

be the probability that the coarse-grained function maps a spike
train S½0;TÞ to i when starting from the invariant probability measure
p. The coarse-grained entropy with respect to T and f is

HT;f ¼ �
X
i2D

pi logpi:

If there are q coarse-grained functions f1; � � � ; fq and a function
F : Rq ! R, an information theoretical measure M with respect to T,
f1; � � � ; fq, and F is given by

M ¼ FðHT;f1 ; � � � ;HT;fq Þ:

Remark 1. The reason of defining the coarse-grained entropy is to
make entropy and information theoretical measures computable.
The classical definition of neural entropy can only allow at most
one spike in each bin (time window). In a large neural network,
neuronal activities are usually synchronized to some degree. As a
result, the necessary time window size quickly becomes too small
to be practical.

The main simplification we make is to ignore the order of spikes
that are sufficiently close to each other. Needless to say this
treatment loses some information. But it makes information
theoretical measures more computable for large networks. In
addition, we map a spike train within a time window to an integer
to further reduce the state space. This is because the state space of
naive spike counting is still huge. If we naively count the spikes in
each hypercolumn in a model with K local populations, there will

be ðNE þ NIÞK possible spike counting results even if we assume a
neuron cannot spike twice in a time bin.
The definition of the coarse-grained entropy is very general. In
practice, the function f can be given in the following ways to
address different features of the neuronal network.
A. Spike counting for a certain local population. If we are inter-
ested in the information produced by a certain local population,
say local population k, we can have

fðS½0;TÞÞ ¼ f ðt1; n1Þ � � � ; ðtZ ; nZÞf gð Þ ¼
XZ
j¼1

1fLabelnj ð1Þ¼kg;

where Labelnj ð1Þ means the first entry of Labelnj , which is the index
of the local population of spike j. Here one can replace k by either a
set of local populations, or restrict it to certain type of neurons.

B. Coarse-grained spike counting. If the state space of spike
counting is too big to estimate accurately, we can introduce a
partition function H : ZP0 ! f0; � � � ; d� 1g, such that HðnÞ ¼ i
if ai 6 n < aiþ1, where 0 ¼ a0 < a1 < � � � < ad ¼ 1 is a given
sequence of numbers called a ‘‘dictionary”. Then let
fðS½0;TÞÞ ¼ H
XZ
j¼1

1fLabelnj ð1Þ¼kg

 !
:

C. Spike counting with delays. If one would like to address time
lags of spike activities, the time window ½0; TÞ can be further
evenly divided into many sub-windows
½0; T=mÞ; ½T=m;2T=mÞ; � � � ; ½ðm� 1ÞT=m; TÞ. Assume we still
adopt the coarse grained spike counting in B, we have

fðS½0;TÞÞ ¼
Xm�1

l¼0

dlH
XZ
j¼1

1fLabelnj ð1Þ¼k;tj2½lT=m;ðlþ1ÞT=mÞg

 !
:

In other words we take consideration of spike counts in each sub-
windows. Integer m is said to be the ‘‘word length”.

3.2. Stochastic stability and law of large numbers

The aim of this section is to prove that the law of large numbers
holds for entropy. In other words the entropy is computable by
running Monte Carlo simulations. To do so, we first need to show
the stochastic stability of Xt .

Let

UðxÞ ¼ 1þ
X
i2ID

ðHE
i þ HI

iÞ

be a function on X. For any signed distribution l on the Borel r-
algebra of X, let

klkU ¼
X
x2X

UðxÞjlðxÞj

be the U-weighted total variation norm, and let

LUðXÞ ¼ flonX j klkU < 1g

be the collection of probability distributions with finite U-norm. In
addition, for any function gðxÞ on X, denote the U-weighted supre-
mum norm by

sup
x2X

jgðxÞj
UðxÞ :

Theorem 1. Xt admits a unique invariant probability distribution
p 2 LUðXÞ. In addition, there exists positive constants c1; c2 and
c 2 ð0;1Þ such that
kl1P
t � l2P

tkU 6 c1ctkl1 � l2kU
for any l1;l2 2 LUðXÞ and

kPtg� pðgÞkU 6 c2ctkg� pðgÞkU
for any test function g with kgkU < 1.
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We skip the proof of Theorem 1 here because it is almost iden-
tical to that of Theorem 1 in Li and Hui (2019). The only difference
is that postsynaptic neurons in the model of Li and Hui (2019) is
chosen randomly after a spike, which does not affect the proof.
To prove the existence of an invariant probability measure p and
the exponential convergence to it, we need to construct a Lya-
punov function UðxÞ such that

PhU 6 cU þ K

for some h > 0; c 2 ð0;1Þ and K < 1. In addition the ‘‘bottom” of U,

denoted by C ¼ fx 2 X jUðxÞ 6 Rg for some R > 2Kð1� cÞ�1, must
satisfy the minorization condition, which means there exists a con-
stant a > 0 and a probability distribution on X, such that

Phðx; �Þ P amð�Þ uniformly for x 2 C. Then the existence and unique-
ness of p and the exponential speed of convergence to p follows
from Li and Hui (2019). We refer to the proof of Theorem3.1 in Li
and Hui (2019) for the full detail.

The next Theorem is about the computability of information-
theoretical measures. The way of estimating HT;fis called ‘‘plug-in
estimate”, which is known to be convergent if the spike train S½0;TÞ is
i.i.d. sampled from a certain given probability distribution (Antos
and Kontoyiannis, 2001) (also see Paninski (2003)). However, in our
case S½0;TÞ is the spike count generated by a Markov chain, which
depends on the sample path of Xt on ½0; T�. Therefore, one needs to
sample S½0;TÞ by running Xt over many time intervals
½0; TÞ; ½T;2TÞ; � � �. Hence the result in Antos and Kontoyiannis (2001)
does not apply directly. Instead, we need to use the concept of sample
path dependent observable to show thatHT;f is a computable quantity.

Theorem 2. Let T ¼ NT be the length of a trajectory of Xt. For any
coarse-grained mapping f and any i 2 D, denote the empirical
probability of f ¼ i by

p̂i ¼
1
N

XN
j¼1

1ffðS½ðj�1ÞT;jTÞÞ¼igðXtÞ:

We have

lim
N!1

p̂i ¼ Pp½fðS½0;TÞÞ ¼ i� ¼ pi:
Fig. 7. Entropy rate versus time window length. Samples are collected from eight
trajectories with length 10000. Linear extrapolation uses points with respect to
m ¼ 2;3; � � � ;7.
Proof. The proof of this theorem relies on the concept of Markov
sample path dependent observables. Let Xt be a Markov process. A
function Y is said to be a Markov sample-path dependent observ-
able on an interval ½t1; t2Þ if

i. Y is a real-valued function on CXð½t1; t2ÞÞ, where CXð½t1; t2ÞÞ is
the collection of cadlag paths from t1 to t2 on X.
ii. The law of Y only depends on the value of Xt1 .

Now let Y1;Y2; � � � ;Yn; � � � be a sequence of sample-path dependent
observables on ½0; TÞ; ½T;2TÞ; � � �, ½ðn� 1ÞT;nTÞ respectively. Since
the law of Xt converges to p as t ! 1, by Theorem 3.3 in Li and
Hui (2019), we have the law of large numbers for fYng, i.e.,

lim
N!1

1
N

XN
n¼1

Yn ¼ Ep½Y1�

provided there exists a constant M < 1, such that
E½Y2

n jXðn�1ÞT ¼ x� < M uniformly for all x 2 X.
Hence we only need to construct a sequence of sample-path

dependent observables fYng whose expectations equal to p̂i. Let

Yn ¼ 1ffðS½ðn�1ÞT;nTÞÞ¼ig:

It is easy to see that Yn is Markov because Xt is a Markov process. In
addition, E½Y2

n� 6 1 uniformly because Yn is an indicator function.
Therefore, fYng1n¼1 satisfies the law of large numbers. This com-
pletes the proof. h
3.3. Numerical result and discussion

We use the following two numerical simulations to demon-
strate the role of coarse-grained entropy in our network models.
Consider model I without feedforward or feedback connections.
Without loss of generality we only compute the entropy of the
feedforward layer. The synapse delay times are chosen to be
sE ¼ 2 ms and sI ¼ 4:5 ms.

The first test is about the entropy rate per second with increas-
ing word lengths. We use spike counting with delays to define the
coarse-grained mapping f (case C in Section 3.1). The duration of
each sub-window is T=m ¼ 5 ms. The time window size goes
through T ¼ 5ms (m = 1) to T ¼ 60 ms (m = 12). Then we define
the partition function H : Zþ ! f0;1;2;3g with HðnÞ ¼ 0 for
n < 4;HðnÞ ¼ 1 for 4 6 n < 8, HðnÞ ¼ 2 for 8 6 n < 12, and
HðnÞ ¼ 3 for n P 12. Fig. 7 shows the entropy rate (entropy divided
by the time window size) versus time window size. The curve is
similar to that given in Strong et al. (1998). Starting from word
length ¼ 2, and until the word length being too long for estimating
entropy, the entropy rate declines linearly. But when a ‘‘word” is
too long such that the entropy estimation is badly under-
sampled, the estimated entropy rate declines faster-than-linear,
as explained in Strong et al. (1998). We use extrapolation to esti-
mate the entropy rate at the infinite window size limit, as shown
in Fig. 3 of Strong et al. (1998).

The second test is on the entropy for different degrees of syn-
chrony. Here we only consider word length ¼ 1 with time window
size T ¼ 15 ms, with a more refined partition function
H : Zþ ! f0;1; � � � ;45g such that HðnÞ ¼ i for 3i 6 n < 3ðiþ 1Þ if
i ¼ 0; � � � ;44 and HðnÞ ¼ 45 if n P 135. The excitatory synapse
delay time is set to be sI ¼ 4:5 ms. And sI-to-sE ratio varies
between 0:5 and 3:5. In addition we let SEE ¼ 6 to increase the
degree of synchrony. The entropy rate versus sI=sE is plotted in
Fig. 8 Left. We can see that the entropy reaches a peak in the mid-
dle of the tuning curve for both E and I neurons. The peak locations
are different for E and I neurons partially due to different popula-
tion sizes. The heuristic reason is straightforward. When sI=sE is
small, the spiking pattern is homogeneous, and the distribution
of spike counts in each time window concentrates at a few small
numbers. Larger sI=sE means larger MFE sizes, which makes spike



Fig. 8. Left: Entropy versus delay time for Model I. Right: Coefficient of variation of MFE sizes versus delay time for Model I. Each simulation runs up to T ¼ 50.
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counts in each time window more diverse. But when sI=sE is too
large and such that all MFEs are large, such diversity shows slight
decreases. This is because whenMFEs are too large, manyMFEs can
use up all neurons in the network. Therefore, our simulation shows
that partial synchronizations, rather than full synchronizations,
helps a neuronal network to produce more information.

To further confirm the change of the diversity of MFE sizes with
sI-to-sE ratio, we compute the coefficient of variation of sizes of
MFEs in Fig. 8 Right. The coefficient of variation is the ratio of the
sample standard deviation to the sample mean, which measures
the relative diversity of a sample. In the simulation, we count the
number of spikes in each time binwith size 1ms. If at least 10 spikes
fall into a time bin, we say MFE occurs at this time bin. Then we
merge consecutive time bins at which MFE occurs, and count sizes
ofMFEs. As seen in Fig. 8 Right, using themetric of coefficient of vari-
ation, we can also see an increase of the MFE diversity when sI=sE
increases, and a decrease of the MFE diversity when too big sI=sE
makes thenetwork too synchronized.We remark that the coefficient
of variationand theentropyare twodifferentmetrics of thediversity
ofMFEs, so curves in Fig. 8 Left andRight arenot exactly that same. In
particular, the entropy of I population decreases early (at
sI=sE ¼ 1:5) because I population has a much higher firing rate
(Fig. 3). When the partition function HðnÞ maps many large spike
counts (‘‘letters”) to 45, the coarse-grainedentropy is reduced.Other
three curves in Fig. 8 start to decreasewhen sI=sE reaches about 2:5.

4. Mutual information

4.1. Mutual information and conditional mutual information

Based on the framework of spike train space defined in Sec-
tion 3.1, one can also define the mutual information. Let T > 0 be
a fixed time window size. A coarse-grained function
SPT ! D ¼ f0;2; � � � ; d� 1g with respect population set
C � f1; � � � ;Kg is denoted by fC if it gives joint spike count distribu-
tions from populations that belong to C. Here C ¼ fC1; � � � ;CjCjg is a
generic subset of f1; � � � ;Kg. We have

fCðS½0;T�Þ ¼
XjCj
n¼1

dn�1 H
XZ
j¼1

1fLabelnj ð1Þ2Cng

 ! !
; ð4:1Þ

where Labelnj ð1Þ means the first entry (index of local population) of
j-th spiked neuron, and H : ZP0 ! f0; � � � ;d� 1g is a partition func-
tion that maps a spike count to an integer. Here the definition of fC
can also be extended to the case of a particular type of neurons, or
the case of spike counts with delays.

Now consider two disjoint sets of local populations
A;B � f1; � � � ;Kg. The mutual information is an information theoret-
ical measure that is given by

MIT;fðA : BÞ ¼ HT;fA þ HT;fB � HT;fA[B :

In other words, the mutual information measures the information
shared by populations in A and populations in B when the spike
count is measured by the coarse-grained map n.

The coarse-grained mutual information MIT;fðA : BÞ is the
mutual information between two spike trains produced by local
populations A and B that are processed by coarse-grained function
fA and fB respectively. By the data processing inequality (Cover and
Thomas, 2012), MIT;fðA : BÞ is no greater than the actual mutual
information between two unprocessed spike trains on A and B
respectively. Therefore, the ‘‘true” mutual information is larger
than our measurement by using coarse-graining functions.

4.2. Mutual information in visual cortex models

The following simulations aim to use mutual information to
study the correlation in our visual cortex models. We present the
following two numerical results.

Simulation I: Role of feedforward and feedback. In this study
we first consider Model I, which is a feedforward-feedback network
with only two local populations. We let the time window size be
5 ms with word length ¼ 1. The partition function H maps Zþ to
f0;1; � � � ;10g such that HðnÞ ¼ i for 5i 6 n < 5ðiþ 1Þ if
i ¼ 0;1; � � � ;9 and HðnÞ ¼ 10 if n P 50. The mutual information
between the feedforward layer and the feedback layer versus the
coupling strength is plotted in Fig. 9 Left. We consider three cases:
(i) qf ¼ qb ¼ q, (ii) qf ¼ q;qb ¼ 0, and (iii) qf ¼ 0;qb ¼ q. When q
is small, one can see a clear increase ofmutual information between
two layers with increasing coupling. And the presence of both feed-
forward and feedback connections can significantly increase the
mutual information between two layers. This is somehowexpected:
communications between neuronal networks can increase the
information shared between them. The same simulation is done in
Model II, which has many hypercolumns and geometric structures.
Themutual information ismeasured between ð2;2Þ hypercolumnof
layer 4 and ð2;2Þ hypercolumn of layer 6. The corresponding parti-



Fig. 9. Mutual information versus coupling strength for Model I (left) and Model II (right).
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tion function for Model II is HðnÞ ¼ i for 10i 6 n < 10ðiþ 1Þ if
i ¼ 0;1; � � � ;9 and HðnÞ ¼ 10 if n P 100. All other parameters are
same as those in Model I. The result is plotted in Fig. 9 Right. We
can see the same pattern as in Fig. 9 Left. In the presence of both
feedforward and feedback connections,whenq is large, the network
becomes highly synchronized. The mutual information decreases
for large q in this regime because the entropy decreases in a highly
synchronized network, as seen in Fig. 8.

Simulation II: Mutual information versus distance. The sec-
ond simulation considers the dependence of mutual information
on the distance between two hypercolumns. We fix the coupling
strength as qf ¼ qb ¼ 0:6 and study mutual information between
hypercolumns for model II and model III. In Fig. 10 Top, mutual
information between ð1;1Þ hypercolumn and all other hyper-
columns are demonstrated for model II. Model III has orientational
columns. In Fig. 10 Bottom, we show the mutual information
between the vertical-preferred orientation column in ð1;1Þ hyper-
column and all other orientation columns in model III. The loga-
rithmic scale is used because the entropy at the bottom left
corner is much larger than all mutual information. Numbers on
grid boxes are the logarithm of mutual information. We can clearly
see a decrease of mutual information with increasing distance. This
is consistent with our results in Li and Hui (2019) that correlation
of MFE sizes decays quickly with the distance. The fast decline of
mutual information is also supported by experimental evidence.
It is known that MFEs are responsible for the Gamma rhythm in
the cortex, which is known to be local in many scenarios (Alex
Goddard et al., 2012; Lee et al., 2003; Menon et al., 1996). In addi-
tion, in Fig. 10 Bottom, we can also see that orientation columns
with the same preferred orientations share higher mutual informa-
tion than those with orthogonal preferred orientations when two
orientational columns are far apart. This phenomenon is more sig-
nificant in layer 6 because only layer 6 has long-range connections.

5. Systematic measures: degeneracy and complexity

5.1. Definitions and rigorous results.

Systematic measures, including degeneracy, complexity, redun-
dancy, and robustness, are first proposed in the study of systems
biology. When a biological network is too large to be investigated
in full detail, systematic measures are used to describe the global
characteristics of the network. This idea was first proposed in the
study of brains (Tononi et al., 1994). In Rangan and Young
(1999), degeneracy and complexity are quantified as linear combi-
nations of mutual information. A simple numerical study was also
provided in Rangan and Young (1999), which is a small neural net-
work whose activities are modeled by stationary Gaussian pro-
cesses. This idea is then generalized by the corresponding author
of this paper in Li et al. (2012) to ODE-modeled networks. Neither
Gaussian processes nor ODE-modeled networks properly describe
the activity of a spiking neuronal network. In this subsection, we
use the idea of coarse-grained entropy to study two systematic
measures, i.e., degeneracy and complexity, for more realistic spik-
ing neuronal networks. The case of other systematic measures like
the redundancy (Rangan and Young, 1999) can be investigated
analogously.

Definitions of degeneracy and complexity relies on multivariate
mutual information. Still consider a neuronal network with K local
populations. Let fI be a coarse-grained function with respect to
I � f1; � � � ;Kg. For three sets A;B;C � f1; � � � ;Kg, the multivariate
mutual information MIðA : B : CÞ is given as

MIT;fðA : B : CÞ ¼ MIT;fðA : CÞ þMIT;fðB : CÞ �MIT;fðA [ B : CÞ ð5:1Þ
¼ HT;fA þ HT;fB þ HT;fC � HT;fA[B � HT;fB[C � HT;fA[C þ HT;fA[B[C :

The following proposition follows immediately from the definition
of multivariate mutual information.

Proposition 1.

(a) If fAðS½0;TÞÞ; fBðS½0;TÞÞ, and fCðS½0;TÞÞ are identical random vari-
ables, then MIT;fðA : B : CÞ ¼ HT;fA .
(b) If fAðS½0;TÞÞ; fBðS½0;TÞÞ are independent from fCðS½0;TÞÞ, then
MIT;fðA : B : CÞ ¼ 0.
Proof. If all three random variables are equal, we have

HT;fA[B ¼ HT;fA

because the histogram of fA[BðS½0;TÞÞ is supported by the diagonal set,
which equals fAðS½0;TÞÞ. Similar argument implies that

HT;fB[C ¼ HT;fA[C ¼ HT;fA[B[C ¼ HT;fA :

This implies (a).



Fig. 10. Top: heat map of mutual information with ð1;1Þ hypercolumn in Model II. Top left: Layer 4. Top right: Layer 6. Bottom: heat map of mutual information with vertical-
preferred orientation column in ð1;1Þ hypercolumn in Model III. Bottom left: Layer 4. Bottom right: Layer 6. Numbers on grid boxes are the logarithmic of mutual information.
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If fCðS½0;TÞÞ is independent of fAðS½0;TÞÞ; fBðS½0;TÞÞ, we have

HT;fB[C ¼ HT;fB þ HT;fC ; HT;fA[C ¼ HT;fA þ HT;fC

and

HT;fA[B[C ¼ HT;fA[B þ HT;fC :

It follows from Eq. (5.1) that

MIT;fðA : B : CÞ ¼ MIT;fðA : BÞ �MIT;fðA : BÞ ¼ 0:

Now consider a neuronal network with K local populations. Let
two disjoint sets I ;O � f1; � � � ;Kg denote the input set and output
set of this network. The degeneracy DT;fðI : OÞ is given by a
weighted sum of multivariate mutual informations:

DT;fðI : OÞ ¼
X

06k6jI j

X
Ik�I

1
2 jIj

k

� �MIT;fðI k : I c
k : OÞ; ð5:2Þ

where the summation goes through all possible bipartitions of I ,
and set I k means a subset of I with k local populations. Degeneracy
measures how much more information different components of the
input set share with the output set than expected if all components
are independent. Degeneracy is high if many structurally different
components in the input set can perform similar functions on a des-
ignated output set. A neuronal network is said to be degenerate if
DT;fðI : OÞ > 0 for some choice of T; f; I , and O.

The (structural) complexity CT;fðI : OÞ is given by the weighted
sum of mutual information between components of the input set.

CT;fðI : OÞ ¼
X

06k6jI j

X
Ik�I

1
2 jIj

k

� �MIT;fðI k : I c
kÞ; ð5:3Þ

where the summation goes through all possible bipartitions of I .
The complexity measures how much codependency in a net-

work appears among different components of the input set. Again,
a neuronal network is said to be (structurally) complex if
CT;fðI : OÞ > 0 for some choice of T; f; I , and O.

The degeneracy at two limit cases can be given by Proposition 1
easily. When the input is independent of the output, we have zero
degeneracy. When a neuronal network is fully synchronized, and
A;B;C are three local populations with I ¼ fA;Bg;O ¼ C, then the
degeneracy equals to Hf;TðAÞ, which is positive. Our numerical sim-
ulation result will confirm this.

Finally, we have the following lemma regarding the connection
between degeneracy and complexity.
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Lemma 1. For any choice of T; f; I , and O and any decomposition
I ¼ Ik þ I c

k, we have

MIT;fðIk : I c
k : OÞ 6 minfMIT;fðI k : I c

kÞ;MIT;fðI k : OÞ;MIT;fðI c
k : OÞg:
Proof. This lemma is a discrete version of Lemma 5.1 of Li and Yi
(2016). We include it for the sake of completeness of this paper. It
is sufficient to prove that for any three discrete random variables X,
Y, and Z with joint probability distribution function
pðx; y; zÞ ¼ P½X ¼ x;Y ¼ y; Z ¼ z�,

MIðX : Y : ZÞ 6 minfMIðX : YÞ;MIðX : ZÞ;MIðY : ZÞg:

It follows from the definition of the multivariate mutual informa-
tion and some elementary calculations that

MIðX : Y : ZÞ ¼ HðXÞ þ HðYÞ þ HðZÞ � HðX;YÞ � HðX; ZÞ � HðY; ZÞ þ HðX;Y; ZÞ
¼ MIðX : YÞ � ðHðX; ZÞ þ HðY; ZÞ � HðZÞ � HðX;Y; ZÞ
¼ MIðX : YÞ �MIðX : Y jZÞ;

where the latter time is the conditional mutual information. The
conditional mutual information is nonnegative, as a direct corollary
of Kullback’s inequality (Yeung, 2012). Hence

MIðX : Y : ZÞ 6 MIðX : YÞ:

Inequalities MIðX : Y : ZÞ 6 MIðX : ZÞ and MIðX : Y : ZÞ 6 MIðY : ZÞ
follow analogously. This completes the proof.

The following theorem is a straightforward corollary of Lemma1.

Theorem 3. For any choice of T; f; I , and O,

DT;fðI : OÞ 6 CT;fðI : OÞ:
Fig. 11. Degeneracy and complexity in model II from Numerical simulation I. The simu
excitatory neurons with coupling strengths 0:25;0:5, and 0:75 are provided. Neurons in
and layer 6 hypercolumn ð2;2Þ.
Heuristically, Theorem 3 says that a neuronal network with
high degeneracy must have high (structural) complexity as well.
5.2. Degeneracy and complexity in visual cortex models

We consider the following three numerical simulations to mea-
sure the degeneracy and complexity in model II and model III.
Because the estimation of entropy is not satisfactory when the sim-
ulation is under-sampled, we limit the cardinality of jI j to 3 and
only consider the case of jOj ¼ 1.

Numerical simulation I. In Model II, we consider the input set
I ¼ fL6; L7; L10g and O ¼ L22. In other words the input set consists
of hypercolumns ð2;2Þ; ð2;3Þ, and ð3;2Þ in layer 4 and the output
set is local population ð2;2Þ in layer 6. The synapse delay times are
chosen to be sE ¼ 2 ms and sI ¼ 4:5 ms. The time window size is
T ¼ 5 ms. The coarse-grained function fC with respect to a generic
set C is given as in Eq. (4.1), with a partition functionHmaps Zþ to
f0;1;2;3;4;5g such that HðnÞ ¼ i for 20i 6 n < 20ðiþ 1Þ if
i ¼ 0;1; � � � ;4 andHðnÞ ¼ 5 if n P 100. Fig. 11 Left shows the depen-
dence of degeneracy Df;TðI ;OÞ on the coupling strength between
layers qf ¼ qb ¼ q. We can see that the degeneracy and complexity
increasewithq in general.Whenq is too large, the recurrent excita-
tion cannot be tempered by inhibitions and the network fires at a
very high rate that can not be captured by the partition map H. As
a result, bothD and C drops to very small values. To further illustrate
this, we provide raster plots of excitatory neurons in the four corre-
sponding hypercolumns when the coupling strengths are 0:25;0:5,
and 0:75, respectively. We can see that in general stronger, more
synchronized MFEs produces higher degeneracy and complexity.

Numerical simulation II. Now we take orientation columns
into considerations. In Model III, we let the input set I consist of
lation runs 16 independent trajectories with length 20 s each. Three raster plots of
the raster plot from bottom to top are from layer 4 hypercolumn ð2;2Þ; ð2;3Þ; ð3;2Þ,



W. Li, Y. Li / Journal of Theoretical Biology 501 (2020) 110310 13
three orientation columns in hypercolumn ð2;2Þ of layer 4, with
orientation preferences 0 deg, 45 deg, and 90 deg respectively.
The output set is the orientation column in hypercolumn ð2;2Þ of
layer 6, with an orientation preference 0 deg. The synapse delay
times are chosen to be sE ¼ 2 ms and sI ¼ 4:5 ms. The time win-
dow size is T ¼ 5 ms. The coarse-grained function fC is similar to
the one in Numerical simulation I, except the partition function
takes value HðnÞ ¼ i for 10i 6 n < 10ðiþ 1Þ if i ¼ 0;1; � � � ;4 and
HðnÞ ¼ 5 if n P 50, because an orientation column contains less
neurons than a hypercolumn. The strength of long range connec-
tion is given by Clong ¼ 0:5. Fig. 11 Middle shows the dependence
of degeneracy Df;TðI ;OÞ on the coupling strength between layers
qf ¼ qb ¼ q. Again, stronger coupling between layers leads to lar-
ger degeneracy, until the network firing rate is too high to be cap-
tured by the given partition function. The degeneracy and
complexity vs. coupling strength is plotted in Fig. 12. Raster plots
of excitatory neurons in the four corresponding orientation col-
umns with coupling strength 0:25, 0:5, and 0:75, respectively, are
also provided in Fig. 12.

Numerical simulation III. The third simulation studies the
effect of long range connections. Still in Model III, we let the input
set I consist of three orientation columns with orientation prefer-
ence 0 deg in hypercolumns ð2;2Þ; ð2;3Þ, and ð3;2Þ of layer 4. The
output set is the orientation column in hypercolumn ð2;2Þ of layer
6, with an orientation preference 0 deg. Parameters such as the
synapse delay times, the time window size, the coarse-grained
function fC are identical to those of Numerical simulation II.
The feedforward and feedback strengths are qb ¼ qf ¼ 0:6. And
Fig. 12. Degeneracy and complexity in model III from Numerical simulation II. The sim
excitatory neuron with coupling strengths 0:25;0:5, and 0:75 are provided. Neurons in the
preferences 0 deg, 45 deg, and 90 deg respectively, and layer 6 hypercolumn ð2;2Þ with
the strength of long range connections is the main control param-
eter. Fig. 13 shows the dependence of degeneracy Df;TðI ;OÞ on the
strength of long range connections Clong . We can see that a stronger
long range coupling between orientation columns also leads to a
higher degeneracy. This is further verified by the three raster plots
in Fig. 13 with long range coupling strength equals to 0:5;1:0, and
1:5, respectively.
6. Conclusion

This paper investigates a few information-theoretic measures of
a class of structured neuronal networks. Neurons in the network
are of the integrate-and-fire type. Being consistent with our earlier
papers (Li et al., 2019; Li and Hui, 2019), membrane potentials are
set to be discrete to make the model mathematically and compu-
tationally simple. The network consists of many local populations,
each of which has its own external drive rate. Biologically, one local
population could be a hypercolumn in the cortex or an orienta-
tional column in the visual cortex. We provide several different
network models for the purpose of examining information-
theoretic measures. The most complicated model (Model III) aims
to model two layers (layer 4 and layer 6) of the primary visual cor-
tex, each layer has 4� 4 hypercolumns, and each hypercolumn has
4 orientational columns.

Then we use the idea of coarse-graining to define the entropy.
The motivation is that the naive definition of neuronal entropy
works poorly for large neuronal networks. One needs unrealisti-
cally large sample to estimate the entropy in a trustable way. In
ulation runs 16 independent trajectories with length 20 s each. Three raster plots of
raster plot from bottom to top are from layer 4 hypercolumn ð2;2Þwith orientation
orientation preference 0 deg.



Fig. 13. Degeneracy and complexity in model III from Numerical simulation III. The simulation runs16 independent trajectories with length 20 s each. Three raster plots of
excitatory neurons with long-range coupling strengths 0:5;1:0, and 1:5 are provided. Neurons in the raster plot from bottom to top are from layer 4 hypercolumns
ð2;2Þ; ð2;3Þ; ð3;2Þ with orientation preference 0 deg, and layer 6 hypercolumn ð2;2Þ with orientation preference 0 deg.
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addition it is known that many neuronal network can generate
Gamma-type rhythms. Hence when calculating the entropy, we
choose to ignore the precise order of neuronal spikes from the
same local population if they fall into the same small time bin. This
entropy mainly captures the uncertainty in Gamma oscillations
produced by the neuronal network. One can easily compute the
entropy for large scale neuronal networks. The mutual information
can be defined analogously.

The coarse-grained entropy and the mutual information are
examined through our examples. We find that the coarse-grained
entropy mainly capture the information contained in the rhythm
produced by a local population. Under suitable setting of the par-
tition function, the coarse-grained entropy reaches maximal value
when the partial synchronization has the most diversity, and
decreases when the spiking pattern is either homogeneous or fully
synchronized. Furthermore, in our two-layer network model, we
find that stronger connections between layers can produce higher
mutual information between layers until the entropy starts to
decrease due to too much synchronization. This is intuitive, as
stronger coupling between layers makes the firing patterns from
two layers more synchronized.

In the end, we attempt to quantify two systematic measures,
namely degeneracy and complexity, for spiking neuronal network
models. These systematic measures are originally proposed in the
study of systems biology. They can be written as linear combina-
tions of mutual information. Therefore, after defining coarse-
grained entropy and mutual information, these systematic mea-
sures can be defined analogously. We find that the inequality
proved in our earlier paper (Li and Yi, 2016) still holds, which says
that the degeneracy is always smaller than the complexity, or a
system with high degeneracy must be structurally complex.
Finally, we numerically compute degeneracy and complexity for
our two-layer cortex models. We find that at certain range of
parameters, stronger coupling between layers, as well as stronger
long-range connectivities, contribute to both higher degeneracy
and higher complexity.
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