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The Dehn twist on a sum of two K3 surfaces
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Abstract. Ruberman gave the first examples of self-diffeomorphisms of four-manifolds
that are isotopic to the identity in the topological category but not smoothly so. We
give another example of this phenomenon, using the Dehn twist along a 3-sphere in the
connected sum of two K3 surfaces.

1 Introduction

A 2-dimensional Dehn twist is a non-trivial self-diffeomorphism of an annulus,
fixing the two boundary circles pointwise. As a generalization of this, for any
n > 2, there is a self-diffeomorphism of the n-manifold [0, 1] x §"71,

8, :[0,1]x 8" —[0,1] x S"1

having the form J,(¢,s) = (t, a(s)), where « : [0,1] — SO(n) is a loop based
at the identity element lying in the non-trivial homotopy class. We can arrange
that §, is the identity near both boundary components, and this allows to extend
dn to a diffeomorphism of any n-manifold X provided only that an embedding of
[0,1] X "™ in X is given. The resulting diffeomorphism § : X — X is referred
to as a Dehn twist along the sphere S"™! C [0, 1] x $""!. In particular if X is a
connected sum X;#X5, then one can consider the Dehn twist along the separating
sphere in the neck. In this paper, we shall prove:

Theorem 1.1. Let Z be the connected sum K3 # K3, and let § : Z — Z be a Dehn
twist along the separating S* in the neck. Then the diffeomorphism § is not isotopic
to the identity.
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It is evident that § induces the identity map on homology, and by a theorem
of Quinn [12], applicable to closed simply-connected four-manifolds in general,
it follows that ¢ lies in the identity component of the homeomorphism group
Tor(Z). Theorem 1.1 implies that it does not lie in the identity component of
Dirr(Z). The first example of this phenomenon - an element in the kernel of
the map 7y(D1rr(X)) — m(Tor(X)) for a smooth 4-manifold X — was given by
Ruberman in [13]. Additional examples were presented later by Baraglia and
Konno in [2]. The theorem above provides the first example where the Dehn
twist on a connected sum of simply connected 4-manifolds has been shown to
be non-trivial.

The techniques we employ here are drawn from the same toolkit that has been
used to detect other non-smoothability results for families in dimension four:
gauge theory (here the Seiberg-Witten equations), the numerical invariants of
families that they can be used to define [13, 14, 9], and the homotopy refinements
of these that one may construct in the spirit of [6] and [16].

The next statement, which is a corollary of the theorem above, was proved
earlier by Baraglia and Konno in [4]. (The version here is not explicitly stated in
[4], but an equivalent reformulation, Proposition 2.1 below, is a special case of
their results, as we explain in the next section.)

Proposition 1.2 (cf. [4]). Let X’ be the 4-manifold with boundary obtained by
removing an open ball from a K3 surface. Let § : X’ — X’ be the diffeomor-
phism supported in the interior of X’ obtained by a Dehn twist along a 3-sphere
parallel to the boundary. Then § is not isotopic to the identity element in the group
D1rr(X’, 0X”) of diffeomorphisms which fix the boundary pointwise.

In this paper, we will reprove Proposition 1.2, using Bauer-Furuta invariants
for families in a slightly different way, and we will deduce Theorem 1.1 using a
product theorem for connect sums modeled on [5].

Acknowledgements. Conversations with Sander Kupers and Danny Ruberman
were very helpful for the formulation of these results and in the preparation
of this paper. In particular, the authors would like to thank Sander Kupers for
pointing out the relevance of [10] in the higher-dimensional case.

2 Families of spin manifolds

To explain the connection between Proposition 1.2 and the results of [4], consider
first the action of DIFr(K3) on the frame bundle F(K3) and the resulting map



e : DIrr(K3) — F(K3) which one obtains by applying this to a basepoint 6
in F(K3). The map e is a fibration whose fiber (the stabilizer of 0) has the weak
homotopy type of the group Dirr(X’, 0X’) and the exact sequence of the fibration
gives

1 (DIFF(K3)) —> 71 (F(K3)) — mo(DIFF(X’, 0X')

The fundamental group of F(K3) is Z/2 (as it is for any simply-connected spin
manifold), and the class of the Dehn twist § in 7o(D1rr(X’, 0X")) is the image of
the generator of m;(F(K3)). The assertion in Corollary 1.2, that § is non-trivial,
is therefore equivalent to saying that the map

e. : m(DIFr(K3)) — Z/2 (1)

is zero.

The map e, can be interpreted in yet another way. Given a loop y in D1rr(K3),
form the fiber bundle E — S? with fiber K3, using y as the clutching function.
Then e.[y] is equal to the evaluation of wy(TE) on any section of E. An elemen-
tary restatement of the vanishing of e is therefore the following:

Proposition 2.1 ([4]). Let E — S? be a smooth fiber bundle, with fiber a K3
surface. Then the Stiefel-Whitney class wo(TE) is zero.

The above proposition is a consequence of [4, Corollary 1.3] and the argu-
ments of [4, Section 4.2]. As shown in [3], the corresponding statement in the
topological category is false: there is a non-smoothable topological family of K3
surfaces over S* which has non-trivial Stiefel-Whitney class.

There is a third reformulation of Propositions 1.2 and 2.1, which is the one
most convenient for our discussion of the Bauer-Furuta invariants below. To set
up the general context, let X be a smooth, oriented, closed 4-manifold, which
we assume at present is connected and simply connected with even intersection
form. In the absence of a Riemannian metric, a “spin structure” on X can be
defined as a lift of the structure group of the oriented frame bundle of X, from
SL(4, R) to the double cover SL(4, R). Our hypotheses imply that X admits a spin
structure s, which is unique up to isomorphism. The group of automorphisms
of s is the group of order 2 generated by the deck transformation of the double
cover.

We write SD1rr(X) for the group of orientation-preserving diffeomorphisms of
X. The group SD1rr(X) has a double cover DIrrSpPIN(X) — SDIFF(X) consisting
of pairs (f,i), where f : X — X is a diffeomorphism and i : f*(s) — s is



an isomorphism of spin structures. Given an element h € DIFFSPIN(X), we can
form a mapping torus X" fibering over the circle B = [0, 1]/~, together with a
spin structure s" on the vertical tangent bundle of the fibration.

As a special case we can consider the element 7 = (1,t) in DIFrSPIN(X),
where 1 denotes the identity on X and t denotes the deck transformation of the
spin structure. We shall prove,

Proposition 2.2 ([4]). If X is a K3 surface, then the involution T in DIFFSPIN(X)
is not in the identity component. Equivalently, the family of spin manifolds (X", s")
over the circle B is not isomorphic to the trivial family B X (X, s).

It follows from the discussion that this proposition is an equivalent reformu-
lation of both Propositions 1.2 and 2.1. Indeed, the double cover DIrrSpPIN(X) —
SD1FF(X) is classified by a map 71 (SD1rr(X)) — Z/2 which is easily identified
with the map e, in (1). Proposition 2.2 says that this double cover is trivial for K3,
which is equivalent therefore to the vanishing of e. We will prove Proposition 2.2
in section 4, after introducing the tools from Seiberg-Witten theory in section 3.

3 Bauer-Furuta invariants for spin families

To fix our conventions and context, we summarize in this section the techniques
of finite-dimensional approximation, as applied to the Seiberg-Witten equations
on 4-manifolds, first for a single 4-manifold as in [7, 6], and then for families
of 4-manifolds over a base, as developed and explored first in [16], and later
in [15, 1, 3], for example. We focus on the case that X is equipped with a spin
structure, rather than a more general spin® structure, and we assume that b;(X) =
0.

So let X be a closed, oriented 4-manifold with b; = 0. Let s be a spin structure
on X. After equipping with the manifold with a Riemannian metric, the spin
structure gives rise to spin bundles S*,S™ over X, Clifford multiplication y :
A!' ® ST — S7, and the Dirac operator D : T'(S*) — I'(S7). The Seiberg-Witten
map is a non-linear Fredholm map between Hilbert spaces,

SW W — wW"~.
Unwrapping this a bit, we have

W=V ToU, W =TV U,



where 7/ * are suitable Sobolev completions of I'(S*), and U™*, U~ are Sobolev
completions of respectively Q!(X) and Q*(X) ® Q°(X)/R. The Seiberg-Witten
map has the form SW =1 + ¢, where [ is the Fredholm operator

l=Dea(d",d)

and c¢ has the form .
c(a, 9) = (y(ia, §), q(¢.$))

where ¢ is a bilinear term.

Now let W= C W~ be a finite-dimensional subspace, large enough that
W~ +im(l) = W~. Set W* = I"}(W~). The corresponding finite-dimensional
approximation to the Seiberg-Witten map is constructed in [6] as the map

sw=(poSW): W" > W,

where p : W~\S (W™)*) —» W is asuitable retraction. It is shown in [6] that if
W~ is sufficiently large, then the image of SW does not intersect the unit sphere
S((W™)*) in the orthogonal complement, so the composite p o SW is indeed de-
fined. The finite-dimensional approximation is a proper map and extends to the
one-point compactifications as a map of spheres:

[sw] € [W, Wgl. ()

We will take W~ always of the form V™ & U™, in which case also W* =
V* & U™*. Furthermore, U'* are quaternion vector spaces and D is quaternion-
linear, and we are therefore able to insist also that V* are quaternion vector
subspaces.

The operator (d* +d*) is injective with cokernel H* (X), the space of harmonic
self-dual 2-forms. We may choose U~ to contain this space, so that

U =u ®&H"

and [ : U" — u~ is a linear isomorphism. A choice of orientation of H* then
allows us to identify the orientation lines of U* and U~. The vector spaces V*
are naturally oriented themselves, because they are quaternion vector spaces. In
all then, the orientation of H* allows us to identify the orientation lines of W*.

Let M be a regular fiber of the finite-dimensional approximation sw, over a
point in p € W™, As the fiber of map between relatively oriented vector spaces,
M is naturally a stably framed manifold. The results of [6] imply that, provided



W~ is sufficiently large, the fiber M is compact, and its framed cobordism class
depends only on X and the orientation of H*, not on the choice of Riemannian
metric or on the choice of W~. Here “sufficiently large” means only that W~
should contain a subspace W, (g) which depends on the metric g. The dimension
of M is

1
d= —1(26 +30)+ 1,

where e and o are the Euler number and signature of X.

Framed cobordism classes of d-manifolds are classified by the stable d-stem
my = 74:n(SN) for N large. Instead of referring to the regular fiber of sw, we
can refer directly to the homotopy class of the map sw itself, as a map between
spheres as in (2). For the purposes of this paper, we use the following stripped-
down version of the Bauer-Furuta invariant:

Definition 3.1. The Bauer-Furuta invariant of the spin manifold (X, s), with the
chosen orientation of H, is the framed cobordism class n(X) of the regular fiber
of sw, for any metric g and any choice of W~ containing W, (g).

Now suppose instead of a single 4-manifold we have a smooth fiber bundle
X — B over a compact base. Let s be a given fiberwise spin structure, and
let a family of Riemannian metrics be given. The spaces W * and W~ are now
bundles over B, and SW is a bundle map. After choosing a suitable finite-rank
subbundle W~ C 9/, we have finite-dimensional approximations sw : W& —
W™, where W =Vt @ U" and W~ = V- @ U~ are finite-rank vector bundles
over B. This construction is defined whenever W~ is sufficiently large, which
can be taken to mean that W~ contains a certain subbundle W, depending on
the metric. The map swis proper and therefore extends to the fiberwise one-point
compactifications: it becomes a map of based sphere bundles, with a homotopy
class

[sw] € [W3, W51

Let s be a smooth section of W~ — B, transverse to sw. The inverse image
sw™!(s) is then a compact manifold M with a map to B. The dimension of M is
dim(B) + d, where d is the invariant of the 4-dimensional fiber, as above.

To go further, we impose extra conditions to ensure that we can stably triv-
ialize the bundles W* canonically. First, the bundles V* are quaternionic, and
Sp(N) is 2-connected. So if we require that dim B < 2, then these bundles have
preferred trivializations. To trivialize U* © U~ stably is again equivalent to triv-
ializing H* viewed now as a bundle over B. There is an action of 7;(B) on the



homology H%(X;) of the fiber X;. If we impose the condition that this action
is trivial, then H* is a maximal positive-definite subbundle of the trivial vector
bundle H2(X}; R), and it therefore has a preferred trivialization as B x H*(X})
because the space of maximal positive-definite subspaces of H%(Xj; R) is a con-
tractible subset of the Grassmannian. An orientation of H* for any fiber therefore
completely determines a trivialization.

At this point, the map p : M — B has a relative stable framing: a stable
trivialization of TMETB. It is convenient in the exposition to make M itself stably
framed, and to do so we ask that B have a stable framing of its tangent bundle.
We are specifically interested in the case that B is the circle equipped with the
stable framing which bounds the framed disk. Recall from the introduction, that
if (X, s) is a spin 4-manifold and h € D1rrSPIN(X, $), then we can construct a spin
family (X, s") over the base B = S' as the mapping torus of h. The Bauer-Furuta
construction now produces a framed manifold M(X", s"). We summarize this as
follows.

Definition 3.2. Let (X,s) be a closed, oriented spin 4-manifold with b; = 0
and let h € DI1rrSPIN(X, s) be an element which acts trivially on H,(X). Equip
the circle B with the bounding stable framing and let M be the resulting framed
manifold of dimension 1 + d, defined as M = sw™(s), for a generic section s of
W~. The Bauer-Furuta invariant (X", s") of h is the framed cobordism class of
M, or equivalently the corresponding element of . .

Our choice to give B the framing which bounds means that the invariant 5
is zero for the trivial product family over B. So if (X", s") is non-zero, then h is
not in the identity component of DIFFSPIN(X 5).

Remark. As the discussion makes clear, the construction in this form applies
equally well if B is, for example, a 2-sphere. Thus, if (X, s) is a spin manifold with

b = 0, then the construction provides a homomorphism 7;(DIFFSPIN(X, 5)) —
.
d+2

4 Calculation for the twisted K3 family

Let X again be a closed, oriented 4-manifold with b; = 0, equipped with a spin
structure s. Let 7 € DIFrSPIN(X, s) be the deck transformation of s, the generator
of the kernel of DIFFSPIN(X, s) — SD1FF(X). We can form the spin family (X7, s7)
over B, and the invariant (X7, s%).



Proposition 4.1. If the signature of X is equal to 16 mod 32 (i.e. if the complex
index of D is 2 mod 4), then the Bauer-Furuta invariant of the twisted spin family
(X7, s") over the circle B is given by a product

U(XT’ST) = N1 X U(X’ 5)’

as a cobordism class of stably framed (d + 1)-manifolds. Here 1 is the non-trivial
element of 7}, represented by the circle with Lie-group framing, and n(X, s) is the
Bauer-Furuta invariant of (X, s), as a stably framed d-manifold. If the signature of
X is equal to 0 mod 32, then n(X®, s") is zero.

Corollary 4.2. [fX is a K3 surface, then n(X", s%) is non-zero.

Proof of the Corollary. The Bauer-Furuta invariant of K3 with its unique spin
structure s is the class 7y, represented by the Lie-framed circle. The signature
of K3 is 16, so the proposition above tells us that the invariant of the family
(X7, s%) is n; X n1. This is the generator of the stable 2-stem, z; = Z/2. O

Proposition 2.2 follows directly from this result, as do the reformulations,
Propositions 1.2 and 2.1.

Proof of Proposition 4.1. Let
sw:Wh > W

be the finite-dimensional approximation of the Seiberg-Witten map for the spin
manifold X itself, equipped with some metric g. As usual we write W* = V*eU™
and similarly with W~. The vector spaces V* are quaternion vector spaces, and
we adopt the convention that the quaternion scalars I, J, K act on the left. The
circle group acts on V* and V™ by left-multiplication by e/?. We extend this
action to all of W* by making the action trivial on U*. The Seiberg-Witten map
commutes with this circle action, as does its finite-dimensional approximation.
Over the interval [0, 1], form the trivial product bundles [0, 1] X W*. For any
0 € [0, ], let W,” — B be the vector bundle obtained by identifying {1} x W

with {0} x W using left-multiplication by e’’:

L oelfx. .
{1} xW" — {0} xW™.

Define W, — B similarly.



The map sw commutes with e!%, so it gives rise to a bundle map over B, for
each 0,

swp : W, — W,

When 6 = 0, this is (the finite-dimensional approximation to) the Seiberg-Witten
map for the trivial family BX(X, s) over the circle. When 6 = x this is the Seiberg-
Witten map for the twisted family (X7, s7), because the involution 7 acts as —1
on the spin bundles S*.

We now wish to compare the two proper bundle maps

swo: W, — Wy

swyp i WS - W,

On the one hand we have a proper isotopy between them, given by the bundle
maps
SWQ : W0+ — We_, (3)

for 0 € [0, ). However, multipliction on the left by €% is not a quaternion-linear
transformation for intermediate values 6 € (0, 7), so we do not have an isotopy
through a family of quaternion vector bundles V;*. The trivializations of V- aris-
ing from their quaternionic structure may be different then the trivializations
they aquire from the trivial bundles V;* via this isotopy.

To compare the trivializations, we construct a different isotopy over [0, 7] x B
between the vector bundles V" and V. To do so we trivialize the fiber V* of the
trivial bundle V" as H". We construct a vector bundle W9+ over B, for 6 € [0, ],
in just the same was as we defined W, before, but now using right-multiplication

by e on H" instead of left-multiplication. We do the same with We_. The Seiberg-
Witten map does not commute with this action, so does not define a bundle map;
but we are concerned only with the trivializations. Because right-multiplication
is quaternion linear, we now have vector bundles Wei, providing an isotopy over
[0, 7] X B between W;* and W7, and the “V” summands of these are quaternion
vector bundles. The trivialization of W,* that we are required to use is the one
that arises from the trivial bundle via this new isotopy.

To compare the trivializations that arise via these two different isotopies, con-
sider composing the first with the second. On the H" summand corresponding
to V*, we have an isotopy over [0, 27] X B from the trivial bundle over B with
fiber R*" back to itself. The total bundle over [0, 277] X B is constructed from the
trivial bundle over [0, 27] X [0, 1] by identifying the fibers using a certain path
[0,27] — SO(4n). This path is the concatenation of a first path from 1 to —1
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given by left multiplication by e with a second path from —1 to 1 given by right
multiplication by e!’. In the case n = 1, such a path from 1 to 1 belongs to the
non-trivial homotopy class in 77;(SO(4)). In general it is non-trivial in ;(SO(4n))
if and only if n is odd.

The same arguments apply to W~ as well, so when we consider a relative
framing of W © W, we see that the stable framing acquired from the trivial
bundle by the isotopy (3) is equal to the quaternionic framing if

dimy V* - dimy V-

is even. Otherwise, the framings differ by the non-trivial map B — SO. (This
difference is half the complex index of D.)

In terms of the stably framed manifold M, representing the Bauer-Furuta
invariant of the twisted family (X7, s"), the conclusion is that M; is framed-
cobordant to the product B X M (and therefore to @) if the index of D is 0 mod
4, and is framed-cobordant to L X M if the index is 2 mod 4, where L is the circle
with non-zero framing. O

5 Connected sums

Let (X, sx) and (Y, sy) be two spin 4-manifolds. We suppose that both have b; = 0
so that our exposition of the Bauer-Furuta invariants applies. Remove standard
balls from each and identify collars of the boundary 3-spheres by a diffeomor-
phism ¢ so as to form the oriented connected sum X #, Y. We write Cx and Cy
for these (closed) collars and

¢:Cx—>CY

for the diffeomorphism. Let « : [0, 1] — SO(4) be a closed loop in the non-trivial
homotopy class. For each ¢ € [0, 1] we can form a connected sum X #; Y, using
¥ o a(t) in place of . The 4-manifolds X #, Y and X #; Y are identical, so we may
form a family of 4-manifolds over the circle B = [0, 1]/, which we write as

p:X#,Y — B. (4)

The derivative of ¢ identifies the frame bundles of the two collars. Lift this to
an isomorphism 1,5 of the spin bundles sx|c, — sy|c,. There are two such lifts: 1}
and i o 7, where  is the deck transformation: choose one of them. Thought of as
a path in D1Fr(Cx), there is a unique lifting of « to a path & in DirrSPIN(Cx, 5x)
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starting at the identity. Because the homotopy class of a in SO(4) is non-trivial,
its lift is not a closed loop and we have a(1) = 7. So if we equip B X X with the
twisted family of spin structures s* and equip Bx Y with the product family, then
we can form a spin family

(X" #, Y, s} #557) . (5)
We could also do the twist 7 on the side of Y rather than X.

Proposition 5.1. For the family of 4-manifolds (4) over the circle B with fiber
X #0 Y, equipped with the family of spin structures (5), the Bauer-Furuta invariant
n is given by

n x (X, sx) x n(Y, sy)
if 0(X) is 16 mod 32, and zero otherwise.

Remark. There is an asymmetry in the conclusion here (only the signature of X
matters, not the signature of Y) because of the asymmetry in the construction of
the family of spin structures.

Proof. Let us abbreviate our notation a little by taking the spin structures as im-
plied. We write X* for the family over B with twisted spin structure, and we
write X" #, Y for the result of summing Y to each fiber of X* using the path a to
vary the gluing. The assertion of the proposition can then be rephrased (using
Proposition 4.1) as:

N(X" #a Y) = n(X7) x n(Y).

This is the product formula for the Bauer-Furuta invariants from [5], extended
to the case of families.

The proof from [5] extends without much difficulty. To clarify this, we repeat
the main setup steps from [5], in the families context. Let Z* — B be a finite
collection of closed 4-manifolds over a base B, indexed by a € A, a finite set. Let
Z be the disjoint union. For each a, suppose there is a decomposition of Z¢ as a
fiberwise connected sum, realized explicitly by a smooth embedding of a family
of collars C* over B. That is, C* ¢ Z% is a bundle over B with fiber [-1, 1] x S°,
which we take to be equipped with a family of metrics isometric to the standard
one on each fiber. Let C < Z be the union. We can write

Z=7.UZ_, C=Z,NZ

where Z, and Z_ are families of manifolds with boundary, with boundary com-
ponents indexed by A. Let 0 : C — C be an automorphism of C over the base
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B, which permutes the components by an even permutation of A. Let Z° be
obtained as the union of Z, and Z_, attached along C using the automorphism
.

If Z is given a fiberwise spin structure, and if o : C — C is lifted to an isomor-
phism of spin families, then Z¢ also acquires the structure of a spin family over
B. We have Bauer-Furuta invariants arising from finite-dimensional approxima-
tions sw and sw? for these two families. (For a disjoint union, the Seiberg-Witten
map SW is defined to be the fiber product over B.)

In the case that B is a point, the construction of Z? from Z is the same setup
as in [5], and in Section 3 of that paper as series of homotopies is constructued,
to show that that finite-dimensional approximations sw and sw® are homotopic.
The same homotopies can be applied fiberwise over B, because all the estimates
can be made uniformly over the compact base. This establishes that sw and sw’
are properly homotopic bundle maps over B. As in [5], the application to a con-
nected sum of two manifolds is deduced by considering the case that |A| = 3 and
taking the fibers of Z to be

X #SHuS*#Y)u (S*#SY).
A cyclic permutation o of order 3 is even and the resulting family Z¢ has fibers
X#Y)u (ST #5Hu(st#sh.

A family of 4-spheres over the circle has two possible spin structures, related
by the twist 7, but the resulting two spin families are isomorphic. The Bauer-
Furuta invariant of either family is represented by the identity map between zero-
dimensional vector bundles over B, which contributes trivially. So the homotopy
between sw and sw’ identifies the invariant of the family with fibers X # Y with
that of the family with fibers X LI Y. O

We now return to the first theorem stated in this paper.

Proof of Theorem 1.1. Consider the case that X and Y are both K3 surfaces, and
form the family of 4-manifolds

p:X#,X > B,  (X=K3).

There is a unique spin structure up to isomorphism on the fiber, and there are two
ways to equip the family over B with fiberwise spin structures. In the notation
of the constructions above, these are the spin families X* #, X and X #, X".
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The previous proposition says that the Bauer-Furuta invariant for each of these
families is (1)°, because 7(X) = 7. The cube of 7, is the element of order 2 in
7, = Z/24, and in particular is non-zero. It follows that the underlying family of
smooth 4-manifolds X #,X is a non-trivial family over the circle. The monodromy
of this family is the mapping class of the Dehn twist § supported in the collar
where the connected sum consruction is made. It follows that § is not isotopic
to the identity. ]

6 Additional remarks

More Dehn twists. The non-triviality of § in Proposition 1.2 is a question raised
in a more general form by Giansiracusa in [8]. To describe this, let X be a simply-
connected, closed, spin 4-manifold, and let X () be obtained from X by removing
n disjoint balls. Let DIrr(X™, ) denote the group of diffeomorphisms which are
the identity in a neighborhood of the boundary, so that there is map

Dirr(X™, 8) — Drrr(X™).

It is shown in [8] that the corresponding map on x; has kernel equal to either
(Z]2)"1 or (Z/2)". The ambiguity results from the question of whether the par-
ticular diffeomorphism 6™, defined as the composite of the Dehn twists around
the n disjoint spheres parallel to the boundary components, is isotopic to the
identity in D1rr(X™, 9). For given X, the answer to this question is independent
of n. Proposition 1.2 is the statement that §” is non-trivial in the case of a K3
surface. As pointed out in [8], the isotopy class of ) is trivial if w,(X) is non-
zero, and is also trivial in the case of $? X S? as one can see by using a circle action
on the manifold.

Homotopy K3 surfaces. It follows from the results of [11] and [6] that n(X) =
1y for any homotopy K3 surface X. Theorem 1.1 therefore applies equally well
to homotopy K3 surfaces.

Exploiting equivariance of sw. The Seiberg-Witten maps sw are equivariant
for the action of the group Pin(2) C Sp(1) generated by the circle ! and the
element J. These act by multiplication on the quaternion vector spaces V*. On
U* the circle action is trivial and J acts by —1. This extra structure is exploited
in [7] and in [6, 5], but we have not used it here except in an auxiliary role, to
construct an isotopy in the proof of Proposition 4.1. It would be interesting to
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see if the equivariant version can be used to extend Theorem 1.1 to some other
cases.

Higher dimensions. In higher dimensions, the possible non-triviality of the
boundary Dehn twist in Proposition 1.2 is a question addressed in detail by Kreck
in [10] for almost-parallelizable (k — 1)-connected 2k-manifolds; and in the same
setting, the results there allow one to determine when a Dehn twist on the neck
of a connected sum is non-trivial. Specifically, let X be a (k — 1)-connected and
almost parallelizable 2k-manifold, and let X’ denote the manifold-with-boundary
obtained by removing a ball. Then in the notation of [10] there is assigned to X
an element Xy of order at most two in the group 0,1 of homotopy spheres of
dimension 1 higher. This assignment is additive for connected sums, and if the
dimension of X is at least 6, then Xx is zero if and only if the Dehn twist on the
sphere parallel to the boundary of X’ is zero in 7y (D1rr(X’, 0X’)). For a connected
sum X;#X>, it can also be deduced from [10] that the Dehn twist around the neck
is trivial if and only if X, is zero in the quotient ®,11/(Zx,sx,). Since these
elements have order at most 2, this criterion for non-triviality is simply that Xy,
and X, are both non-zero.

As an example of the computations in [10], if the dimension is 8, then Y is
non-zero if the index of the Dirac operator on X is odd. If the index of the Dirac
operator on X is even, then the vanishing of Xx is dependent on the smooth
structure. As a special case, if X is the exotic sphere of dimension 8, then the
Dehn twist in the neck of X#X is a non-trivial element of 74(D1rr(X#X)). In this
case, the connected sum X#X is S® and it is presented as the union of two balls:
the non-triviality of the Dehn twist arises from the non-standard parametrization
of the standard 7-sphere along which the Dehn twist is performed.
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