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ARTICLE INFO ABSTRACT

Keywords: Previous studies have identified the importance of simulating and quantifying the relationship between hy-
Climate change drologic variation and climate change under historical scenarios at regional and continental scales. However,
Hydrology robust demonstration of the potential of combining consistent land use/cover change (LUCC) and climate change
I;{a/\r’l:Tuse and land cover to simulate future hydrologic processes is still lacking. Furthermore, investigating the future connections be-

tween hydrologic characteristics and climate variables demands exploration of these phenomena at small (basin)
scale. To fill this gap, this research simulates land use/cover patterns in 2030 based on the logistic Cellular
Automata-Markov model. Then the Soil Water Assessment Tool (SWAT) simulates change in streamflow within
the Ashuelot River basin in New England between 2002-2009 and 2032-2039. Projected climate data are ob-
tained from two general circulation models (GCMs) under Representative Concentration Pathways (RCPs) 4.5
and 8.5. We also quantify relationships between the rates of change (RC) of streamflow, precipitation and po-
tential evapotranspiration (PET) among 29 subbasins at a monthly scale between the two time periods under
different climate scenarios by implementing a panel data approach. Results show greatest changes in forestland
(—21.07 km?) and intensive urban land (+5.4 km?) by 2030. Comparisons between the two periods show a
negative overall trend in runoff under RCPs 4.5 and 8.5 for both selected GCMs. Panel data analysis indicates
that precipitation may contribute more to the RC of streamflow when change in streamflow is significantly
influenced by both PET and precipitation over the study period. Therefore, this study provides an important
insight into quantifying and comparing the relationship of basin-scale change between streamflow and future
climate.

Human-environment systems

1. Introduction severe water scarcity without significant intervention (Wang et al.,

2016). In addition to climate variability, land use/cover change (LUCC)

Climate change and land cover variability are two major compo-
nents affecting hydrologic processes (Pfister et al., 2004; Hovenga et al.,
2016). These interacting processes involve numerous meteorological
and landscape variables such as precipitation, evapotranspiration, solar
radiation, temperature, soil type, topography, land use and land cover
(Wu et al., 2012). The IPCC AR5 (2014) reports that anthropogenic
changes to the global hydrologic cycle will increase spatial and tem-
poral disparities between wet and dry regions. Recent studies found
that approximately 36% of the world population experiences water
scarcity, especially in developing countries (Von Grebmer et al., 2015).
By 2050, 52% of the world’s population is projected to be exposed to

caused by human activities also influences hydrologic characteristics
such as infiltration, percolation, groundwater and runoff. Specifically,
previous research has confirmed that decreasing vegetation and soil
infiltration capacity leads to increasing streamflow (Wang and
Stephenson, 2018; Zuo et al., 2016; Bronstert et al., 2002).

To better understand these interactions, scientists have investigated
the response of hydrologic characteristics to climate change and LUCC
by applying various hydrologic models. These models are usually
classified as one of three types: empirical, conceptual, and physical
(Devia et al., 2015). Although previous studies have shown successful
applications of these models in most cases, physically based distributed
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models have outperformed others owing to their ability to represent
real physical processes (Jayakrishnan et al., 2005). The Soil and Water
Assessment Tool (SWAT), a physically based distributed model, has
been widely used to evaluate the impacts of climate change and LUCC
on water resources. Implementations of SWAT can be classified into
three types based on the variables controlled in each case — climate
change, LUCC, and combined climate and LUCC impacts on hydrologic
processes. Ouyang et al. (2015) assessed the impact of climate change
on streamflow and developed long-term watershed management plans
using six global climate models (GCMs). Uniyal et al. (2015) quantified
the impacts of climate change on water balance components in the
Upper Baitarani River basin in India by considering several warming
scenarios. Can et al. (2015) found that surface runoff declines when
forest, agricultural land and grassland increase under different land use
scenarios. Yang and Lu (2018) defined two respective land use/cover
scenarios for 2000 and 2015 and investigated the effects of the Grain-
for-Green Program on runoff and erosion in the Loess Plateau in China.
Data preparation in these studies usually includes both climate vari-
ables and land use/cover scenarios; however, their approaches to ob-
taining land use/cover data do not reflect decadal hydrologic variation,
particularly when considering long-term climate change.

Recent studies have begun to investigate future climate-driven hy-
drologic responses using bias-corrected and downscaled GCM outputs
and corresponding simulated land use/cover patterns, reflecting the
compound effects of climate change and LUCC. However, some un-
certainties and limitations remain in those studies due to the lack of a
theoretical basis for selecting an optimal method for LUCC simulation.
For example, Kundu et al. (2017) used SWAT to quantitatively estimate
future water balance in 12 subbasins of the Narmada River basin using
a Markov Chain model to generate future land use/cover patterns. Yang
et al. (2019) investigated the combined impacts of LUCC and climate
change on future runoff in the Luanhe River basin by combining Multi
Criteria Evaluation (MCE), cellular automata (CA) and a Markov model.
Hipt et al. (2019) used a combination of Multi-Layer Perceptron (MLP)
and a Markov model to examine the effect of LUCC and climate change
on water resources in a tropical West African catchment. Although
these applications show relatively high goodness-of-fit between simu-
lated and reference land use/cover maps, contributions of various
driving factors to a specific land use/cover category are missing (Wang
et al., 2019), resulting in relatively less convincing predicted hydrologic
responses under corresponding future scenarios. Following Wang et al.
(2019), these contribution indicators can be reflected by quantitative
assessment of relationships between driving factors and land use/cover
types; hence we employ an integrated logistic regression-CA-Markov
model (LCM) in the present study. This method has been shown to
achieve high simulation accuracy of future land use/cover patterns at
small scales even when spatial non-stationarity of socio-economic
variables is taken into consideration (Wang et al., 2019).

Previous studies have attempted to investigate the relationship be-
tween hydrologic variations and climate change using historical re-
cords. Xu et al. (2011) found that periodic changes in runoff, tem-
perature and precipitation are closely correlated, and they found a
significant and positive correlation of these variables with annual
runoff at different temporal scales. Wang et al. (2017) quantified the
relationship between runoff indices (i.e., maximum daily discharge
difference and accumulated direct discharge), precipitation and tem-
perature by applying a multiple linear regression method. Moreover,
Duan et al. (2017) showed that temperature plays a more important
role than precipitation in variation of runoff during the late-21st-cen-
tury under global warming, although precipitation has played a more
important role in the last several decades. Their results suggest that the
contribution of temperature to hydrologic change has been under-
estimated under future climate and LUCC scenarios in the conterminous
United States. In addition, scientists believe that temperature and pre-
cipitation will continue to influence the magnitude and fluctuation of
hydrologic characteristics, such as streamflow, throughout the 21st
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century (McCabe and Wolock, 2011; Wu et al., 2018). Other climate
variables such as potential evapotranspiration (PET) also impact water
resources through indirect effects from temperature, solar radiation and
wind (Wang and Stephenson, 2018). Thus, further research on the dy-
namic influence of these climate variables under plausible future cli-
mate scenarios is needed. Although studies on these relationships are
relatively well-developed at regional and continental scales, details of
their connections within small basins and among their adjacent sub-
basins remain lacking.

Evidence that runoff in small basins is more sensitive to the spatial
distribution of precipitation has been demonstrated previously
(Biemans et al., 2009), such that small differences in climate variables
(e.g., precipitation) between adjacent subbasins of a small basin may
result in large differences in runoff. However, few studies have at-
tempted to use these small differences to investigate the correlation
between hydrologic characteristics, precipitation and temperature.
Therefore, it is necessary to take these differences into consideration
when reexamining the correlation between hydrologic and climate
factors within a small basin, especially under future climate scenarios.
Moreover, most previous research at a given spatial scale derived such
correlations based only on an average value applied to an entire area,
neglecting the potential non-stationarity of both dependent and in-
dependent variables among subbasins. Therefore, under these condi-
tions, the time periods, adjacent subbasins, and hydrologic and climate
variables comprise a multi-dimensional dataset often recognized in the
field of econometrics as panel data. Previous research demonstrated
that panel data may be better than cross-sectional data in analyzing the
dynamics of variation, such as the transition behavior of resource uti-
lization (Fan et al., 2017). This study will therefore apply panel data to
investigate the quantitative relationship between change in streamflow
and climate change within a small basin under future climate scenarios.

As a whole, this study mainly focuses on simulating change in
streamflow within a small basin under future LUCC and climate sce-
narios by integrating LCM and the SWAT model. After obtaining future
simulated data for each subbasin within a small basin, the rate of
change (RC) of streamflow can be calculated between selected histor-
ical and future time periods. The research then aims to quantitatively
assess the relationship of RC between streamflow and climate variables
(e.g., precipitation and PET) in the future. Specifically, this study will
address the following research questions: (1) How will streamflow
change under varying warming scenarios projected by different GCMs
when a corresponding optimal future LUCC scenario is applied? (2)
How can we characterize the diversity of change in streamflow among
subbasins within a small basin? (3) What is the correlation of RC be-
tween streamflow and climate variables among subbasins within a
small basin?

2. Study area and data
2.1. Selection of study area

We select the Ashuelot River basin, a part of the Connecticut River
basin in the Northeastern United States, as our study area (Fig. 1). The
US Northeast has experienced the strongest regional extreme pre-
cipitation increase in the United States in the last 50 years (Parr and
Wang, 2014). The Ashuelot River originates from Pillsbury State Park in
Washington, New Hampshire and flows 103 km before discharging into
the Connecticut River in Hinsdale, New Hampshire. The basin en-
compasses approximately 1100 square kilometers and covers 27 towns
in southwestern New Hampshire and Massachusetts. The river has at-
tracted increasing attention since 1991 when the Silvio O. Conte Na-
tional Fish and Wildlife Refuge Act was passed to protect and improve
the diversity of species in the Connecticut River basin (Zimmerman and
Lester, 2006). According to the 2006 Ashuelot River Corridor Man-
agement Plan (Skuly et al., 2006), frequency of flooding events is in-
creasing along the river bank due to expanding impervious land in the
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Fig. 1. Location of the Ashuelot River basin and numbered subbasins (main map) and lower Connecticut River Basin (inset map).

basin. Moreover, ecological changes, such as forest loss and shift, are
projected to become more severe by late-century under a high green-
house gas scenario (Sintros et al., 2010).

The Ashuelot River basin plays an ecologically and culturally sig-
nificant role in southwest New Hampshire, providing wildlife habitat
and recreational resources. A land conservation plan for the basin
published by the Nature Conservancy, the Monadnock Conservancy, the
Society for the Protection of New Hampshire Forests, and the Southwest
Region Planning Commission highlights pressures in the region caused
by an expansion of new roads, sprawling development and some irre-
versible LUCC (Zankel, 2004). Moreover, the 2010 Sustainability Pro-
ject for Forest and Water Climate Adaptation also projected increasing
loss of forest due to urban development in the next several decades,

raising the likelihood of extreme streamflow events. As these concerns
are common to many river basins throughout the northeast, it is ap-
propriate to regard the Ashuelot River basin as a typical small basin in
our study region.

2.2. Data acquisition and management

We obtained slope and elevation data from the National Elevation
Dataset digital elevation model (DEM) to delineate boundaries of the
basin and its subbasins. Three periods of 30-meter spatial resolution
land use/cover maps (2001, 2006 and 2011) were acquired from the
National Land Cover Database (NLCD). For compiling with the land
use/cover classification system of SWAT, we reclassified the NLCD data
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Table 1
Reclassification of land use/cover type.
SWAT land use/ NLCD classification Description
cover type
WATR Open water, woody wetlands, Water
emergent herbaceous wetlands
URBN Developed area Intensive urban land
PAST Barren land, grassland, pasture Pasture
FRSD Deciduous forest, evergreen forest, Forestland
mixed forest
RNGB Shrub Shrubland
AGRL Cultivated crops Agricultural land

into six land use/cover types (Table 1). Soil data were downloaded at a
scale of 1:24000 from the Soil Survey Geographic Database (SSURGO)
maintained by the US Department of Agriculture (USDA) Natural Re-
sources Conservation Service (NRCS). Six independent variables cov-
ering both physical and socio-economic attributes for LCM were se-
lected following Wang et al. (2019). In addition to slope and elevation
data obtained for SWAT inputs, distance to main roads and distance to
town centers in 2010 from US Census Bureau TIGER datasets were
chosen as proximity variables to show the impacts of location on land
use/cover simulation processes. In addition, socio-economic factors,
specifically population density and per capita income in 2010, were
acquired from the U.S. Geological Survey (USGS) and US Census Bureau
TIGER datasets, respectively.

Due to limited real-time weather stations in our study basin, his-
torical meteorological data (daily precipitation, daily maximum and
minimum temperature, average daily relative humidity, average daily
wind speed and daily solar radiation) from 1979 to 2013 were obtained
from the Climate Forecast System Reanalysis (CFSR) global meteor-
ological dataset as SWAT inputs. Fuka et al. (2014) demonstrated that
the CFSR data perform as well as or better than traditional meteor-
ological gauging data in simulating streamflow. These data provide an
alternative to in-situ meteorological data where such data are in-
sufficient to represent historical weather records. Average monthly PET
calculation follows the Penman-Monteith equation (Allen et al., 1998).
Fig. 1 shows the spatial distribution of six CFSR meteorological stations
in the study area. Future hydrologic simulation from 2030 to 2039 is
driven by outputs from two general circulation models (GCMs) (bcc-
csml-1 and HadGEM2-CC) under two Representative Concentration
Pathways (RCP 4.5 and RCP 8.5). The bcc-csm1-1 is developed by the
Beijing Climate Center and is a fully coupled, relatively low-resolution
(2.8°x 2.8°) climate system model incorporating the global carbon cycle
and dynamic vegetation cover (Wu et al., 2014). The HadGEM2-CC,
developed by the Met Office Hadley Centre, belongs to the Hadley
Centre Global Environmental Model version 2 (HadGEM2) family. This
model includes various Earth system components such as troposphere,
land surface and hydrology, and terrestrial carbon cycle while omitting
tropospheric chemistry, with a moderate resolution (1.88°x1.25°)
(Bellouin et al., 2011). High-resolution (4 km) gridded climate outputs
for these models were downloaded from the Multivariate Adaptive
Constructed Analogs (MACA) dataset, which uses statistical down-
scaling to remove biases from raw GCM outputs (Abatzoglou and
Brown, 2012). A recent study by Karmalkar et al. (2019) evaluated the
36 GCMs in the northeastern U.S., showing that bcc-csm1-1 (hereafter,
“bee”) and HadGEM2-CC (hereafter, “Hadley”) rank #2 and #16, re-
spectively, based on selected performance metrics. Moreover, due to
data accessibility and wide applicability, these models were selected to
represent a range of variability in hydrologic simulations. Corre-
sponding historical monthly discharge data from 1981 to 2013 for ca-
libration and validation were acquired from the USGS Water Data for
the Nation (USGS Water Resources).
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3. Methodology
3.1. Modeling workflow

To understand the relationships of RC between streamflow, pre-
cipitation and PET under future scenarios, our methodology comprises
three modules: 1) calibration and validation of LCM and simulation of
future land use/cover patterns; 2) calibration and validation of SWAT
model and simulation of future change of streamflow under RCP 4.5
and RCP 8.5 of two selected GCMs; 3) eligibility examination (i.e., unit
root test and cointegration test) and utilization of a linear regression
model for the panel dataset. Descriptions of each module are given
below.

3.2. Simulation of LUCC by LCM

Creating suitability maps of various land use/cover categories is an
important component of LUCC forecasting. Unlike subjective scoring
methods such as MCE, logistic regression is able to robustly evaluate
quantitative relationships between driving factors and land use/cover
categories based on socio-economic and physical variables (Arsanjani
et al., 2013). Therefore, the suitability of a specific land use/cover ca-
tegory in each grid cell can be expressed as a function of the values of
selected independent variables. Coefficients derived from the regression
model are applied to the entire study area, representing the contribu-
tion of corresponding driving factors to a land use/cover category. Al-
though previous research has incorporated the spatial non-stationarity
of independent variables in logistic regression for simulating LUCC with
an integrated CA-Markov model approach, the sensitivity of simulated
LUCC to spatial non-stationarity was found to be low for a subbasin-
scale study area within the Connecticut River basin (Wang et al., 2019).
Moreover, LUCC maps simulated by LCM also achieve high agreement
with observed data. Therefore, the present study mainly focuses on
employing logistic regression to create suitability maps, and then to
generate future land use/cover patterns as initial inputs to the SWAT
model.

Integrated CA-Markov model has been widely used in LUCC analysis
in recent years (Iacono et al., 2015; Subedi et al., 2013; Halmy et al.,
2015). This combined approach simulates LUCC through both spatial
and temporal transitions of land use/cover categories over a given
period. Over predefined rounds of iteration, CA model predicts the
following status of each pixel based on its current status, its neighboring
impacts, and a predefined transition rule. Specific predefined rounds of
iteration determine whether each pixel changes or remains unchanged.
This process follows the rule that pixels will be more likely to change to
a certain land use/cover category when the transition probability for
that category is high (Wu, 2002).

While the CA model is capable of simulating the spatial interactions
between neighborhoods, the Markov model aims to provide the number
and probability of pixel transitions between two adjacent time steps
(Sang et al., 2011). The modeling process is stochastic, and the next
status of each pixel at time ¢ + 1 only depends on its status at time ¢ by
applying the transition probability matrix. The transition probability
matrix and Markov process can be expressed as follows:

P10 P n
Bi=|: - (X py=1, (j=1,2--n)

Pu " P | =1 (€8]
Bj X Dy = Dyyq 2

where P, is the transition probability matrix for the selected land use/
cover categories over two time stages; n represents the total number of
land use/cover categories; and D, and D,; denote the land use/cover
category proportion vector for time ¢t and ¢t + 1, respectively.

Based on this framework, we first simulate the 2011 land use/cover
pattern based on the 2001 and 2006 land use/cover map. This process
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involves generating the suitability map for each land use/cover cate-
gory in 2006 by utilizing a logistic regression model and establishing
transition rules (e.g., transition probability matrix from Markov model)
for simulation. The 2011 ground-truth land use/cover map is treated as
reference data for evaluating the accuracy of simulation results. Three
Kappa indices, specifically traditional Kappa (Kqndard), Kappa for no
ability (K,,) and Kappa for location (Kjpcarion), are employed in this
validation process. Lastly, the land use/cover maps of 2001 and 2006
are used to simulate 2030 land use/cover if the aforementioned Kappa
indices demonstrate substantial agreement (0.61-0.80) or almost per-
fect agreement (> 0.80) (Viera and Garrett, 2005).

3.3. SWAT model simulation

The SWAT model is a physically-based and semi-distributed hy-
drologic model developed by the U.S. Department of Agriculture
(USDA) Agricultural Research Service (ARS) (Gassman et al., 2007). It
has been widely used to investigate the impacts of climate change and
LUCC on water resource quantity and quality at various scales (Arnold
et al., 1998; Gassman et al., 2007). Within the SWAT model framework,
a basin is delineated and can be divided into subbasins based on a DEM.
It is then further divided into Hydrologic Response Units (HRUs) re-
presenting basic simulation traits, encompassing a single soil type, land
use/cover category and range of slope. Hydrologic components, such as
evapotranspiration, streamflow and percolation, are simulated from
these smallest parcel units to the subbasin level, and accumulated at the
outlet through the entire stream network. Consequently, the daily water
budget may be calculated in an individual basin. The SWAT model
follows a water balance equation to simulate hydrologic components.
The equation can be expressed as:

t
SW; = SWy + . (Rg — SURQq — ETy — PERC4 — QRq)
=1 3)

where SW, is the soil water content at the end of the study period; SW; is
the soil water content at the beginning of the study period; R, is daily
precipitation during the time period t; SURQ, is daily surface runoff;
ET; is amount of daily evapotranspiration; PERC; is daily percolation
and QR represents the daily amount of return flow (Arnold et al.,
1998). The unit in this equation is mm.

Before simulating the historical and future streamflow utilizing
SWAT, calibration and validation must be performed by comparing
simulated streamflow data with the corresponding observed streamflow
data obtained from the same gauge station over a given time period.
Moreover, previous studies demonstrated that not all hydrologic para-
meters accounted for in SWAT may significantly affect the simulated
results (Cibin et al., 2010). SWAT Calibration and Uncertainty Pro-
grams (SWAT-CUP) enables sensitivity analysis of parameters, calibra-
tion, validation, and uncertainty analysis of SWAT model results
(Abbaspour, 2013). The Sequence Uncertainty Fitting algorithm (SUFI-
2) is selected to optimize parameters due to its ability to consider un-
certainties from various sources, such as driving factors, observed data,
and the conceptual model specification (Abbaspour, 2013). Significance
of parameters in model calibration is assessed by a two-tailed t-test in
SWAT-CUP. Parameters are more sensitive when the absolute value of
the t statistic is large (statistical significance at p < .05). In the present
study, model performance is evaluated by three indicators: coefficient
of determination (R?), the Nash-Sutcliffe coefficient (Eys) and percent
bias (PBIAS). The equations of these indicators are expressed as follows:

b 2 b b
R = z (Qa,a - Q_o)(Qs,a - Q_s) / z (Qo,a - Q_o)2 Z (Qs,a - QS)Z
a=1 a=1

a=1

4

b b
Ens=1-— Z (Q — Qs)g/ Z (Qo,a - Q_o)2
a=1 a=1 (5)
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b

b
PBIAS =100 % ¥ (Qo — Q\)a/ Y, Qo
a=1 a=1 (6

where Q, represents the observed streamflow data; Q; represents the
simulated streamflow data from SWAT; Q, is the average of the ob-
served data; Q, is the average of the simulated data; b is the number of
records; and a is the a observed or simulated streamflow data.
Based on the topographic attributes of the Ashuelot River basin, this
research divides the study area into 29 subbasins. The SWAT model is
calibrated for the period from 1981 to 1996, and validated for the
period from 1997 to 2013, ensuring an optimal balance of time period.
In addition, 1979 and 1980 are treated as warm-up years for in-
itialization the model. The 2001 land use/cover map is used for deli-
neation of the HRUs and calibration and validation of the model.

3.4. Panel data analysis

Over the last several decades, panel data analysis has been widely
used in analyzing the impacts of environmental phenomena on human
systems, such as identifying and quantifying impacts of climate change
and extreme weather events on agricultural yields (Naudé, 2004; Asici,
2013; Powell and Reinhard, 2016; Massetti and Mendelsohn, 2011).
The more common time series and cross-sectional data may be con-
sidered simplified forms and special cases of panel data: time series data
may span a long time period but usually encompass a single area, while
cross-sectional data cover many areas at a single point in time. How-
ever, panel data can include measurements of multiple variables over
selected time periods for each subbasin within a large basin
(Fitzmaurice et al., 2012). In this research, our panel data consist of 29
subbasins from January to December for two study periods. In-
dependent variables include the RCs of streamflow, precipitation and
PET between Period 1 (2002-2009) and Period 2 (2032-2039).

Before employing least squares regression with panel data, the re-
liability and applicability of input variables and the stability of the
relationship between dependent and explanatory variables across the
dataset must be investigated (Levin et al., 2002; Kao, 1999). Specifi-
cally, we examine the stationarity of dependent and independent
variables over each period to avoid spurious regression using a unit root
test. In order to mitigate uncertainties stemming from reliance on one
test, four tests (Levin-Lin-Chu [LLC] t test, Im-Pesaran-Shin [IPS] w test,
Fisher-ADF [F-ADF] test, and Fisher-PP [F-PP] test) are performed.
After passing the unit root test, a cointegration test is applied to ensure
the stationary relationship between dependent and independent vari-
ables. Following Pedroni (1999) and Kao (1999), we employ a Pedroni
test (i.e., Panel/Group ADF, Panel/Group PP) and Kao test to assess the
existence of cointegration. Fixed-effects regression, rather than random-
effects regression, was selected owing to the relatively small number of
subbasins (29) and their similar effect sizes (Borenstein et al., 2010).

4. Results and discussion
4.1. Simulation of future LUCC by LCM

Based on the observed 2001 and 2006 land use/cover maps, a
Markov transition matrix of land use/cover categories between 2001
and 2006 is generated. On the basis of the observed 2006 land use/
cover pattern and the raster maps of six selected independent variables,
suitability maps for six land use/cover categories (WATR, URBN, PAST,
FRSD, RNGB and AGRL) are obtained using a logistic regression model.
We then simulate 2011 land use/cover for validation by integrating the
Markov transition matrix, suitability maps and predefined CA transition
rules in a CA-Markov model. Fig. 2(3) and Fig. 2(4) show the observed
and simulated 2011 land use/cover maps, respectively. Visual com-
parisons between these maps illustrate that most simulated areas ex-
hibit high agreement with the observed data. Three Kappa indices
employed to validate the accuracy of the LCM model indicate that the



H. Wang, et al.

0153 6 Miles 0153 6 Miles
[ | [

0153 6 Miles
e e

Ecological Indicators 113 (2020) 106251

0153 6 Miles
[ |

0153 6 Miles
I

Fig. 2. Land use/cover maps of (1) observed 2001, (2) observed 2006, (3) observed 2011, (4) simulated 2011, and (5) simulated 2030 data.

Table 2

RC and area of land use/cover transitions between 2001, 2011 and 2030.
Land use/cover type 2001 2001-2011 2001-2030

Gain Loss Net change Gain Loss Net change

WATR 89.63 0.05 (0.06) 0.31 (0.34) —0.26 0.16 (0.18) 1.37 (1.53) -1.21
URBN 70.58 1.31 (1.85) 0 (0) 1.31 5.40 (7.65) 0 (0) 5.40
PAST 33.16 1.49 (4.5) 1.24 (3.74) 0.25 4.30 (12.98) 5.17 (15.60) -0.87
FRSD 874.13 1.05 (0.12) 7.43 (0.85) —6.38 4.02 (0.46) 21.07 (2.41) —17.05
RNGB 10.19 3.95 (38.72) 1.17 (11.47) 2.78 7.23 (70.96) 4.05 (39.78) 3.18
AGRL 2.60 0.43 (16.61) 0.05 (2.11) 0.38 1.37 (52.74) 0.23 (8.92) 1.14

Note: Values in bracket denote RC %. Values out of bracket denote area with the unit of km?.

simulated 2011 land use/cover map exhibits almost perfect agreement
with the observed data, with Kygugaq Of 97.05%, K,,, of 98.79% and
Kocation Of 97.29% (Viera and Garrett, 2005). These values underscore
the validity of the LCM model and suggest confidence in its ability to
simulate future LUCC in our study area with high accuracy. Table 2
shows the area of each land use/cover category in 2001 and rates of
change of land use/cover transitions between 2001 and 2011. In 2001,
forestland occupied the largest area in the Ashuelot River basin (ap-
proximately 81%). However, from 2001 to 2011, forestland also had
the largest net change area (6.38 km?) compared with the other land
use/cover categories, with a gain of 1.05 km? and loss of 7.43 km?. This

result aligns with the finding of the 2010 Sustainability Project that
forest area declined significantly from 2000 to 2010. Table 2 also shows
that shrubland experienced the largest area increased (3.95 km?) in
these ten years. More interestingly, results even indicate that intensive
urban land area increased by 1.85% (1.31 km?), with no decrease
during this time period.

Following the Markov transition matrix obtained in the previous
step, LUCC in 2030 is simulated based on the observed 2006 land use/
cover map and the 2006 suitability map of each land use/cover cate-
gory (Fig. 2(5)). Table 2 also shows the degree of land use/cover
transition between 2001 and 2030. Variation trends of land use/cover
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Table 3
Selected SWAT parameters.
Parameters Range Description
V_CH_N2 0-1 Manning coefficient for main channel
V_SFTMP -5-5 Snowfall temperature (oC)
V_ALPHA BNK  0-1 Baseflow alpha factor for bank storage
V_CANMX 0-95 Maximum canopy storage
R_SOL K —-1.5-1.5 Soil conductivity (mm/h)
V_CH_K2 0-150 Hydraulic conductivity in main channel (mm/h)
V_EPCO 0-1 Plant evaporation compensation factor
R_CN2 —-0.7-0.7 Soil conservation service runoff curve number for

moisture condition II

Note: V_means the existing parameter value is to be replaced by a given value.
R_ means the existing parameter value is multiplied by (1 + a given value).

categories over this period are similar to those from 2001 to 2011.
Across the entire Ashuelot River basin, forestland is again projected to
exhibit the greatest decrease (21.07 km?) during this period. Although
shrubland gains 70.96% of its area (7.23 km?) by 2030, almost 40% of
its area (4.05 km?) will be converted during the same period. Therefore,
this leads to a net increase of 3.18 km? for shrubland in the study area.
Urban area also increases in the next decade, with an increasing rate of
7.65%. Our findings are in agreement with those of Thorn et al. (2017)
that impervious cover is projected to increase in southern New
Hampshire in the future.

4.2. Simulation of future streamflow by SWAT model

During the calibration process, sensitivity of parameters is in-
vestigated and parameters are adjusted to achieve optimal model out-
puts. Table 3 shows the 8 parameters considered to be the most sensi-
tive to the estimation of streamflow in this study (Kundu et al., 2017;
Yang et al., 2019). The performance of the calibrated SWAT model is
evaluated by three indicators (i.e., R?, Eys and PBIAS). Following the
conclusions of Moriasi et al. (2007) and Almeida et al. (2018), the
SWAT model exhibits satisfactory performance when 0.50 < R? < 0.60,
0.36 < Eys < 0.60 and + 15 < PBIAS < +25. For calibration of monthly
streamflow, R?, Eys and PBIAS are 0.74, 0.68 and 2.8, respectively.
Validation of monthly streamflow shows that R?, Eys and PBIAS are
0.66, 0.47 and -22.9, respectively. Therefore, both calibration and
validation demonstrate satisfactory agreement between observed and
simulated streamflow, indicating that the calibrated SWAT model is
applicable for simulating hydrologic processes in the study area (Fig. 3).

After integrating the simulated 2030 land use/cover map with
downscaled GCM outputs, streamflow data in Period 2 (2032-2039) are
projected by applying the calibrated SWAT model. To avoid unequal
conditions of accumulation and the impact of basin size on
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comparability, we use surface runoff to assess the differences between
subbasins under both historical and future scenarios (Langbein, 1949).
Fig. 4 shows comparisons between monthly observed runoff in Period 1
and simulated runoff in Period 2 for the 29 subbasins. Specifically,
Fig. 4A shows that annual peak runoff in Period 2 is projected to be
lower than that of Period 1 for each subbasin under RCP 4.5. Fig. 4B
illustrates a similar finding under RCP 8.5, indicating that peak runoff
that usually occurs in March and April will decrease substantially under
future climate change. Fig. 5 shows the average monthly runoff of all
subbasins for Period 1 and different scenarios of Period 2. Compared
with Period 1, runoff is lower under both GCMs and climate scenarios
from 2032 to 2039. Furthermore, both GCMs project smaller average
monthly runoff under RCP 8.5 than RCP 4.5, underscoring the potential
threat to water resources from a high greenhouse gas emissions sce-
nario. However, our previous finding that the study area will experi-
ence decreasing forest area and increasing urban area (section 4.1)
suggests that runoff may increase in the future if only LUCC is taken
into consideration. Therefore, we conclude that future runoff variations
may be influenced more by climate change than LUCC in our study
area, with larger decreases in runoff under higher warming scenarios
(RCP 8.5).

Monthly RC of streamflow for all 29 subbasins illustrates how
streamflow during Period 2 changes relative to that of Period 1, where
positive and negative RCs refer to increasing and decreasing stream-
flow, respectively. Fig. 6 shows the scatter plots (348 points) of RC of
streamflow between Period 1 and Period 2 under RCP 4.5 and RCP 8.5
while examining the Hadley and bcc GCMs separately. It also further
depicts the close alignment of the RCs under RCP 4.5 and RCP 8.5 for a
given model. Results clearly indicate that the streamflow RCs in the bcc
model have a better linear correlation than in the Hadley model. In
other words, the linearity of impact of two RCP scenarios on future
change of streamflow is relatively stronger in the bcc model and weaker
in the Hadley model. Moreover, densely clustered points in the third
quadrant of Fig. 6b clearly show that the negative RC of streamflow
projected by the bcc model is dominant under both RCP 4.5 and RCP
8.5. Although the cluster of points in Fig. 6a is less dense than that in
Fig. 6b, the largest number of points fall in the third quadrant (ap-
proximately 42% overall). This finding indicates that the tendency of
variation of streamflow is decreasing monthly when both climate
models are examined.

4.3. Relationship analysis of RC

As mentioned above, panel unit root and cointegration tests are
required before applying a least squares regression model. Table 4
shows the estimates of three panel unit root tests, including the sig-
nificance level of each variable under two RCPs. The results indicate
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Fig. 3. Observed and simulated monthly streamflow at the #24 subbasin gauge station for calibration (1981-1996) and validation (1997-2013).
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that the RCs of streamflow, precipitation and PET are stationary over
the time series. Moreover, the null hypothesis that variable non-sta-
tionarity exists over the time series can be rejected mainly at the 1%
significance level. These findings suggest the absence of spurious re-
gression, and it is therefore reasonable to proceed with a cointegration

test using the same variables. Table 5 shows the results of the coin-
tegration test between the RC of streamflow and two independent
variables. For both RCPs for each GCM, both the Pedroni test and Kao
test reject the null hypothesis at either the 5% or 1% significance level,
suggesting a long-term cointegration relationship between the
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Fig. 5. Average monthly runoff of 29 subbasins for Period 1 and two RCPs of
Period 2.

dependent and independent variables. Based on these conclusions, we
proceed with quantifying the relationship of RC between streamflow
and climate variables through regression analysis.

In regression analysis, positive and negative RCs represent in-
creasing and decreasing variables of the latter period, respectively. In
the present study area covering the states of Massachusetts and New
Hampshire, an increasing PET leads to decreasing streamflow as actual
evapotranspiration is close to PET in this region (Golubev et al., 2001).
Therefore, in Table 6, a negative correlation between the RC of
streamflow (DF) and the RC of precipitation (DPET) is expected if the
variable of the RC of precipitation (DPRP) remains constant.

Several conclusions can be drawn based on Table 6. For the bcc
model, coefficients of DPRP and DPET are all significant at either the
1% or 5% level, indicating that the RCs of these two climate variables
are closely associated with that of streamflow between Period 1 and
Period 2. As expected, DPRP and DPET represent positive and negative
contributions to DF, respectively. Moreover, it is clear that the impact
of DPET on DF is relatively smaller than that of DPRP on DF, suggesting
that variation of precipitation may play a much more important role
than that of PET in change of streamflow during the 2030s in the
Ashuelot River basin. However, the Hadley model presents a different
story. Under RCP 8.5, although the coefficient of DPRP is significant at
the 1% level, DPET is not significantly correlated with DF, revealing
that the impact of PET on streamflow variation during this period may
be minor. However, under RCP 4.5, both DPRP and DPET have sig-
nificant positive correlations with DF, contrasting with the results of
DPET under RCP 8.5 and the expectation of negative correlation be-
tween DF and DPET. These contrary findings are probably due to
overestimation of positive DPRP caused by high precipitation under this
scenario in the Hadley model. Fig. 7 illustrates the distribution of DPRP
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and its corresponding DF under RCP 4.5 for both GCMs. It clearly shows
greater correlation of positive DPRP and DF in the Hadley model (i.e.,
first quadrant of Fig. 7a) than in the bec model (Fig. 7b), suggesting that
positive DF is exaggerated due to overestimation of DPRP in the Hadley
model. This conclusion is supported by both Hanson (1991) and Fekete
et al. (2004). They found that any estimated error in precipitation can
translate to streamflow error in wet regions, such as New England.
Therefore, it is reasonable that the positive correlation between DF and
DPET in this case may be caused by overestimation of positive DF and a
positive DPET influenced by warming temperature. Furthermore, this
evidence supports the conclusion of Karmalkar et al. (2019) that the bcc
model demonstrates greater skill than the Hadley model in the north-
eastern U.S. region.

5. Conclusion

This research quantifies the relationship of RC between streamflow
and two climate variables (precipitation and PET) in the Ashuelot River
basin under future climate change and LUCC scenarios. We present
three main conclusions. First, we simulate the land use/cover map of
2030 with high accuracy using an integrated LCM model. Forestland is
projected to convert the largest area (—21.07 km?) among all land use/
cover categories by 2030, while urban area will continue to increase in
next decade (+ 5.4 km?). Second, historical (Period 1: 2002-2009) and
future (Period 2: 2032-2039) streamflow data for all 29 subbasins are
simulated using a calibrated SWAT model and downscaled outputs from
two GCMs under two warming scenarios. Comparisons between Period
1 and Period 2 show overall decreasing runoff under RCP 4.5 and RCP
8.5 in both bec and Hadley models. We also expect that warmer tem-
peratures and higher greenhouse gas emissions may result in continued
decreasing runoff in the future (Fig. 4). Lastly, panel data analysis is
applied to investigate the relationship of RCs between streamflow,
precipitation and PET under future climate scenarios. Results of re-
gression analysis indicate that the RCs of precipitation and PET are
significantly related to that of streamflow in the bcc model over the
study periods. At the same time, the RC of streamflow is influenced
more by the RC of precipitation rather than that of PET. Additionally,
results from the Hadley model are strongly influenced by its over-
estimated positive RC for precipitation, resulting in an overestimation
of positive RC of streamflow. With the positive RC of PET caused by
warming temperatures, the exaggerated positive RC of streamflow
consequently leads to a positive correlation between these two vari-
ables, contrary to our expectations. We therefore conclude that the bce
model is more reliable in our study area.

Although this study provides an important insight into under-
standing the future quantitative relationship between streamflow and
climate in a small basin, some limitations remain in the modeling
process leading to some uncertainty in the results. Due to limited
availability of data on socio-economic factors and biophysical land-
scapes, we are unable to simulate LUCC that corresponds exactly with

b

bee 4.5

Fig. 6. Scatter plots of monthly RC of streamflow between Period 1 and Period 2 for 29 subbasins under RCP 4.5 and RCP 8.5 of the Hadley model (a) and bcec model

(b). Quadrant numbering proceeds counter-clockwise from the upper right.
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Table 4
Panel unit root test statistics.
Test type Scenario DF DPRP DPET
LLC test (bcc) RCP 4.5 —1.68 (0.046)** —13.87 (0.000)*** —10.88 (0.000)
RCP 8.5 —3.57 (0.000)*** —26.54 (0.000)*** —12.86 (0.000)***
IPS test (bcc) RCP 4.5 —2.63 (0.004)*** —10.39 (0.000)*** —6.10 (0.000)***
RCP 8.5 —3.46 (0.000)*** —18.42 (0.000)*** —7.96 (0.000)***
F-ADF test (bcc) RCP 4.5 75.00 (0.066)*
RCP 8.5 87.90 (0.001)
F-PP test (bcc) RCP 4.5 76.51 (0.052)* 201.17 (0.000)*** 68.15 (0.000)***
RCP 8.5 84.15 (0.014)** 575.09 (0.000)*** 84.37 (0.014)**
LLC test (Hadley) RCP 4.5 —16.65 (0.000)*** —9.29 (0.000)*** —6.36 (0.000)***
RCP 8.5 —17.4 (0.000)*** —17.60 (0.000)*** —8.68 (0.000)***
IPS test (Hadley) RCP 4.5 —10.03 (0.000) —4.48 (0.000)*** —1.94 (0.026)**
RCP 8.5 —9.27 (0.000)*** —11.77 (0.000)*** —4.23 (0.000)***
F-ADF test (Hadley) RCP 4.5 311.94 (0.000)* 152.18 (0.000)* 98.28 (0.001)
RCP 8.5 322.33 (0.000)* 324.95 (0.000)* 136.08 (0.000)***
F-PP test (Hadley) RCP 4.5 248.97 (0.000)*** 122.66 (0.000)*** 126.16 (0.000)***
RCP 8.5 327.48 (0.000)*** 325.57 (0.000)*** 149.89 (0.000)***

Note: DF, DPRP and DPET represent the RC of streamflow, precipitation and PET, respectively. P-values are denoted in parentheses. Asterisks represent significance
at the 10% (*), 5% (**) and 1% (***) levels.

Table 5
Cointegration test statistics.
Variables Scenario Panel ADF Group ADF Panel PP Group PP Kao (ADF)
DF (bce/Hadley)
DPRP (bcc) RCP 4.5 —5.22 (0.000)*** —7.22 (0.000)*** —5.23 (0.000)*** —7.89 (0.000)***
RCP 8.5 —3.94 (0.000)*** —2.18 (0.015)*** —3.66 (0.000)*** —1.57 (0.058)* —9.26 (0.000)***
DPET (bec) RCP 4.5 —6.34 (0.000)*** —4.58 (0.000)*** —5.82 (0.000)*** —4.14 (0.000)*** —9.54 (0.000)***
RCP 8.5 —5.54 (0.000)*** —4.17 (0.000)*** —4.35 (0.000)*** —2.76 (0.003)*** —10.20 (0.000)***
DPRP (Hadley) RCP 4.5 —19.98 (0.000)*** —30.90 (0.000)*** —19.52 (0.000)*** —28.12 (0.000)*** —1.81 (0.035)**
RCP 8.5 —10.22 (0.000)* —16.48 (0.000)*** —9.19 (0.000)*** —11.50 (0.000)*** —2.06 (0.020)**
DPET (Hadley) RCP 4.5 —13.05 (0.000)*** —14.36 (0.000)*** —6.84 (0.000)*** —5.91 (0.000)*** —3.19 (0.001)***
RCP 8.5 —11.42 (0.000)*** —11.53 (0.000)*** —12.17 (0.000)*** —13.74 (0.000)*** —1.94 (0.026)**

Note: DF, DPRP and DPET represent the RC of streamflow, precipitation and PET, respectively. P-values are denoted in parentheses. Asterisks represent significance

at the 10% (*), 5% (**) and 1% (***) levels.

the future time period. Uncertainties in the downscaled outputs of
GCMs cannot be addressed completely because of its relatively coarse
resolution and MACA statistical downscaling methods. Therefore, fur-

ther research utilizing multiple and ensemble climate projections in the
same region is needed. The generalizability of our conclusions may also
be improved by considering non-stationarity of LUCC in other study

areas. Further research incorporating additional climate variables and
expanded study periods are necessary to fully articulate the relationship
between streamflow and climate change.

Table 6
Parameter estimation of regression analysis under various climate scenarios.
Scenario Dependent variable Independent variables Coefficient t-statistic Probability R?
bee 4.5 DF Intercept 0.14 3.57 0.000 0.30
DPRP 1.61 7.66 0.000
DPET -0.11 —-2.15 0.032
bee 8.5 Intercept —0.01 -0.33 0.742 0.29
DPRP 1.28 9.87 0.000
DPET —0.07 —2.51 0.013
Hadley 4.5 Intercept 0.01 0.39 0.700 0.68
DPRP 1.52 25.14 0.000
DPET 0.04 2.12 0.035
Hadley 8.5 Intercept 0.14 6.16 0.000 0.74
DPRP 2.04 29.60 0.000
DPET —-0.00 -0.14 0.890

Note: DF, DPRP and DPET represent the RC of streamflow, precipitation and PET, respectively.
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Fig. 7. Distribution of the RCs of precipitation (DPRP) and streamflow (DF) under RCP 4.5 in the Hadley model (a) and bcc model (b). Quadrant numbering proceeds

counter-clockwise from the upper right.
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