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—— Abstract

The following generalisation of the Erdés unit distance problem was recently suggested by Palsson,
Senger and Sheffer. For a sequence § = (d1,...,0x) of k distances, a (k + 1)-tuple (p1,...,Pr+1)
of distinct points in R? is called a (k, 8)-chain if ||p; — pj41]| = §; for every 1 < j < k. What is
the maximum number C{(n) of (k,§)-chains in a set of n points in RY, where the maximum is
taken over all 7 Improving the results of Palsson, Senger and Sheffer, we essentially determine this
maximum for all k£ in the planar case. It is only for k = 1 (mod 3) that the answer depends on the
maximum number of unit distances in a set of n points. We also obtain almost sharp results for
even k in dimension 3.
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1 Introduction

Determining the maximum possible number of pairs u4(n) at distance 1 apart in a set of n
points in R for d = 2,3 is one of the central questions in combinatorial geometry. The planar
version, determining us(n) is also known as the Erdds unit distances problem. The question
dates back to 1946, and despite much effort, the best known upper and lower bounds are
still very far apart. For some constants C, ¢ > 0, we have

n1+c/loglogn < UQ(TL) < CTL4/3,

where the lower bound is due to Erdés [3] and the upper bound is due to Spencer, Szemerédi
and Trotter [9].
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As in the planar case, the best known upper and lower bounds in the 3-dimensional case
are also far apart. For some ¢, C > 0, we have

en?/3 loglogn < us(n) < Cn295/137+5, (1)

where the lower bound is due to Erdés [4], and the upper bound is due to Zahl [10]. The latter
is a recent improvement upon the upper bound O(n3/ 2) by Kaplan, Matousek, Safernova,
and Sharir [5], and Zahl [11]. In contrast, for d > 4 we have u4(n) = O(n?).

Palsson, Senger and Sheffer [8] suggested the following generalisation of the unit distance
problem. Let = (d1,...,0x) be a sequence of k positive reals. A (k+ 1)-tuple (p1,...,Dk+1)
of distinct points in R? is called a (k, §)-chain if ||p; — pis1|| = 6; for alli = 1,... k. For
every fixed k determine Cg(n), the maximum number of (k, §)-chains that can be spanned
by a set of n points in R?, where the maximum is taken over all §. In the planar case, the
following upper bounds were found in [8] in terms of the maximum number of unit distances.

» Proposition 1 (Palsson, Senger, and Sheffer [8]).

O (n - us(n)k/3) if k=0 (mod 3),
Cin)=<0 (ua(n)k+2)/3) if k=1 (mod 3),
O (n? - up(n)*=2/3) if k =2 (mod 3).

If uz(n) = O(n**¢) for any ¢ > 0, which is conjectured to hold, then the upper bounds in
the proposition above almost match the lower bounds given in Theorem 2. However, as we
have already mentioned, determining the order of magnitude of ug(n) is very far from being
done, and in general it proved to be a very hard problem. Thus, it is interesting to obtain
“unconditional” bounds, that depend on the value of uy(n) as little as possible. In [8], the
following “unconditional” upper bounds were proved in the planar case.

» Theorem 2 (Palsson, Senger, and Sheffer [8]). C3(n) = ©(n?), and for every k > 3 we

have

C2(n) = Q (nL(k+1)/3J+1)
and

C%(n) =0 (an/5+1+’v(k)> ’

1

4
where v, < 15, and Yy — 7z as k — oo.

In our main result, in two-third of the cases we almost determine the value of C%(n), no
matter what the value of us(n) is, by matching the lower bounds given in Theorem 2. Further,
we show that in the remaining cases determining C7(n) essentially reduces to determining
the maximum number of unit distances.

» Theorem 3. For every integer k > 1 we have
Cin)=6 (nukﬂ)/?’ﬁl) if k=0,2 (mod 3),
and for any € > 0 we have

Cin)=Q (n(kfl)/suQ(n)) and C2(n) = O <n(k*1)/3+€uQ(n)> if k=1 (mod 3).
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Here and in what follows f(n) = O(g(n)) means that there exist positive constants ¢, C
such that f(n)/g(n) < Clog®n for every n. We write f(n) = Q(g(n)) if g(n) = O(f(n)), and
f(n) = ©(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)).

Let us turn our attention to the 3-dimensional case. The following was proved in [8].

» Theorem 4 (Palsson, Senger, and Sheffer [8]). For any integer k > 2, we have

Cin)=Q (nLk/QHl) ,

and
O (n2k/3+1) if k=0 (mod 3),
Cii(n) = § O (n?k/3+23/33%+€) if k=1 (mod 3),
O (n?k/3+2/3) if k =2 (mod 3).

We improve their upper bound and essentially settle the problem for even k.
» Theorem 5. For any integer k > 2 we have

C¥n)=0 (nk/QH) .
In particular, for even k we have

C¥n) =6 (nk/QH) .

We also improve the lower bound from Theorem 4 for odd k. Let uss(n) be the maximum
number of pairs at unit distance apart between a set of n points in R? and a set of n points
on a sphere in R3.

» Proposition 6. Let k > 3 odd. Then we have
3 uz(n)* k—1)/2
Ci.(n) = Q [ max oy ,uss(n)n! .

Note that usz(n) equals the maximum number of incidences between a set of n points
and a set of n circles (not necessarily of the same radii) in the plane. Thus we have

en*® < uss(n) = O (nls/u)

(see [1, 2, 6, 7]). Therefore, in general we cannot tell which of the two bounds in Proposition 6
is better. However, for large k the second term is larger than the first due to (1).

Finally, we note that for d > 4 we have C¢(n) = O(n**1). Indeed, we clearly have
Ci(n) = O(n**1). To see that Cf(n) = Q(n**+1), take two orthogonal circles of radius 1/v/2
centred at the origin and choose n/2 points on each of them.
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2 Preliminaries

We denote by ug(m,n) the maximum number of incidences between a set of m points and n
spheres! of fixed radius in R?. In other words, ug4(m,n) is the maximum number of red-blue
pairs spanning a given distance in a set of m red and n blue points in R?. By the result of
Spencer, Szemerédi and Trotter [9], we have

uz(m,n):O<m%n%+m+n). (2)

We say that a point p is n®-rich with respect to a set P C R% and to a distance §, if
the sphere of radius § around p contains at least n® points of P. If P C R? and |P| = n?,
then (2) implies that the number of points that are n®-rich with respect to P and to a given
distance § is

O (n*" 73 4 n*=) 3)
The bound
ug(m,n) =0 (m%n% +m+ n) (4)

is due to Zahl [10] and Kaplan, Matousek, Safernovd, and Sharir [5]. It implies that for
P C R3 with |P| = n® the number of points that are n®-rich with respect to P and to a
given distance ¢ is

9] (n3m—4a + nr—a) ) (5)

3 Bounds in R?

For 6 = (61,...,0%) and Py ..., Py 1 € R? we denote by C,‘:(Pl, ..., Py) the family of (k+1)-
tuples (p1,...,Pr+1) with p; € P; for all ¢ € [k + 1], ||p; — piy1l|| = 9; for all i € [k] and with
pi #p; for i # j. Let C(Py,...,Pey1) = |C2 (P, ..., Pei1)| and

Ck(nl, e ,nk+1) = maxC’,‘z(Pl, .. .,P]H_l),

where the maximum is taken over all choices of § and sets Py, ..., Pyy1 subject to |P;| < n;
for all ¢ € [k + 1].

It is easy to see that C%(n) < Ck(n,...,n) < C?((k+ 1)n). Since we are only interested
in the order of magnitude of C7(n) for fixed k, we are going to bound Ck(n,...,n) instead
of C%(n).

In Section 3.1, we are going to prove the lower bounds from Theorem 3. In Section 3.2,
we are going to prove an upper bound on Cg(n,...,n), which is almost tight for k = 0,2
(mod 3). The case k =1 (mod 3) is significantly more complicated. We will the case k = 4
case separately in Section 3.3, and then the general case in Section 3.4.

3.1 Lower bounds

For completeness, we present constructions for all congruence classes modulo 3. For k = 0,2
they were described in [8].

b circles, if d = 2
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First, note that Cy(n) =n and C;(n,n) = uz(n,n) = O(uz(n)). For k =2, let P, = {x}

for some point x, and let Py, P3; be disjoint sets of n points on the unit circle around z.

It is not hard to see that C¢(P;, Py, P3) = n? with § = (1, 1), implying the lower bound
Co(n,n,n) = Q(n?). To obtain lower bounds in Theorem 3, it is thus sufficient to show that

Crys(n,...,n) >nCk(n,...,n).

To see this take, a construction with k + 1 parts P,..., Pxy1 of size n that contains
Ck(n,...,n) (k,d)-chains for some § = (d1,...,0;). Next, fix an arbitrary point 2 on the
plane and choose distances dx41,dr+2 to be sufficiently large so that x can be connected
to each of the points in Pyy; by a 2-chain with distances dx12 and dj41. Set Pry3 = {z}
and let Py1o be the set of intermediate points of the 2-chains described above. Finally, let
0k+3 =1, and Pyi4 be a set of n points (disjoint from Pji2) on the unit circle around z. Tt
is easy to see that the number of (k + 3, d)-chains with § = (d1,...,0k43) in Py X -+ X Pryy
is at least nCx(n).

Note that it is not hard to modify this construction to show that for any given § there is
a set of n points with Q(n*/3+1) many (k, §)-chains if £ = 0 (mod 3) and with Q(n(F+4/3)
many (k, d)-chains if £k = 2 (mod 3). However, for k = 1 (mod 3), our construction to find
sets of n points with Q(n*~1/3uy(n)) many (k, §)-chains only works if §; is much smaller
than 52 and 53.

3.2 Upper bound for k =0,2 (mod 3)

We fix § = (d1,...,dx) throughout the remainder of Section 3 and leave & out of the notation.

All logs are base 2.

» Theorem 7. For any fized integer k > 0 and z,y € [0, 1], we have
Cr(n®,n,...,n,n¥) =0 (n“k);rzﬂ) ,

where f(k) =k +2 if k=2 (mod 3) and f(k) =k + 1 otherwise.

Theorem 7 implies the upper bounds in Theorem 3 for & = 0,2 (mod 3) by taking
x =y = 1. It is easier, however, to prove this more general statement than the upper bounds
in Theorem 3 directly. Having varied sizes of the first and the last groups of points allows
for a seamless use of induction.

Proof of Theorem 7. The proof is by induction on k. Let us first verify the statement for
k < 2. (Note that, for &k = 0, we should have x = y.) We have

Co(n") <n* =0 (n%) ;
Cy(n",nY) <wus(n®,nY) =0 (n%(ery) +n® 4 ny) -0 (nw) , -
Coln*,m.m¥) < ot = O (0552 )

where (6) follows from (2) and (7) follows from the fact that each pair (p1, p3) can be extended
to a 2-chain (p1,p2,p3) in at most 2 different ways.

Next, let k > 3. Take Py,..., Pyr1 C R? with |Py| = n®, |Pyy1]| = n¥, and |P;| = n for
2 < ¢ < k. Denote by Ps* C P; the set of those points in P» that are at least n®-rich but at
most 2n®-rich with respect to P; and d;. Similarly, we denote by P,f C Py the set of those
points in P, that are at least n-rich but at most 2n”-rich with respect to Py, and &y.
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It is not hard to see that
Ck(Pr, Py, Pe, Poyr) € | JCu(P1, P, Py, Peo1, Py, Poga),
a,B

where the union is taken over all a, 8 € {loén :1=0,...,[logn]}. Since the cardinality of

the latter set is at most logn + 2, it is sufficient to prove that for every a and 5 we have

~ f(R)+z+y
Cw(P1, P8, Ps,... . Poy, Pl Priy) =0 (ni ) .

(®)

To prove this, we consider three cases.

Case 1: o > 7. By (3) we have |Pg| = O(n""®). Therefore the number of pairs
(p1,p2) € Py x Py with ||[p1 — p2|| = 41 is at most O(n®). Since every pair (p1,p2) €
Py x P and every (k — 3)-chain (p4,...,pr4+1) € Py X -+ X P,f X P41 can be extended
to a k-chain (p1,...,pk+1) € Py X -+ X Pr11 in at most two different ways, we obtain

Cw(P1, Pg,..., P, Pey1) <40(n")Ch_3(Ps, ..., P, Prs1).

By induction we have
~ [ f(h=3)t1ty
Ck73(P47-~'7P/fvpk+1):O(n 3 )

These two displayed formulas and the fact that f(k —3) = f(k) — 3 imply (8).

Case 2: § > Y. By symmetry, this case can be treated in the same way as Case 1.

N8 e

Case 3: & < Z and 8 < ¥. By (3) we have |Pg| = O (n®*=3%) and |P}| = O (n?~3).
The number of (k — 2)-chains in Pg* X Py x -+ X Pr_1 X P,f is Cr—o(PS, P3, ..., Py_1, Pk’B),
and every (k — 2)-chain (pa,...,pr) € P§ X Py x -+ X Py_1 X P,f can be extended at
most 4n**? ways to a k-chain in Py x P§* x -+ x Pk’B X Pyy1. Thus

Cr(PL, Ps, ..., Pl Puyy) <4n®t0C, o(Ps, ..., PP).

By induction we have

~ f(k—2)42x—3a+2y—33
Ck_g(PQO‘,...,P,?):O(n g )

For k = 0,2 (mod 3) we have f(k) > f(k —2) + 2, and thus

~ f(k—2)+2z—3a+2y—38
Cu(PL,PS,..., P Pipy) =0 (na+ﬁn gt )

~ f(k)—2+42x+2y ~ fk)tz+ty
=0 (n 3 ) =0 (n 3 ) .

If k=1 (mod 3) then f(k) < f(k —2) 4+ 2, and thus the argument above does not work.
However, we then have f(k) = f(k— 1)+ 1, and we can use the bound

Ck(PlaP;7"'aP]§,Pk+1) Sznack—l(PQ(l7P37"'aPk+l)a

obtained in an analogous way. This gives
~ Fle=1)+22—Bat: ~ [ SR —1t204 ~ [ fR)tat
C’k(Pl,PQQ,Pg,...,PkH):O(no‘n 5 ”):o(n 5 y):O(n : )

<
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» Remark 8. The proof above is not sufficient to obtain an almost sharp bound in the k =1
(mod 3) case for two reasons. First, for these k any analogue of Theorem 7 would involve
taking maximums of two expressions, where one contains ug(n®,n) and the other contains
uz(n¥,n). However, due to our lack of good understanding of how ua(n®,n) changes as x is
increasing, this is difficult to work with.

Second, on a more technical side, while Case 1 and Case 2 in the above proof would
go through with any reasonable inductive statement, Case 3 would fail. The main reason
for this is that C) as a function of k£ makes jumps at every third value of k, and remains
essentially the same, or changes by u(n,n)/n for the other values of k. Thus one would need
to remove three vertices from the path to make the induction work. However, the path has
only two ends, and removing vertices other than the endpoints turns out to be intractable.

3.3 Upper bound for k = 4

In this section we prove the upper bound in Theorem 3 for k = 4. Let Py, ..., Ps be five sets
of n points. We will show that Cy(Py, ..., Ps) = O(uz(n)n), which is slightly stronger than
what is stated in Theorem 3.

Instead of (3) we need the following more general bound on the number of rich points.

» Observation 9 (Richness bound). Let n¥ be the mazimum possible number of points that
are n®-rich with respect to a set of n® points and some distance §. Then we have

nYte < ug(n®,nY), (9)
or, equivalently

[e%

" uz(n“,ny).

ny

The proof of (9) follows immediately from the definition of n® richness and ua(n®,nY).

Let A := {loén :1=0,...,[logn] }4. For any o = (aw, a3, a4, a5) € A let Qf = Py and

for i = 2,...,5 define recursively Q@ to be the set of those points in P; that are at least
n®-rich but at most 2n®-rich with respect to Q;_1 and J;.
It is not difficult to see that

CalPr. .. Ps) = | Ca(@2,....Q2).

acA

We have |A| = O(1) and thus, in order to prove the theorem, it is sufficient to show that for
every a € A we have

04( ?7,Q?):O(nu2(n,n))

From now on, fix @ = (a2,...,as5), and denote @Q; = Q. Choose x; € [0,1] so that
|Q;] = n*i. Then we have

C4(Q1, el Q5) =0 (na:5+a5+a4+a3+a2) . (10)

Indeed, each chain (pi,...,ps) with p; € Q; can be obtained in the following five steps.
Step 1: Pick p5 € @s.
Step i (2 <% <5): Pick a point pg_; € Qs—; at distance dg_; from p7_;.

48:7
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In the first step we have n®s choices, and for i > 2 in the i-th step we have at most 2n®6—:
choices. Further, by Observation 9, for each i > 2 we have

(] (nzi71 ) nzl)

n® < s (11)
Combining (10) and (11), we obtain

Ca(@Qur-1Q) = O (gl o) 2 1) a0 (12)
By (2) we have

uz(n® =1, %) =0 (max {n%(”"+“*1),n““,n“*1 }) )

Note that the maximum is attained on the second (third) term iff a;_; < % (z; < Z52+)

To bound C4(Q1,...,RQs) we consider several cases depending on which of these three terms
the maximum above is attained on for different .

Case 1: For all 2 <4 <5 we have ug(n*i-1,n%) = O (n%(”i"‘x"*l)). Then

xr x X xr T xr
uz(n™, N )us (R, n™ Jug (2, n"?) — O (n3estivatios—32
nr2+r3+ry

and

x T4 x @ x x
UQ(’I'L 5n )Ug(’n %n 3)“’2(” Ln 2) -0 n—%x4+§xs+%xz+%$1
nr2t+r3+rs ’

Substituting each of these two displayed formulas into (12) and taking their product, we
obtain

Ci(Q1,. .., Q5)2 -0 (u2(nzl’nm2)u2(nz4, n®s) . n§z1+%m3+%x5> -0 (u2(n7n)2 . n2) ’

which concludes the proof in this case.

Case 2: There is an 2 <7 < 5 such that
1
min{z;_1,2;} < imax{xi,l,xi} and thus  ug(n® =, n*) = O (max{n® -1, n"}). (13)
We distinguish three cases based on for which ¢ holds.

Case 2.1: (13) holds for ¢ = 2 or 5. In particular, this implies that us(n®,n*?) = O(n) or
uz(n®,n*) = O(n). The following lemma finishes the proof in this case.

» Lemma 10. Let Ry, ..., Rs C R? such that |R;| < n for everyi € [5]. Ifua(Ry, Re) = O(n)
or uz(Ry, Rs) = O(n) holds, then C4(Ry,...,Rs) = O (n-uz(n,n)).

Proof. We have
Cy(Ry, ..., R5) < 2uz(Ry, Ro)uz(Ra, Rs) = O (n - uz(n,n)).

Indeed, every 4-tuple (r1,7r2,74,75) with r; € R; can be extended in at most two different
ways to a 4-chain (r1,...,7r5) € Ry X -+ X Rs. At the same time, the number of 4-tuples
with ||r1 — ’I“QH = 61, ||7’4 — T’5|| = 54 is at most u2(R1,R2)U2(R4,R5). |
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Case 2.2: (13) holds for i = 4. Note that if z, < £ < I, then ug(n®s,n") = O(n), and we
can apply Lemma 10 to conclude the proof in this case. Thus we may assume that z3 < %,
and hence ug(n®,n*) = O(n™). This means that n® = O(1) by Observation 9. Thus to
finish the proof of this case, it is sufficient to prove the following claim.

» Claim 11. Let Ry,..., Rs C R? such that |R;| < n for all i € [5] and every point of Ry is
O(1) rich with respect to Rs and d3. Then Cy(Ry,...,R5) = O (n - uz(n,n)).

Proof. Every 4-chain (rq,...,75) can be obtained in the following steps.
Pick a pair (r4,r5) € Ry X Rs with ||ry — 75| = d4.
Choose r3 € R3 at distance d3 from ry.
Pick a point 1 € R;.
Extend (r1,73,7r4,75) to a 4-chain.

In the first step, we have at most ua(n,n) choices, in the third at most n choices, and in
the other two steps at most O(1). <

Case 2.3: (13) holds for i = 3 only. Arguing as in Case 2.2, we may assume that
uz(n*®, n*2) = O(n*2). Then we have

n¥4 ns n*2

Cy(@Q1,...,Q5) =0 (ug(n“,n”s)

ug (n®3, %) ug(n*2, n") ug(n®, n*?2) )

=0 (uz(n“,n“) 'n%(“””*%(“*“)*“’“) = O (ug(n,n)-n),

which finishes the proof.

3.4 Upper bound for k = 1 (mod 3)

We will prove the upper bound in Theorem 3 for £ = 1 by induction. The k = 1 case follows
from the definition of us(n,n), thus we may assume that k& > 4. For the rest of the section
fix ¢/ > 0, and sets P, ..., Pyy1 C R? of size n, further let ¢ = %. We are going to show
that Ck(Pl, e ,Pk+1) = O(n(k_l)/?""e/ug(n)).

The first step of the proof is to find a certain covering of P; X --- X Pj41, which resembles
the one used for the k& = 4 case, although is more elaborate.? (The goal of this covering is to
make the corresponding graph between each of the two consecutive parts “regular in both
directions” in a certain sense.)

Let

A:{z’e:z‘:o,...,EJ}kH.

We cover the product P = Py X -+ X P,y by fine-grained classes P}’ X ... x PI:+1 encoded
by the sequence v = (y1,~2,...) of length at most (k + 1)e~! + 1 with 49 € A for each
7=1,2,.... One property that we shall have is

P1x---kaJrl:UPf’x...xP,;’H.
vy

To find the covering, first we define a function D that receives a parity digit j € {0,1}, a
product set R := Ry X ... X Rgy1 and an a € A, and outputs a product set D(j, R, ) =
R(a) = Ri(a) X ... X Rpy1(a).

2 This covering brings in the e-error term in the exponent, that we could avoid in the k = 4 case.
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Definition of D.

If j =1 then let Ry(e) := Ry and for i = 2,...,k + 1 define R;(«) iteratively to be the
set of points in R; that are at least n®, but at most n®*¢-rich with respect to R;_1 ()
and 0;_1.

If j = 0 then apply the same procedure, but in reverse order. That is, let Rgy1() = Rg41
and for i = k,k —1,...,1 define R;(a) iteratively to be the set of points in R; that are
at least n® but at most n® Te-rich with respect to R;41(c) and d;.

Note that

R = ] R(a). (14)

acA

For a sequence v = (y1,~42,...) with 49 € A, we define P” recursively as follows. Let
P’ .= P, and for each j > 1 let

PO ) = D(j (mod 2), PO 7T 4d).

We say that a sequence -y is stable at j if

|P(71~,.~,vj>’ > ’P(’Yl,‘-«yj_l)’ . n=c.

Otherwise = is unstable at j.

» Definition 12. Let T be the set of those sequences v that are stable at their last coordinate,
but are not stable for any previous coordinate, and for which P” is non-empty.

The set T has several useful properties, some of which are summarised in the following

lemma.

» Lemma 13.
1. Any~ € Y has length at most (k+ 1)e~! + 1.

2. |T] = 0(1).
3. P= UweT P,
Proof.

1. If ~ is unstable at j then

|P(71""’"’j)| < |P(71,~~,7j_1)| .n"€.

Since |P| = n**! and |P”| > 1, we conclude that ~ is unstable at at most (k + 1)e~*
indices j.

. It follows from part 1 by counting all possible sequences of length at most (k+ 1)e=! + 1

of elements from the set A. (Note that |[A] = O-(1).)

. For a nonnegative integer j let A</ be the set of all sequences of length at most j of

elements from A. Let
T;:= (T N Agj) UW¥;, where ¥; := {'y € AJ : ~ is not stable for any ¢ < j}.

By part 1 of the lemma, T; =Y for j > (k + 1)e~!. We prove by induction on j that

P = U’YETJ‘ P’Y'
T consists of an empty sequence, thus the statement is clear for j = 0. Next, assume
that the statement holds for j. We have

p=[JP = [J PU|J P

YET; YEAST YEY;
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By (14) we have that P7 = ., P holds for any ~ € U;, where the union is taken over
the sequences from A/T! that coincide with ~ on the first j entries. This, together with
v € (YNA) U ¥, when PY is nonempty finishes the proof. <

Parts 2 and 3 of Lemma 13 imply that in order to complete the proof of the kK = 1 (mod 3)
case, it is sufficient to show that for any v € T we have

Cy(PY,..., Pl ) =0 (u2(n) .n%Hks). (15)

From now on fix vy € Y. Foreach i =1,...,k+1let R; := P and Q; := P{’l7 where ~/
is obtained from ~ by removing the last element of the sequence. Without loss of generality,
assume that the length £ of ~ is even. For each i =1,...,k + 1, choose x;,y; such that

Qi =n=, IR =nr.

Let «; := 'yf*l and B; :=~/. By the definition of P” we have that each point in Q; is at

least n®-rich but at most n®T¢-rich with respect to Q;_1 and d;_1, and each point in R; is
at least nPi-rich but at most n?ite-rich with respect to R;11 and d;.
By Observation 9, we have

7UQ (ﬂxi_l ! nzl) and nBi < U2 (ny7 ) nyi-H ) < U2 (nrt ) nzHl)

nvi nyi - nTi—e

n® <

(16)

The last inequality follows from two facts: first us(n¥i, n¥i+1) < ug(n®, n®+1) and, second,
since « is stable at its last coordinate®, we have n¥i = |R;| > |Q;| - n~¢ = n%—¢,
In the same fashion as in the beginning of Section 3.3, we can show that

Ci(R1,. .., Rppq) <n¥inpfrt+0etke and
Ck}(Rla ey Rk+1) S Ck;(Q1, Cey Qk?Jrl) Snmk+1nak+1+ak+"‘+a2+k‘8.
Combining the first of these displayed inequalities with (16), we have

ug (071, gy
—_— N .

Cr(Ry, ..., Rit1) < ug(n®,n"?) H

;
2<i<k "
Recall that
uz(n®,n® ) =0 (max{n%(zi+mi+1),nz"’,nmi“}) . (17)
To bound Cj(Ry,..., Rkt1), we consider several cases based on which of these three terms

can be used to bound ug(n®i, n®+1) for different values of .

Case 1: Either us(n™,n*2) = O(n) or ug(n®,n*+1) = O(n) holds. As in the proof of
Lemma 10, we have

Ck(Rl, N 7Rk+1)
< min {ng(nyl s ’I’Ly2)cfk_3(R47 . ,Rk+1), 2u2(ny’“,ny"‘“)Ck_3(R1, . ,Rk_g)}.

By induction we obtain Cy_3(R4, ..., Rk+1),Crk—3(R1,..., Rk—2) = O (n%“‘E . ug(n)) To-
gether with the assumption of Case 1, and the fact that us(n¥*,n¥2) < ug(n®,n*2) and
ug(n¥*, Y1) < yo(n®, nT+1), this implies (15) and finishes the proof.

3 This is essentially the only place where we use the stability of ~.
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Case 2: For somei=1,...,(k—1)/3, one of the following holds:
Uy (n13i+1 , n$3i+2) — O(max{nIBiJrl , n¥si+2 })7
Uy (nl'?n:fl , nl'?,i) — O(na73'i—1 );
Uy (nwm" n$3i+1) — O(nfES'H»l).

We will show how to conclude in the first case. The other cases are very similar and we
omit the details of their proofs. If ug(n®si+t, nsi+2) = O(n®31+2) then n**+2 = O(1) by (16).
Every chain (r1,...,7k+1) € Ck(Q1,...,Qk+1) can be obtained as follows.

1. Pick a (3i — 2)-chain (rq,...,73,—1) with 7; € Q; for every j.

2. Pick a (k — 3i — 1)-chain (r3i+2,73i+3, ..., Tk+1) With r; € Q; for every j.

3. Extend (T3z'+2, T3i+35: .- 7rk+1) to a (]C —3i — 2) chain (T3i+1, T3i4+2y« - ,Tk+1).
4. Connect (7"17 ey Tgi_l) and (T3i+17 T3i+425 .- 7Tk+1) to obtain a k-chain.

In the first step, we have O (n¥+5 - Ug (n)) choices by induction on k. In the second

k—3i

step, we have O (n 3 +2) choices by the k = 0 (mod 3) case of Theorem 3. In the third

step, we have at most n®i+27¢ = O(n?) choices. Finally, in the fourth step we have at most
2 choices. Thus the number of k-chains is at most

3i— ~

o (n 3 4e U2(n)) ) (nﬁ) Om)-2=0 (n%ﬁs .W(n)) :

finishing the proof of the first case.

If ug(n®3+1, n3%+2) = O(n+1) then n™+1 = O(n®) by (16).* We proceed similarly in
this case, but we count the k-chains now in Ry X ... X Rj41 instead in Q1 X ... X Qr4+1 (and
get an extra factor of n° in the bound). In all cases, we obtain (15).

Case 3: Neither the assumptions of Case 1 nor that of Case 2 hold. We define four sets S/,
S, S\, and S of indices in {2,...,k} as follows. Let

S = {z s ug(n® n®iot) = O(n%(“”i‘l)) and ug(n¥itt n) = O(n%(“"i“”i))},

Sﬁr — {2  ug(n®, 1) = O(ng(ﬁfi"rwi—l)) and us(n®+1, n%) = O(n®), or
ua(n®, n® 1) = O(n™) and ug(n™ !, n") = O(ng(zi“”i))},
Sy = {z sug(n® n® 1) = O(n®) and ug (Rt n®) = O(nf’j)}7 and
S’ = {2 fug (R i) = O(ng(lﬁ'“*l)) and ug(n® !, n®) = O(n"+'), or
ug(n®, 1) = O(n™1) and ug(n™+, n") = O(n%(““”i))}.
Since the conditions of Case 2 are not satisfied, we have
{2,...,k}CSUS, US,  US..
Indeed, for each i € {2,...,k}, there are 9 possible pairs of maxima in (17) with ¢,4+ 1. The

four sets above encompass 6 possibilities. In total, there are 4 possible pairs of maxima with

4 This is the key application of (16), and the reason why we needed a decomposition with regularity in
both directions between the consecutive parts.
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only the two last terms from (17) used. For i = 1,2 (mod 3), any of those 4 are excluded
due to the first condition in Case 2 (in fact, then i € S’US”). If i = 0 (mod 3), then the

second and the third condition in Case 2 rule out all possibilities but the one defining S, | .

From these, it is also easy to see that if i € S, ,, then i —1,i+1 € S”, while if i € S’
then one of 4 — 1,7 + 1 is in S’ . (Recall that i € S’ US| only if i = 0 (mod 3).) These
together imply

1S4+ 2184 4 | < |82 (18)

We partition {2,...,k} using these sets as follows: let S_ = 57,5 = 5"\ 5,5, =
SN (SZUS)and Sy ={2,...,k}\ S_US US’ . Note that the analogue of (18) holds
for the new sets. That is, we have

|4 +2[S44] < [S-].

Recall that

Cr(R1, ..y Rg1) < uz(n™,n") H
2<i<k

(19)

Since the assumptions of Case 1 and 2 do not hold, we have 2,k € S. Indeed, 2,k # 0
(mod 3) and thus 2,k ¢ Sy, S, . Further, if say k € S_ = S’ then by the definition of S”
we either have ug(n®+1 n) = O(n), or us(n® ,n*-1) = O(n**-1). The first case cannot
hold since the assumption of Case 1 does not hold. Further, the second case cannot hold
either, since it would imply z, < 5+ < %, meaning ug(n**+, n*) = 0O(n). Using 2,k € S
and expanding (19), we obtain

2% “loy Zay iz, 24, . 1,
Cru(Ri,y ..., Rp1) < n“Fug(n™ ,n")n~ 372p37k+1 Ilnszl | I n3% I | n%i II n” 3% (20)
€S, €Sy 1€Sy 4 1€ES_
i#2

and

ok _1l, 2 1. 2, . 1.
Cri(R1, ..., Ret1) < n™Fug(n™ n"*+1)n =" 3%k p 371 ||n3x1 | I n3®i I | n*i II n” 3%, (21)
€S, i€Sy €S €S _
i%k

Taking the product of (20) and (21) we obtain

Ck(Rl, - ,Rk+1)2 <

. 2(p 1. 2. . 1.
n4ke.u2(nx1’nx2>u2(nxk,nxk+1)n3(11+;ck+1) H n3%i H n3i H nti H n_3%
€S, €S, €S, 4 1€ES
i£2,k

< e gy (n,n)? - n2(FHFISZRIFRISHHS ) = g (n, )2 2 ke
The last equality follows from |Sy |+ 2|Sy | < |S_|, which is equivalent to 2|S, |+ ]S4 | <
(1S4 +|S4+]+15-]), and from the fact that S, S;,S; 4, and S_ partition {2,...,k}. This
finishes the proof.
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4 Bounds in R?

Similarly as in the planar case, for § = (61,...,0%) and P; ..., Prr1 € R® we denote by
Cz’B(Pl, ..., Py) the family of (k+ 1)-tuples (p1,...,pr+1) with p; € P; for all i € [k + 1] and
with ||p; — pis1]| = &; for all i € [k]. Let C2°(Py, ..., Pey1) = [C2(Py,. .., Pey1)| and

Ci(na,...,nky1) = maxc}f."s(Pl, ooy Prgr),

where the maximum is taken over all choices of d and sets Py, ..., Pry1 subject to |P;| < n;
for all ¢ € [k + 1].

It is easy to see that C3(n) < C3(n,...,n) < C3 ((k+ 1)n). Since we are only interested
in the order of magnitude of C’g(n) for fixed k, sometimes we are going to work with
C3(n,...,n) instead of C3(n).

4.1 Lower bounds

For completeness, we recall the constructions from [8] for even k& > 2. For every even

2 < i<k, let P,={p;} be a single point such that the unit spheres centred at p; and p; 2

intersect in a circle. Further, let P; and P;y; be a set of n points contained in the unit

sphere centred at po and py respectively. Finally, for every odd 3 <1i < k — 1, let P; be a set

of n points contained in the intersection of the unit spheres centred at p;—; and p;y;. Then

it is not hard to see that Py X - -- X Py contains n* ™1 many (k, 8)-chains for & = (1,...,1).
Next, we prove the lower bounds for odd k£ > 3 given in Proposition 6.

Proof of Proposition 6. First we show that C}(n) = Q (“;,Ef)lk) Take a set P’ C R? of

size n that contains ug(n) point pairs at unit distance apart. It is a standard exercise in
graph theory to show that there is P C P’ such that § < |P| <n and for every p € P there

k
are at least ui—(él) points p’ € P at distance 1 from p. Then P contains 2 (“5,5?)1 ) many

(k, 0)-chains with § = (1,...,1).

To prove Cj(n) = Q (us3(n)n*~2), we modify and extend the construction used for k — 1
as follows. Let Py,..., Py_1 be as in the construction for (k — 1)-chains (from the even case).
Further, let Py, be a set of n points on the unit sphere around py_1, and P71 be a set of n
points such that uz(Pg, Pry1) = uss(n). It is not hard to see that P; X - -+ X Py41 contains
Q (us3(n)n*~2) many (k, §)-chains with & = (1,...,1). <

4.2 Upper bound

We again fix § = (01, ...,0;) throughout the section and, omit it from the notation. The
following result with = 1 implies the upper bound in Theorem 5.

» Theorem 14. For any fized integer k > 0 and x € [0,1], we have
C¥n®mn,...,n) =0 (nHéH) .

Proof. The proof is by induction on k. For & = 0 the bound is trivial, and for k = 1 it
follows from (4).

For k> 2let Pp,..., Pyi1 C R3 be sets of points satisfying |P;| = n®, and |P;| = n for
2 <n <k+1. Denote by Ps* C P» the set of those points in P, that are at least n®-rich but
at most 2n®-rich with respect to P; and 4.
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It is not hard to see that

CH(P1,Py...,Pe1) € | CH(PL, PSPy, Piya),
a€A

where A := {-—:i =10,1,..., [logn]}. Since |A| = O(1), it is sufficient to prove that, for

logn :
every a € A, we have

~ k+lta
C,i’(Pl,P2‘17P3,...,Pk+1):O<n7+2 )

Assume that |Ps*| = n¥. The number of (k — 1)-chains in P§* X Pg X - -+ X Py11 is at most
C3_,(n¥,n,...,n), and each of them may be extended in 2n® ways. By induction, we get

C3(P, P8, Py,... Phay) =0 <na n%) ,
and we are done as long as

20+k+y<k+1+a (22)

To show this, we need to consider several cases depending on the value of «. Note that o < .
If a > 2% then by (5) we have y < x—a, and the LHS of (22) is at most a+k+a < 1+k+a.

If £ < o < 2% then by (5) we have y < 3z — 4. The LHS of (22) is at most k+ 3z —2a <
k+2x<k+1+=x.

If @ < § then we use a trivial bound y < 1. The LHS of (22) is at most 2o+ &k + 1 <
r+k+1. <
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