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Abstract. Concordance invariants of knots are derived from the instanton homology
groups with local coefficients, as introduced in earlier work of the authors. These con-
cordance invariants include a 1-parameter family of homomorphisms £, from the knot
concordance group to R. Prima facie, these concordance invariants have the potential
to provide independent bounds on the genus and number of double points for immersed
surfaces with boundary a given knot.

Contents

1 Introduction

2 Review of instanton homology with local coefficients

3 The ideal of a knot

4 Non-orientable surfaces 16
5 Reduced homology and concordance homomorphisms 22
6 Examples 27
7 Unknotting number and other properties 32
8 Calculation for the trefoil 35
9 Further calculations 43

The work of the first author was supported by the National Science Foundation through
NSF grants DMS-1405652 and DMS-1707924. The work of the second author was supported by
NSF grants DMS-1406348 and DMS-1808794, and by a grant from the Simons Foundation, grant
number 503559 TSM.



1 Introduction

Concordance invariants from instanton homology

For a knot K in a closed, oriented 3-manifold Y, the authors’ earlier papers have
introduced instanton homology groups I*(Y, K), and reduced instanton homol-
ogy groups I*(K). Several variants of the basic construction are possible. In par-
ticular, in [9], a version of instanton homology with local coefficients I ﬁ(Y, K;T)
is constructed. Here I' is a local system of coeflicients over an appropriate con-
figuration space of connections associated to (Y, K). It is a system of free rank-1
R-modules, where R is the ring of finite Laurent series in 4 variables over the
field of two elements:

9{ = U:Z[Toi17T1__Fl, Tzi—l3Tgil]' (1)

Given a base change 0 : R — S, we write [; for the local system I' ®, §, and we
can construct the groups MY, K;T,). If o satisfies the condition o(Tp) = o(T}),
then the reduced groups I h(Y, K;T,) are also defined. In the case of the unknot,
the reduced group is a free $-module of rank 1, while the unreduced group is
free of rank 2. For details we refer to [9] and the references therein, though we
shall summarize some features in Section 2.

The purpose of this paper is to explore how these instanton homology groups
with local coefficients give rise to (potentially) new concordance invariants of
knots. In its “raw” form, the first such invariant associates to a knot K c S° a
fractional ideal

zﬁ(K) C Frac(R).

There is also a version of this construction using the reduced version I*(K;T) in
place of I*(K; T) giving rise to a potentially different ideal,

ZE,(K) C Frac(S).

for any base-change o with o(Tj) = o(T}). Other invariants can then be derived
from this construction. In particular if we have a base-change 0 : ®# — §
where § is a valuation ring, and if o(Ty) = o(T}), then one may construct a
homomorphism

fo : Conc — Val(S),

where Conc is the concordance group of knots and Val(S) is the valuation group
of 8. (See Section 5 below.)



Similar constructions, using Heegaard Floer homology rather than instanton
homology, have been made earlier by Ozsvath and Szabo in [13] and by Alishahi
and Eftekhary in [3]. In the context of gauge theory, similar constructions occur
in [7] and [8]. Like their earlier relatives, the concordance invariants £, defined
in this paper provide lower bounds for the slice genus of a knot.

An intriguing feature of this construction in the instanton case is that, for
suitably chosen o, the concordance invariant may provide independent control
of the genus and number of double points for normally immersed surfaces in the
ball. (By normally immersed we shall mean that the the only self-intersection
points of the immersed surface are transverse double points.) More specifically,
for each r € [0, 1], we can define a homomorphism

fr: Conc — R

with the following property. Suppose K is a knot in S* bounding a normally
immersed, connected, oriented, surface S C B*. Let y(S) be its genus, and &(S)
the number of positive double points. Then the concordance invariant £, satisfies
the inequality

y(S) +re(S) = £ (K). (2)

The authors’ invariant (1/2)s*(K) from [8] satisfies an inequality of this sort with
r = 1, as does the Ozsvath-Szabo r-invariant [10].

A priori, the new invariants with r < 1 potentially constrain the ability to
“trade handles for double-points” in immersed surfaces. Since any knot bounds
a normally immersed disk, it is clear from the shape of (2) that £,(K) — 0 as
r — 0. So for small r the inequality contains essentially no information about the
genus of S. By considering a limiting case, we shall arrive also at a concordance
homomorphism

f. : Conc —» R (3)

with the property that, for a normally immersed disk S in B* with boundary K,
we have

£(S) z fu(K).

The minimal number of crossings in a normally immersed disk — without concern
for the signs of the crossings — is sometimes called the 4-dimensional clasp num-
ber or 4-dimensional crossing number of the knot K, and is often written c.(K).
It follows that |£.(K)| is a lower bound for the 4-dimensional clasp number of a
knot K:

c(K) = |f(K)|.



On the other hand, |£.(K)| may not be a lower bound for the slice genus of K.

Remarks. As mentioned above, the association of an ideal z4(K) to a knot K is
formally similar also to the construction used by Alishahi and Eftekhary in [3],
which is based on a variant of Heegaard-Floer homology for knots. Our invari-
ants f,, obtained from z%(K) by base-change to a suitable valuation ring, are sim-
ilarly related in a formal way to the invariants Y(¢) defined by Ozsvath, Stipsicz
and Szabo in [13], which one can derive from the Alishahi-Eftekhary invariants
by a similar base change.

Although the authors hope to return to this in the future, the present pa-
per contains no complete calculations of z3(K) or £,(K) for any non-trivial knots
except the trefoil. For the simplest knots, such as 2-stranded torus knots, twist
knots, and some small pretzel knots including the knot 7, in the Rolfsen table,
calculations of these invariants can be made based on just the formal properties
that we establish. The results of some of these calculations are summarized at the
end of this paper, but not included in detail, though we do include an alternative
calculation for the trefoil to illustrate aspects of the gauge theory. The construc-
tions in [3] also associate to a knot K a module A(K) isomorphic to a monomial
ideal in a ring of polynomials in two variables over a field of characteristic 2.
In the simplest cases that the authors have calculated, z%(K) agrees with A(K)
after a base-change, but this appears to be a consequence of the fact that the two
invariants share similar formal properties. For the torus knot T(3, 4), the authors
believe that the two invariants are different. (See section 9.) One part of the diffi-
culty in calculation arises from the fact we are working in characteristic 2, where
there is less prior work on instanton homology, though see [17, 16].

Non-orientable surfaces

There is a further formal similarity between the families of concordance homo-
morphisms £, defined here and the invariants Y(t), (0 < t < 2), defined by
Ozsvath, Stipsicz and Szabo in [13]. Like £, each Y(t) is a homomorphism from
the concordance group to R. But in addition, it is shown in [14] that for the
special case t = 1, the invariant Y(¢) constrains the topology of non-orientable
embedded surfaces S C B* with boundary K, by an inequality

bi(S) = S¥(S) = ~21x (1),

where v is the degree of the normal bundle of S relative to the zero framing of
the boundary. We shall see that certain specializations of the construction of £,
lead to concordance homomorphisms with the same property.



Crossing changes

We shall also describe the behavior of I*(K; T') under crossing-changes of K. The
rank of I*(K;T) over & is unchanged by crossing-changes, and only the torsion
is affected. This is the same behavior as is described for I*(K;T,) in the authors’
earlier paper [8], which in turn rested on [7] and [6].

Corresponding results for Heegaard-Floer homology are proved in [12] and
[3], and similar results for Bar-Natan homology and Lee homology were proved
by Alishahi and Alishahi-Dowlin in [1, 2]. As in [1, 2, 3], one can exploit the
crossing-change behavior to show that the torsion part of I*(K;T) gives rise to a
bound on the number of crossing changes needed to unknot K.

2 Review of instanton homology with local coefficients

The basic construction

We briefly recall some of the features of the instanton homology groups from
[9]. Let K be a link in a closed oriented 3-manifold Y, let yo € Y be a framed
basepoint and B(y,) a standard ball, disjoint from K. Let 6 be a standard theta-
graph embedded in B(y,), and let

Kt=Ku®

be the union, regarded as a web embedded in Y. We can equip Y with the struc-
ture of an orbifold Y whose singular set is K* and whose local stabilizers are Z/2
along all edges of the web. There is then an associated space ®*(Y,K) which
parametrizes isomorphism classes of orbifold SO(3) connections on Y equipped
with a lift to SU(2) on the complement of the singular set. The instanton ho-
mology I#(Y, K) with coefficients [, is constructed as the Morse homology of a
perturbed Chern-Simons functional on BH(Y, K).

To define a system of local coefficients, one starts by constructing four maps

h = (ho, hy, by, h3) : BA(Y,K) — (R/2)*.

The component hy is defined using the holonomy of a connection along all the
components of the link K, while hy, hy, hs are defined using the holonomy along
the edges of 0. See [9]. The local system I' over BH(Y, K) is defined as the pull-
back via h of a tautological local system over (R/Z)* whose fiber is a free rank-1
module over the group ring & = [,[Z*]. Formal variables T; are introduced so
as to write R as the ring of finite Laurent series (1).



Definition 2.1 ([9, section 2.2]). The instanton homology group of (Y, K), de-
noted I*(Y,K;T), is the Floer homology group constructed from the perturbed
Chern-Simons functional on %#(Y, K) with coefficients in the local system T
For any ring homomorphism of commutative rings, o : & — §, we write [, for
the local system I" ®, S, and I ﬁ(Y, K;T}) for the instanton homology.

Despite the appearance of the definition of Ay, a careful examination of the
local system shows that the orientation of the link K plays no role.

A variant with non-zero Stiefel-Whitney class

We also recall from [9] that given closed 1-manifold w C Y disjoint from K ¥, there
is a variant of I*(Y,K;T,) constructed from SO(3) connections whose Stiefel-
Whitney class is dual to ©. More precisely, the space %*(Y,K), is defined as
a space of orbifold SO(3) connections on Y together with a lift to SU(2) on the
complement of K¥ U w and such that the obstruction to extending the lift across
 is —1. The local system I, can be defined on B#(Y, K),, for any o, and we have
instanton homology groups
Iﬁ(Y’ K; ro)a)~

Rather than being a closed 1-manifold in the complement of the web, the
locus w can also be allowed to have components which are arcs with end-points
on the link K. When o has this form, the holonomy map h, can no longer be
constructed using holonomy along K, and the local system I' is no longer defined.
However, if 0 : R — § is a base change with o(Ty) = 1, then hj plays no role
in the definition of the local system Ij,. For such w, we may therefore define
(Y, K;T,), whenever o(Ty) = 1.

Functoriality for embedded cobordisms

Having briefly reviewed the main features of the instanton homology groups
I ﬁ(Y, K;T), we now turn to their functorial properties. Let (X, S) be a cobordism
from a pair (Y, Ky) to a pair (Y7, K;).We require as usual that X is oriented so that

0X = =Y, + Y,

and in this section we will also require that S is an oriented cobordism betweeen
oriented links:

0S = —-Ky + K.



(This condition of orientability will be dropped later.) Because we wish to con-
sider the instanton homology If, we require standard embedded balls B(y,) and
B(y;) at framed base-points y, and y;, and an embedded [0, 1]xB? joining these in
X (see [9, Section 2.4]). We always require S to be disjoint from these. However,
we will usually not indicate them in our notation. The functoriality of instanton
homology means that S gives rise to a map of &-modules,

(X, S;T) : I*(Yy, Ko: T) — I*(Y1, Ky;T).

This basic construction can be extended in various ways. First, without es-
sential change, we can pass to a local system of §-modules I, in place of T, by
a base change ¢ : R — §. Second, we can consider functoriality for the ho-
mology groups modified by a codimension-2 representative w, as described in
the previous paragraphs. Given a closed 1-manifolds w; C Y; disjoint for Kf for
i = 0,1, and corresponding homology groups I*(Y;, K;; I'+)w;- Given a cobordism
(X, S) as before and also a 2-dimensional submanifold w — a cobordism from wq
to w1, disjoint from S - then one obtains a map

(X, $:T)y : TH(Yo, Ko; D)y — IF(Y1, K131,

As discussed in [9], one may allow w to have transverse intersections with the
interior of S in X. Furthermore, in the special case that o(Ty) = 1, one may allow
® to be a manifold with corners whose boundary pieces are wy and w; together
with arcs and circles on S.

Since X will usually be fixed, and coeflicients I or I; are understood, we may
abbreviate the notation and just write, for example,

I*(S) = I*(X, S; T,).

Immersed cobordisms

We may allow the surface S to be normally immersed (immersed with normal
crossings) in X. To extend the definition of Iﬁ(X ,S;T,), to this case, we first
transform S to an embedded surface by a blow-up construction: at each normal
crossing, we replace S by its proper transform S in X = X#CP°. Following the
convention about the immersed case that is captured by the formula To define
this map in the case that S is normally immersed rather than embedded, we first
transform S to an embedded surface by a blow-up construction. In the case of
just a single double point, one then defines I #(S) in terms of I*(S) by the rule:

Iﬁ(X, S;ra)w = Iﬁ(Xva S~§ Fo)w + Iﬁ()z, g? ra)a)+e, (4)



where € is the standard 2-sphere representing the generator of HZ(C_[P’Z). For
more than one double-point, one applies this construction repeatedly. See [9,
Section 4.3] for details.

The reason for including both terms on the right hand side of (4) is explained
in [9], and is appropriate when we wish to allow w to have boundary along S. If ©
and «’ are two surfaces with boundary on S, and if they are isotopic by an isotopy
in which dw sweeps over a double-point of S along one branch of the immersed
surface, then the classes [w’] is homologous to [w + €]. Both terms are therefore
needed if we wish to have a definition that is invariant under this isotopy. That
said, if we allow only the more restricted representatives w whose boundaries
do not include arcs or circles on S, then this symmetry between the two terms is
no longer needed. Following [9], we can therefore change the definition of the
functor when applied to normally immersed surfaces. For any ¢ € § we may

define a modified functor I? by altering (4) to:

FX,SiTo)o = (X800 + E X, ST )e. (5)

When applied to embedded surfaces, the functors Ig and I are equal.

Surfaces with dots

The functoriality can be extended by allowing the morphisms to be surfaces S
with additional decoration by dots: a dot is an interior point g of S together with
an orientation of T,;S. Thus given S and a dot g, there is an operator

I*(S, q) : I*(Yp, Ko; T) — I4(Yy, Ky T).

To define this extension, following section 3.4 of [9], it is sufficient to treat the
case that S is a trivial cobordism (a cylinder), in which case we are seeking to

define an operator
Ay (Y, K;T) — MY, K;T).

This operator, which has even degree for the mod 2 grading, is defined in [9],
where it is shown to satisfy a relation

2
Aq +PA;+0Q =0,
where P and Q are elements of R given by

P=TLT+ 0T I + LT T + BT T (6)



and

3
Q=) (TF+T77).

J=0

3 The ideal of a knot

Modifying surfaces in the orientable case

There are standard ways in which an embedded or immersed surface S can be
modified by local operations to produce a new surface, and there are formulae
proved in [9] for how the map I*(S) may be changed such modifications. For
the following definition, we refer to [9, 7] for a description of the twist moves
and finger move. The “internal 1-handle addition” is illustrated in Figure 1. To
describe it in words, points p and g lie on two disks in S, both of which are stan-
dardly embedded in a ball B* c X. The new surface S* is obtained by replacing
the two oriented disks with a standard oriented annulus. A special case of this
operation is an internal connect sum with a standard torus.

Definition 3.1. Let (X,S) and (X, S*) be cobordisms between the same pairs
(so only the surface S has changed). We continue to suppose that S and S* are
oriented. We will say that S* is c-equivalent to S if S* can be obtained from S by
a sequence of moves, each of which is one of the following or its inverse:

e an ambient isotopy relative to the boundary;
e introducing a double point by a twist move, either positive or negative;
e introducing two new double points by a finger move;

e an oriented internal 1-handle addition connecting two points in the same
connected component of the surface.

Remark. If X is simply connected and S C X is connected, then c-equivalence
is the same as the equivalence relation generated by homotopy relative to the
boundary together with “stabilization” by internal connected sum with T2. For
example, given two classical knots K, and K3, any two connected, oriented cobor-
disms S and S* joining them in [0, 1] X S* are c-equivalent.

Formulae for how I*(S) changes when S is changed by a twist move or a finger
move were given in [9, Proposition 4.4]. The lemma below summarizes these, and
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-
> I5
Figure 1: The internal addition of a handle. The surfaces are embedded in a standard

4-ball.

also provides a formula for internal 1-handle additions (a “neck-cutting relation”
which generalizes the formula for the internal connected sum with a torus [9,
Lemma 4.3]).

Lemma 3.2. (a) If S’ is obtained from the oriented immersed cobordism S by
either a finger move or a positive twist move, then

1*(S) = o(L)I(S)

where
L=P+T+T,% € R.

(b) IfS’ is obtained from S by either a negative twist move, the I%(S") = I¥(S).

(c) IfS’ is obtained from the oriented cobordism S by an internal 1-handle addi-
tion connecting two points p and q of S,

I8y = I4(S, p) + I¥(S, q) + PI*(S),

where the notation (S, p) means the surface S decorated with a dot at p using
the orientation of S. In particular, if p and q are on the same component of S,
then

I%(S') = PIXS).

Proof. It remains to prove the result for the internal 1-handle addition. Using
excision, we can reduce the general case to the case that S is the trivial cobordism
from the 2-component unlink to itself. In this case, S’ can be described as a
composite of the “pants” and “copants” cobordisms, and I*(S’) can therefore be
calculated using the results from section 5.4 of [9]. O
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Two topological quantities associated to an oriented surface S will be our
focus here. The first is the number of positive double points, which we write as
¢(S). The second is the genus of S. In the context of cobordisms, it is convenient
to make an adjustment to the genus:

Definition 3.3. For a cobordism S from a link K to a link K;, we define the
adjusted genus to be the quantity

¥(S) = (=x(S) + c4(S) = c-(5)) /2, (7)

where c; and c_ are the number of components of the outgoing and incoming
ends of of the cobordism (the number of components of K; and Kj respectively).

Remark. If K; is a knot, then y(S) coincides with the usual genus of the surface,
which is why there is no risk of confusion in using the same notation. The ad-
vantage of the adjusted genus is that it is additive for composite cobordisms.

With these definitions out of the way, we can state the main result from which
the remainder of our conclusions will be derived.

Proposition 3.4. Suppose S and S* are c-equivalent. Let y(S) and e(S) denote the
adjusted genus and the number of positive double points. Then there exist n and m
large enough such that

PY(S*)+nLE(S¥)+mIﬂ(S) — py(5)+nL£(S)+mIﬁ(S*).

Remark. If I*(Ky;T) is torsion-free and Y(S), y(S§*) > 0, then there is no need for
n and m in this proposition: the stated equality holds only if it already holds with
m=n=0.

Proof of the Proposition. The essential calculations here are to show that the stated
equality holds if S* is obtained from S by just one of the moves in Definition 3.1
or their inverses. For such a single move, the result follow in each case from
Lemma 3.2 (bearing in mind that Definition 3.1 requires that p and g are in the
same component of S, in the case for an internal 1-handle addition). For more
than one move, the result follows by induction. O

Definition of the ideal

Let Frac(%R) denote the field of fractions of R. If M and N are submodules of an
R-module W, we write [N : M] for the generalized module quotient,

[N:M]={a/beFrac(R) | aM C bN}.
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This is an R -submodule of Frac(R ). In this definition, if the modules might have
torsion, we should allow a/b to be a fraction that is not expressed in lowest terms.

Definition 3.5. Given a cobordism (X, S) as above from (Yy, Ky) to (Y1, K7), we
define the R -submodule
{(X,S) C Frac(R)

to be {(X,S) = [N : M], where N = I*(Y,,Ky;T) and M C N is the image of the
%-module homomorphism I#(S; T):

M =imI*(S;T).

Further, if y and ¢ are the adjusted genus and number of positive double points
in S, we define

(X, S) = PYLE{(X, S)
C Frac(R).

Note that 1 € (X, S), so (X, 9) is always a non-zero submodule of Frac(R).

Lemma 3.6. IfS* C X is c-equivalent to S, then the R -submodules zﬁ(X, S) and
2%(X, S*) in Frac(R) are equal.

Proof. This follows from the definition and Proposition 3.4. m]

Corollary 3.7. If S is c-equivalent to a surface S* with adjusted genus y* and *
positive double points (and any number of negative double points), then

Pr'LE e (X, S).

Proof. Given Proposition 3.4, this again follows by checking the definitions. To
do this, let M be the image of I 4(S) and let M, be the image of I #(S*). Since M, is
certainly contained in I ﬁ(Yl, Ki1;T), we evidently have

rPYLEM, C rP'LEI (Y, K13 T).
From Proposition 3.4, with r = P"L™, we have
rPYLEM, = rPY LM,
so the previous inclusion also says

rPV LM C rP' LI (Y, K13 T).
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From the definition of {(X, S), this last inclusion means
PV VLR € (X, S),
which is equivalent to
PV € Z4(X, 9S).
O

Lemma 3.8. If X isa product, [0, 1]XY, andS is c-equivalent to a product [0, 1]XK,
then Z4(X, S) = R.

Proof. Because of Lemma 3.6, we may as well assume S is product. In this case,
the map is the identity, so {(X,S) = R by construction. On the other hand, y
and ¢ are both zero for a product cobordism, so 2(X,9) = (X, 9). O

Lemma 3.9. Suppose (X, S;) is a cobordism from (Y;_1, K;_1) to(Y;, K;), fori = 1, 2.
Let (X, S) be the composite cobordism. Then

(X1, $1) 2(Xe, S2) € (X, S).
Proof. The terms y(S) and &(S) are both additive, so the assertion is equivalent to

{(X1,51)0 (X2, S2) € {(X,S).

For brevity, write N; = Iﬁ(lfi,Ki; I')fori=0,1,2.If a;/b; € {(X1,51) and ay /b, €
{(X3,S,), then
(a1az) im(I%(S)) = azIﬁ(Sz)(al im(Iﬁ(Sl))
C aI*(Sy)(1Ny)
= biay imIﬁ(Sz)
C bibyN,.
So (aya)/(b1by) € {(X,S) as required. O

Corollary 3.10. Let (X1, S1) be a cobordism from (Yy, Ko) to (Y1, Ky). Suppose there
exists (X2, Sz) such that the composite (X, S) is c-equivalent to a product. That is,
X = Xj U Xy is diffeomorphic to a cylinder [0, 1] X Yy by a diffeomorphism h, and
h(S) is c-equivalent to [0,1] X K. Then (X1, 8y) is a fractional ideal, meaning
there exists A € R such that

Azﬁ(Xl, Sl) CR.
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Proof. From the previous three lemmas, we have
(X1, 824Xz, S) € .

The submodule z*(X,,S,) is non-zero (as always) so contains some non-zero
A/B € Frac(R). Then the above inclusion gives

AZﬁ(Xl,Sl) CB®R.

Classical knots

Let us focus now on the special case of classical knots in $3, and take X = [0, 1] X
S®. Consider connected cobordisms S from the unknot U; to a general knot K.
Any two such cobordisms are c-equivalent. Furthermore, Corollary 3.10 always
applies in this situation. So we can make the following definition.

Definition 3.11. For a classical knot K, we define z#(K) c Frac(®R) to be the
fractional ideal zﬁ(X ,S), where X = [0,1] x $3, and S is any connected, oriented
cobordism from U to K. This fractional ideal is independent of the choice of S.

Remarks. In the situation described in this definition, we can construct a cobor-
dism S’ = D?US from the empty link Uy to K, and we can equivalently define z#(K)
to be z#(X, ). To see that these are equal, note first that im I4(S") c imI¥(S), so
an inclusion

(X, 8) c 24X, 9)

follows from the definition. To obtain equality, note that there is the point op-
erator A = A, acting on both I¥(Uy;T) and I*(K;T), so I#(S) is a homomorphism
of modules over the larger ring & = R[A]/(A? + PA + Q). The Floer homol-
ogy I*(Uy;T) is a free module of rank 1 over F, generated by x,, and the latter
element is in the image of the map

*(D?) : I*(Uy; T) — (U T).
So {(X,S) and {(X,S’) can both be described as the set of a/b such that
al’(S)(x,) € bIHK;T).

From the fractional ideal z*(K), we can read off a constraint on the possible
genus and number of positive double points, for surfaces S in B* which bound K.
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Proposition 3.12. If the classical knot K C S° bounds a surface S in B* with genus
y and ¢ positive double points (and any number of negative double points), then

PYIf € Z4(K).
Proof. This follows from the definition and Corollary 3.7. m]
As a generalization of the above proposition, we have the following,.

Proposition 3.13. Let S be a normally immersed cobordism from a knot K to a
knot K;. Let y be its genus and ¢ the number of positive double points. Then

P'IZH(K,) C 2(K)).

Proof. Let Sy be a cobordism from the unknot to Ky, and let S; be the composite
of Sg and S, from the unknot to K;. From Lemma 3.9 we have

(X, So) 24 (X, S) c 24(X, 1),

where X is [0, 1] x S® in each case. From Corollary 3.7, we have PYL¢ € (X, S).
So the above inclusion implies

P'LEZH(X, So) € 24X, S)),
which is to say, PYLEZ4(K,) C Z#(X, K;) as claimed. O

Corollary 3.14. For a classical knot K, the fractional ideal Z#(K) C Frac(R) is a
concordance invariant of K.

Proof. We apply the previous proposition to a concordance from Kj to K;, and
we see z#(K;) C z*(K;). The reverse inclusion holds for the same reason. O

We make some remarks about the concordance invariant z#(K) c Frac(%),
which seems to be of interest. Previous constraints on embedded surfaces that
have been obtained using gauge theory have most often treated genus and posi-
tive double-points even-handedly. Thus the results of [6] lead to a lower bound
on y(S) + &(S), for embedded surfaces S in a fixed homology class in a simply-
connected 4-manifold. The closely-related knot invariant s*(K) defined in [8] is
a cousin of Rasmussen’s s-invariant for knots, and has the property that

y(S) +&(S) = s*(K) /2,
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for any oriented immersed surface in S ¢ B* with boundary the knot.

By contrast with the invariant s*(K), the invariant z#(K) appears to have the
potential to provide a constraint on the pair (y(S), £(S)) which is not a constraint
only on their sum. Our results say that the pair is constrained to lie in the set

G(K) = {(y,e) e Nx N | P'L* € 2(K) }. (8)

That said, the authors lack any resources for calculating zﬁ(K ), except in some
simple examples, at least at the time of writing. By smoothing a double point,
one can always decrease ¢ by one (if it is positive) in exchange for increasing y
by one. That is, (y, ¢) arises as the genus and number of double points for an
immersed surface, then so does (y + 1,¢ — 1), if ¢ > 0. It would be interesting to
know whether the set G(K) shares this property.

4 Non-orientable surfaces

Adaptation of the ideal to the non-orientable case

As mentioned in the previous paragraph, if o : # — § is a base change, then we
can repeat the constructions above, with I,; = I'®, S replacing the local systemT,
and S-modules replacing R -modules in the discussion throughout. We require
only that § is an integral domain and that o(P) and o(L) are both non-zero. So,
to a cobordism (X, S) as above, we can associate an §-module,

zg(X, S) € Frac(S),

in the field of fractions Frac(S) of S. (The condition that ¢(P) and o (L) are non-
zero is used, for example, in the proof of Lemma 3.6.) For a classical knot K, this
provides a fractional ideal

24(K)
which is again a concordance invariant of the knot. Proposition 3.12 continues

to hold, and tells us that if K bounds an oriented surface S with adjusted genus
y and ¢ positive double points, then

a(P) o(L) € Z5(K). ©9)

In this form, nothing is gained from the base change: the above constraint
on y and ¢ can only be weaker than the previous one. However, there is a spe-

cial class of cases in which z(ﬁ,(K ) contains information also about non-orientable
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surfaces. We suppose from now on in this section that
o(Ty)=1€8.
This means in particular that o(P) = o(L), so the constraint (9) becomes
a(P)* e 24 (K).

Consider now a possibly non-orientable immersed surface S in B*, with boundary
the classical knot K C S®. We continue to define y(S) as before (Definition 3.3),
and we call it still the adjusted genus. We do not have a notion of positive or
negative double point any more, so we simply write

&(S) = number of double points .

In addition to y and &, there is one other numerical invariant to record, which
is the degree of the immersed normal bundle of S, relative to the trivialization at
0S provided by the 0-framing of K. We write this as

v(S) = deg NS.

For an orientable surface, this can already be non-zero if S has double points but
is zero if S is embedded. If S is non-orientable, it may be non-zero even for an
embedded surface. We combine these and define

() = y(8) + 58(5) - 11(5) (10)

This quantity is an integer, as will emerge below. For an orientable surface, we
have

n(S) = y(S) + &(S),
so the constraint (9) can be rewritten yet again as

a(P)"S € 25 (K). (11)
We now have the following theorem.

Theorem 4.1. Let o : R — S be a base-change with o(Ty) = 1, let K C S* be

a knot, and let zg(K) C Frac(S) be the associated fractional ideal as above. Let
S be a possibly non-orientable, normally immersed connected surface in B*, with
boundary K. Then

o(P)') € Z5(K),
where 1(S) is as in (10).

Note that in the statement of this theorem, the definition of zg(K ) has not
changed, and is still obtained by using an orientable surface, as in Definition 3.11.
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Proof of the Theorem for the non-orientable case

The proof of the theorem follows the same basic plan as the proof of Proposi-
tion 3.12 which treats the orientable case. The proof of that proposition arose
from considering the effect of altering an immersed surface S by finger moves,
twist moves, and the addition of handles. For the non-orientable case, we con-
sider also the effect of a connect sum with RP?, as in [9, Lemma 4.2].

To carry this out, consider the immersed cobordism in I X S°,

S*!U1—>K

obtained by removing a standard pair (B¢, D?) from (B*, S). Let @ be an immersed
surface in the interior of I X S*> whose boundary is a collection of simple closed
curves dw C int(S*), along which w and S* meet cleanly. Let w be chosen fur-
thermore so that the curves dw is a representative for the Poincaré dual of w;(S*)
in H(S*;Z/2):

PDg+[0w] = wy(S™). (12)

The relative homology class of « is uniquely characterized by this condition.
Corresponding to the cobordism S* and the surface w, we have a homomorphism

*(S*:T,), : INULT,) - F(K;T,).

The homomorphism is independent of the choice of w, subject to the constraint
(12), because it depends only on the relative homology class. Note that the partic-
ular choice we made in (4) for how to define I*(S*;T;,),,) in the case of immersed
rather than embedded surfaces is important at this point. As explained in the re-
marks there, the symmetry between the two terms on the right-hand side of (4)
is necessary to ensure that I#(S*; T,),, is unchanged if w is modified by an isotopy
that moves dw across one of the double-points of the surface.

Let S; be any other immersed cobordism with the same boundary. As im-
mersed surfaces in I X S°, these two differ by a sequence of operations each of
which is one of the following or its inverse:

 an ambient isotopy relative to the boundary;
e introducing a double point by a twist move, either positive or negative;

e introducing two new double points by a finger move;
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e an internal connected sum with an embedded RP? of the sort R,, as in
[9, Lemma 4.2]. (Recall that R, is an embedded RP? with self-intersection
+2.)

Remark. It is not necessary to include a connect sum with R_ in this list, because
the same effect can be achieved by a sum with R, followed by isotopies, finger
moves, and twist moves. Similarly, it is not necessary to include a sum with T?.

Solet S5, Sy, ..., SZ = §* be a sequence of surfaces related each to the next by
one of these operations or its inverse. For each SJ’.‘, let w; be an immersed surface

in the interior of I X S* whose boundary dw; C int(S;) is dual to wy (S;f) For each
Jj, consider the resulting homomorphism,

IH(S}3 L)y (UG T,) = F(KST).

Consider one step in this sequence: suppose that 57 is obtained from Sj by
one of the operations listed above. In the case of the twist move and finger move,
we can suppose that o, is disjoint from the regions involved in the modification
of Sy, and we can take w; = wy. The situation then is no different from the
orientable case, and accordingly we have

(S5 Ts)w, = U IS Ty s

where

U= o(P), for the finger and positive twist moves,
1, for the negative twist move.

In the case that ST = S§ # Ry, in order to satisfy the constraint (12), we can take
@1 to be wy U, where 7 is a disk meeting R, in a generator of H;(R,). According
to [9, Lemma 4.2], we then have

Iﬁ(S; r(f)a)l = Iﬁ(s(>)k§ Fa)wo-

At the same time, we can consider how the numerical invariant 5(S) is changed
by these operations. For the finger move, v(S) is unchanged, while §(S) increases
by 2. For the positive (respectively, negative) twist moves, v(S) decreases (respec-
tively, increases) by 2. So we have

n(S1) = n(So) + 7,

where
{1, for the finger and positive twist moves,
T =

0, for the negative twist move.
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For the sum with R,, the adjusted genus y(S) increases by 1/2, and v(S) increases
by 2, so
n(S1) = n(So)

in this case. (Note in particular that the change in 7 is always an integer, which
allows us to verify that n(S) € Z, as n(Sp) is manifestly an integer if Sy is ori-
entable.)

If we compare the formulae for the change in 7(S) with the formulae for the
change in Iﬁ(S; I';).,, we see that

a(PYTSI(ST; Ty )y = 0 (PYISVIH(SS; Ty )y

If we apply this argument to the sequence of modifications from Sy to S, we learn
that for some n > 0,

a(PYISH (S, T,),, = (YIS H(SE: T, )y -

From here, the proof of the theorem proceeds exactly as in the orientable case,
which is the case already established at (11).

More general non-orientable cobordisms

As in the orientable case, the above theorem for classical knots can be set up more
generally for cobordisms of pairs (Y, K). Although we will not spell this out in
full, we can usefully describe the appropriate functorial setup. For this purpose,
we need to keep track not just of the surface S in a morphism, but also the surface
w. In more detail, the correct category has objects (Yy, Ko) and (Y3, K;), where Y;
is a closed oriented 3-manifold, and K; C Y; is an oriented link. Again, B(y;) C Y;
will be a standard ball disjoint from K;, a neighborhood of a chosen basepoint.
For a morphism from from (Y, Ky) to (Y3, K;) we require the following data:

(a) acobordism of pairs (X, S), with X an oriented 4-manifold and S a (possibly
non-orientable) immersed surface with transverse double-points;

(b) a surface w in the interior of X whose boundary is a collection of simple
closed curves dw C int(S), along which « and S meet cleanly;

(c) an orientation of S\ dw which is compatible with the orientations —Kj and
K; at the boundary, and which changes sign across the curves dw;

(d) an embedded cylinder [0,1] X B (or framed arc) joining B(y,) to B(y;),
disjoint from S and w.
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The orientation conditions imply that dw represents to the dual of w;(S). We
will say that two cobordisms (X, S, w) and (X', 5", @’) are isomorphic if they are
diffeomorphic relative to the boundary, respecting orientations. Set up in this
way, morphisms compose correctly. From I* we obtain a functor which assigns
I*(Y, K;T,) to the object (Y, K), and assigns I*(X, $;T,),, to the morphism (X, S, w)
as expected.

Imitating the previous definitions used in the orientable case, we can now
formulate the following generalization of Z4(X, S) (Definition 3.5). Given a mor-
phism (X, S, w) as just described, let M be the image of Iﬁ(X, S;T,)w, and let

((X, S, w) C Frac(S)
be the $-submodule
lo(X, S, 0) = [I*(Y1, K3 Ty) = M.

Then set
£ (X5, 0) = o(PYIL(X, S, 0)
C Frac(S),

again as in Definition 3.5. The proof of Theorem 4.1 adapts readily to establish

that the submodule zg(X ,S,w) is unchanged if S and o are altered by certain
standard operations. To spell this out, let us say that (S, w) and (S, »’) are c-
equivalent if one can be obtained from the other by a sequence of the following
moves and their inverses:

e an ambient isotopy relative to the boundary;
e replacing w with another homologous surface;

e altering S by introducing a double point by a twist move, either positive or
negative, in 4-ball disjoint from w;

¢ introducing two new double points by a finger move, in a ball disjoint from
;

« replacing (S, ) by (S # Ry, U ), where R, C S* is a standard RP? as
before, and 7 is a disk in $* whose boundary is a generating circle in R;.

With these definitions, the statement becomes:
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Corollary 4.2. If 6(Ty) = 1 and (S, w) is ¢-equivalent to (S*, w*) then the corre-
sponding modules zﬁ(X, S, w) and zg(X, S*,w*) are equal. O

As a consequence, we have a lower bound on 7(S*) for any ¢-equivalent pair
(cf. Corollary 3.7):

Corollary 4.3. Ifo(Ty) = 1 and (S, w) is c-equivalent to (S*, w*), then

a(P)'S) € 24 (X, S, ).

5 Reduced homology and concordance homomorphisms

Using reduced homology

Recall from [9, section 2.5] that if 0 : R — § is a base-change with o(Tj) =
o(T}), then there is a reduced variant I%(K;T,) of the corresponding instanton
homology. If we continue to suppose that § is at least an integral domain and
o(P) and (L) are non-zero, then we can use I in place of I ¥ to define a fractional
ideal

zE,(K) C Frac(8S)

as a variant of zg(K ). For the case of a knot K, this is algebraically a little simpler
than zg(K ). In this case, the instanton homology I*(K;T};) has rank 1. If we write

I*(K;T,) = I*(K;T,)/(Torsion),

then, being a finitely-generated, rank-1 torsion-free module over §, this quo-
tient is isomorphic to an ideal fx of § (though not uniquely). Choose such an
isomorphism of §-modules,

¢: I(K:T,) — k.

If S is a cobordism of based knots, from a knot Kj to K;, then we have a homo-
morphism
5(S; T, : IKy; T,) — MKy L),

and in the special case of a cobordism from the unknot U; to K,

IA(S;T,) : 8§ — IN(Ky;T,) .
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Let ¢ be the image of 1 under I*(S; I,)'. The reduced version of /, in this situation
is

Z(K) = [IN(S;T,) : 81
= ¢(1) " F.

In particular, the fractional ideal ¢, g(K ) is isomorphic to I*(K; T, ) as a S-module.
The concordance invariant is the fractional ideal

2(K) = o(PY o (LY (2(K) (13)

(Definition 3.5), which is therefore also isomorphic to I'(K;I,,)’ as a S-module.

For the case of reduced homology of a knot, a somewhat more direct defini-
tion of the ideal zi(K ) can be obtained from the following equivalent characteri-
zation, which uses a cobordism from K to the unknot rather than the other way
around.

Lemma 5.1. Leto : R — S be a base change with o(Ty) = o(Ty). For a classical
knot K, let 3. be an oriented immersed cobordism from K to the unknot U;. Let

F cIMUT,) =S
be the image of I"(3; T,,), regarded as an ideal in S via the isomorphism. Then
25(K) = o(P) " Pa(Ly .7,

as fractional ideals for S, wherey and ¢ are the genus and number of positive double
points.

Proof. Let S be a cobordism from U; to K. To abbreviate our notation, we
identify the reduced homology of U; with § and we write N for the module
I%(K; T,)/torsion. Let i(S) and i(%) denote the maps induced by these cobordisms

modulo torsion:
i(S):8S > M

i2):M— 8. (14)

We regard M itself as a fractional ideal in M ® Frac §. With that in mind, we have
previously defined the fractional ideal (g(K ) as

CNK) = {c € Frac(S) | ci(S)(1) € M }.
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The map i(S) is an isomorphism from M to its image .¥ C 8, so we can write
ZI(K) = {c € Frac(S) | ci(2)i(S)(1) € F }.
The composite cobordism S U ¥ from U; to U; gives rise to the map
i(2)i(S) = o(P)Y OV g(L): V),

So
LK) = o(P) VO Po(L) g,

By definition of 25-,

2 = o(P) Vo (L5 K)
= g(P)VPo(L) )y

as the lemma claimed. m|

Concordance homomorphisms

We return to classical knots K C S® and Proposition 3.13. We can use this re-
sult to define homomorphisms from the knot concordance group, in the spirit of
Rasmussen’s s-invariant [15] or the r-invariant of Ozsvath and Szabo [10].

We consider a base change 0 : R — §, where § is a valuation ring. That is,
writing Frac(S) for the field of fractions, we have a surjective homomorphism of
groups,

ord : Frac(8)* — G,

where G is a totally ordered group, written additively, and

S\ {0} ={a]ord(a) 20},

(following the conventions of [4]). Every finitely-generated fractional ideal of S
is principal, and ord gives rise to a bijection

ord : {non-zero principal fractional ideals} — G

with ord(I) ord(J) = ord(I) + ord(J), and ord(I) > ord(J) if and only if I C J. (In
this way, the valuation group G, the total order on G, and the homomorphism ord
are all determined up to equivalence by the structure of § alone.) We suppose as
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always that o(P) and o(L) are non-zero, and in this case we have distinguished
elements of the valuation group,

7 = ord(c(P))
A =ord(o(L)).

Suppose now that o(Ty) = o(T}), so that the reduced group I*(K;T}) is de-

fined. Consider the fractional ideal zi(K ) associated to a knot K and the base-
change o, in the reduced version. Since this ideal is finitely generated, it is princi-
pal. It is also a concordance invariant of K, so we make the following definition:

Definition 5.2. Let 0 : R — § be a base-change with o(T) = o(T;). Suppose
§ is a valuation ring with valuation group G. Then we define a map

fs : Conc — G,

where Conc is the knot concordance group, by £,(K) = ord(zg(K)).
Proposition 5.3. The map £, is a group homomorphism.

Proof. Tt is only necessary to prove that £,;(K; # K3) = £-(K1) + f+(K3), which is
equivalent to an equality of principal fractional ideals,

22Ky #Ky) = 20(Ky) 28(K). (15)

For a valuation ring such as §, just as for a principal ideal domain, every finitely-
generated submodule of a finitely-generated free module is free, and every
finitely-presented module is a direct sum of a free module and torsion modules of
the form §/A, where A is a principal ideal. In particular, every finitely-presented
module has a free resolution of length 1 by finite-rank modules, and the Kiinneth
theorem for a tensor product of differential modules holds in the same form as for
principal ideal domains: there is a natural short exact sequence as in [9, Propo-
sition 2.4], and the sequence splits.

Let I%(K;T,) denote again the quotient of I%(K;I},) by its torsion submodule.
The fact that the sequence [9, equation (24)] splits implies that the natural map

I(Ky; Ty) ®s I9(Ky; T,) — I3(Ky # Ky; T, )’ (16)

is an isomorphism of free rank-1 modules. For i = 1, 2, let S; be a based cobordism
from the unknot to K;. Let S be the cobordism from the unknot to K; #K, obtained
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by summing along the base-point arc. These three cobordisms give rise to maps
$1, $2 and ¢ on reduced instanton homology:

¢i: 8 — (KL, =8

$:8 > K #KpT,) =S®sS =8,

The three maps are each multiplication by elements {3, { and ¢, which are well-
defined up to units. The naturality of the isomorphism (16) with respect to cobor-
disms implies that { ~ {1{5.

The definition of zE, means that

25(K:) = (PYSIg),

fori=1,2and
2 (K) = (PrO7).

The genus is additive and { ~ {1, so the desired equality of principal ideals (15)
follows. o

Proposition 5.4. Let S be a connected, oriented, normally immersed cobordism
from K, to K. Let y(S) be its genus and ¢(S) the number of positive double points.
Let o be a base change as in Definition 5.2. Then

Y('S)” + é‘('S))L = ﬁa(Kl) - ﬁa(KO)-

In particular, for an oriented, immersed cobordism from the unknot U; to K (or
equivalently an oriented immersed surface in the four-ball), we have

Y(S)m + e(S)A = £5(K).

In the case of embedded surfaces, we deduce that the slice genus gs(K) satisfies

1
9uK) = —fo(K). (7)
Proof. This is a consequence of Proposition 3.13 and the definitions. O

If the base-change ¢ has o(T;) = 1 in addition to having target ring § a
valuation ring, then we can adapt the theorem on non-orientable surfaces, The-
orem 4.1. Parallel to the proposition above, we then have:
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Proposition 5.5. Let S be a possibly non-orientable, connected surface normally
immersed in B* with boundary K C S°. Let o be a base change as in Definition 5.2,
and suppose in addition that o(Ty) = 1. Let n(S) € Z be defined again by (10). Then
we have

1S) 2 ~fo(K).

O

In the case of an embedded surface S, the inequality of the last proposition
can be written as

2 (B1(5) = 29(S) 2 oK),

As stated in the introduction, this inequality has the same form as the inequality
for non-orientable surfaces in [14], with £,(K) replacing the invariant Yx(1) from
[14] (and a different normalization). As in [14], one can exploit the Gordon-
Litherland inequality to derive an inequality that does not involve the degree of
the normal bundle, v(S), but instead involves the signature of the knot:

1 1
bi(S) > —f+(K) + 2 signature(K).
s

Substantial lower bounds for the betti number of a non-orientable surface
bounding a given knot were first obtained by Batson [5], who also observed that
the torus knots Ty 2x—1 bounds a non-orientable surfaces Sy whose betti numbers
have linear growth in k. The torus knot K = Ty 2x—1 has signature —2k? + 2, so
the above inequality implies

1

—fs(K) < k% + O(k).

Vs
On the other hand, the slice genus of this torus knot is (k — 1)(2k — 1), which is
2k? to leading order. So the inequality for the (usual orientable) slice-genus (17)
in these cases fails to be sharp, by a factor of 2 for large k, for base-changes with
O'(T()) =1.
6 Examples

We now illustrate the workings of the concordance homomorphisms £, for suit-
able base-changes o : & — § to valuation rings §.
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Example A. Let K be any field extension of [,, and let Frac(S) be the Novikov
field of formal sums

Frac(S) = { Z ko x®

acR

kaeK,andVCeR,{oﬂa<C,ka;tO}isﬁnite}

The valuation group G is R, and for convenience we normalize the valuation by
declaring that

ord(x) = 1/4, (18)

so that
ord(z kax“) = }Lmin{a | ke #0}.

aeR

The ring § comprises as always the elements with ord > 0 together with 0. We
take o : R — § to have the form

o(T) =1+pi(x), =123,

where the Novikov series p;(x) have ord(p;(x)) > 0 (and o(Tp) = o(T7), as re-
quired for the reduced theory). For any such choices, we have a homomorphism,

fs : Conc — R.

As a first case, we may take, for example,

Pi(x) = (gix

where q1, g2, q3 € K are algebraically independent transcendental elements over
. In this case we calculate

o(P) = (ngg + q%q% + qfqg)x4 + higher order in x,

and

o(L) = (q} + 4595 + ¢5¢° + ¢°q5)x* + higher order in x.

Our convention (18) means that both of these have order 1, so 7 = A = 1, and
the inequality for an immersed, oriented cobordism S in Proposition 5.4 is

y(S) +&(S) = fo (K1) = fo(Ko).
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Example B. As a modification of the previous example, we may fix r € [0, 1]
and set

Pl(x) = Chxr
and
Pz(x) = p3(x) = qox.

In this case
o(P) = ¢3q5x* + higher order in x,

and
a(L) = ¢ix* + higher order in x.

So 7w = 1and A = r. We write the corresponding concordance homomorphism
as fr : Conc — R. The inequality for immersed cobordisms becomes

y(S) +re(S) = £(Ky1) — £r(Kop). (19)

Example C. As a sort of limit of the previous examples, let Frac(S) be the field
of formal Laurent series in x whose coeflicients are formal Laurent series in y:

Frac(S) = F2((y))((x)).

Let G be the ordered group R X R, lexicographically ordered with the first entry
most significant, and define the valuation, ord : Frac(§) — G, by

1
ord(x“yb) = Z(a, b).

The valuation ring § consists of those elements of F2((y))[[x]] whose monomials
x%yP either have a > 0 or have a = 0 and b > 0. Define 0 : & — S by

o(Ty) =1+y,
o(Tz) =1+x,

with o(Ty) = o(T7) and o(T3) = o(T»). We calculate
o(P) = x* + higher order in (x, ),

and
o(L) = y* + higher order in (x, y).
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So
ord(P) = (1,0)

ord(L) = (0, 1).

This example gives rise (a priori) to a homomorphism
f. : Conc » RXxR

with values in (%Z) X (}IZ), lexicographically ordered. However, since any two
knots cobound an immersed annulus (genus 0), we have a bound

for every knot K. So in fact the first component of £.(K) is always zero and we
have
f. : Conc — {0} x (iZ)
~ 1
= ZZ.

This concordance homomorphism satisfies

&(S) 2 fu(K1) — £(Ko) (20)

whenever S is a normally immersed cobordism of genus 0, from K to K;. Prima
facie, it says nothing about normally immersed surfaces of positive genus and
does not bound the slice genus of a knot. As stated in the introduction, it would
be very interesting to know if there really is a knot K for which f.(K) is larger
than the slice genus.

Example C’. One can simplify Example C while retaining its features by passing
to the ring §; = F;[[y]] by setting x = 0. That is, we define:

01(To) = o1(Th) =1 +y,
01(Tz) = 01(T3) = 1.

We still have o;(L) = y* to leading order, but o;(P) = 0. A normally immersed
cobordism S of positive genus, between classical knots, now gives the zero map
on instanton homology groups, while immersed cobordisms of genus 0 give ho-
momorphisms of rank 1, between modules of rank 1 over 8;. The concordance
homomorphism £, in this example satisfies the same inequality (20) as above. The
set-up here is very close to that of [8], though we are now working in character-
istic 2 rather than characteristic 0. In [8], the counterpart of oy (P) was non-zero
but divisible by 2.
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It is interesting to note that, since 01(P) = 01(Q) = 0 in this example, the
resulting spectral sequence has E, page the undeformed reduced Khovanov ho-
mology (tensored by &), so we have

Kh(K) ® F((y)) = I'(K;TL,,).

Example D. If the base-change o satisfies 0(Ty) = o(T;) = 1, then the resulting
concordance homomorphism £, : Conc — G provides a bound for the topology
of non-orientable immersed cobordisms, as a consequence of Theorem 4.1 and
Proposition 5.5. As a particular case, let § be the ring of formal power series
F2[[x]], and define o by
o(To) = o(T1) =1
G(Tz) = O'(T3) =1+x.

In this example P and L are equal, and 7 = A = 1 if we set ord(x) = 1/4 as
before. This gives rise to a concordance homomorphism £, : Conc — Z with the
property that if S is a possibly non-orientable cobordism from K to K, then

’7(5) = ﬁo(Kl) - ﬁO'(KO)’

where 7 is as in equation (10).

Example E. The following is a hypothetical example, to illustrate the potential
workings of the concordance invariants £,. Let 0 : & — § be the quotient map
by the ideal (T} — Tj) in R. Thus § is the ring Sgy of the introduction, a ring
of Laurent series in Ty, Ty, Ts. This is the largest quotient for which the reduced
homology I*(K;T;) is defined. We write the images of P and L in S simply as P
and L again. Suppose that the chain complex that computes I%(K;T},) is chain-
homotopy equivalent to

0
S:CO—)C1:S®S,
1 (L3, P).
The homology is then generated by 2 elements [u], [v], with chain representatives

in C, satisfying
L*[u] = P[v].

Suppose there is a genus-1 embedded cobordism S from the unknot to K, and
that the resulting map of reduced homologies on the chain level is

8—>C1

1 u.
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The corresponding fractional ideal gﬁ(S) is then generated by 1 and P~1L3. The

concordance-invariant ideal zg(K) is (P,L*). In this hypothetical case, Propo-
sition 3.12 would allow that K bounds an immersed disk in the 4-ball with
three positive double points, but no fewer. The concordance homomorphism
fr : Conc — R from (19) can then be calculated using the universal coefficient
theorem. It will take the values,

3r, 0<r<1/3,
1, 1/3<r<l1.

fr(K) = {

The constraint (19) on the genus and the number of positive double-points com-
ing from £, will therefore be

L 0<r<1/3,
rée 2
v 1, 1/3<r<l.

Taken together over all r in [0, 1], these constraints are equivalent to the con-

straint coming from zg. That is, if S is embedded then it must have genus 1 at

least, while if S is immersed with genus 0 then it must have at least three positive
double points. The concordance homomorphism £, (K) in such an example would
be 3.

Of course, the exponent 3 in this hypothetical example is arbitrary. We shall
show in section 8 that the positive trefoil behaves in this way, but with the less
interesting exponent 1 in place of 3. (The positive trefoil bounds both an embed-
ded surface of genus 1 and a disk with one positive double point.)

7 Unknotting number and other properties

Unknotting number

As in [1, 2, 3], one can exploit the torsion in I*(K;T,) or I“(K;T,) instead of the
torsion-free quotient, to obtain bounds on the unknotting number of K, or the
crossing-change distance between knots. Suppose K, can be obtained from K;
by n crossing-changes, and let Sy be the corresponding immersed cylindrical
cobordism from K; to Ky. The composite cobordism S from K; to K;, formed
as the union of Sjy and its mirror image, has 2n double points which come in
mirror pairs. This cobordism can be obtained from the trivial cylinder by doing
n finger-moves, and intermediate isotopies. It follows that

I*(s;T) = L™
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In particular then, the map
L": Iﬁ(Kl;T) — Iﬁ(Kl;F) (21)

factors through I*(Ko;T). To draw a concrete consequence from this, note that
I*(Ko;T) and I*(K;;T) both have rank 2, from which it follows that any torsion
element w in the image of any full-rank homomorphism ¢ : I H(Ko;T) — IF(Ky;T)
is necessarily of the form ¢(v) for some torsion element in I*(Ky; T). So, in (21),
the restriction of the multiplication map by L" to the torsion part of I*(Ky;T)
factors through the torsion part of I*(Ko; ).

We can therefore deduce:

Proposition 7.1 (cf.[1, 2, 3]). IfK can be obtained from K; byn crossing changes,
and if H € R annihilates the torsion in Iﬁ(Ko; '), then L"H annihilates the torsion
in I"(K;T).

As a special case, taking K to be the unknot:

Corollary 7.2 (cf. Theorem 1.2 of [1]). If K has unknotting number n, then
L™ annihilates the torsion in Iﬁ(K; I'). In particular, for any knot K, the torsion in
I*(K;T) is annihilated by some power of L.

The result can be recast if we apply a base-change o : & — § to a valuation
ring §. Let the torsion submodule of I 4(Ky;T,) be

S/h)eS/L)e---&(S/h)

with ord(I;) > ord(l;) > --- > ord(I)) in Val(§). Thus I; is the annihilator of the
torsion part. Let 7(K7) = ord(l;). Define 7(Kj) similarly for the other knot. Then
the above factorization requires (as a special case),

nA > (K;) — 7(Ko),

where A is the order of (L) as before. This goes both ways, so the crossing-
change distance between the two knots is therefore bounded below by

min{ n:niA > |t(Ky) — t(Kp)| },
or simply by

|7(K1) — 7(Ko)|
A
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if Val(§) c R. As a special case, with K the unknot again, the unknotting num-
ber of K is bounded below by 7(K)/A, where 7(K) is the order of the annihilator
of the torsion submodule in I#(K;T,).

There is a slight strengthening of Proposition 7.1 and Corollary 7.2. We are
free to modify the definition we have made for how to define the map I*(S;T;)
when S has double points, by using the modified formula at (5), so defining a
modified functor I?. Recall that I*(K;T) is unchanged, as only the maps induced
by immersed surfaces are modified. In this case, the formula for L must be re-
placed by

Ly =EP+T5 + T,

(See [9, Proposition 4.9].) The conclusions of Proposition 7.1 and Corollary 7.2
continue to hold with L; in place of L. That is, for example, if K has unknotting
number n, then L annihilates the torsion in I ﬁ(K ;T'). Here ¢ is arbitrary, so we
can take our ground ring to be R [£] where ¢ is an indeterminate. The statement
that L annihilates the torsion is then equivalent to the statement that L*P? an-
nihilates the torsion, for all a, b with a + b = n. We record this as a variant of
Corollary 7.2.

Corollary 7.3. IfK has unknotting number n, then the torsion in I*(K;T) is anni-
hilated by the ideal (L, P)".

If we pass to a valuation ring, then ord(L) will in general be less than or equal
to ord(P), in which case the ideal (L, P) is simply (L), so the variant is equivalent
to the original in this case.

Ribbon concordance

Related to the above arguments involving the unknotting number, the functori-
ality of both Khovanov homology and Heegaard knot Floer homology has been
used by Zemke [18] and Levine-Zemke [19], to obtain constraints on the exis-
tence of a ribbon concordance from a knot K to a knot K;. (A ribbon concordance
is an embedded annulus in [0, 1] X S such that the first coordinate function is
Morse and has no index-2 critical points.) Since the argument is quite formal, it
adapts to the case of instanton homology without essential change:

Theorem 7.4 (cf. [18, 19]). If S is a ribbon concordance from K to Ky, then the
resulting map I4(S;T) is injective.
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As in [18], the proof proceeds by considering the composite of S with its mirror
image, which is a cobordism from Kj to Ky which can be repeatedly be simplified
by neck-cutting.

8 Calculation for the trefoil

Statement of the result

In this section we take K to be the trefoil. We work again with the reduced
homology I*(K;T,), and we take the base change ¢ : & — S to the largest
quotient of & for which the reduced theory is defined. As in the introduction
and Example E from Section 5, this ring § is the Laurent series ring Sgy in three
variables T;, i = 1, 2, 3, and oy, is the quotient map by the ideal generated by T —
T;. The local system I, coincides with the system named I'gy in the introduction.
We again simply write P and L for the Laurent polynomials which are really
opn(P) and op,(L). In particular then,

L=T+T;*+P.

We write Z[.;N (K) for zibn (K) in this case, and we will compute the fractional ideal
ZhBN(K ) C Frac(Sgn) for the trefoil.

Proposition 8.1. For the right-handed trefoil K, 5, the complex of free Sgn-modules
that computes I'(K 3; Tgn) is chain-homotopy equivalent to the complex

P
SgN — SN © SBN

where 0(1) = (L, P). In particular, Ih(K273; IsN) has a presentation with two gener-
ators and one relation, Le; + Pe, = 0, which means that it isomorphic to the ideal

J = (P, L) as an Sgn-module. Furthermore, the fractional ideal thN(Kz,g) coincides
with J.

Remark. After the preparation of earlier drafts of this paper, it became apparent
that it is possible to prove this result with no reference to “instantons” beyond
what is already built into the formal properties of I*(K;T). Nevertheless, in the
proof we give here (in particular in Lemma 8.2 below), we obtain some explicit
information at the chain level by considering instanton moduli spaces, so making
contact with the constructions that underlie the definitions. The authors there-
fore decided to retain this version of the calculation.
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Figure 2: The skein triangle for the positive trefoil K3 3, the Hopf link H, and the unknot
U.

The skein triangle and the Hopf link

The first step in the proof of Proposition 8.1 is to use the skein exact triangle
illustrated in Figure 2. The figure shows the right-handed trefoil together with
the result of smoothing one of the three crossings in two different ways. Because
we are using reduced instanton homology, we require a base-point on each link,
where the bigon is introduced. The location of the base-point is marked by a dot
in the figure.

The skein sequence

-—)U1—>H—>K273—)U1—>--' (22)

leads to a long exact sequence of instanton homology groups. Because I'(Uy; Spn)
is free of rank 1 and the instanton homologies of H and K3 3 have rank 2 and 1
respectively, the long exact sequence must break into a short exact sequence,

0 = I(Us; San) - T(H; San) - T(K5: San) — 0. (23)

At the chain level, the skein sequence tells us that the corresponding complexes
Ci(U,), Ci(H) and CY(K33) are related in such a way that Ch(Kz,g) is chain-
homotopy equivalent to the mapping cone of the chain map arising from the
cobordism

S
U, > H. (24)

This cobordism S;  [0,1] x S? is a pair of co-pants, but not with the standard
embedding. To calculate the complex for the trefoil, up to chain homotopy, we
shall calculate the map arising from the cobordism S; at the chain level.

Before proceeding, we note for later use that we may consider the skein tri-
angle obtained from the smoothings of a crossing on the Hopf link to obtain the
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U H U,

Figure 3: The skein triangle for the Hopf link H, and two copies of the unknot U;.

sequence in Figure 3. Similar consideration of ranks shows that this gives rise to
a short exact sequence,

0 — I8(Uy; Sen) — IP(H; San) 2> IA(Ur; Sn) — 0. (25)

Let us write R%(K) for the representation variety of marked bifold connections
on K9, where K% is obtained from K by adding the bigon [9, Figure 1]. After
orienting K near the base-point, let m( be any representative of the oriented
meridian at the base-point, as an element of 7;(S® \ K). Let i be the element
diag(—i, i) in SU(2). We can identify R%(K) with the space of representations of
the link complement,

p:m(S*\ K) — SU(2)

satisfying the constraint that p(my) = i and p(m) is conjugate to i for all other
meridians. A representation p gives rise to representation of the orbifold funda-
mental group of the web K? by sending the meridians of the edges e; and e in
[9, Figure 1] to j and k.

The representation variety R%(U;) for the unknot, with this description, con-
sists of a single representation «, with a(m¢) = i. The representation variety of
the Hopf link H consists of two representations: the fundamental group of the
complement is abelian, so a representation that maps my to i maps a meridian of
the other component to +i. To distinguish consistently between the two cases,
given f € R%(H), we can orient the two components of the link so that the both
oriented meridians map to i. Oriented in this way, the linking number of the
Hopf link will be either 1 or —1. We name the two elements of R%(H) as f, and
B- respectively. See Figure 4.

The critical points «, f; and S_ can all be seen to be regular. So the corre-
sponding chain complexes are Sgy and Sgn @ Spn respectively. Furthermore,
there is no differential in the latter case. One can see this either by showing that
B+ have the same mod 2 grading in this complex, or by noting that the matrix
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Figure 4: The matrix entries X; = L + P and X_ = P, from « to ; and f_ respectively.
All loops are based, with the basepoint lying above the plane of the diagram as usual.
Not shown are the two arcs of the added bigon, where the monodromies are j and k.

entry of the differential from f, to - is equal to the matrix entry from S_ to B4
by symmetry, and noting that a non-zero entry would contradict d = 0.
The mapping cone arising from (24) therefore has the form

X = (X5, X") : SN — SN © SN

where the two elements X, X_ € Sgn are the matrix entries at the chain level
of the map induced by the cobordism S, from « to ;. and S_. (At the level of
homology, this is the map n in (23).) These matrix entries are determined in the
next lemma, illustrated in Figure 4.

Lemma 8.2. The elements X, and X_ are L + P and P respectively.

Apart from its last sentence (identifying the fractional ideal), Proposition 8.1
follows from the lemma. Only a change of basis is needed to change the matrix
entries in the presentation from (L + P, P) to (L, P).

Proof of the lemma: computing X; and X_

We turn to the proof of the lemma. We introduce two additional cobordisms,
both from H to Ui, called S; and Ss respectively. The cobordism S, is the mir-
ror image of S;, so is an embedded pair of pants. The cobordism S5 will be an
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immersed cobordism with a single double point: it is the union of an embedded
cylinder [0, 1] X S! where the S! is the component of H with the base-point, and
an embedded disk D whose boundary is the other component of H. The disk
D meets the cylinder in one point. The composites S; o S5 and S; o S5 are two
cobordisms from U; to U;. They are respectively an embedded surface of genus

1, and an embedded cylinder with one positive double point. We therefore have
I%(S1 0 Sy Tgn) = P

( 1 g BN) (26)

I%(Sy o S5:Tgn) = L.

By examining the flat connections explicitly, we will see that the cobordism S,
maps the generators f. as follows,

I*(Sy Tan)(Bs) = 0 27)
I*(Sy; Ten)(B-) = @

while for S5 we have
I(S5; Tan)(B) = @
I*(Ss; Ten)(B-) = a.
From the formulae (27) and (28) and (26), we obtain

I(S1; Tan)(@) = (L + P)By + PP

which is equivalent to the statement of the lemma.

To complete the proof of the lemma, it remains to prove the formulae (27)
and (28) for the cobordisms S, and Ss. Let H % and Ulh be the webs obtained from
H and U; by adding bigons near the marked point on each. Let S5 be the proper
transform of S; after blowing up up at the point of self-intersection. This surface
is the disjoint union of an embedded annulus and a disk Ds whose boundary is

(28)

the unmarked component of H. Let S; and §§ denote the foams obtained from S,
and S5 by adding a bigon along arcs joining the marked points. These foams are
cobordisms from H* to Ulh. Let us write

W, = ([0,1] x §°,5)
W; = ([0,1] x 5° # CP%, §F)

for the corresponding 4-dimensional bifold cobordisms. The matrix entries of
I (S4;Tgn) are defined by counting instantons in zero-dimensional components
of the moduli spaces

M(Bs; Wy; o)
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on the cobordism W, with cylindrical ends. In the case of the double-point cobor-
dism, the matrix entries of I (Ss; Ign) are defined by a similar count in moduli

spaces
M(B+; Ws;)  and M(ﬁi; Ws; a)e

where € is the exceptional set of the blow-up. (See the definition at [9, equation

(34)].)

There are smooth Klein-four-group covers of these bifolds,
VI@—)% and Wy — W,

branched over the singular loci SE and gg respectively. The trivial SO(3) bundles

on Wg and W;s descend to flat SO(3) bifold connections ¢, on W, and c5 on Wj
respectively. The flat SO(3) bifold connection ¢, lifts to a unique (flat) SU(2)
connection C; on W, and defines an element of the moduli space M(B-; Wy; a).
Similarly cs lifts to a flat SU(2) connection C;, which defines an element of the
moduli space M(fS_; Ws; ). On the bifold Ws however there is a flat line bundle
& with holonomy —1 on the links of both the exceptional sphere € and the disk
Ds C Ss. By twisting C5 with & we obtain an SU(2) connection C, in M(f.; Ws; ).
Altogether we have three flat connections,

[Cql € M(B-; Wy; @)
[C5] € M(B_; Ws; a) (29)
[C51 € M(By; Wy; @)e.

The Klein-four-group covers Wg and Wj are two cobordisms from the rational
homology sphere RP? # RP? to $*, and both have b; = 0 and b} = 0. It follows
that these three elements (29) have no infinitesimal deformations and are regular
points of their respective moduli spaces. Because they are flat, the curvature
integrals [9, equation (21)] defining the local systems are trivial, and each of the
three connections therefore contributes 1 to the corresponding matrix entry of
the map I h(Sg; Ign) or I : (Ss; Ign). There are no other flat connections, and any
non-flat connection would belong to a moduli space of strictly positive dimension
and would not contribute to the cobordism maps. This completes the verification
of the formulae (27) and (28) and so completes the proof of Lemma 8.2.

Identifying the fractional ideal

We have now completed the proof of the assertion in Proposition 8.1 that I*(K5 3; T})
is isomorphic to the ideal J = (P, L). To identify the fractional ideal ZhBN(Kz’g;) we
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need an oriented, immersed cobordism ¥ from U to K33, and for this we can
take the composite of the cobordism T from H to K3 in Figure 2 and the im-
mersed cobordism S; from U to H obtained by reversing the cobordism Ss from

the lemma. Proposition 8.1 identifies the I h(Kz’g; IsN) in terms of generators e;
and e, with a relation Le; + Pe; = 0, but the lemma identifies the same group in
terms of generators [f, ] and [f_] with the relation (L + P)[B+] + P[B-] = 0. The
change of basis between these two descriptions is

er = [B+] e; = [B+] +[B-].

Our discussion of S5 in the proof of the lemma adapts readily to similar case of
S; and shows that this cobordism from U; to H gives the map on generators

av P+ po.
The composite cobordism X from U; to K3 3 is therefore
o = es.

Since Pe, = Le; the definition of |_E)N(Z) shows that this fractional ideal is gener-

ated by 1 and L™!P. Accordingly, from the definition (13), the ideal thN(Kz,g) is
(L, P) as Proposition 8.1 claimed. This completes the proof of the proposition.

Left-handed trefoils and the concordance homomorphisms

The complex that computes the homology of the left-handed trefoil is the dual
complex:

Proposition 8.3. For the left-handed trefoil K, 5, the complex of free Sgn-modules

that computes I'(K; ,; Tgn) is chain-homotopy equivalent to the complex

2,3
P
SN @ SpN — SN

where 0 has matrix entries (L, P). In particular, Ih(K£3; IsN) is isomorphic to Sgn @
(SN/J) as an Sgn-module, where ] is again (L, P). Furthermore, the fractional

ideal 2}, (K;.,) is (1).

Proof. Except for the identification of the fractional ideal, this proposition is ob-
tained by dualizing the previous one. If we write €, €; for the basis of Sgn ® Spn,

then the generator of Sy summand in I h(Ki 5:IBN) is the element 7 = Pe; + Le;



42

in ker(0). The immersed cobordism ¥ from U; to K3 3 in the proof of the previous
proposition gives a cobordism = from K, ; to U, and the dual of the previous

calculation says that 2" acts as
€ a
€1 — 0.

So =T maps the generator 7 of Ih(K;

5;IgN)/torsion to L. That is, the image of
the map

("5 Ten) : 13Ky 43 Ten) — 13U Tan) = S
is the ideal .F = LSgn. The immersed cobordism ' has one positive double point,
so by the characterization in Lemma 5.1 we have
(Ksy) = LN
z2pn(K33)
=(1).

This completes the proof of Proposition 8.3. m]

Having identified the complexes involved, it is a straightforward matter to
apply a further change of basis, Sgy — 8§, where § is a valuation ring, so that we
may compute the real-valued invariants £,(K33) and f,(Kj ;) for the two trefoils,
0 < r < 1. (See Example B in section 6.) We obtain

fr(Ka3) =7

fr(Ky3) = -
To illustrate the calculation in the case of Kj 5, following the line in Proposi-
tion 8.3, the complex is now

0

S8 > S
where

6(61) = u1x4r

d(ey) = upx*
where u; and u; are units. The free summand of the homology (the kernel of 9)
is generated now by 7 = u;'u;x* *¢; + €,. The map arising from > in the proof
of Proposition 8.3 maps 7 to @ € 8§, the generator. Therefore ng(Ki ;) =L71S

which is the ideal (x~*"). The invariant fr(K35) is the order of this ideal, which
is —r, because the order of the ideal (x) is 1/4 by convention (18).
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9 Further calculations

As mentioned in an earlier remark, it is possible to obtain a description of
I%(K;Tgn) for the trefoil based only on the formal properties of instanton ho-
mology. In fact one can extend such arguments a little further. For example, in
the case of the 2-stranded torus knot K3 /.1, the ideal ng(Kg,ng,) can be shown
to be J¢, generalizing the result for the trefoil (¢ = 1). Indeed, the complex that
computes [ h(K272[+1; I'sn) can be characterized uniquely up to chain-homotopy
equivalence. Similar calculations can be made for the 2-component torus links
K3 2¢, for the twist knots, and for some small pretzel knots.

In all these simple cases, the results which are obtained coincide with the
results for Heegaard Floer homology, in the version set up in [3]. In particular,
in the notation of [3], the Heegaard Floer complex is a complex of free modules
over the ring F,[u, w], and the instanton chain complex is obtained by making
the base-change

um L, w — P,

This coincidence for such simple knots is an inevitable consequence of the formal
properties that the two theories share, and it is not clear whether it extends much
further. In [3], there is a complete symmetry between the variables u and w,
a symmetry which is also reflected in formal properties of the closely-related
invariant Yg(t) from [13]. If such a symmetry is present in the instanton theory,
then it is not apparent on the surface.
An example where a divergence between the instanton theory and the Heegaard-

Floer theory might be apparent is the torus knot K3 4. Based on preliminary cal-

culations, the authors conjecture that the ideal ng(K3,4) is given by
2% (Ks4) = (L3, 12P,LP?, P*,Y)

where
Y =(1+T %P+ %
On the other hand, the ideal A(Kj34) from [3], based on the calculation of the
Heegaard Floer homology of torus knots from [11], is
A(K3,4) = <U3, uzwa UWZ’ WS’ Z>
= (u’,w>, Z),

where Z = uw. In particular, while uw belongs to the ideal in the Heegaard-
Floer case, the conjectural calculation implies that LP does not belong to the



44

ideal thN(KgA). The calculation for K3 4 can be extended to the other torus knots
K3, and the authors hope to return to these and other questions in a future

paper.
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