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ABSTRACT

We address the problem of video moment localization with natural
language, i.e. localizing a video segment described by a natural lan-
guage sentence. While most prior work focuses on grounding the
query as a whole, temporal dependencies and reasoning between
events within the text are not fully considered. In this paper, we pro-
pose a novel Temporal Compositional Modular Network (TCMN)
where a tree attention network first automatically decomposes a
sentence into three descriptions with respect to the main event,
context event and temporal signal. Two modules are then utilized
to measure the visual similarity and location similarity between
each segment and the decomposed descriptions. Moreover, since
the main event and context event may rely on different modalities
(RGB or optical flow), we use late fusion to form an ensemble of
four models, where each model is independently trained by one
combination of the visual input. Experiments show that our model
outperforms the state-of-the-art methods on the TEMPO dataset.
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1 INTRODUCTION

Moment localization with temporal language aims to locate a seg-
ment in a video referred to by temporal language, which describes
relationships between multiple events in a video. It requires the
model to be capable of localizing a single event and reasoning
among multiple events. In Figure 1, for example, the description
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Figure 1: The pipeline of our proposed model

kitten paws at before the bottle is dropped is composed of a main
event, kitten paws at the bottle, a context event the bottle is dropped,
and their temporal ordering before. Localizing a single event de-
scription has been explored by recent work [3, 4, 7-10, 17-19, 29],
where most of them focus on elaborating the interaction between
words and frames. However, the description that involves multiple
events has not been sufficiently investigated.

Therefore, in this work, we propose a temporal compositional
modular network (TCMN) for moment localization with natural lan-
guage, which exploits the temporal relationship hidden within the
text to guide the network in localizing the corresponding segment.
There are three main novelties in our work.

First, a tree attention network is proposed to parse a given query
through an attention mechanism. A large portion of temporal lan-
guage has a similar parsing structure [5], as shown in Figure 2.
Specifically, a typical temporal language parse tree is composed of
three parts, namely the nodes for the main event, context event
and temporal signal. Based on this observation, TCMN is designed
to take the parsing tree of the query as language input. It then
attends relevant nodes into three phrase embeddings, with respect
to the main event, context event and temporal signal. Such a di-
vision allows our method to learn which segment is relevant to
the query in detail. Many efforts have been made in the vision and
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language area [6, 16, 26, 28]. The closest task with ours in this area
is the reference expression comprehension, however, their language
modeling is different from us. To be specific, the entities for the
reference expression are objects, while the entities for the temporal
language are events. The description of an object is often a single
word or a single phrase, while the description for an event is of-
ten a single sentence, a single clause or a single phrase. Therefore,
we argue that when adapting the compositional modular network
to video domain, applying attention over each word based on a
sequential LSTM may not precisely parse the important cues for
moment localization.

Second, two modules are designed for cross-modal matching
from different perspectives. The description for events is relevant
to the visual content, while the temporal signal is not. For example,
before describes the temporal ordering, which is irrelevant to the
visual content of the corresponding event. When modeling such a
relationship, introducing extra visual information may not benefit
or even degenerate the reasoning. Therefore, we use two modules
to compute the matching score from different aspects, where the
overall score is the sum of the two modules’ output. The temporal
localization module measures the similarity between the query and
the visual feature by utilizing the phrase embedding for the main
event and context event, while the relationship module measures
the similarity between the phrase embeddings for the temporal
signal and location feature.

Third, we use an ensemble model to solve the potential incon-
sistency of the visual modalities in this task. The inconsistency
here means that the events described in the searching query may
rely on different visual modalities. For example, given the sentence
people are dancing before the darkest point, where people are dancing
and the darkest point are the descriptions for the main event and
context event, respectively. Optical flow may be representative for
human dancing, but it may be useless when describing darkness. It
is not reasonable to assume that both the main event and context
event in a sentence rely on the same modality. In order to solve this
problem, we form an ensemble of four models, where each model
is independently trained by one combination of the visual input.
Specifically, the visual feature for the main event and context event
may be one of {(RGB,RGB), (RGB,Flow), (Flow,RGB), (Flow,Flow)}.
Compared to reference expression comprehension, localizing an
image region in the spatial domain only involves the information
on appearance from still frames, while localizing a video segment in
the temporal domain involves additional information on the motion
between frames. Therefore, the inconsistency of visual modalities
is a unique problem in the video domain. Handling this problem is
crucial for localizing a video segment when the language involves
temporal reasoning.

Our contributions are summarized as follows:

e We propose a novel model called Temporal Compositional
Modular Network that first learns to softly decompose a
sentence into three descriptions with respect to the main
event, context event and temporal signal, and then guides
cross-modal feature matching by measuring the visual simi-
larity and location similarity between each segment and the
decomposed descriptions.

(a) SBAR-TMP

(b) PP-TMP

Figure 2: Two typical structures of temporal language.

e We further form an ensemble model to handle multiple
events that may reflect on different visual modalities.

e We achieve the state-of-the-art performance in the TEMPO
dataset [11], a diverse dataset for temporal reasoning in video
and language.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 describes our proposed model. We
present the experimental results in Section 4, followed by the con-
clusion in Section 5.

2 RELATED WORK
2.1 Temporal Signals

Temporal signals are particular words or phrases that describe
the temporal relation type, such as before,after and for the first
time, which provide context information for ordering [12]. Prior
work [1, 2] has considered rule-based temporal inference by using
temporal conjunctions and prepositions. Schluter et al. [23] list tem-
poral signals in English expressions and compare their frequencies
in British and US English. Derczynski et al. [5] suggest that, a large
portion of temporal signal expressions has a SBAR-TMP or PP-TMP
subtree structure, where SBAR is the mark for clause that is intro-
duced by a (possibly empty) subordinating conjunction, PP is the
label for the prepositional phrase and the suffix -TMP is a functional
tag that indicates the existence of temporal adverbials. This subtree
usually begins with a temporal signal and also contains one of the
signal’s arguments, as shown in Figure 2. It indicates that both the
labels and word representations are strong indicators for dividing
events and their relation within the text. Different from previous
work where the temporal signals are predefined, our framework can
automatically learn the temporal signals from sentences in a data
driven fashion. In order to improve the performance of localizing
the descriptions for the main event, context event and temporal
signal, we use a tree attention network to consider each node. Tem-
poral ordering can be expressed linguistically in other ways, for
example, tense can be used to describe the relation between other
events [22]. Our work is different from this line of research, as we
are primarily concerned about the temporal language tree structure
and how the nodes refer to video segments.



2.2 Moment Localization with Natural
Language

This task was recently introduced by Gao et al. [7] and Hendricks et
al. [10], which aims to localize the start and end time points within
a long untrimmed video described by a sentence. Gao et al. [7]
introduce a regression loss, while Hendrick et al. [10] simplify the
problem by choosing from a set of pre-defined video segments. Both
models consider query-independent visual features as the context
and encode the query as a whole.

Later on, there are three major directions for handling this prob-
lem. The first direction is to enhance the representations of video
segment features. Liu et al. [18] design a memory attention model
to emphasize the visual features mentioned in the query. Xu et
al. [29] inject text features when generating clip proposals. Zhang
et al. [31] introduce a graph convolution network to enhance the
segment representations.

The second direction is to attend the most important words cor-
responding to the visual feature. Liu et al. [19] devise a language-
temporal attention model to adaptively identify the useful word
information based on the temporal context. Chen et al. [3] ex-
plore frame-by-word interactions between the video and language.
Meanwhile, they [4] also introduce a cross-gated mechanism for
exploiting the fine-grained interactions.

The third direction is to introduce additional parsing informa-
tion of the query. Ge et al. [8] additionally encode verb-obj pairs
in the query sentence and leverage an action classifier to dynami-
cally compute the visual attention over the query and its context
information. Liu et al. [17] design a recursive neural network to
dynamically fuse the visual feature and textual feature based on
the query parsing result.

A common limitation of these previous works is that they assume
the sentence is only related to one event, while the sentence for
temporal language, where multiple events are involved, are not fully
considered. Recently, Hendricks et al. [11] collect a new dataset
to evaluate the model’s performance with respect to the temporal
language. They propose to compute the similarity between the
pairwise segment feature and the encoding for the full sentence.
However, using a single textual embedding to represent the entire
sentence may be not precise enough. We argue that exploiting a
detailed relationship between visual and textual information may
further improve the performance.

2.3 Reference Expression Comprehension

Reference expression comprehension aims to localize a region
within an image with a given referring expression. The key for
grounding the referring expression is the context information to
distinguish the target from others. For example, given the expres-
sion largest elephant standing behind baby elephant and an image
with region proposals, the model is required to identify the target
elephant from others.

There are extensive efforts on the computation of the matching
score between each region proposal and the given expression. Hu
et al. [13] propose the compositional modular network(CMN) com-
posed of three modules, which identify the subject, relationship
and object, respectively. Yu et al. [30] build MattNet upon CMN,
which further elaborates on the weight computing for each module
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Figure 3: Illustration of the tree attention network.

and utilizes language-based attention and visual attention to focus
on the relevant regions. Zhang et al. [32] also build upon CMN and
introduce variational inference to generate the context for each
segment. Liu et al. [20] build upon MattNet, and design a cross-
model erasing mechanism to explore complementary cross-modal
alignments.

Although these models are shown to be effective in their original
tasks, simply extending them to video moment localization is not
applicable because it does not account for the temporal information
in videos.

3 MODEL

Our proposed TCMN is composed of a tree attention network, a
localization module and a relationship module. Given a candidate
video segment v; and a query g, we first use the tree attention
network to perform a soft parsing of the given query into three
components (one for the relationship module and two for the local-
ization module) and map each to a phrase embedding. Next, we use
the relationship and localization modules to compute the similarity
scores for segment v; to their respective textual embeddings. Four
models are trained independently, where each corresponds to one
combination of RGB and optical flow input. Finally, we use late
fusion to combine all these scores and compute an overall matching
score to measure the similarity between v; and q.

3.1 Tree Attention Network

Since most temporal languages share a similar structure after being
parsed to a constituent tree, we encode such structured information
into our language model. The Tree-LSTM [25] has been proposed to
model the tree structure of sentences. In particular, a sentence is first
parsed as a tree, where the root node indicates the representation
of the full sentence while the intermediate nodes represent the
phrases within the sentence. Simply predefining a set of accepted
labels and words to extract the corresponding event descriptions
and temporal signals may not be general enough. Instead, we design
a tree attention network to utilize such structured information, as
shown in Figure 3. Specifically, we use tree LSTM to extract the
feature for each node, as given in Equation 1.
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Figure 4: Illustration of the temporal localization module.

H =TreeLSTM({xi}i=1,2,...K)> 1)

where x; is the input word embeddings and H = [hy, hy, ...hy] is
the encoded feature for each node. We label the encoded feature
for the root node as h,o¢, which represents the whole sentence.

We then use an attention mechanism to compute the encoding
of three phrases, which will be used later as the feature for the
descriptions of the main event, context event and temporal signal,
as given in Equation 2.

ej = embedding(l;),

a" = softmax(w"[h, e] + b"),

N
"= alh,
7

where hj and [; are the phrase encoding and the label’s one hot
encoding for node j. J; is first embedded into a vector e;. The weight
w" and bias b" are then used to compute the attention value a” on
each node for each component n, where n € {m, c, s} (m represents
the main event, c represents the context event, s represents the
temporal signals). [k, e] is the concatenation operation between h
and e. N is the total number of nodes. d™ is the attended feature for
component n.

@)

3.2 Temporal Localization Module

The temporal localization module is designed to compute the match-
ing score between the given query and each video segment, as
shown in Figure 4. Since temporal language usually involves multi-
ple events, encoding the query holistically would ignore the cues
for events within the text.
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Figure 5: Illustration of the temporal relationship module.

We first use pretrained networks [24, 27] to extract video frame
features and then use multiple mean pooling layers with different
strides to produce the segment feature {v;};=1 2 .. p where P is
the total number of segments. Given the video segment features
{vi}i=1,2,...,p and the textual embeddings for the main event d™,
context event d¢ and full sentence h,¢0;, we compute the matching
scores as follows:

sT = f(d", o),

a = softmax(s™)

o} = aflv;, ®
t; = [ai, bi],

196 = F10 By gor, [0]" 11,06, 1)),

where f" first computes a score s}’ for video segment v; for compo-
nentn, n € {m,c}.s" is then normalized by so ftmax and output a”*.
v; is weighted by ] and output the video segment feature for com-
ponent n. t; is the start and end time points encoding for segment i,
where a and b represent the start and end time points, respectively.
f loc computes the matching score sg‘.’c between the segment pair
(i, j) and the full sentence encoding Ao - [U;"’, ti, v]?, tj] is the con-
catenated visual and location feature for the segment i and j. f™,
£¢ and £1°¢ have the same structure, where both the textual feature
and visual feature are first embedded to the same feature space with
a fully connected layer for each feature. The embedded features are
then added up, normalized and fed into the fully connected layers
to produce the corresponding scores.

3.3 Temporal Relationship Module

While the temporal localization module matches the visually rel-
evant phrases with the video segments, there exist some visually
irrelevant phrases that describe the temporal ordering between seg-
ments. The temporal relationship module is designed to model such



relationships, as shown in Figure 5. Given the localization encoding
t; and the prepared temporal signal encoding d*, we calculate their
matching score as follows:

siel = £l [t ), @

where f rel computes the matching score sl.rjel between the video
segment pair (i, j) and the temporal signal encoding d*. [¢;, t;] is
the concatenated location encoding for the segment i and j. The
structure of f7¢! follows the same design of f™, f¢ and f1°¢, where

the only difference is the input.

3.4 Loss Function

We use margin ranking loss as our loss function. Two losses are
utilized, where L™ measures the loss for the main event and L€
measures the loss for the context event, which are defined as fol-
lows:

sij = sllJ?C + sl.rjel,

1
m=_= Z max(0, max(s;;) — max(spx) + M™),

N J k

1 ©)
L¢ = N Z max(0, Spi = Spq + M),

ieN

L=1"+ AL,

where p and q are the indices of the ground truth segments for the
main event and context event, respectively. M™ and M° are the
margins for the two losses, N is the set of all possible segments, and
A is a constant parameter to weigh the main event loss and context
event loss. For the queries that only involve one event, where the
context ground truth is not available, we use the entire video as the
context instead.

3.5 Ensemble of Models

Since different events may reflect on different visual modalities
(RGB or optical flow), we make an ensemble of four models to
predict the final score, where each model corresponds to one com-
bination of event and visual feature pairs.

Specifically, there are two kinds of event, the main event and the
context event. For each event, the corresponding video segment
feature comes from either RGB or optical flow. Therefore, there are
four combinations of visual features and each of them is fed to an
independent model for training. Late fusion is then employed to
combine the four models to obtain the final scores. Let V be the
set of all combinations of visual features, which is {(RGB, RGB),
(RGB, Flow), (Flow, RGB), (Flow, Flow)}, late fusion is defined as:

sij = Z yOsiss
nev

Z}’nzl,

neVv

(6)

where SZ- is the matching score for the visual feature pair n, y, is
the weight for score s;‘j and the total sum of y is equal to one.

3.6 Implementation Details

We follow the same setting of computing the visual feature and
textual feature in [11], where the RGB features are extracted from

VGG [24] fc7 layer, optical flow features are extracted from the
penultimate layer [27] and the 300-d Glove feature [21] pretrained
on Common Crawl (42 billion tokens) are used as the word embed-
ding. The segment visual feature are obtained by average-pooling
over frames to produce a 4096-d vector (RGB) or a 1024-d (optical
flow) vector. Berkeley Neural Parser [15] is used to obtain the parse
tree. During our training, we use Adam [14] to optimize the net-
work with a learning rate of 0.001 and a weight decay of le — 8.
Both margins in the related loss functions are set to 0.1 and A is set
to 1 in all experiments.

4 EXPERIMENTS
4.1 Dataset Description

We conduct experiments on the TEMPO dataset [11] to evaluate our
method, which is designed for temporal reasoning in video and lan-
guage. This dataset is collected based on the DiDeMo dataset [10],
where sentences only describe one event in videos. The TEMPO
dataset makes further extensions on the language descriptions that
involve multiple events, while keeping its videos the same. The ex-
tended language expressions are collected based on four commonly
used temporal words, before, after, while and then. Simple sentences
that come from DiDeMo are also included in their dataset. There
are two parts in TEMPO, TEMPO - (Template Language) TL, which
is constructed by the original DiDeMo sentences with language
templates and TEMPO - (Human Language) HL, which consists of
pure human annotations.

4.2 Quantitative Results

4.2.1  Evaluation Metric. We use the same evaluation metric as
defined in TEMPO [11]. There are four categories in TEMPO-TL,
DiDeMo, before, after and then and five categories in TEMPO-HL
with an additional category while. The sentences belonging to
DiDeMo are almost all simple sentences, each of which only de-
scribes one single event. All the remaining sentences are categorized
based on the keywords appeared in them. For each category, the
rank at one (R@1), rank at five (R@5), and mean intersection over
union (mloU) are computed. The average value for each type of met-
ric among the categories is also computed as an overall evaluation
for the performance on temporal language.

4.2.2  Results on TEMPO-TL. Sentences in TEMPO-TL are gener-
ated by several predefined templates, two for before (A before B and
Before A, B), two for after (A after B and After A, B) and one for
then (A then B), where A, B are two simple sentences coming from
DiDeMo.

We first compare our model with MLLC [11] on complex sen-
tences in Table 1. We achieve superior performance in all sentence
types compared to MLLC. The only exception is the mIoU in the
DiDeMo category, which is only slightly lower.

Next, we compare the models designed for simple sentences,
including TALL [7], MCN [10] and TMN [17], with the models de-
signed for complex sentences, which include MLLC [11] and ours.
Since this dataset is generated by templates, this strategy can also
be regarded as a method for data augmentation, which aims to en-
hance the model’s capability of handling complex sentences. For the



Method DiDeMo Before After Then Average
R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | R@5 | mloU
Frequeny Prior 10.71 | 20.67 | 17.85 | 24.22 | 22.42 | 25.76 | 0.00 | 24.73 | 12.74 | 52.58 | 23.84
TMN [17] 20.19 | 33.18 | 22.24 | 27.25 | 20.14 | 28.49 | 9.23 | 36.45 | 17.95 | 61.27 | 31.34
TALL+TEF [7] 20.95 | 32.09 | 27.13 | 32.41 | 26.30 | 34.27 | 4.84 | 36.75 | 19.80 | 64.66 | 33.88
MCN+TEF [10] 24.85 | 37.92 | 32.28 | 38.67 | 26.08 | 35.44 | 25.07 | 53.94 | 27.07 | 73.36 | 41.49
MLLC+conTEF [11] | 27.46 | 41.20 | 35.31 | 41.81 | 29.38 | 38.90 | 26.83 | 54.97 | 29.74 | 76.76 | 44.22
Ensemble TCMN | 28.90 | 41.03 | 37.68 | 44.78 | 32.61 | 42.77 | 31.16 | 55.46 | 32.85 | 78.73 | 46.01

Table 1: Performance comparison with the state-of-art approaches on TEMPO-TL [11]. TMN [17] is based on our implementa-

tion and other baselines are reported in [11].

Method DiDeMo Before After Then While Average
R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | R@5 | mloU
Frequeny Prior 19.43 | 25.44 | 29.31 | 51.92 | 0.00 0.00 0.00 7.84 4.74 | 12.27 | 10.69 | 37.56 | 19.50
TMN [17] 20.74 | 35.29 | 10.44 | 21.07 | 09.78 | 22.83 | 3.70 | 29.81 | 9.79 | 31.17 | 10.89 | 50.40 | 28.03
TALL+TEF [7] 21.79 | 33.55 | 25.91 | 49.26 | 14.43 | 32.62 | 2.52 | 31.13 8.1 28.14 | 14.55 | 60.69 | 34.94
MCN-+TEF [10] 26.07 | 39.92 | 26.79 | 51.40 | 14.93 | 34.28 | 18.55 | 47.92 | 10.70 | 35.47 | 19.40 | 70.88 | 41.80
MLLC+conTEF [11] | 27.38 | 42.45 | 32.33 | 56.91 | 14.43 | 37.33 | 19.58 | 50.39 | 10.39 | 35.95 | 20.82 | 71.68 | 44.57
Ensemble TCMN 28.77 | 42.37 | 35.47 | 59.28 | 17.91 | 40.79 | 20.47 | 50.78 | 18.81 | 42.95 | 24.29 | 76.98 | 47.24

Table 2: Performance comparison with the state-of-art approaches on TEMPO-HL [11]. TMN [17] is based on our implemen-

tation and other baselines are reported in [11].

Model Rank@1 | Rank@5 | mean IoU
MCN+TEF w/ aug [10] | 24.85 - 37.92
MCN+TEF w/o aug [10] 27.65 - 41.91
TMN w/ aug [17] 20.19 76.08 33.18
TMN w/o aug [17] 22.92 76.08 35.17
TGN [3] 28.23 79.26 42.97
MAN [31] 27.02 81.70 41.16
MLLC+conTEF [11] 27.38 - 42.45
Ensemble TCMN 28.90 79.00 41.03

Table 3: Performance comparison on DiDeMo [10]. w/ aug
and w/o aug represent with and without data augmentation.

models designed for simple sentences, applying such data augmen-
tation may not benefit and sometimes degenerate the performance
on simple sentences, as shown in Table 3. For example, with the
data augmentation, TMN [17] and MCN [10] perform worse on
DiDeMo compared to their models without data augmentation. For
models designed for complex sentences, we observe that they still
achieve comparative results on the DiDeMo dataset, meaning this
type of models is compatible with both simple sentences and com-
plex sentences. The underlying reason is that directly applying such
data augmentation is not suitable for those models designed for
simple sentences.

In addition, although our method is not designed for simple
sentences, it achieves comparative results on DiDeMo compared to
the state-of-art methods [3, 31]. Since these methods focus on the
interaction between words and frames, which is orthogonal to our
research, we believe that combining these two types of research
may make further improvement.

4.2.3  Results on TEMPO-HL. Table 2 compares the performance of
our ensemble TCMN with the prior work [7, 10, 11, 17]. TEMPO-HL
is more challenging than TEMPO-TL as suggested by the worse
performance reported on TEMPO-HL. The reason is that human

annotated sentences often involve anaphora, omission and so on,
making the sentence composition even more complex. Similar to
TEMPO-TL, we also observe that the performance on the models 10,
17] designed for single events drops.

Ensemble TCMN exhibits the best performance across all the
metrics of the complex sentence and comparative results in simple
sentences. Specifically, the performance improvement for while is
larger than it for then, while the improvements for after and before
is in between. One possibility is that different temporal signals
have different difficulties for localization. Considering a hard case,
where the segments A and B are intersected, let b; and b, be the
boundaries of their intersection. In this case, their visual features
are similar and thus hard to differentiate. The prediction of A then
B is the union of A and B, which does not require an accurate
identification of b1 and by. However, the prediction of A while B
is the intersection between A and B, which requires the model to
precisely identify by and by. Meanwhile, A before B and A after B
only require either by or b, to be accurate.

4.3 Attention Visualization

We visualize the visual attention values in the localization module
and node attention values in the tree attention network in Figure 6.

In Figure 6 (a), we show an example that is correctly localized
by the (Flow, Flow) stream. Given a query the toy keeps spinning
after it is originally spun, the tree attention network computes three
sets of attention values, where red, yellow and orange numbers
represent the attention values for the main event, context event and
temporal signal, respectively. Different attentions focus on different
nodes: the attention for the main event concentrates on words keeps,
spining and spun, the attention for the context event highlights the
SBAR’s child sentence, and the attention for the temporal signal
focuses on the word after. Moreover, from the visual attention
visualization in the localization module, given the attended phrase
encoding, visual attention can diminish the influence of irrelevant



The Node Attention in Tree Attention Network (Flow, Flow)
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The toy keeps spinning after it is originally spun.
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Figure 6: Visualization of attention values in TCMN. Node attention values that are less than 0.05 are not shown here. The
red and yellow bounding boxes mark the ground truth segment corresponding to the full description and context description
respectively. Each photo represents a five second video segment. The red, orange and yellow numbers represent the attention
score for main event, temporal signal and context event for each tree node.

segments, as shown in row o™, where the segments that are within 4.4 Discussions
0~10s have lower scores. We examine several variants of our model to investigate the effect
In Figure 6 (b), we show another example that is correctly lo- of each module in the model.

calized by the (RGB, Flow) stream but mistakenly grounded by
the (Flow, Flow) stream. Without color information, even though
the tree attention network in the (Flow, Flow) stream attends the
phrase white car correctly, the visual attention can hardly localize
the segment corresponding to it. On the contrary, the visual atten-
tion in the (RGB, Flow) stream can correctly localize the segment
that has white car due to the RGB modality.

4.4.1 The Effects of Different Modules. In order to investigate the
contribution of each module to the final result, we compare the
model purely based on localization module without any attention,
“TCMN w/o Any Att”, TCMN without the attention in the localiza-
tion module, “TCMN w/o Loc Att”, and our full model, “Ensemble



Method DiDeMo Before After Then While Average
R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | mloU | R@1 | R@5 | mloU
MLLC+conTEF [11] 27.38 | 42.45 | 32.33 | 56.91 | 14.43 | 37.33 | 19.58 | 50.39 | 10.39 | 35.95 | 20.82 | 71.68 | 44.57
Ensemble MLLC+conTEF | 27.78 | 42.91 | 31.95 | 56.72 | 14.43 | 37.64 | 18.84 | 50.33 | 11.47 | 36.48 | 20.89 | 73.05 | 44.82
TCMN w/ Two Streams 27.56 | 40.66 | 35.89 | 58.82 | 22.45 | 45.21 | 17.94 | 47.32 | 17.66 | 38.21 | 24.30 | 75.81 | 46.05
TCMN w/ REC Att 29.35 | 43.75 | 31.82 | 55.17 | 17.58 | 40.30 | 19.58 | 49.92 | 13.15 | 36.29 | 22.30 | 76.08 | 45.08
TCMN w/o Any Att 27.61 | 42.00 | 31.82 | 55.48 | 17.58 | 38.98 | 15.28 | 49.18 | 13.30 | 35.26 | 21.12 | 70.96 | 44.18
TCMN w/o Loc Att 28.67 | 42.98 | 34.09 | 59.18 | 18.41 | 41.28 | 20.18 | 50.75 | 19.27 | 40.78 | 24.12 | 75.95 | 46.99
TCMN w/ (RGB, RGB) 22.78 | 34.81 | 28.55 | 52.14 | 10.28 | 31.25 | 13.35 | 42.20 | 14.53 | 32.96 | 17.90 | 69.85 | 38.67
TCMN w/ (RGB, Flow) 21.96 | 35.26 | 34.59 | 61.66 | 14.93 | 37.52 | 18.25 | 48.87 | 13.46 | 39.42 | 20.64 | 71.77 | 44.55
TCMN w/ (Flow, RGB) 27.03 | 40.86 | 29.81 | 56.55 | 16.58 | 37.03 | 16.62 | 46.70 | 15.44 | 38.60 | 21.10 | 73.13 | 43.94
TCMN w/ (Flow, Flow) 27.03 | 39.55 | 33.71 | 58.08 | 20.56 | 43.43 | 20.47 | 50.84 | 19.88 | 40.04 | 24.33 | 76.65 | 46.39
Ensemble TCMN (Small) | 28.00 | 41.80 | 36.44 | 58.35 | 21.52 | 43.54 | 16.67 | 46.57 | 15.82 | 37.61 | 23.69 | 76.02 | 45.57
Ensemble TCMN (Full) 28.77 | 42.37 | 35.47 | 59.28 | 17.91 | 40.79 | 20.47 | 50.78 | 18.81 | 42.95 | 24.29 | 76.98 | 47.24

Table 4: Ablation study on the effects of TCMN components on TEMPO-HL [10]

TCMN (Full)”. In Table 4, we observe that there is a large improve-
ment after employing the relationship module and a relative small
improvement after employing visual attention in the localization
module. Consequently, we show that both modules benefit the
overall performance.

4.4.2 Comparison between Different Streams. When comparing the
performance of each single stream, the model with the (Flow, Flow)
input, which is the method “TCMN w/ (Flow, Flow)” in Table 4,
achieves the best average performance compared to the others. The
reason for the superior performance of (Flow, Flow) is that a large
portion of queries requires understanding of motion (including
camera motion), such as the toy keeps spinning after it is originally
spun and the camera zooms in on the stick then the camera pans
away.

We also validate the effectiveness of the ensemble on different
combinations of visual inputs. As shown in Table 4, our ensem-
ble model “Ensemble TCMN (Full)”, which additionally introduces
two streams (RGB, Flow) and (Flow, RGB), achieves better perfor-
mance compared to the model “TCMN w/ Two Streams” that only
utilizes two streams (RGB, RGB) and (Flow, Flow), which is the
case in MLLC [11]. The performance of MLLC [11] can also be
improved with two additional streams, as shown in “Ensemble
MLLC+conTEF”. Therefore, we conclude that the four combina-
tions of visual inputs are complementary for this task.

4.4.3 The Number of Parameters. In order to verify whether the
improvement is caused by using more parameters, we shrink the
hidden state size, and refer to the resulting model as “Ensemble
TCMN (Small)”. “MLLC+conTEF” has 17M parameters in their ex-
perimental settings, while “Ensemble TCMN (Small)” has 16.5M pa-
rameters. We can see that even with fewer parameters, our method
“Ensemble TCMN (Small)” still outperforms the state-of-art method
“MLLC+conTEF”. Increasing the number of parameters can make
further improvement, as shown in “Ensemble TCMN (Full)”

4.4.4 Comparison with the Attention Network for Referential Ex-
pression Comprehension. Another interesting question is whether
introducing an external language parser is beneficial for decom-
posing the descriptions of events and temporal signals. In order to
answer this question, we compare our tree attention network with

the sequential attention network widely used in referential expres-
sion comprehension [13, 20, 30, 32], where a sequential LSTM is
adopted as the backbone.

In Table 4, the method “Model w/ REC Att” is the model adopting
their sequential attention. We observe that such an adaptation out-
performs “MLLC+conTEF” in all the metrics. One potential reason
is that softmax tends to encourage one value to be high and sup-
press others. For simple sentences, the effectiveness of attending
the single word based on sequential LSTM has been validated in
many previous works [3, 4, 17-19]. For complex sentences, since
the evaluated temporal signals are all single words, this leads to the
effectiveness of attention on sequential LSTM. Compared to our
method, the performance of such adaptation on complex sentences
is worse than ours, while the performance on simple sentences is
better. One possible reason that the tree attention network outper-
forms the sequential attention network on complex sentences is that
it encodes structure information. However, such structural encod-
ing may not be detailed enough when handling simple sentences,
unlike the sequential attention network.

5 CONCLUSIONS

In this work, we introduce a temporal compositional modular net-
work that first learns to softly decompose a sentence into three
descriptions with respect to the main event, context event and
temporal signal, and then matches the cross-modal features with
two separate modules in terms of visual similarity and location
similarity between each segment and the decomposed descriptions.
Furthermore, an ensemble method that considers the deficiencies
of different visual modalities makes additional improvement. Ex-
perimental results on TEMPO demonstrate the effectiveness of our
method when handling temporal language. In the future, we plan
to incorporate detailed interactions between words and frames that
can benefit both simple and complex sentences. We would also like
to make further exploration in social videos.
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