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Abstract. We establish rank-finiteness for the class of G-crossed braided fusion cate-
gories, generalizing the recent result for modular categories and including the important
case of braided fusion categories. This necessitates a study of slightly degenerate braided
fusion categories and their centers, which are interesting for their own sake.

1. Introduction

The question of whether there are finitely many fusion categories with a fixed
number of isomorphism classes of simple objects (i.e., fixed rank) was first raised
by Ostrik in [O1], where an affirmative answer was given for rank 2. In [ENO1] the
special case of categories with integral Frobenius–Perron dimension (i.e., weakly
integral categories) was also settled. Around 2003 Wang conjectured that there are
always finitely many modular categories of a given fixed rank, which was explicitly
verified for rank at most 4. A proof of this rank-finiteness conjecture was obtained
recently [BNRW]. The main goal of this article is to extend rank-finiteness to the
generality of G-crossed braided fusion categories, which includes the important
case of braided fusion categories, and does not require the existence of a spherical

∗Supported by NSF Grant DMS-1901082 and ARC grant DP140100732.
∗∗Supported by ARC grants DP160103479 and FT170100019.
∗∗∗Supported by NSF Grant DMS-1801198.
∗∗∗∗Supported by NSF DMS-1664359. This paper was initiated while ECR and DN

were visiting CJ and SM at the Australian National University, and we gratefully
acknowledge the support of that institution.

Received March 4, 2019. Accepted August 12, 2019.
Corresponding Author: C. Jones, e-mail: jones.6457@osu.edu



C. JONES, S. MORRISON, D. NIKSHYCH, E. C. ROWELL

structure.

The primary obstacle is the existence of slightly degenerate braided fusion
categories (their symmetric centers are equivalent to the category sVec of super
vector spaces). We overcome this by analyzing the structure of the Drinfeld centers
of slightly degenerate categories in sections 4 and 5. These categories are interesting
in their own right, with the main open question being whether or not every slightly
degenerate braided fusion category C admits a minimal non-degenerate extension.
Our analysis of the C-module subcategories of the Drinfeld center of C can be
viewed as a step towards answering this question.

As a technical tool, we prove a bound on the rank of invertible (C−D)-bimodule
categories. In particular, we show that for any invertible C-bimodule category,
rank(M) ≤ rank(C). In addition, we show that the set of equivalence classes of
invertible bimodule categories realizing this bound forms a subgroup of BrPic(C),
and discuss some examples.

2. Preliminaries

We work over an algebraically closed field k of characteristic 0. All fusion
categories and their module categories are assumed to be k-linear. For the basics
of the theory of fusion categories we refer the reader to [EGNO] and [DGNO].

By the rank of a fusion category we mean the number of isomorphism classes of
its simple objects.

Let Vec and sVec denote the braided fusion categories of vector spaces and
super vector spaces over k. For any braided fusion category C let Zsym(C) denote
its symmetric (or Müger) center.

Definition 1. A braided fusion category C is called slightly degenerate [DNO]
if Zsym(C) = sVec. A slightly degenerate ribbon fusion category is called super-
modular.

The smallest example of a slightly degenerate braided fusion category is sVec
itself.

Example 1. One can construct a slightly degenerate braided fusion category as
follows. Let C̃ be a non-degenerate braided fusion category and let sVec ↪→ C̃ be a
braided tensor functor (it is automatically an embedding). Then the centralizer of
the image of sVec in C is slightly degenerate.

Let C be a slightly degenerate braided fusion category. Below we recall some
facts about C from [DNO], [BNRW].

Let δ denote the simple object generating Zsym(C). Then δ ⊗X � X for each
simple object X in C (see [Mu1, Lem. 5.4] and [DGNO, Lem. 3.28]). In particular,
the rank of a slightly degenerate braided fusion category is even.

We say that C is split if C ∼= C0 � sVec, where C0 is a non-degenerate braided
fusion category. Any pointed slightly degenerate braided fusion category is split,
see [ENO3, Prop. 2.6(ii)] or [DGNO, Cor. A.19].

The following definition is due to Müger [Mu2].
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Definition 2. A minimal extension of a slightly degenerate braided fusion (re-

spectively, super-modular) category C is a braided tensor functor ι : C ↪→ C̃, where

C̃ is a non-degenerate braided fusion (respectively, modular) category such that

the centralizer of C in C̃ is the image of sVec.

Note that the above functor ι is an embedding by [DMNO, Cor. 3.26].
Clearly, every slightly degenerate braided fusion category that admits a minimal

extension can obtained via the construction from Example 1 and vice versa.
An equivalence of minimal extensions is defined in an obvious way.

Example 2. The category sVec has 16 inequivalent minimal extensions [DNO],
[Kt]: 8 Ising categories and 8 pointed categories. The Witt classes of these exten-
sions form a subgroup of the categorical Witt group isomorphic to Z/16Z.

It follows that FPdim(C̃) = 2FPdim(C). By [Mu1], [DGNO] this is the minimal
possible value of the Frobenius–Perron dimension of a non-degenerate braided
fusion category containing C. This explains our terminology. We recall the following
result from [EGNO].

Lemma 1 ([EGNO, Prop. 3.5.3]). Let D be a fusion category and let D0 ⊂ D be
a fusion subcategory such that FPdim(D) = 2FPdim(D0). Then D is faithfully
Z/2Z-graded with the trivial component D0.

Thus, a minimal extension of a slightly degenerate braided fusion category is
the same thing as a faithful Z/2Z-extension which is a non-degenerate braided
fusion category.

3. Maximal rank bimodule categories

In this section, we show that invertible bimodule categories over a fusion cate-
gory exhibit a rank bound, and that the bimodule categories realizing this bound
actually form a subgroup of the Brauer–Picard group. We refer the reader to
[ENO2] for definitions and properties of invertible bimodule categories.

Proposition 2. Let C,D be fusion categories, and M an invertible (C–D)-bi-
module category. Then rank(M) ≤ (rank(C)rank(D))1/2. In particular, for an
invertible C– C bimodule category, rank(M) ≤ rank(C).
Proof. First consider M as a left C-module category. Then the associated full
center provides us with a Lagrangian algebra L ∈ Z(C) [D2]. Let FC : Z(C) → C
be the forgetful functor, and IC its adjoint. Then as an algebra in C, FC(L) ∼=⊕

M∈Irr(M) Hom(M,M), where the internal hom is taken as a left C module

category. Note that each Hom(M,M) is a separable, connected algebra, and thus
dim(HomC(1, FC(L)) = rank(M). But we have a canonical isomorphism

HomC(1, FC(L)) ∼= HomZ(C)(IC(1), L).

However, by [ENO2], the bimodule category M induces a canonical braided
equivalence α : Z(C)→ Z(D) such that α(L) ∼= ID(1), thus we have

dim(EndZ(C)(IC(1))) = dim(HomC(1, FC(IC(1)))) = rank(C),
dim(EndZ(C)(L)) = dim(EndZ(D)(ID(1))) = rank(D).
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Here we have used that as an object FC(I(1)) ∼=
⊕

X∈Irr(C)X ⊗X∗. Therefore
by the Cauchy–Schwartz inequality,

rank(M) = dim(HomZ(C)(I(1), L))

=
∑

X∈Irr(Z(C))

dim(HomZ(C)(I(1), X))dim(HomZ(C)(L,X))

≤ dim(EndZ(C)(I(1)))1/2dim(EndZ(C)(L))1/2

= (rank(C)rank(D))1/2.

�

Remark 1. Note the bound rank(M) ≤ rank(C) requires invertibility. Consider
for example the rank 4 fusion category C = Rep(D5), where D5 is the group of
symmetries of the regular pentagon. Then there exists a rank 5 indecomposable
bimodule category, namely Rep(Z5), where the (left and right) actions of Rep(D5)
are induced from the restriction functor (here Z5 is the subgroup of rotations
of D5).

The above proposition leads us to the following definition.

Definition 3. We say that an invertible C-bimodule category M has maximal
rank if rank(M) = rank(C).

Proposition 3. Let Ψ : BrPic(C)→ Autbr(Z(C)) be the canonical group isomor-
phism of [ENO2]. Then M is maximal rank if and only if Ψ(M) preserves the
isomorphism class of the object I(1).

Proof. Returning to the proof of Proposition 2 and identifying D with C then
Ψ(M) = α, and we are interested in the case when the Cauchy–Schwartz inequality
yields equality. But this happens precisely when there exists a scalar λ such that

dim(HomZ(C)(I(1), X)) = λdim(HomZ(C)(α(I(1)), X)).

But

rank(C) =
∑

X∈Irr(Z(C))

dim(HomZ(C)(I(1), X))2

= λ2
∑

X∈Irr(Z(C))

dim(HomZ(C)(α(I(1)), X))2 = λ2 rank(C).

Since the dimension of morphism spaces is non-negative, we see that we must
have λ = 1. Thus

dim(HomZ(C)(I(1), X)) = dim(HomZ(C)(α(I(1)), X))

for all X ∈ Irr(Z(C)) and the conclusion follows.
�
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Corollary 4. The maximal rank invertible bimodule categories form a subgroup
of BrPic(C).

This result seems somewhat surprising, since in general the behavior of the rank
of bimodule categories is notoriously difficult to understand under relative tensor
products.

Recall there is a canonical subgroup Out(C) ≤ BrPic(C) which consists of
equivalence classes of invertible bimodule categories which are trivial as a left
module category. This implies the right action must be the usual right action
twisted by an auto-equivalence of C. More explicitly, let β be a tensor autoequiva-
lence of C and Cβ the associated bimodule category, which is C as an underlying
category and with actions X . Y = X ⊗ Y , X / Y = X ⊗ β(Y ), and the obvious
associators. The image of these bimodule categories in BrPic(C) forms the subgroup
Out(C).

Using the correspondence between module categories and Lagrangian algebras,
we see that this is precisely the subgroup of BrPic(C) which preserves I(1) as
an algebra object. In particular, Out(C) forms a subgroup of the maximal rank
bimodule categories. In many cases, this is the whole group.

Proposition 5. For any pointed fusion category C, the group of maximal rank
bimodule categories is Out(C).

Proof. Any pointed fusion category C is monoidally equivalent to Vec(G,ω) for a
finite group G and 3-cocycle ω ∈ Z3(G,C×). By [O2], the module categories for this
fusion category are classified by subgroups H ≤ G together with a trivialization of
ω|H . The rank of the resulting module category is the index [G : H]. Thus there
is a unique rank |G| indecomposable module category, where H = {e}, which is
Vec(G,ω) acting on itself. The dual category is thus Vec(G,ω), hence any invertible
rank |G| bimodule category is of the form Out(C). �

There exist maximal rank invertible bimodule categories that are not of the
form Out(C). One such example is constructed by Ostrik in the appendix of [CMS]
using an extension of the Izumi–Xu fusion category. See [CMS, Thm. A.5.1] and
[O3, Rem. 2.19 and Exmpl. 2.20].

To find a maximal rank bimodule category not of the form Out(C), we need not
only a distinct etale algebra structure on I(1), but we need this algebra structure
to be the image of I(1) under a braided autoequivalence, which makes finding
invertible bimodule categories not of the form Out(C) difficult in general.

To find such examples, we move in a different direction. If C is braided, we can
try to understand invertible module categories over C. Recall from [DN1, Rem.
2.13] that we can characterize the bimodule categories M ∈ BrPic(C) which are
in the image of the map from Pic(C) as the one-sided bimodule categories. By
definition, these are bimodule categories for which there exist natural isomorphisms
dM,X : M /X ∼= X .M satisfying a collection of coherences. It is not hard to see
that these coherences imply that the only one-sided invertible bimodule category
which is trivial as a left module category is the trivial bimodule category C. Thus
all nontrivial maximal rank invertible module categories are not of the form Out(C)
and thus provide interesting examples.
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We will now provide a characterization of maximal rank invertible module
categories for non-degenerate fusion categories in terms of braided autoequiva-
lences. In [D1], Davydov introduced the notion of a soft monoidal functor, which
is simply a monoidal functor which is isomorphic to the identity functor as a linear
functor. Equivalently, a soft monoidal functor is one which fixes equivalence classes
of objects.

Recall from [ENO2], [DN1, Sect. 2.9], α-induction provides us with an isomor-
phism γ : Pic(C)→ Autbr(C). The following result is originally due to Kirillov Jr.
[Kr] (see also [T, Sect. II.3]) in the case of modular categories.

Proposition 6. If C is a non-degenerate braided fusion category and M is an
invertible module category, the rank of M is the number of equivalence classes of
simple objects fixed by γ(M). In particular, the image of the group of maximal rank
invertible module categories is the group of soft braided tensor autoequivalences
of C.

Proof. M induces a braided autoequivalence of Ψ(M) ∈ Z(C), which by [DN1,
Lem. 4.4] is IdC �γ, acting on Z(C) ∼= C � Crev. But

I(1) ∼=
⊕

X∈Irr(C)

X �X∗

hence
Ψ(M)(I(1)) =

⊕
X∈Irr(C)

X � γ(M)(X∗).

Thus rank(M) = dim(HomC�Crev(I(1),Ψ(M)(I(1)))) is precisely the number of
fixed points of γ(M) acting on Irr(C). �

Davydov [D1] has computed the group of soft braided autoequivalences for
the non-degenerate braided tensor category Z(Vec(G)) for finite groups G. The
answer is somewhat involved, but he shows it is a certain subgroup of the image
of Out(Vec(G)) ∼= H2(G,C×) o Out(G) inside Autbr(Z(Vec(G))) satisfying a
compatibility condition with respect to double class functions [D1], Theorem 2.12.
He then presents several examples which have non-trivial soft braided autoequi-
valences, the smallest of which has order 64, though there may certainly be smaller
examples. In any case, these provide examples of non-trivial maximal rank inver-
tible module categories.

4. Rank finiteness for braided fusion categories

The rank finiteness theorem for modular categories was proved in [BNRW]. It
states that up to a braided equivalence there exist only finitely many modular
categories of any given rank. Below we extend this result to braided fusion cate-
gories that are not necessarily spherical or non-degenerate. The plan is first to
establish this result for non-degenerate and slightly degenerate categories and then
pass to equivariantizations.

Corollary 7. Let C =
⊕

a∈A Ca be a fusion category faithfully graded by a group
A. Then rank(C) ≤ |A| rank (Ce).
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Proof. The components Ca are invertible Ce-bimodule categories so this is imme-
diate from Proposition 2. �

Lemma 8. Let C be a fusion category and let G be a finite group acting on G.
Then

1

|G|
rank(C) ≤ rank(CG) ≤ |G|rank(C).

Proof. Simple objects of CG are parameterized by pairs consisting of orbits of
simple objects of C under the action of G and certain irreducible projective repre-
sentations of stabilizers. Each orbit has at most |G| elements, so the number of
orbits is at least rank(C)/|G|. This implies the first inequality.

On the other hand, there are at most rank(C) orbits and each stabilizer has at
most |G| irreducible projective representations, which gives the second inequality.
�

Proposition 9. There are finitely many equivalence classes of non-degenerate
braided fusion categories of any given rank.

Proof. Let N be a positive integer. By [BNRW], it suffices to show that there is a
positive integer M such that any non-degenerate braided fusion category C of rank
N is a subquotient of a modular category of rank ≤ M . Here by a subquotient
we mean a surjective image of a subcategory. Let C̃ be the sphericalization of C
[ENO1]. It is a degenerate ribbon category (its symmetric center is Rep(Z/2Z)
with a non-unitary ribbon structure) of rank 2N .

As C̃ is a Z/2Z-equivariantization of C, its center Z(C̃) is a Z/2Z-graded modular

category with the trivial component Z(C̃)0 = Z(C)Z/2Z by [GNN]. Using Corol-
lary 7 and Lemma 8 we estimate

rank(Z(C̃)) ≤ 2 rank(Z(C̃)0) = 2 rank(Z(C)Z/2Z) ≤ 4 rank(Z(C)) = 4N2,

so one can take M = 4N2. Indeed, C is a quotient of C̃ and so is a subquotient of
Z(C̃). �

Let C1, C2 be braided fusion categories with embeddings sVec ↪→ Zsym(Ci), i =
1, 2. Then C1�sVecC2 has a canonical structure of a braided fusion category [DNO].
Namely, it is equivalent to the category of A-modules in C1 � C2, where A is the
regular algebra of the maximal Tannakian subcategory of sVec � sVec ⊂ C1 � C2.
If C1 and C2 are slightly degenerate then so is C1 �sVec C2.

Proposition 10. There are finitely many equivalence classes of slightly degenerate
braided fusion categories of any given rank.

Proof. Let C be a slightly degenerate braided fusion category of rank N . Its
center Z(C) contains a fusion subcategory C ∨ Crev ∼= C �sVec Crev of Frobenius–
Perron dimension 1

2FPdim(C)2 = 1
2FPdim(Z(C)). Hence, Z(C) is Z/2Z-graded by

Lemma 1 and

rank(Z(C)) ≤ 2 rank(C �sVec Crev) = 2× N2

2
= N2

by Corollary 7. Since C is a fusion subcategory of Z(C) the result follows. �



C. JONES, S. MORRISON, D. NIKSHYCH, E. C. ROWELL

Remark 2. It was observed in [BGNPRW], following [BRWZ] that if C ⊂ C̃ is a

minimal modular extension of a super-modular category then 3
2 rank(C) ≤ rank(C̃)

≤ 2rank(C). This could be used in place of the more general Corollary 7 in the
proof above.

Theorem 11. There are finitely many equivalence classes of braided fusion cate-
gories of any given rank.

Proof. Let C be a braided fusion category of rank N . Let E ∼= Rep(G) be the
maximal Tannakian subcategory of Zsym(C). Then C = DG, where D is either a
non-degenerate or slightly degenerate braided fusion category. By Lemma 8

rank(D) ≤ |G|rank(C) = |G|N.

Now let M be the maximal order of a group with at most N isomorphism classes
of irreducible representations (M exists since the number of such groups is finite
by Landau’s theorem). We have rank(D) ≤MN , so there are finitely many choices
for D, thanks to Lemmas 9 and 10. There are also finitely many choices for the
group G and for each such choice there are finitely many different actions of G on
D [ENO1]. Thus, there are finitely many possible C’s. �

Recall that a G-crossed braided fusion category is a G-graded fusion category
with G-action and a G-braiding satisfying certain coherence axioms (see [EGNO,
Def. 8.24.1]). By equivalence of G-crossed braided fusion categories C and D, we
mean an equivalence of fusion categories F : C → D preserving the G-grading,
together with a monoidal natural isomorphism between the categorical G-actions
on D and the composite of the G-action on C with F that intertwines the G-
braiding. This is the natural notion of equivalence that occurs in the proof of
[DMNO, Thm. 4.44], where a bijection is established between equivalence classes
of braided fusion categories A equipped with a braided tensor functor Rep(G)→ A
and equivalence classes of G-crossed braided fusion categories.

To avoid possible confusion, we note that this notion is different than the notion
of equivalence of G-crossed extensions of a fixed braided fusion category C, found
in [ENO2]. There, the equivalence F is required to be the identity functor on
the trivial component, and thus there are generically more equivalence classes of
G-crossed extensions of a braided fusion category C than equivalence classes of
G-crossed braided fusion categories whose trivial component is equivalent to C.

Corollary 12. There are finitely many equivalence classes of G-crossed braided
fusion categories of any given rank.

Proof. Follows immediately from Theorem 11 and Lemma 8, since any G-crossed
braided fusion category is obtained as a de-equivariantization of a braided fusion
category [DGNO, Thm. 4.4.]. �

5. The center of a slightly degenerate braided fusion category

Let C be a slightly degenerate braided fusion category. We have Zsym(C) ∼= sVec.
Let δ denote the non-trivial invertible object in Zsym(C).
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For any C-module category M let us denote

Ms :=M�sVec Vec.

In particular, Cs := C �sVec Vec is equivalent to the category of A-modules in
C, where A is the regular algebra of sVec. We have Ms = M �C Cs. Note that
rank(Cs) = 1

2 rank(C).

Lemma 13. Cs is an invertible C-module category of order 2.

Proof. This follows from straightforward equivalences:

Cs �C Cs = (C �sVec Vec) �C (C �sVec Vec) ∼= C �sVec (Vec �sVec Vec) ∼= C,

where we used the obvious fact Vec �sVec Vec ∼= sVec. �

Lemma 14. We have Cs �CM∼=M�C Cs for any C-module category M.

Proof. Let B ∈ C be an algebra such that M ∼= CB . Then A ⊗ B ∼= B ⊗ A as
algebras since A ∈ Zsym(C). This yields the statement. �

Let C1, C2 be slightly degenerate braided fusion categories. Let

E ∈ sVec � sVec ⊂ C1 � C2

be a canonical étale algebra. Recall that the braided fusion category C1 �sVec C2
is defined as the category of E-modules in C1 � C2. There are obvious embeddings
C1, C2 ↪→ C1 �sVec C2.

Let M1 and M2 be module categories over C1 and C2. Define a C1 �sVec C2-
module categoryM1�sVecM2 to be the category of E-modules inM1�M2 with
the module action given by

X �M = X ⊗E M, X ∈ C1 �sVec C2, M ∈M1 �sVecM2.

Let M be an indecomposable C1 �sVec C2-module category and let

M =
⊕
i∈I
Mi, M =

⊕
j∈J
Nj

be its decompositions into direct sums of indecomposable C1-module categories
and C2-module categories, respectively.

Proposition 15. There exist indecomposable Ci-module categories Li, i = 1, 2,
such that M ∼= L1 �sVec L2 if and only if Mi ∩ Nj is an indecomposable sVec-
module category for some i ∈ I and j ∈ J .

Proof. One implication is obvious.
Suppose that Mi ∩ Nj is an indecomposable sVec-module category. There are

two possible cases.
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Case 1. Mi ∩Nj ∼= sVec. Let X ∈ Mi ∩Nj be a simple object. Let δi denote the
non-trivial invertible object in Ci, i = 1, 2. Then δi ⊗X 6∼= X. Let us view M as a
C1 � C2-module category and compute the internal Hom:

HomC1�C2(X, X)
∼= HomC1(X, X) � HomC2(X, X)⊕HomC1(X, δ1 ⊗X) � HomC2(δ2 ⊗X, X)
∼=

(
HomC1(X, X) � HomC2(X, X))

)
⊗ E,

where E = 1 ⊗ 1 ⊕ δ1 � δ2 is the canonical algebra in sVec � sVec ⊂ C1 � C2.
Therefore, as a C1 �sVec C2-module category, M ∼= L1 �sVec L2, where Li is the
category of HomCi(X, X)-modules in Ci, i = 1, 2.

Case 2. Mi ∩Nj ∼= Vec. In this case the C1 �sVec C2-module category

(Cs1 �sVec C2) �C1�sVecC2 M

satisfies the condition of (Case 1) above and, hence, is equivalent to L1 �sVec L2.
Consequently, M∼= Ls1 �sVec L2. �

Remark 3. The pair of module categories L1, L2 in Proposition 15 is determined
up to a simultaneous substitution of L1, L2 by Ls1, Ls2.

Example 3. Let C1 = C2 = sVec. Then C1 �sVec C2 = sVec and

sVec ∼= sVec �sVec sVec ∼= Vec �sVec Vec,

Vec ∼= Vec �sVec sVec ∼= sVec �sVec Vec

as sVec-module categories.

Proposition 16. Let C be a slightly degenerate braided fusion category and let
D = D0⊕D1 be a minimal extension (see Definition 2) of D0 := C�sVecCrev. There
exists an invertible C-module (respectively, Crev-module) category M (respectively,
N ) such that D1

∼=M�sVec N as a C �sVec Crev-module category.
The equivalence classes of module categories M and N are determined up to a

simultaneous substitution by Ms and N s.

Proof. Note that D is a Z/2Z-graded extension of D0 by Lemma 1.
Let n be the number of C-module components of D1. By [DGNO, Cor. 3.6] the

number of C-module components of D is equal to the rank of the centralizer of
C in D. The latter is Crev. Since the number of C-module components in D0 =
C �sVec Crev is 1

2 rank(C) we conclude that

n =
1

2
rank(C).

Note that n is also equal to the number of Crev-module components of D1.
Let ⊕ni=1Mi (respectively,

⊕n
j=1 Nj) be decompositions of D1 into direct sums

of indecomposable C-module (respectively, Crev-module) subcategories. In view of
Proposition 15 it suffices to check that for some i, j the intersection Mi ∩ Nj is
an indecomposable sVec-module category.
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By Proposition 2 we have

rank(D1) ≤ rank(D0) =
1

2
rank(C)2 = 2n2.

SinceD1 is indecomposable as aD0-bimodule category eachMi∩Nj , i, j = 1, . . . , n
is non-zero. If any of these intersections has rank 1, then it is sVec-indecomposable.
This happens automatically if either rank(Mi) or rank(Nj) is less than 2n for some
i or j (indeed, Irr(Mi) intersects non-trivially with n disjoint sets Irr(Nj), j =
1, . . . , n).

So let us assume that all intersections Mi ∩Nj have rank ≥ 2 and that all Mi

and Nj have rank ≥ 2n. The latter implies that rank(Mi) = rank(Nj) = 2n and
rank(Mi∩Nj) = 2 for all i and j since otherwise rank(D1) > 2n×n = 2n2. Hence,
rank(D1) = 2n2 = rank(D0), i.e., D1 is a maximal rank invertible D1-bimodule
category.

By Proposition 3 the Lagrangian algebras corresponding to D0-bimodule cate-
gories D0 and D1 are isomorphic as objects of Z(D0). In particular, their forgetful
images in D0 are isomorphic:⊕

X∈Irr(D0)

X ⊗X∗ ∼=
⊕

X∈Irr(D1)

X ⊗X∗.

The object on the left does not contain δ since δ acts freely on Irr(D0) by [DGNO,
Lem. 3.28]. Hence, the same is true for the object on the right, i.e., δ also acts freely
on Irr(D1). Thus, everyMi ∩Nj is sVec-indecomposable and D1 =M�sVecN by
Proposition 15.

The following equivalences:

D0
∼= D1 �D0 D1

∼= (M�sVec N ) �C�sVecCrev (M�sVec N )
∼= (M�CM) �sVec (N �Crev N ),

imply thatM�CM is equivalent to C or Cs and, hence,M is invertible. Similarly,
N is invertible. �

Corollary 17. Let C be a slightly degenerate braided fusion category. There exist
invertible C-module categories M and N such that

Z(C) ∼= (C �sVec Crev)⊕ (M�sVec N )

as a C �sVec Crev-module category.

Remark 4. It is possible to show that the above M and N are braided C-module
categories of order 2, see [DN2].

Remark 5. It will be interesting to see whether, given a slightly degenerate fusion
category C and a module category M as above, C ⊕M admits a structure of a
minimal extension of C. One expects that there are 16 choices ofM in this case, by
the results of [BGNPRW], [KLW]. Notice that if C̃ = C⊕N is a minimal extension
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of some slightly degenerate braided fusion category C then Z(C) has the form as

in Corollary 17, as can be seen as follows: Z(C̃) ∼= C̃ � C̃rev contains a Tannakian
subcategory D ∼= Rep(Z/2Z) as the diagonal of sVec � sVec. The centralizer of D
in Z(C̃) is (C � Crev)⊕ (N �N rev), so that the de-equivariantization is

(C �sVec Crev)⊕ (N �sVec N rev) ∼= [Z(C̃)Z/2Z]0 ∼= Z(C).
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