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Abstract – Materials with spin-momentum locked surface or interface states provide an interest-
ing playground for studying physics and application of charge-spin current conversion. To charac-
terize their non-equilibrium magnetic and transport properties in the presence of a time-dependent
external magnetic field and a spin injection from a contact, we introduce three macroscopic vari-
ables: a vectorial helical magnetization, a scalar helical magnetization, and the conventional mag-
netization. We derive a set of closed dynamic equations for these variables by using the spinor
Boltzmann approach with the collision terms consistent with the symmetry of spin-momentum
locked states. By solving the dynamic equations, we predict several intriguing magnetic and trans-
port phenomena which are experimentally accessible, including magnetic resonant response to an
AC applied magnetic field, charge-spin conversion, and spin current induced by the dynamics of
helical magnetization.

Copyright c© EPLA, 2020

Introduction. – The electronic states with spin-
momentum locking (SML) into mutually perpendicular di-
rections occur at the surface of a topological insulator or
at the interface with a strong Rashba interfacial spin-orbit
coupling [1–3]. These SML states are two-dimensional
itinerant magnetic states without spontaneous magnetic
moment in the absence of the magnetic field and there
is no magnetic hysteresis response to the magnetic field.
Yet, these materials have displayed profound magnetic
phenomena. For example, an applied electric current
can induce a non-equilibrium spin density known as the
Edelstein effect (EE) [4–6], and reciprocally, a spin cur-
rent injection produced by, e.g., spin pumping [7,8], to
such electronic surface states yields an electric charge cur-
rent termed as the inverse Edelstein effect (IEE) [9–14].
These observed EE and IEE phenomena have drawn con-
siderable interest due to their potential applications for
spin-based electronic devices [15].

In this paper, we theoretically study the time-dependent
magnetic and spin transport properties of such SML sys-
tems in the presence of the external spin injection and
magnetic field. In the conventional magnetic materials,
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the time-dependent magnetization dynamics is described
by the Landau-Lifshitz-Gilbert equation with an addi-
tional Slonczewski spin transfer torque [16,17] when a
spatially varying spin current is present. For the SML
systems, there is no net magnetization without a magnetic
field in the equilibrium even though the spin state of an
electron with a given momentum is well defined, i.e., the
spin is ordered perpendicularly to the momentum. Such
unique ordered spin configuration in the momentum space
may be described by three macroscopic variables: a vecto-
rial helical magnetization (VHM) ξ ≡ 〈p̂×σ〉 and a scalar
helical magnetization (SHM) η ≡ 〈p̂ · σ〉, in addition to
the conventional magnetization m ≡ 〈σ〉, where p̂ = p/p
is the direction of momentum and σ is the Pauli matrix.
Clearly, VHM and SHM characterize the relative orien-
tation of the momentum and spin. In equilibrium, these
macroscopic variables take simple values for the SML sys-
tem, ξeq �= 0, ηeq = 0 and meq = 0.

The main objective of the paper is to determine these
variables in the presence of a driving force such as a time-
dependent magnetic field or a spin current injected from
a nearby contacting metallic layer, and more interestingly,
to establish the relations between these variables and
transport properties that can be measured experimentally.

58001-p1



Ping Tang et al.

Due to the special band structure of SML systems, we
find that the spin transport and dynamic properties dis-
play a number of unique characteristics and the above-
defined three macroscopic variables provide a convenient
way to understand and explain the non-equilibrium pro-
cesses. This paper is organized as follows. In the next
section, we present our model and introduce a spinor form
of the Boltzmann equation. In the third section, we derive
the dynamic equations of these three macroscopic vari-
ables from the spinor Boltzmann equation, with appro-
priate simplifications. In the fourth section, we solve the
equations in several cases that are experimentally acces-
sible, and consider the spin pumping effect from the dy-
namics of VHM and SHM. Finally, we conclude the paper
in the fifth section.

Model Hamiltonian and spinor Boltzmann

equation. – We consider a spin-orbit coupled two-
dimensional band structure with a simple dispersion re-
lation given by

ε̂p = ε0
p

+ α(ẑ × p) · σ, (1)

where ε0
p

is the spin-independent part of the electron dis-
persion which we will take as zero for the surface state of a
topological insulator and ε0

p
= p2/2m∗ for a Rashba band,

where m∗ is the effective mass, and α is the spin-orbit cou-
pling constant. For a given momentum p, the eigenvalues
take εp± = ε0

p
±αp with the corresponding spin eiegnstates

χp± satisfying (Ωp ·σ)χp± = ±χp±, where Ωp ≡ (ẑ× p̂)
is the unit vector representing the quantization axis of the
spin for a given momentum p.

The above model describes a simple one-electron SML
state at equilibrium. We now turn on an AC magnetic
field hex(t) and a DC electric field Eex, in addition to
a possible spin injection from a contacting normal metal
(NM), as shown in fig. 1. The electron Hamiltonian with
a given momentum then reads

Ĥp = ε̂p + hex(t) · σ + eEex · r. (2)

To calculate the spin transport properties in response to
the magnetic and electric fields, we introduce a spinor form
of the semiclassical Boltzmann distribution function for
the SML band,

f̂(p, t) = f̂0(p) + fc(p, t) + fs(p, t) · σ, (3)

where f̂0 is the equilibrium Fermi distribution function
and we take the distribution at T = 0, i.e., f̂0(p) =
Θ(εF − ε̂p) with εF the Fermi energy. In eq. (3), the
non-equilibrium distribution function is separated into
the spin-independent (fc) and spin-dependent (fs) parts.
The generalized spinor Boltzmann equation is

∂f̂

∂t
+ eEex · v̂

(

−
∂f̂0

∂ε̂p

)

+ i[Ĥp, f̂ ] =

(

∂f̂

∂t

)

col

, (4)

Fig. 1: (a) The schematics of the SML surface in contact with
a normal metal layer. On the other side of the NM, a ferro-
magnetic layer is served as either a spin injection source or
a spin detection probe with an attached normal metal. The
role of the normal metal is to avoid the magnetic coupling be-
tween the spin source (the ferromagnetic layer) and SML layer
while allowing the spin current to flow through the entire lay-
ers. Inversely, the dynamic resonant states of SML excited by
an AC magnetic field can pump a spin current into the normal
metal that will be detected by the magnetic probe at the top.
(b) A simple picture of spin directions at the Fermi circle of
the SML states.

where v̂ = ∂ε̂p/∂p is the velocity and the anticommutator
is implied for the product between Pauli matrices in this
paper.

At this point, we want to emphasize that the presence of
the commutator in eq. (4) between Ĥp and the spinor dis-
tribution function allows the electron to occupy the states
that are not the spin eigenstates at equilibrium; this term
represents the precession of the non-equilibrium electron
spin around the effective magnetic field (the spin-orbit
field α(ẑ×p) and the external magnetic field hex). Thus,
we do not assume that fs is parallel to the Ωp. Recall
that in a ferromagnetic metal, the spin-dependent distri-
bution function fs is always confined to the states whose
spins are parallel or antiparallel to the local magnetiza-
tion M, i.e., fs ∝ M and thus the Boltzmann equation
in the conventional ferromagnet has only two components
(spin up and down relative to the local magnetization).
The transverse component of spin accumulation or spin
current injected to a ferromagnet is absorbed by the fer-
romagnet within a few atomic distance due to the strong
exchange interaction between the transverse spin and lo-
cal magnetization; the absorption of the transverse spin
current is considered as the manifestation of spin transfer
torque. In the present case, we argue that the dephasing
of injected spins caused by the spin orbit coupling is much
weaker compared to that of the transverse spin in con-
ventional ferromagnets since a typical spin orbit coupling
in a Rashba Hamiltonian or TI, which is about tens of
meV [6,13,14], is much smaller than the exchange interac-
tion in ferromagnets (of the order of eV); we will return to
this point later when we model relaxation times. Thus, we
do not specify the direction of fs and instead we will deter-
mine the dynamic equations relevant to it from the above
spinor Boltzmann equation. The resulting commutator
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in eq. (4) for an arbitrary fs is

[Ĥp, f̂ ] = 2i[(αẑ × p + hex) × fs] · σ. (5)

The collision term on the right-hand side of eq. (4) has
two contributions: one is the internal spin and momen-
tum relaxations of the SML system, and the other is the
interfacial scattering with the attached NM layer. We may
parameterize these processes below:

(

∂f̂

∂t

)

col

= −
fc + fL · σ

τp

−
fT · σ

τφ

+
∑

p′

Γ̂pp′ [ĝ(p′, t) − f̂(p, t)], (6)

where we have introduced two characteristic relaxation
times for the SML: the first term is caused by the mo-
mentum scattering of electrons, which is responsible for
the relaxation of the longitudinal part of spin-dependent
distribution function (relative to the spin-orbit field di-
rection), i.e., fL ≡ (fs · Ωp)Ωp with a relaxation time
τp, and the second term is the spin dephasing for the
transverse part of the spin-dependent distribution func-
tion fT ≡ fs − (fs · Ωp)Ωp with the relaxation time τφ.
The last term in eq. (6) represents the contribution from
the interfacial scattering between the SML and NM layers
with a transition rate Γ̂pp′ and ĝ(p′, t) being the spinor
distribution function of the NM layer at the interface.

Dynamic equations for macroscopic variables. –

The Boltzmann equation, eq. (4), along with eqs. (5)
and (6), remains mathematically complicated since the
collision terms make the Boltzmann equation an integral
equation. To further reduce the mathematical compli-
cation, in this section, we propose to generate the spin-
diffusion–like equations from the Boltzmann equation such
that resulting simpler equations can be directly used for
experimental analysis. The following approximations are
made. First, we assume the distribution function of the
NM layer ĝ(p′, t) can be described by a time-independent
single parameter, i.e., the spin chemical potential, defined
as µs = (1/eNF )

∑

p
Trσ(σĝ) with NF its density of state

at the Fermi level, which acts as a bias injecting the spin
current into the SML layer. Note that the spin chemi-
cal potential in the NM layer may come from the spin
injection of the source layer such as the spin pumping
of the ferromagnetic layer, see fig. 1. In principle, one
should self-consistently determine the distribution func-
tion ĝ(p′, t) or the spin chemical potential µs; this will
involve the Boltzmann equation and boundary conditions
for ĝ(p′, t) at the interface of the NM and spin source
layers. For the purpose of deriving the closed form of
macroscopic dynamic equations, the presence of the spin
chemical potential near the SML layer is sufficient. The
second approximation is to assume that the electron tran-
sition across the interface conserves the spin and the inter-
face transition rate Γ̂pp′ is independent of the momentum

p′ of electrons in the NM layer; this is the assumption fre-
quently used for modeling electron tunneling or diffusion
across a rough interface. It is, however, that Γ̂pp′ does
depend on the momentum p of electrons in the SML layer
even for the rough interface since the electron spin in the
SML layer is coupled to its momentum. The symmetry of
the SML states demands Γ̂pp′ to have the following form:

Γ̂pp′ =

(

1

τc

)

+

(

1

τs

)

Ωp · σ, (7)

where 1/τc and 1/τs characterize the sum and difference
of the transition rate across the interface for two spin sub-
bands “±” of the SML, respectively. In the case of a single
subband at the Fermi Level, i.e., a topological insulator
band, 1/τc = 1/τs [18], while in the case of a Rashba band
we assume that the transition rates for two subbands are
the same in the limit εF ≫ αpF of interest here and thus
1/τs = 0.

Finally, we assume the momentum relaxation time is
much faster than the transverse spin relaxation time
(τp/τφ ≪ 1), as we have discussed above. Physically,
τp is due to the impurity or defect scattering, while τφ

involves inelastic or interband scattering. More quantita-
tively, τφ scales inversely with the strength of spin orbit
coupling which is the order of several tens of meV for the
TI or Rashba systems, and thus τφ is about picoseconds
while the momentum relaxation time is typically a few
femtoseconds [10]. The separation between these two time
scales are critically important since we are able to treat
the dynamics for the longitudinal and transverse spins dif-
ferently. In fact, we will limit our dynamic description
between these two time scales such that the longitudinal
spin reaches steady states instantly. Equivalently, we take
the limit ∂fc/∂t = 0 and ∂fL/∂t = 0 in the Boltzmann
equation, and we focus the time dependence of the distri-
bution function on the “slow” dynamics of the transverse
spin part fT .

With the above simplifications, we can now explicitly es-
tablish the dynamic equations for three macroscopic vari-
ables by inserting the Boltzmann equation (4) along with
the explicit relations of eqs. (5), (6) and (7) into the def-

initions of the VHM, ξ(t) =
∑

p
Trσ(p̂ × σf̂), the SHM,

η(t) =
∑

p
Trσ(p̂ · σf̂), and the conventional magnetiza-

tion, m(t) =
∑

p
Trσ(σf̂). After a tedious but straight-

forward algebra, we obtain

∂m

∂t
= ω0[ẑ × ξ − ηẑ] + 2hex × m −

m − mp

τ

+gint

[

(µs · ẑ)ẑ +
1

2
(ẑ × µs) × ẑ

]

, (8)

∂ξ

∂t
= ω0ẑ × [m − mp] + 2ηhex −

ξ − ξeq

τ
, (9)

∂η

∂t
= ω0ẑ · m − 2hex · ξ −

η

τ
, (10)

where ω0 = 2αpF with pF the Fermi momentum, gint =
eNF /τc is an interface spin conductance, 1/τ = 1/τφ+1/τc
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and mp =
∑

p
Trσ[(f

L
· σ)σ] reads

mp =
eNF τp

2(τp + τc)
ẑ × (µs × ẑ) + τcqEE ẑ × Eex, (11)

where qEE is the EE coefficient,

qEE =

⎧

⎪

⎨

⎪

⎩

αeτpm
∗

2π(τp + τc)
, for Rashba,

−sgn(εF )
epF τp

4π(τp + τc)
, for TI,

(12)

where sgn(εF ) = +1 for εF > 0 and sgn(εF ) = −1 for
εF < 0. We note that the spin-independent term of eq. (1)
could take different forms such as multiple bands and the
Dirac-like linear dispersion. While other forms of spin-
independent bands will change the parameters through
the Fermi energy and the density of states, the form of
the dynamic equations we have established remains the
same. More specifically, the dynamic equations (8)–(11),
derived from the spinor Boltzmann equation (4), only
depend on the spin-dependent part of electronic struc-
ture (i.e., the spin-momentum locking term). The spin-
independent part provides relevant parameters such as
mp. Thus we only consider the two simple cases, a simpli-
fied TI band and a Rashba band. Equations (8)–(10) along
with eq. (11) are our main results and they can be broadly
used for capturing the dynamics of the SML states in the
presence of external fields and spin current injection. We
shall point out that the difference between the total mag-
netization m and the mp: the latter describes the shift
of momentum center due to the presence of an electric
field and spin current injection. Since we assume a fast
relaxation for the electron momentum, mp is treated as a
steady state solution. Microscopically, mp is composed of
the states with the longitudinal spins (relative to the spin-
orbit filed direction Ωp), while m includes both transverse
and longitudinal spin components. It is the transverse
component of m that gives rise to the time-dependent
motion. When a spin current is injected from the contact,
its longitudinal spin component induces a spin accumu-
lation (mp) and thereby converts to an electric current,
i.e., the inverse Edelstein effect, while its transverse spin
component is equivalent to the spin transfer torque which
drives the magnetization dynamics. One might compare
this picture with the conventional spin injection to a fer-
romagnet where the transverse spin current leads to the
spin transfer torque on a macro-spin while the longitu-
dinal component generates a magnetoresistance (or spin
accumulation).

Applications of the dynamic equations. – These
equations may be considered as an extension of the
Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation to
the SML systems. For a conventional itinerant ferromag-
net, the LLG equation involves only one macroscopic vari-
able in magnetization; we have three coupled equations
for three helix-dependent magnetizations ξ(t), m(t) and
η(t). Therefore, it may be more appropriate to compare

eqs. (8)–(10) with the LLGS equation for antiferromagnets
in which the dynamics of the staggered magnetic moment
is always coupled to the magnetization because a time-
dependent change of the staggered moment is only pos-
sible when the magnetic moment of each sublattice does
not exactly compensate for each other. In the present
case, our VHM and SHM are coupled to the in-plane and
out-of-plane direction of the conventional magnetization
through the spin-orbit coupling, respectively. In this sec-
tion, we solve these equations in two simple cases that can
be readily tested experimentally.

Magnetic resonance. As in the cases of ferromag-
nets and antiferromagnets, the dynamic equations contain
characteristic resonant states. To see this, we ignore all the
relaxation terms and then take simple time-dependent so-
lutions, i.e., ξ(t), m(t) and η(t) ∝ exp(−iωt). By placing
them into eqs. (8)–(10), we immediately obtain three de-
generate resonant modes at frequency ω = ω0. There are
two in-plane modes consisting of the left-handed and right-
handed precessions of the VHM and in-plane component
of magnetization, and one out-of-plane mode represent-
ing the oscillation of SHM and out-of-plane component
of magnetization. In fig. 2, we show the corresponding
microscopic spin dynamics in momentum space for the
three modes. We shall emphasize that the resonant fre-
quency is controlled by the spin-orbit coupling or the spin-
momentum locking parameter α; this is rather different
from the conventional magnetic systems where the res-
onant frequency is determined either by the anisotropy
field for a ferromagnet, or by the geometric mean of
the exchange coupling and the anisotropy field for an
antiferromagnet.

The above resonant states can be excited by applying
a time-dependent magnetic field, similar to the ferro-
magnetic resonance (FMR). To excite an in-plane res-
onant mode, one applies a combined out-of-plane DC
and a small in-plane AC magnetic field hex(t) = h0ẑ +
δhac(cos ωtx̂+sin ωtŷ). By placing the magnetic field into
eqs. (8)–(10) with no electric field Eex = 0 and spin in-
jection µs = 0 and by defining the in-plane VHM sus-
ceptibility, δξ = χinδhace

−iωt, where δξ = δξx − iξy, we
obtain

χin(ω) =

(

4h0ξeq

1 + ω2
0τ2

)

(1 − iωτ)

ω2 − ω2
0 − 2h0ω + 2iω/τ

, (13)

where we ignored the second-order terms in 1/τ and h0,
and the magnetization is related to the VHM through

m =
−iω0τ

1 − iωτ + 2ih0τ
δξ, (14)

where m = mx− imy. Note that the DC magnetic field h0

is necessary to excite the in-plane resonant modes since the
resonant amplitude of VHM is proportional to h0. Clearly,
as shown in eq. (13), the DC magnetic field applied along
the ẑ-direction can also lift the degeneracy of two in-plane
precessional modes, i.e., ω± = h0 ± ω0, where +(−) cor-
respond to the right (left)-handed precessions.
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Fig. 2: Microscopic dynamics of the electron spin in momentum
space for three degenerate resonant modes, in which each spin
precesses along the local spin-orbit field. (a) The two in-plane
modes include the right-handed and left-handed precession of
mutually coupled VHM ξ and the in-plane component of m.
(b) The out-of-plane mode represents the coupled oscillation
of SHM η and the out-of-plane component of m. The small
black arrow represents the electron spin and “±” is the sign of
spin projection along the z-direction.

Similarly, if one applies a small AC field along the ẑ-axis,
hex(t) = hace

−iωtẑ, one is able to excite the dynamics of
SHM η(t). The out-of-plane susceptibility of the SHM
χout(ω) ≡ η/hac reads

χout(ω) =
2(1/τ − iω)ξeq

ω2 − ω2
0 + iǫ

, (15)

with the magnetization, in this case,

mz = −
ω0τ

1 − iωτ
η. (16)

In contrast to the in-plane modes, the out-of-plane mode
can be directly excited by an AC magnetic field along the
z-direction.

Effects of spin injection. As we mentioned earlier, the
spin current injection from a contacting conductor has two
effects. One is to accumulate spins in the SML states, and
consequently the spin accumulation leads to a charge cur-
rent via spin orbit coupling, or the IEE. The other effect is
a spin transfer torque exerted on the magnetization if the
spin current is not parallel to the direction of local spin-
orbit field (Ωp). To quantitatively include both effects, we
set hex = 0 and first consider the steady state solution,
i.e., ∂ξ/∂t = ∂η/∂t = ∂m/∂t = 0. From eq. (8)–(10), we
have

m = mp +
τgint

1 + ω2
0τ2

[

(µs · ẑ)ẑ +
1

2
(ẑ × µs) × ẑ

]

,

(17)

δξ =
ω0τ

2gint

2(1 + ω2
0τ2)

ẑ × µs, (18)

η =
ω0τ

2gint

1 + ω2
0τ2

ẑ · µs. (19)

The deviation of the VHM and SHM from the equilibrium
values implies that the spin and momentum are no longer
locked into completely perpendicular directions due to the
spin transfer torque; this leads to an additional magneti-
zation beyond the simple momentum-shift–relevant mag-
netization (mp), i.e., the second term in eq. (17).

The spin current injected into the SML layer is corre-
lated with the spin chemical potential at the interface. In
the steady state, the spin current across the interface is
given by

js =
∑

pp′

Trσ{σΓ̂pp′ [ĝ(p′) − f̂(p)]}

=
eNF

2(τp + τc)
ẑ × (µs × ẑ) − qEE ẑ × Eex

+(1 − ζ)gint

[

(µs · ẑ)ẑ +
1

2
(ẑ × µs) × ẑ

]

, (20)

where the first term is the conventional spin current in-
jection and the second term is the electric-current–driven
EE, and the last term represents the spin transfer torque
from the spin injection whose spin component is not par-
allel to (Ωp) with a backflow factor ζ = ττ−1

c (1+ω2
0τ2)−1.

Similarly, the electric current in the SML layer also gains
a contribution from the spin transfer torque,

je = σeEex +

(

λIEE +
eτω0gint

1 + ω2
0τ2

)

ẑ × µs, (21)

where σe is the electric conductivity and λIEE =
−(2e/�)qEE is the conventional IEE coefficient. Besides
the IEE term, there is an additional contribution to the
electric current, which is irrelevant to the momentum shift
and caused by the spin torque. Note that here we choose
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the electric field and spin accumulation in the NM as the
driving forces and hence there exists an Onsager reciprocal
relation −(2e/�)qEE = λIEE .

Spin pumping. Spin pumping is the reciprocal effect of
spin current injection, similar to the non-magnetic metal-
ferromagnet bilayer system, in which the time-dependent
magnetization generates an outgoing spin current to the
contacting non-magnetic metal. In this section, we for-
mulate the spin pumping current due to the dynamics of
the VHM and SHM. The pumping spin current across the
interface can be defined as

jpump
s =

∑

pp′

Trσ{σΓ̂pp′ f̂(p, t)}, (22)

where we do not include the “flow back” of the spin current
by the induced spin accumulation in the contact layer since
it is the second effect of dynamics of VHM and SHM. By
using eqs. (3) and (7), one can immediately identify that
the spin pumping in eq. (22) is proportional to the total
magnetization m(t). Provided that the SML is in resonant
modes and expressing the magnetization in terms of the
time derivatives of VHM and SHM, we find

jpump
s = −

1

τcω0

{

ẑ ×
∂ξ

∂t
−

1

ω0τ
ẑ ×

(

∂ξ

∂t
× ẑ

)}

+
1

τcω0

(

1 −
i

ω0τ

)

∂η

∂t
ẑ, (23)

where the dynamics of VHM and SHM pump out an
in-plane and an out-of-plane polarized spin current,
respectively.

We want to emphasize the differences between the con-
ventional spin pumping in ferromagnets and the above for-
mula. In our model, the dynamics of the VHM and SHM
are induced by the AC magnetic field and we have used the
approximation which is valid up to the first-order in the
magnetic field. Thus, the spin current pumping contains
only the AC component. In the conventional pumping,
the magnetization dynamics could be generated by var-
ious methods and the spin pumping formula is written
beyond the linear response. As a result, the conventional
spin pumping contains both an AC spin current and a
higher-order DC component of the spin current.

Discussion and summary. – We have considered the
magnetic and spin transport properties of the SML states
in the presence of the time-dependent magnetic field and
spin current injection from a contact. We want to com-
ment on the differences of the SML spin transport com-
pared to other materials.

Up until now, we have not included any interaction
among spins, and thus it is more appropriate to clas-
sify the SML as a paramagnetic state with a momentum-
dependent magnetic field on each particle. The magnetic
resonant frequency is given by the strength of spin-orbit
magnetic field αpF , similar to the external magnetic field
in the paramagnetic resonance. On the other hand, the
spin of electrons of the SML is perfectly ordered in a helical

state in the momentum space, similar to the ferromagnetic
or antiferromagnetic spins ordered in real space. Although
the spin ordering in the SML are not driven by the ex-
change interaction, there are some shared spin transport
properties such as spin dephasing and spin pumping.

In conventional ferromagnetic systems, there are two
different degrees of freedom for the magnetization dynam-
ics and spin transport. The magnetization consists all the
electrons of occupied states while the spin transport is con-
fined to the electron near or at the Fermi level. Thus the
dynamics involves the time dependence of the magnetiza-
tion and of the conduction electrons. The magnetization
dynamics is considered to be much slower than that of the
conduction electrons, even though they are strongly cou-
pled. In the SML system, both magnetization and trans-
port are governed by the states near the Fermi level.

A key observation of the SML is the different spin relax-
ations for the longitudinal and transverse components. For
conventional ferromagnetic metals, the relaxation time (or
dephasing time) of transverse spins is much shorter than
that of longitudinal spins, and thus the magnetization dy-
namics modeled by the LLGS equation does not address
the conduction electrons, but the much slow dynamics of
the local magnetization. While for the SML system, there
is no spontaneous local magnetization. On the other hand,
the transverse spins relax much slower than the longitu-
dinal spins, and thus our dynamic equations address the
dynamics of the conduction electrons.

The VHM and SHM provide a useful tool to visualize
the spin orientation of the SML. When the VHM deviates
from the equilibrium state, the in-plane component of the
VHM indicates the degree of the spin tilting away from
the perfect perpendicular locking between the momentum
of the spin.

In summary, we introduce three macroscopic variables
for the SML and establish their equations of motion.
Among other things, we have discussed the magnetic res-
onant states, spin injections associated with the EE and
IEE, and we propose a spin pumping formalism.
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