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Abstract

We constrain X-ray spectral shapes for the ensemble of active galactic nuclei (AGNs) based on the shape of the
cosmic X-ray background (CXB). Specifically, we rule out regions of X-ray spectral parameter space that do not
reproduce the CXB in the energy range 1–100 keV. The key X-ray spectral parameters are the photon index, Γ; the
cutoff energy, Ecutoff; and the reflection scaling factor, R. Assuming each parameter follows a Gaussian
distribution, we first explore the parameter space using a Bayesian approach and a fixed X-ray luminosity function
(XLF). For σE=36 keV and σR=0.14, fixed at the observed values from the Swift-BAT 70-month sample, we
allow á ñ á ñR E, cutoff and áGñ to vary subject to reproducing the CXB. We report results for σΓ=0.1–0.5. In an
alternative approach, we define the parameter distributions, then forward model to fit the CXB by perturbing the
XLF using a neural network. This approach allows us to rule out parameter combinations that cannot reproduce
the CXB for any XLF. The marginalized conditional probabilities for the four free parameters are: á ñ =R
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to explore any combination of á ñEcutoff , σE, áGñ, σΓ, á ñR , and σR, including different distributions for each absorption
bin, subject to the integral CXB constraint. The distributions observed in many AGN samples can be ruled out by
our analysis, meaning these samples cannot be representative of the full AGN population. The few samples that fall
within the acceptable parameter space are hard-X-ray-selected, commensurate with their having fewer selection
biases.

Unified Astronomy Thesaurus concepts: X-ray active galactic nuclei (2035); Active galactic nuclei (16); Diffuse
x-ray background (384); X-ray sources (1822); X-ray surveys (1824); Supermassive black holes (1663); Quasars
(1319); Astrophysical black holes (98)

1. Introduction

An accreting supermassive black hole (SMBH) appears
brightly in most wavelengths of the electromagnetic spectrum.
X-rays are considered to be one of the most unbiased tracers of
active galactic nuclei (AGNs), as they are produced very close
to the SMBH—in the corona of the accretion disk—and they
can penetrate heavily obscuring column densities. Ananna et al.
(2019; henceforth Paper I) presented a comprehensive model of
SMBH growth in the form of an evolving X-ray luminosity
function (XLF). XLFs describe the underlying AGN population
as the number density of AGNs at each epoch/redshift z,
as a function of intrinsic luminosity L, and obscuration NH,
quantified in terms of equivalent hydrogen column density of
obscuring material. A population synthesis model combines an
XLF and a set of AGN X-ray spectra to reproduce observed
X-ray constraints (e.g., Maccacaro et al. 1991; Madau et al.
1994; Comastri et al. 1995; Ueda et al. 2003, 2014; Gilli et al.
2007; Akylas et al. 2012; Shi et al. 2013; Aird et al. 2015,
Paper I).

A correct population synthesis model is able to reproduce
constraints such as the cosmic X-ray background (CXB), which
describes the total observed intensity from X-ray sources at a

given energy level per unit solid angle of the sky. The model
prediction of the CXB at each energy value is calculated by
integrating over the product of AGN spectra and space
densities as follows:
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The Gilli et al. (2007) population synthesis model explored
some parts of AGN spectral parameter space and showed that,
independent of the underlying XLF, certain AGN spectral
parameter combinations cannot reproduce the CXB consis-
tently at all energies. Similarly, Akylas et al. (2012) system-
atically explored the degeneracy between the XLF and two
parameters of the AGN spectra. However, a full systematic
exploration of AGN parameter space has not been undertaken
using population synthesis models. The population synthesis
model in PaperI fit several dozen X-ray constraints, and a
neural network simultaneously ensured a good fit to the CXB.
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Here, we present a more comprehensive exploration of the
AGN spectral parameter space using this population synthesis
model, in conjunction with recently available X-ray spectral
models that are more realistic and sophisticated (Section 2), as
well as a neural network that can perturb the XLF in an
automated way.

Specifically, in this work (see also Section 6 of Paper I), we
show that the quality of fit to the CXB is determined by the
relative contributions in different absorption bins. AGN
obscuration has three classes: unobscured objects are AGNs
shrouded in an equivalent hydrogen column density of NH<
1022 cm−2, Compton-thin objects have 1022 cm−2�NH<
1024 cm−2, and Compton-thick objects have NH�1024 cm−2.
The summed contribution of AGNs over all NH produces the
observed CXB. We show in Section 2 (see also Figure 8 of
Paper I) that for some spectral parameters, including values
observed in some AGN surveys, the CXB cannot be
reproduced regardless of the underlying XLF. We discuss the
selection biases and spectral modeling difficulties in survey
data that might lead to this issue in Section 2.

Additionally, there are some gaps in the literature about the
limits of spectral parameter spaces that can reproduce the CXB.
Usually, AGN spectral parameters in population synthesis
models are determined through observed distributions in
surveys (e.g., Ueda et al. 2014; Buchner et al. 2015). In
Figures 11 and 18 of PaperI, we showed that several previous
population synthesis models chose spectral parameter sets that
do not reproduce the CXB well when coupled with the XLFs
presented in those works. Therefore, an XLF-independent
exploration of AGN parameter space will provide insights
about its acceptable regions when constructing population
synthesis models, in addition to providing a reference point for
comparison with observations from samples selected using
different methods.

In this work, we use the most updated X-ray spectral models
to construct AGN spectra. We explore the distribution of
spectra that can reproduce the CXB using two approaches: the
first approach assumes that our current observationally
constrained XLF is correct, and the parameter space of AGN
spectra can be constrained by exploring the quality of the fit to
the CXB when coupled with this XLF. For the second
approach, we assume a spectrum rather than an XLF, and
forward model using the neural network to find the XLF that
best fits the CXB given the assumed spectrum. We apply the
second approach systematically across parameter space, and
use the quality of the fit to reject regions that fail to reproduce
the CXB for any XLF. We also show how the allowed region
shifts as key spectral parameters change. Finally, we provide an
online interactive tool with which users can explore the
goodness of fit to the CXB for any combination of spectral
parameters.

This paper is organized as follows. Section 2 describes the
key AGN spectral parameters and their values as derived from
survey samples. In Section 3 we describe how we vary the
components of the population synthesis model while still
fitting the CXB. Section 4 describes our results, namely, the
unacceptable spectral shapes, and Section 5 presents a
discussion and conclusions.

2. Observed AGN Spectral Parameters

AGNs have an accretion disk surrounding the SMBH,
which is the source of emission in optical and UV bands

(Shakura & Sunyaev 1973; Shields 1978; Risaliti &
Elvis 2004). Above the accretion disk is a hot corona that
emits at X-ray wavelengths. This intrinsic X-ray spectrum is a
power law, with a photon index in the range Γ;1.4–2.1
(Nandra & Pounds 1994; Ueda et al. 2014; Ricci et al. 2017—
more references in Table 1) and an exponential cutoff at
high energies, i.e., F(E) ( )µ --GE E Eexp cutoff . This power-
law emission is reflected by the accretion disk; in XSPEC
(Arnaud 1996) the reflected component is often modeled by
PEXRAV or PEXMON (Magdziarz & Zdziarski 1995; Nandra
et al. 2007), with an adjustable scaling factor, R. According to
AGN unification, the SMBH and accretion disk likely reside
inside a torus of gas and dust 10–100 pc away from the SMBH.
High-energy X-rays can penetrate the dusty torus, revealing the
AGN within. The transmitted X-ray spectrum can be modeled
using MYTORUS (Murphy & Yaqoob 2009) or BORUS02
(Baloković et al. 2018). The unabsorbed continuum is scattered
by gas outside the torus region, within the cone of its opening
angle. The dependence of the spectral shape on Γ, Ecutoff, and R
is shown in Figure 1, for two different absorbing column
densities, log (NH/cm

−2)=23 and 25.
Often, AGN parameter space is constrained by fitting X-ray

spectra of AGNs detected in surveys. However, AGN surveys
are subject to selection biases, such that the observed
distribution of parameters may not reflect the underlying
distribution in nature. Additionally, accurate spectral fits are
only possible for sources that have a lot of counts. Table 1 lists
observed AGN parameters for different samples.
Ricci et al. (2017) published a detailed analysis of both

obscured and unobscured AGNs in the local Universe from the
Swift-BAT 70-month survey, one of the least biased AGN
surveys. They reported that for Swift-BAT observed spectra,
constraining certain parameters, such as reflection scaling
factor R, is easier when the value is high (R>1), whereas
cutoff energy is well constrained only when the value is low
(Ecutoff<100 keV). For the rest of the objects, one can only
obtain limits on these parameters. Swift-BAT is sensitive in the
14–195 keV energy range; for lower energy bands, such as the
0.1–8 keV (0.1–10 keV) band of Chandra (XMM), constraining
the reflection scaling factor or Ecutoff is more difficult,
especially at lower redshifts. This is another reason the
observed distributions of parameters do not necessarily reflect
the intrinsic ones. Additionally, spectral parameters can be
coupled. Zdziarski et al. (1999) and Petrucci et al. (2001)
reported a correlation between reflection parameter and photon
index, and Matt (2001) reported a positive correlation between
photon index and cutoff energies. These correlations may occur
due to the intrinsic nature of the spectra, or due to the fact that
these parameters are strongly related in the fitting procedure
(Akylas et al. 2012). Similarly, the difference of observed
parameters between obscured and unobscured sources might be
intrinsic but can also arise due to imperfections in the modeling
of the obscurer (Elitzur 2012; Baloković et al. 2018).
When modeling AGN spectra in population synthesis

models, usually a single spectrum, i.e., without any dispersion
in values of parameters, or a set of spectra (i.e., incorporating
some distribution/dispersion of parameters) is assumed. An
XLF provides the space densities of AGNs, which, integrated
together with the spectra, can reproduce the CXB and number
counts. The population synthesis model of Gilli et al. (2007)
was the first to use a distribution of photon indices for
calculating the CXB, rather than a single value; this tended to
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harden the CXB peak emission at E∼10 keV. Subsequent
XLFs also assumed some dispersion in the values of some of
these parameters; Ueda et al. (2014) assumed a single R and
Ecutoff, but a dispersion in Γ, and Aird et al. (2015) assigned
distributions for both Γ and R and kept Ecutoff constant. In
PaperI, we assigned dispersions to all three parameters.
However, we note that any given XLF can only reproduce
the CXB for a certain range in spectral parameter space.

Gilli et al. (2007) presented an XLF where the unobscured
and Compton-thin space densities were constrained using
surveys, and the space densities of Compton-thick objects were
constrained using the residual X-ray background. They
reported that with sáGñ = =G1.9, 0.2 and a á ñ =Ecutoff
300 keV, either the peak CXB (at E=30 keV) is under-
estimated and the CXB at E=100 keV is well-fitted, or the
CXB at E=30 keV is well-fitted but at E=100 keV is
overestimated, depending on how many Compton-thick
sources are added. Therefore, with this combination of spectral
parameters, no solution to the CXB is possible. However, with
á ñ =E 200cutoff keV, a good fit to the CXB can be obtained. In
other words, some combinations of spectral parameters can be
excluded because they do not reproduce the CXB for any XLF.

In PaperI, we illustrated this situation with several examples
(see Figure 8 of that paper). Here, in Figure 2 we show another
example of reasonable (i.e., observed) X-ray spectra that
nonetheless do not reproduce the CXB. Specifically, we

assumed a set of spectral parameters derived from INTEGRAL
hard X-ray observations (0.3–100 keV) of 33 Seyfert galaxies
(de Rosa et al. 2012), as listed in Table 1 above. Figure 2 shows
the summed spectrum (solid lines) as well as the contribution
from each column density bin (dashed lines). The unabsorbed
contribution dominates at low energies (E<2 keV), the
Compton-thin AGN contribution dominates at E>3 keV,
and the Compton-thick contribution becomes significant at
even higher energies (E>10 keV). This is consistent with the
expectation that higher-energy photons can escape even the
thickest column densities. At low energies, the CXB effectively
sets the number density of unabsorbed AGNs, as there is a
negligible contribution from absorbed AGNs. At slightly
higher energies, Compton-thin objects determine the slope of
the CXB at 3–10 keV. In the example shown in Figure 2, the
Compton-thin contribution cannot be increased any more
without overproducing the CXB in this energy range; at the
same time, this particular model undershoots the CXB at higher
energies (E>60 keV), but increasing the Compton-thick
contribution would overproduce CXB at lower energies. This
example illustrates how a particular set of spectral parameters
—even though observed in an X-ray survey—cannot reproduce
the observed CXB, and therefore cannot be representative of
the full (underlying) ensemble of AGNs.
Even without considering the CXB, we can see that

parameter distributions for observed samples do not agree

Table 1
Observed X-Ray Spectral Parameters of AGNs

Sample Photon Index Cutoff Energy Refl. Scaling Factor
Γa Ecutoff (keV)

a Ra

Ricci et al. (2017)b Swift-BAT 14–195 keV selected
(local)

 -
+

-
+1.80 0.17, 1.76 0.170.02

0.02
0.02
0.02 c 210±36, 188±27 0.83±0.14,

0.37±0.11
Zappacosta et al. (2018) NuSTAR 8–24 keV selected 1.89±0.26d 200 (fixed) 0.67, 0.28e

Malizia et al. (2014) INTEGRAL 0.3–100 selected
type-1

1.73±0.17 128±46f

Buchner et al. (2014) 0.5–8 keV selected (CDFS 4Ms) 1.9–2.0 NA 0.7±0.5g

Brightman &
Nandra (2011)

IR-selected type-1 and type-2 -
+

-
+1.90 0.310.07

0.05
0.05
0.05 NA NA

Scott et al. (2011) Type 1 (optically selected XMM
spectra)

-
+

-
+1.99 0.30.01

0.01
0.01
0.01

Beckmann et al. (2009) Hard-X-ray-selected (>20 keV) 1.96±0.02, -
+1.91 0.03
0.02

-
+

-
+86 , 18414

21
52
16

-
+1.2 0.3
0.6,1.1-

+
0.4
0.7h

Dadina (2008) 2–100 keV selected (local) 1.89±0.03, 1.80±0.05 230±22, 376±42 1.23±0.11,
0.87±0.14

de Rosa et al. (2012) INTEGRAL selected (>20 keV) 1.80±0.18,1.75±0.26 73±25 1.63±1.15i

Ueda et al. (2014) Swift-BAT 9 month samplej -
+

-
+1.94 0.090.03

0.03
0.05
0.05, -

+
-
+1.84 0.150.04

0.04
0.06
0.06 300 0.5

Notes.
a For unobscured and obscured sources, respectively. The subscripts and superscripts on the values are standard errors on the means and dispersions of the
distributions.
b Previous works have reported parameters for smaller BAT-selected samples (Winter et al. 2008). These are the most updated results from the Swift-BAT 70-month
survey.
c Compton-thick objects have Γ=2.05±0.17, Ecutoff=449±64, and R=0.15±0.12. The inclination angle of all objects was fixed at 30°.
d The distribution of the measured Γ peaks between 1.8 and 2.0, with a mean at 1.89.
e The interquartile ranges (25%–75%) for unobscured and obscured sources are 0.10–1.8 and 0.05–1.07, respectively.
f Note that this is mean cutoff energy for which this quantity could be constrained, i.e., ignoring lower limits. The baseline model used for fitting uses PEXRAV;
however, no reflection scaling factor was reported.
g From Figure 10 of Buchner et al. (2014).
h For these spectra, the cutoff energy can only be determined when not fitting the spectra with a reflection component. Also, the inclination angles assumed for Type-1
and Type-2 AGNs are 30° and 60°, respectively.
i Correlated with Γ, so that a higher Γ produces a higher value of R. The cutoff energy listed is for the sample of 10 objects for which this quantity could be
constrained.
j The spectra for the Ueda et al. (2014) XLF were constrained using Swift-BAT 9 month catalog. However, the space densities were constrained using several other
surveys, as detailed in that work.
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with each other (Table 1). This may be caused by different
spectral fitting procedures and/or by selection biases. So it is
important to remember that parameters constrained in some
survey samples may not be representative of the overall AGN
population. Furthermore, they cannot be representative if they
do not sum to the observed CXB.

Note that there are many degeneracies in fitting the CXB.
For example, given a set of assumed spectra, the contribution in
a given absorption bin can be produced by AGNs of different
luminosities (e.g., 100 AGNs at =-L 102 10 keV

42 erg s−1 are
equivalent to one AGN at =-L 102 10 keV

44 erg s−1). In this
work, we do not focus on producing a unique population
synthesis model that can fit the CXB; instead, we identify
distributions of spectral parameters that under no circumstances
—i.e., for no XLF—are consistent with the CXB. To do this,
we use a neural network that fits the CXB by readjusting the
XLF dependence on luminosity and/or column density.

Absorption functions have been derived differently in
previous works. For example, Ueda et al. (2014) derived an
XLF using a dozen X-ray surveys, then used the three surveys
with the highest photon counts to formulate an absorption
function over the log (NH/cm

−2)=20–24 range. The Compton-
thick fraction was assumed to be evenly spaced for
log(NH/cm

−2)=24–26, with the same average number density

as for log(NH/cm
−2)=22–24. That is, the luminosity function

and absorption function were derived separately. Other works
derive both functions together. For example, Buchner et al.
(2015) used a sample of Chandra hard-band-detected objects to
produce an XLF that treats luminosity and absorption in equal
footing using a Bayesian methodology, instead of evaluating the
absorption function separately.
The neural network we introduced in PaperI also varies the

distribution of objects over luminosity and absorption bins
simultaneously to converge on XLFs that can satisfy the CXB
constraint. In this way, the absorption function is built into the
luminosity function. As described in PaperI, the neural
network starts with the Ueda et al. (2014) luminosity function,
with the updated Swift-BAT 70-month Ricci et al. (2015)
absorption function, and both functions are updated in each
step of the neural network. As neural networks are sensitive to
initial conditions, to ensure faster convergence, we start with
100 parallel networks, each of which reweights the input XLF
randomly. The weights associated with each luminosity and
absorption bin are shown in Figure 6 and AppendixB of
PaperI. The redshift dependence follows the observed
distribution in Treister & Urry (2006). If a fit to the CXB is
possible for a spectral set, the neural network can converge on

Figure 1. Dependence of X-ray spectral shape on key parameters, for two average column densities of the obscuring torus: log (NH/cm
−2)=23 (left panels) and log

(NH/cm
−2)=25 (right panels). Top panels: three values of the power-law index, Γ=1.5 (solid red lines), 1.9 (dashed orange lines), and 2.1 (dotted green lines); the

other spectral parameters are fixed, with scattering fraction, fscatt=1%, cutoff energy, Ecutoff=200 keV, and reflection scaling factor, R=0.7. Middle panels: two
values of the cutoff energy, Ecutoff=70keV (solid red lines) and 200keV (dashed orange lines), with fscatt=1%, Γ=1.9, and R=0.7. Bottom panels: three values
of the reflection fraction, R=0.3 (solid red lines), 0.7 (dashed orange lines), and 1.0 (dotted green lines), with fixed fscatt=1%, Γ=1.9, and R=0.7. Details for the
XSPEC models are given in Section 3.1.

4

The Astrophysical Journal, 889:17 (12pp), 2020 January 20 Ananna et al.



multiple XLFs that produce equally good fits, depending on the
starting point of the network.

As discussed in PaperI, there are dozens of other observed
constraints besides the CXB that a correct XLF should be able
to reproduce and that can help break the degeneracies and
restrict the spectral parameter space further. For example,
number counts, defined as the number of objects at a certain
flux limit in a given band, are relatively insensitive to cutoff
energy (for E<10 keV) yet are very sensitive to the
luminosity distribution, which allowed us to break the
degeneracy among XLFs and arrive at the solution presented
in PaperI. In the present work, however, we are not trying to
produce a new population synthesis model—we simply want
to rule out sets of spectral parameters that can under no
circumstances make up the CXB. Therefore, we only use CXB
for the present analysis, ignoring the additional constraints
considered in PaperI (and avoiding their computational cost).
Of course, tighter limits could be placed on spectral parameter

space if those other constraints were incorporated, and we
discuss this qualitatively in Section 5.

3. Method

3.1. Modeling AGN Spectra

To model AGN spectra in this work, we use the sum of
transmitted, reflected, and scattered components, which has
been shown to be the best way to model overall AGN X-ray
spectra by Buchner et al. (2014). Slight variations of this
prescription were used by Ueda et al. (2014); Buchner et al.
(2015) and PaperI. The XSPEC (Arnaud 1996) syntax of the
spectral model is

FSCATT×CUTOFFPL + TBABS×CABS×PEXMON +
BORUS02.

BORUS02 (Baloković et al. 2018) is the most up-to-date,
flexible prescription to model the reprocessing emission by a
toroidal distribution of gas and dust. This model takes
Compton-reflection by the torus into account, and prescribes
an overall AGN spectrum similar to the above model, with
CUTOFFPL instead of PEXMON. As observed by Dadina (2008),
Beckmann et al. (2009), Ricci et al. (2017), and Zappacosta
et al. (2018), unobscured objects usually have a higher
reflection fraction than obscured objects, possibly due to
reflection by the accretion disk (e.g., Beckmann et al. 2009),
although the proportion of reflected to transmitted components
for obscured objects is higher. This is why we include the
PEXMON model, which accounts for reflection due to a slab
geometry like an accretion disk, which is not modeled as part of
the conical geometry of BORUS02. We also include a reflection
scaling factor of á ñ =R 0 within our explored parameter space,
which would correspond exactly to the model prescribed in
Baloković et al. (2018). To account for attenuation due to
line-of-sight photoelectric absorption and Compton scattering,
we multiply the reflected component by TBABS and CABS,
respectively.
The free parameters in all these models are the photon index,

Γ, cutoff energy, Ecutoff, and normalization of power-law
radiation from the corona; the reflection scaling factor, R; the
inclination angle, θinc, and opening angle, θOA, of the torus; and
the hydrogen column density, log(NH/cm

−2) along the line of
sight. Absorbing column densities across all the XSPEC models
(i.e., TBABS, CABS, BORUS02) are consistent. The distribution
of AGNs as a function of luminosity and absorbing column
density is given by the XLF.
Marchesi et al. (2019) studied the torus covering factor of 35

Compton-thick objects using NuSTAR spectra, finding an
average covering factor ;0.5, i.e., θOA;60°. For the Swift-
BAT 70-month AGN sample, Ricci et al. (2017) found that for
the 12 objects for which the opening angle of the torus could be
constrained, the median value was similar, θOA is 58±3°.
Based on these results, we fix θOA=58°. For the BORUS02
model, the line-of-sight column density is equal to the torus
column density at all angles larger than the opening angle. To
be physically consistent with the likelihood of drawing an
inclination angle, when constructing XSPEC spectra, we draw
from a distribution p(θinc) qµsin inc in the range θinc=
58°–87°, i.e., between the opening angle of the torus and the
highest value allowed by BORUS02. For each set of spectra,
we use three Gaussian distributions for R, Γ, and Ecutoff.
We keep σR and σEcut constant for all distributions, equal to
the values observed in the Swift-BAT 70-month sample

Figure 2. Cosmic X-ray background (CXB) with an unacceptably poor model
fit. The data points are from Chandra COSMOS (Cappelluti et al. 2017; red
dots), ASCA (Gendreau et al. 1995; yellow squares), RXTE (Revnivtsev
et al. 2003; bright green crosses), Swift-BAT (Ajello et al. 2008; blue squares),
INTEGRAL (Churazov et al. 2007; pink crosses), HEAO 1 A-4 (Gruber
et al. 1999; light green crosses), and HEAO 1 A-2 (Kinzer et al. 1997; light blue
crosses). The HEAO 1 data points are shown as examples of data sets with
discrepant normalizations relative to some of the most recent CXB
measurements. We do not include all CXB measurements in this figure;
however, with this example, we want to note that different instruments disagree
in cross-normalization, and not the shape of the CXB. This issue, as well as the
method of producing model fits, is discussed in Section 3.3. The model
predictions (black and brown lines) were calculated using spectral parameters
for TypeI objects in hard-X-ray-observed Seyfert galaxies from de Rosa et al.
(2012); the brown lines represent an X-ray luminosity function with lower
space densities of heavily obscured Compton-thick objects, and the black lines
represent higher space densities of these objects. The different line styles
represent CXB contributions from different absorption bins: unabsorbed (log
(NH/cm

−2<22), Compton-thin (log NH/cm
−2=22–24), and Compton-thick

(log NH/cm
−2>24) objects are shown separately with dotted, dashed, and

dashed–dotted lines, respectively. Each range of column density dominates in a
different energy range of the CXB, with unabsorbed AGN dominating at low
energies, Compton-thin objects at 3–10 keV, and Compton-thick objects
adding significantly at E=10–60 keV. In this example, unabsorbed and
Compton-thin contributions fit the E<30 keV region well but at higher
energies the CXB cannot be reproduced for this set of spectral parameters. The
galaxy contribution is calculated using the Aird et al. (2015) galaxy XLF but
spectra with cutoff energy of 20–30keV.

5

The Astrophysical Journal, 889:17 (12pp), 2020 January 20 Ananna et al.



(Ricci et al. 2017), which reports σR=0.09–0.14 and
σEcut=29–36 keV. Each spectral set is defined by the mean
values á ñ áGñR , and á ñEcutoff , and the dispersion in the photon
index, σΓ. The latter dispersion is included due to its strong
influence on the CXB at high energies (see Section 4.1).

The reflection scaling factor is drawn from a Gaussian
distribution with á ñR in the range 0.0–2.0, and a standard
deviation σR in the range 0–1.0. For the PEXMON model, both
R and inclination angle affect the normalization of the
reflection component; to avoid parameter coupling, we keep
the inclination angle for this component fixed at the default
value (60°) and let R vary. The mean of the photon index, áGñ,
is allowed to vary from 1.4 to 2.2, with a range of standard
deviations: σΓ=0–0.5. á ñEcutoff varies from 50 to 500 keV,
with a σEcut=0–100 keV. The range spanned by each variable
reflects the observed range reported in the literature (Table 1).
The example spectra shown in Figure 1 were all created using
the XSPEC spectral model described here, and the parameters
being varied are specified in each panel. Additionally, the
opening angle of BORUS02 is fixed at θOA=58°, and θinc=
72°, as qá ñ 72inc for the p(θinc) qµsin inc distribution. Note
that these parameter distributions do not vary with redshift or
luminosity in our model. However, these dependences can be
incorporated in the future when better constraints become
available.

As shown in Figure 1, the absorbing column density
significantly affects the shape of the spectra. As the absorption
function is built into the luminosity function and determined by
the neural network, we create a matrix of XSPEC AGN spectra
with log (NH/cm

−2) at 60 evenly spaced points between 20 and
26. We use an algorithm called VEGAS (Lepage 1980) to carry
out the CXB integral; VEGAS performs Monte Carlo sampling
over redshift, luminosity, and absorption space ;10,000 times
to calculate CXB at each photon energy. To sample the
intensity for an AGN with log (NH/cm

−2) at an intermediate
point between any two of these 60 evenly spaced spectra in
absorption space, we use linear interpolation. This approach is
more accurate than using a single reference log (NH/cm

−2)
spectra for each absorption bin, as the spectra can vary
considerably over a dex of log (NH/cm

−2), and more
computationally efficient than producing the exact XSPEC
spectra for each Monte Carlo sampling point while performing
the integral.

3.2. MCMC Sampling of Parameter Space Assuming an XLF

We first investigate the parameter space that reproduces the
CXB assuming that the XLF we presented in PaperI is
representative of the underlying AGN population. We use a
Bayesian approach to calculate the goodness of fit. Specifically,
we use observed parameter spaces from Ricci et al. (2017) to
define the prior probability distributions and a Monte Carlo
Markov Chain (MCMC) sampler to find the Gaussian log
likelihood using observed CXB data points.

The MCMC sampler uses ensemble sampling: it deploys 250
walkers to start from a random point in the parameter space,
uniformly over – –áGñ = á ñ =E1.4 2.2, 50 500 keVcutoff and

–á ñ =R 0.0 2.0. We explore how the parameter spaces for the
other three parameters shift assuming σΓ=0.1, 0.2, 0.3, 0.4,
0.5. For this analysis, we fix σE and σR at the values observed
for the Ricci et al. (2017) unabsorbed AGN sample, namely,
36 keV and 0.14, respectively.

3.3. XLF-independent Exploration of Parameter Space Using a
Neural Network

The second approach in our investigation is more con-
servative because it makes no assumptions about the correct
XLF. Instead, we assume a set of spectra and forward model to
find a good fit to the CXB by varying the underlying XLF. As
demonstrated earlier, some spectral sets do not produce good
fits to the CXB regardless of the underlying AGN XLF; these
can be ruled out definitively. We vary the underlying XLF in an
automated way using the neural network we introduced in
PaperI (described in detail in Figure 6 and Appendix B of that
paper). Given an input spectrum, the neural network adjusts a
preliminary estimate of space densities (the Ueda et al. 2014
XLF with a modified absorption function from Ricci et al.
2015) in luminosity and absorption bins to find the best
possible fit to the CXB. The neural network converges on an
XLF by attempting to reduce the difference between the
observed CXB and the model predictions. The fit to the CXB
only determines that correct proportions in absorption bins are
possible for this spectral set. To produce the full population
synthesis model described in PaperI, further validation checks
were made to rule out discontinuous solutions that did not
reproduce the number counts or other constraints. Here, due to
computational expense, we simply identify spectra that do not
produce the CXB under any circumstances; this means that
some of the “allowed” parameter space may not in fact be
viable (because it cannot match the untested constraints), but
the excluded parameter space is definitely not viable.
The parameter space explored in this MCMC approach is the

same as in Section 3.2. Once the neural network has converged
on the best possible fit to the CXB for each of the underlying
spectra, we quantitatively determine the goodness of fit using
the χ2 statistic.
For both the approaches described above, we use the CXB

observed data points from Chandra COSMOS (Cappelluti et al.
2017), RXTE (Revnivtsev et al. 2003), and Swift-BAT (Ajello
et al. 2008), as these are the latest and most sensitive
measurements, and have consistent normalization in over-
lapping regions. At low energies, ASCA (Gendreau et al. 1995)
and Chandra agree within the errors of those data sets, as
shown in Figure 2. All recent measurements disagree with the
older HEAO 1 data (Kinzer et al. 1997; Gruber et al. 1999), as
discussed previously in the literature (Treister et al. 2009). We
fit the data considering two possible sets of errors: (A)
uncertainties published for each individual CXB data set,
shown by error bars in Figure 2, or (B) the larger empirical
differences across all CXB data (i.e., incorporating the
historically mismatched normalizations).
We use the χ2 statistic to judge the quality of model fits to

each of the observed CXB data sets. We calculate the χ2

statistic as follows:

( )
( )åc

s
=

-Observed Expected
. 2

i

i i

i

2
2

2

Here, σi is the measurement error given by either choice (A)
or (B) above, yielding values cA

2 or cB
2 and associated

probabilities. We found that choice (B) leads to formally
acceptable but clearly poor fits to the shape of the CXB (see
Figure 2), so we adopt choice (A) for the rest of the analysis.
This point is discussed further in Section 5.
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As for the Bayesian analysis, we fixed σE=36 keV and
σR=0.14, corresponding to the observed values for unobs-
cured objects (Ricci et al. 2017). We provide an interactive
online tool that allows users to explore the dependence of all
parameters on absorption, as well as different values of σE and
σR. This is because many of the AGN samples in Table 1 report
significantly different parameters for different ranges of
absorbing column density. We do not incorporate a possible
luminosity and redshift dependence in this work, as discussed
further in Section 5.

4. Results

4.1. Bayesian Analysis with Fixed XLF

As shown in the trace plots in Figure 3, the ensemble
sampler for the Bayesian approach converges in fewer than
3000 steps. The results of the Bayesian analysis, summarized in
Table 2, show how the mean parameter values shift as the
dispersion in photon index is changed: á ñEcutoff and á ñR decrease
with increasing σΓ, while áGñ increases. Increasing σΓ adds
photons at high energies, so á ñ á ñE R,cutoff , and áGñ shift to
decrease high-energy photons. Figure 4 shows the shift in 1D
distributions with σΓ for each parameter. The reflection
parameter is least affected, moving to slightly lower values as
σΓ increases. The most significant dependence is on the cutoff
energy, for which the distribution narrows significantly and
moves to lower energies as σΓ increases. áGñ shifts to higher
values with increasing σΓ. As increasing σΓ adds more photons
at higher energies, all these distributions shift to accommodate
the increase in photons in that region. The 2D distributions
show that for any σΓ, the means of all three parameters are
positively correlated with each other.

Figure 5 shows that using the parameter combinations in
each row of Table 2, a perfect fit to the CXB can be produced
using the same XLF, demonstrating the strong degeneracies
among these parameters—in effect, the low cutoff energy
cancels out the contribution at high energies of a large
dispersion in photon index.

We note that starting with different priors, such as the
Swift-BAT 70-month observed parameter distribution from

Figure 3. Example of convergence of the ensemble sampler in the Bayesian
analysis part for the σΓ=0.3 case. Each line represents one “walker” of the
ensemble sampler, which explores the parameter space to find regions that best
reproduce the observed CXB.

Figure 4. Parameter distributions allowed by the CXB constraint and the XLF
presented in Ananna et al. (2019). Each color represents the result for a spectral
set assuming a fixed dispersion in photon index, σΓ=0.1, 0.2, 0.3, 0.4, or 0.5.
Diagonally, the one-dimensional histograms show the distribution of each
parameter. The contour plots show 1σ and 2σ contour levels in 2D for each pair
of parameters. This figure shows that for a given XLF, multiple spectral sets
can produce fits to the CXB because the parameters are degenerate.

Figure 5. Fits to the CXB obtained for the XLF presented in Ananna et al.
(2019) and three examples of the spectral parameters defined in Table 2
(σΓ=0.1, 0.3, and 0.4). The different models (solid lines) determined by the
Bayesian analysis provide equally good fits, illustrating the degeneracy of the
parameters. The data points are from Chandra COSMOS (Cappelluti
et al. 2017; red dots), RXTE (Revnivtsev et al. 2003; bright green crosses),
and Swift-BAT (Ajello et al. 2008).

Table 2
Spectral Parameter Distributions for Bayesian Analysis with Fixed XLF

Γ Dispersion á ñR á ñEcutoff áGñ

σΓ=0.1 -
+1.071 0.091
0.097

-
+204 20
36 1.984±0.020

σΓ=0.2 -
+1.063 0.097
0.088

-
+180 23
14

-
+1.996 0.020
0.030

σΓ=0.3 -
+0.999 0.094
0.093 136±12 -

+2.019 0.029
0.035

σΓ=0.4 -
+0.941 0.093
0.097

-
+113.4 9.1
10.0

-
+2.049 0.037
0.034

σΓ=0.5 -
+0.902 0.096
0.097

-
+101.0 8.7
9.5

-
+2.083 0.044
0.040
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Ricci et al. (2017), our results still converge on the same
posterior distributions.

4.2. Neural Network Fitting with Arbitrary XLFs

The neural network finds the underlying AGN population
that, given an input set of spectral parameters, best fits the
CXB. This allows us to rule out spectral parameters for which a
good fit to the CXB is not possible under any circumstances.

Figure 6 qualitatively demonstrates the interplay of the
parameters áGñ and á ñEcutoff in fitting the CXB for snapshots of
the parameter space. Specifically, each panel shows examples
of best fits to the CXB that were generated by the neural
network by varying á ñEcutoff between 50 and 500 keV while
keeping áGñ and á ñR constant. As áGñ increases, the best-fit CXB
model shifts upward at lower photon energies and downward at
higher energies. With photon index as low as áGñ = 1.4, a very
low cutoff energy (á ñ ~E 50cutoff keV) fits the CXB consis-
tently at both high and low energies. As áGñ steepens to 1.8, the
low cutoff energy causes the CXB to drop too quickly at high
energies, especially with a low dispersion, σΓ=0.1. This
effect is more pronounced with an even steeper spectrum, e.g.,
áGñ = 2.2. From the middle panels, where áGñ = 1.8, it is clear
that a good fit to the CXB can be obtained with á ñEcutoff close to
but smaller than 200 keV; for áGñ = 2.2, no solutions are
possible, at least when á ñ =R 0 (upper three panels).

A higher photon dispersion (right panels) changes little at
low photon energies but adds photons at higher energies, which
causes the best fit á ñEcutoff to shift lower. This effect is more
conspicuous in the middle and lower panels, for both values of
á ñR . Note that in this work, the value of á ñR represents reflection
from the accretion disk rather than the torus, and this
component contributes significantly only at intermediate
energies, as shown in Figure 1, in the same region where
heavily obscured objects contribute the most. When a higher
á ñR value is assumed, the XLF readjusts by reducing the space
densities of Compton-thick AGN. As shown in Figure 6, the fit
improves at intermediate energies when a non-zero á ñR is
assumed (lower three panels).

We quantitatively determined and report the quality of model
fits (such as the lines shown in Figure 6) to the observed CXB
data points, for the entire range of parameter space described in
Section 3.2. The shape of the probability distribution as a result
of the XLF-independent analysis is complex, as shown in
Figure 7. This figure shows the χ2 probability distribution up to
3σ for snapshots of the parameter space assuming the same
parameter distribution for all absorption bins, and fixed
dispersions σR=0.14 and σE=36 keV. We provide an
interactive tool to determine the exact probability at any point
in this parameter space, at https://colab.research.google.com/
drive/1eBA9gZX3yiTLxqhD7CjiLJ9hV6er56W3. This tool
also allows users to run the neural network using different
parameter distributions on different absorption bins, and for
other values of σR and σE. We used MCMC sampling on the
results of the neural network to find the allowed distribution for
each parameter (marginalizing over the others): á ñ = -

+R 0.99 ,0.26
0.11

sá ñ = =-
+

G -
+E 118 , 0.101cutoff 23

24
0.001
0.097 and áGñ = -

+1.9 0.09
0.08.

Figure 7 shows that as σΓ increases, the allowed region shifts
to smaller values of cutoff energy; however, the shift in áGñ
with σΓ is not as significant. As á ñR is increased, the allowed
region shifts to higher values of áGñ. This figure demonstrates
that the CXB can only be produced for a continuous swath of

the parameter space, and the intrinsic AGN spectra must lie in
this region.
In Table 3, we show the goodness of fit to the CXB

assuming the parameter spaces of surveys described in Table 1.
We accept a part of the parameter space if it can fit the CXB
within the 3σ significance level. These results are discussed in
Section 5.

5. Discussion and Conclusions

In PaperI, we reported that some previous XLFs do not
reproduce the CXB with the AGN spectral sets reported in
those works, and found that the CXB can only be reproduced
within certain parameter ranges. In this paper, as well as
in PaperI, we show that some combinations of spectral
parameters—even those that are observed in X-ray surveys—
cannot reproduce the CXB for any underlying XLF. This is
possibly due to selection biases in survey samples, such that
those observed spectra are not representative, as well as the fact
that constraining certain spectral parameters is possible only for
objects with the highest photon counts, further biasing the
measurements.
In this work, we tried a different approach to explore the

parameter space of AGNs: we assumed a set of spectra and
forward modeled to fit the CXB, first with the most recent, best
constrained XLF, then by allowing the XLF to vary arbitrarily.
While parameter spaces that can reproduce the CXB may not
be representative of the real AGN population, we can definitely
rule out regions of parameter space that do not satisfy the CXB
constraint. For example, for the fixed dispersions σE=36 keV
and σR=0.14, a spectral set with sáGñ = =G1.7, 0.2,
á ñ =E 300 keVcutoff is not able to reproduce the CXB because
both σΓ and the high cutoff energy add too many photons at the
high-energy end. In such cases, lowering the average cutoff
energy to around 200 keV, or lowering σΓ, or increasing the áGñ
reduces the number of photons at high energies, and then an
acceptable fit to the CXB can be produced.
In Section 4.1 we discussed the distribution of spectral

parameters that can produce the CXB assuming the most up-to-
date XLF (from Paper I). Figure 4 illustrates that áGñ á ñR, , and
á ñEcutoff are completely degenerate. The change in áGñ á ñR, , and
á ñEcutoff in response to increasing σΓ always decreases photons
at higher energies, to compensate for a higher σΓ. This is
because a higher σΓ effectively adds more photons in that
region.
All five assumed σΓ values reproduce the CXB perfectly

with the XLF from PaperI; however, changing σΓ changes the
other three parameters significantly. This demonstrates that
multiple sets of spectra can satisfy the CXB when coupled with
a given XLF. As shown in Figure 4, the most noticeable effect
of increasing σΓ occurs for á ñE ;cutoff this is especially apparent
in the one-dimensional histograms of á ñEcutoff , which have the
least overlap. This is expected, as á ñEcutoff has to decrease with
increasing σΓ in order to prevent overproducing the high-
energy end of the CXB. The significant change indicates that
á ñEcutoff more directly contributes to decreasing photons at
higher energies than the other two parameters.
In Figure 7, we show results for part of the parameter space

for the XLF-independent approach using the neural network.
This figure shows that if we keep dispersions for all the
distributions constant, increasing á ñR shifts the allowed region
to higher values of áGñ and á ñEcutoff . For non-zero á ñR ,
increasing σΓ shifts the allowed region to lower cutoff energies,

8

The Astrophysical Journal, 889:17 (12pp), 2020 January 20 Ananna et al.

https://colab.research.google.com/drive/1eBA9gZX3yiTLxqhD7CjiLJ9hV6er56W3
https://colab.research.google.com/drive/1eBA9gZX3yiTLxqhD7CjiLJ9hV6er56W3


which is consistent with the results from Section 4.1—the high
σΓ needs to be offset by low á ñEcutoff and high áGñ to prevent
overproduction of the CXB at high energies.

Increasing á ñR at a fixed σΓ also expands the allowed region
upward toward higher áGñ, and shifts it rightward toward higher
á ñEcutoff . Conversely, when the underlying AGN spectra are

Figure 6. Examples of the best possible—and mostly unacceptable—fits to the CXB data for each of 12 different sets of spectral parameters. The top six panels show
fits for á ñ =R 0, and the bottom six panels show fits for á ñ =R 1.0. Each row corresponds to a different photon index: áGñ = 1.4 (first and fourth rows), áGñ = 1.8
(second and fifth rows), and áGñ = 2.2 (third and sixth rows). The left panels show results for σΓ=0.1 and the right panels show results for σΓ=0.3. The standard
deviations for cutoff energy and R are fixed at σEcut=36 keV and σR=0.14. The solid yellow lines, solid green lines, and solid purple lines show the CXB
predictions for á ñ =E 50, 200cutoff , and 500 keV, respectively. The data points are the same as in Figure 5.
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relatively flat, it is difficult to reproduce the drop in intensity of
the CXB at E>40 keV, unless the cutoff energy is very low.
Furthermore, if a high á ñR is assumed, the “Compton hump”
region of the CXB is dominated by the reflected contribution,
which then drops at higher photon energies. As a result,
increasing á ñR expands the allowed region to higher cutoff
energies.

In Table 3, we show the results of the neural network analysis
for each observed data set. Choice (B) errors allow a broader
range of parameters because, even though the shapes of different
data sets over the same energy range are similar, the cross-
normalizations vary by 20%–30% for some data sets. However,
it became clear that adopting choice (B) leads to formally
allowed fits that fail to fit the data from a single instrument (e.g.,
the fit shown in Figure 2 does not fit the Swift-BAT data). Even
if the normalization of these data were wrong, the CXB fit within
this data set can clearly be rejected. There are many examples
like this, where the best-fit model cannot reproduce the shape of
the CXB but fall within the uncertainty of cross-normalizations
when we adopt choice (B). Therefore, we choose to focus only
on the results for choice (A) errors. We note that, among these
more recent data, the cross-normalizations are far less discrepant,

supporting the idea that normalization errors do not dominate the
analysis. The reader can investigate other choices using the
interactive tool provided.
We apply a 3σ threshold in Table 3. Note that the spectral

parameters measured in hard-X-ray-selected samples generally
have higher P(χ2), suggesting those AGN are more represen-
tative of the entire AGN population constituting the CXB.
There are exceptions, however: for example, the hard X-ray-
selected local AGN sample of Dadina (2008) has very high
cutoff energies for both absorbed and unabsorbed objects, and
produces poor fits to the CXB. Still, the lowest probabilities
were found for soft X-ray-selected (E<10 keV) or Type1-
only samples, which are clearly less representative of the full
AGN population. This is partly because some parameters such
as cutoff energy and reflection scaling factor cannot be
constrained using low-energy windows.
The reflection scaling factor does not seem to have any effect

on the Compton-thick spectra, as shown in Figure 1. This is
expected, as Compton scattering out of line-of-sight (CABS)
and photoelectric absorption (TBABS) significantly attenuate
reflection from the accretion disk. As shown in Table 1, some
previous works suggest that reflection scaling factor decreases

Figure 7. Allowed regions of the spectral parameter space, for unconstrained XLF. Contours for 1σ, 2σ and 3σ are shown in yellow, green, and blue, respectively. The
black triangular data points indicate results of the Bayesian analysis using the XLF from PaperI. To create this figure, the same spectral set was assumed for all
absorption bins. The values of σE and σR were kept constant at 36 keV and 0.14, respectively. The entire probability space can be explored quantitatively using the
interactive tool described in Section 4.2, which allows users to specify a different spectral set for each absorption bin and explore other values of σE and σR as well as
the variables shown in this plot.
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with absorption (Ricci et al. 2017; Zappacosta et al. 2018) even
when attenuation is accounted for. Beckmann et al. (2009)
found that using the same value of R, but different inclination
angles for different levels of absorption also fits observed
spectra well. Therefore, it is possible that the observed decrease
in R actually indicates that we are observing more obscured
sources at higher inclination angles, and lends some support to
the unified model of AGNs. However, we did not force the
unified model on the spectral sets that we assumed, and
therefore, the inclination angle was kept fixed at the default
value of 60° for all absorption bins.

For computational efficiency, we imposed more liberal
constraints using only the necessary condition of reproducing
the CXB. Fitting the number counts as well would further limit
the spectral parameter space and can potentially be done in a
future work. Here, we can qualitatively use number counts to
rule out some regions of the parameter space that we included
in our analysis because they are observed in some survey
samples, but are unlikely to be representative of the full AGN
population. Figure 7 shows that some good fits to the CXB
exist for very high values of á ñR (i.e., á ñ =R 1.5). As shown in
Figure 1, a higher á ñR contributes the most in the Compton
hump region. Therefore, to produce a good fit to CXB, we need
to lower the space densities of Compton-thick objects.
Compton-thick number counts obtained by Lansbury et al.
(2017) and Lanzuisi et al. (2018) predict very high space
densities of Compton-thick objects, so it is unlikely that á ñR
values much higher than 1.3 can fit the CXB and simulta-
neously fit such high space densities of Compton-thick objects.

Note that additional complexity may arise if some
parameters are redshift- and/or luminosity-dependent. Cur-
rently, possible dependencies of the spectral parameters on
luminosity and redshift are not well constrained. Therefore, we
assumed constant values in order to be conservative. We leave
the exploration of these aspects to future work.
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Table 3
Probability that Published Parameters for AGN Samples from Table 1 Fit the CXBa

Sample Selection P(cA
2 )b Result

Ricci et al. (2017) 14–195 keV 2–3σ Acceptablec

Zappacosta et al. (2018)d 8–24 keV 2–3σ Acceptable
Malizia et al. (2014)e 0.3–100 keV selected Type-1 3–4σ Rejected
Buchner et al. (2014)f 0.5–8 keV >5σ Rejected
Brightman & Nandra (2011)f IR-selected >5σ Rejected
Scott et al. (2011)f Optically selected Type-1 >5σ Rejected
Beckmann et al. (2009)g >20 keV <1σ Acceptable
Dadina (2008) 2–100 keV local 4–5σ Rejected
de Rosa et al. (2012)h >20 keV 1–2σ Acceptable
Ueda et al. (2014) 14–195 keV (9 month sample) >5σ Rejected

Notes.
a The significance levels and probabilities for any region of the parameter space can be quantified by running the neural network using an interactive tool (link in
Section 4.2).
b Probability range with respect to the errors associated with individual data sets (shown using error bars in Figure 2).
c We used the parameter distributions shown in Table 1, with three different sets of parameters for unabsorbed, Compton-thin, and Compton-thick objects, except as
noted below in footnotes 5–9.
d Assigned σR=1.0 and σR=0.5 for the unabsorbed and the absorbed sources, respectively, based on the 25th and 75th percentile values of R.
e Assuming no reflection scaling factor.
f As no cutoff energy is reported, we set the value to 500 keV. For Brightman & Nandra (2011) we also assume no reflection scaling factor.
g The exact prescription used for unabsorbed sources: á ñ =R 1.2, σR=0.45, áGñ = 1.96, σΓ=0.02, á ñ =E 86.0cutoff , σE=17.0. For absorbed sources: á ñ =R 1.1,
σR=0.59, áGñ = 1.91, σΓ=0.02, á ñ =E 376.0cutoff , σE=42.0.
h A dispersion of σR=1.0 is applied here, which is the highest allowed value in our model. Note that the “Acceptable” parameter space has different parameter
distributions for absorbed and unabsorbed AGNs. Figure 2 shows an example of a poor fit by assuming the parameter space of unabsorbed AGNs for all AGNs.
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