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ABSTRACT
With the launch of eROSITA (extended Roentgen Survey with an Imaging Telescope Array),
successfully occurred on 2019 July 13, we are facing the challenge of computing reliable
photometric redshifts for 3 million of active galactic nuclei (AGNs) over the entire sky, having
available only patchy and inhomogeneous ancillary data. While we have a good understanding
of the photo-z quality obtainable for AGN using spectral energy distribution (SED)-fitting
technique, we tested the capability of machine learning (ML), usually reliable in computing
photo-z for QSO in wide and shallow areas with rich spectroscopic samples. Using MLPQNA
as example of ML, we computed photo-z for the X-ray-selected sources in Stripe 82X, using
the publicly available photometric and spectroscopic catalogues. Stripe 82X is at least as deep
as eROSITA will be and wide enough to include also rare and bright AGNs. In addition, the
availability of ancillary data mimics what can be available in the whole sky. We found that
when optical, and near- and mid-infrared data are available, ML and SED fitting perform
comparably well in terms of overall accuracy, realistic redshift probability density functions,
and fraction of outliers, although they are not the same for the two methods. The results
could further improve if the photometry available is accurate and including morphological
information. Assuming that we can gather sufficient spectroscopy to build a representative
training sample, with the current photometry coverage we can obtain reliable photo-z for a
large fraction of sources in the Southern hemisphere well before the spectroscopic follow-up,
thus timely enabling the eROSITA science return. The photo-z catalogue is released here.

Key words: methods: data analysis – methods: statistical – galaxies: active – galaxies: dis-
tances and redshifts – X-rays: galaxies.

1 INTRODUCTION

Photometric redshifts (photo-z) are now routinely used in many
applications, from galaxy evolution to cosmological studies. In
particular, the present and planned photometric surveys over many
thousand square degrees (e.g. DES, Euclid, LSST, eROSITA, and
SpherEx) rely mostly on photo-z for their scientific exploitation. As
known, there are basically two classes of methods commonly used
to derive photo-z: the template spectral energy distribution (SED)
fitting methods (e.g. Bolzonella, Miralles & Pelló 2000; Ilbert et al.
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2006; Tanaka 2015) and the empirical or interpolative methods
(e.g. Cavuoti et al. 2015b; Carrasco Kind & Brunner 2013). Both
methods are characterized by advantages and shortcomings (for a
complete review, see Salvato, Ilbert & Hoyle 2018), but essentially
both rely on colour/magnitude–redshift maps, with the difference
that SED based methods assume a priori knowledge of the map,
while empirical methods, based on machine learning (ML), learn the
map anew from the data every time. Recently more algorithms that
merge the pros of the two techniques are developed and show very
promising results also in computing photo-z for mixed populations
of galaxies and active galactic nuclei (AGNs, e.g. Duncan et al.
2018), in some case being also able to successfully characterize the
sources (Fotopoulou & Paltani 2018).
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SED-fitting techniques are able to provide all at once photo-z
point estimates, photo-z probability density function (PDZ) and the
spectral type of each source, at any redshift.

In the supervised ML techniques, the learning process is regulated
by the spectroscopic information (i.e. redshift) available for a
sub-sample of the objects. ML methods – ideal for the million
of sources provided by multiwavelength surveys – are extremely
precise as long as the spectroscopic sample is representative of the
population for which the photo-z has to be computed. This means
that they cannot provide accurate solutions outside z-spec range of
the training set.

Even though the accuracy reached by empirical methods and
SED fitting for inactive galaxies are comparable, is not the case
for galaxies hosting AGNs. For these sources in fact, the amount
of contribution from the AGN to the total emission in the various
bands is a priori unknown. In photo-z computed via SED fitting
this translates in the difficulty of defining for every survey the
correct set of templates forming the library (e.g. Salvato et al.
2009; Cardamone et al. 2010; Luo et al. 2010; Salvato et al. 2011;
Hsu et al. 2014; Ananna et al. 2017, hereafter A17). Similarly,
in photo-z computed with empirical methods, it is necessary to
have a very large and complete spectroscopic sample to use as
training set. That is why in the past, there have been only few
attempts to compute photo-z for AGN with ML-based methods
(e.g. Budavári et al. 2001; Bovy et al. 2012; Brescia et al. 2013). All
these pioneering works focused on the SDSS footprints (where the
plethora of spectroscopic redshifts, hereafter zspec, are well suited to
ML techniques) and on optically selected QSOs, mostly at z ≥1.5,
which are dominated by the AGN, with little contribution from
the host. For low-redshift and low-luminosity AGN (i.e. Seyfert
galaxies), where the host galaxy contribution to the total emission
is significant, both the accuracy and fraction of outliers of the photo-
z computed with SED-fitting technique are comparable to the results
for normal galaxies (σ NMAD ∼ 1 per cent; η ∼5 per cent). However,
this is true only in the fields where narrow and/or intermediate filter
band photometry is available, like e.g, in COSMOS, CDFS, and
Alhambra (e.g. Salvato et al. 2009, 2011; Marchesi et al. 2016;
Cardamone et al. 2010; Matute et al. 2012). In fact, the narrow-
/intermediate-band photometry easily pinpoints the emission lines,
typical SED features for AGN. For a mixed set of AGNs and with
only broad-band photometry, even with coverage from ultraviolet
(UV) to mid-infrared (MIR), photo-z for AGN via SED-fitting
reach an accuracy of about 6–8 per cent with about 18–25 per cent
in fraction of outliers (e.g. Fotopoulou et al. 2012; Nandra et al.
2015, A17), with the accuracy of the extended sources better than
those classified as point-like in optical images. The situation gets
even more difficult when the survey is wide and the photometry
is assembled from heterogeneous photometric catalogues rather
than computed in a consistent way from homogenized images (e.g.
COSMOS, Laigle et al. 2016; Ilbert et al. 2009).

ML methods are less affected by this problem because they
account for the differences in the photometry defined in the various
catalogues, but the photo-z computation must then be preceded
by a search for the best features e.g. certain type of magnitudes,
or specific photometric bands/colours (e.g. see Polsterer et al.
2014; D’Isanto et al. 2018; Fotopoulou & Paltani 2018; Ruiz et al.
2018). In addition, the quality degrades fast, when not sufficient
photometry is available.

Photo-z can replace spectroscopic redshifts in AGN evolution
studies or AGN clustering only if accompanied by the redshift PDZ
(e.g. Miyaji et al. 2015; Georgakakis et al. 2014). While PDZs
are routinely produced when computing photo-z via SED fitting,

their production with empirical methods requires an additional
computational effort that only recently became more feasible (e.g.
Sadeh, Abdalla & Lahav 2016; Cavuoti et al. 2017; Amaro et al.
2018; Brescia et al. 2018; Mountrichas et al. 2017; Duncan et al.
2018).

In terms of computational speed, ML outperforms the template-
fitting techniques (Vanzella et al. 2004). This makes ML a natural
choice for the computation of photo-z for the very large forthcoming
deep and wide surveys such as Euclid (Laureijs 2010) and LSST
(Ivezić et al. 2019), in which the computation of photo-z will
be a real challenge. For AGN, the next challenge is presented
by the ∼3 million sources that eROSITA (extended Roentgen
Survey with an Imaging Telescope Array; Merloni et al. 2012), the
primary instrument on the Russian Spektrum–Roentgen–Gamma
mission, will detect. eROSITA will provide an all-sky X-ray
survey every 6 months for 4 yr, with a final expected depth of
1 × 10−14 erg cm−2 s−1 (3 × 10−15 erg cm−2 s−1 at the poles) which
is about 30 times deeper than ROSAT (Voges et al. 1999; Boller
et al. 2016) in the soft band (0.5–2 keV). eROSITA will also
provide for the first time ever an all-sky image in the hard band
(2–10 keV), reaching an expected depth of 2 × 10−13 erg cm−2 s−1

(4 × 10−14 erg cm−2 s−1 at the poles). With this depth, eROSITA
will detect the low-luminosity AGN that are present in deep pencil-
beam surveys, but also the bright and more rare objects that are
observed in wide areas.

The recent release by A17 of the complete photometry of the
counterparts to the X-ray sources detected in Stripe 82X (LaMassa
et al. 2016, 2013a,b) offers the possibility to study the performances
of photo-z for AGN via ML in a complete way. Stripe 82X covers
an area of about 31 deg2, with a X-ray depth of 8.7 × 10−16

erg cm−2 s−1 in the soft band and 4.7 × 10−15 erg cm−2 s−1 in
the hard band and it includes about 6000 sources, ∼ 3000 of
which are provided with reliable zspec from SDSS. The photometric
catalogue includes GALEX, SDSS, UKIRT, VHS, Spitzer/IRAC,
and WISE with a depth sufficient to detect the X-ray sources at least
at the depth of eROSITA. Thus, Stripe 82X can mimic eROSITA
in terms of X-ray depth and ancillary data coverage that will be
available in the whole sky, thanks to the coverage provided by e.g.
PanStarrs, skyMapper, DES, VHS, UKIDSS, WISE (Spitzer/IRAC
will be available only for patches of 100 deg2) and with LSST and
SpherEx in the future. A17 provides not only photometry, but also
photo-z and related PDZs computed via SED fitting using LEPHARE

(Arnouts et al. 1999; Ilbert et al. 2006), after splitting the sample in
subgroups, each fitted with a dedicated library of templates.

The work presented in this paper consists of two parts. In the
first part we evaluate and optimize the space of the parameters
that improve the accuracy of ML. This is done by selecting the
best features (Lal et al. 2006). In the literature (e.g. Guyon &
Elisseeff 2003), there are plenty of algorithms aimed at the selection
of the best features, such as principal component analysis (PCA;
Jolliffe 2002), filter techniques, based on the evaluation of single
features through a variety of significance tests, generally fast but less
accurate (Gheyas & Smith 2010), wrapper methods, which make
use of an arbitrary learning algorithm (such as neural networks
or nearest-neighbour) to evaluate the relevance of feature sets
(Kohavi & John 1997) and embedded methods, performing a
feature selection during the prediction/classification model training
procedure (a typical example is the Random Forest model, Breiman
2001). Here, we use a novel feature selection method, named
�LAB (PhiLAB, Parameter handling investigation LABoratory),
a hybrid approach that includes properties of both wrappers and
embedded feature selection categories (Delli Veneri et al. 2019).
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Figure 1. Map of the original multiwavelength coverage of Stripe 82X area discussed in A17. The total area extends for ∼2.5◦ in Dec. and 120◦ in RA.
The dots represent X-ray sources, respectively, from XMM–Newton AO13 (red), AO10 (blue), archival XMM–Newton sources (yellow), and Chandra sources
(black). While standard photo-z are generated for the entire area (in red), the selection of the best features discussed in the first part of the paper is obtained
considering only the sources in the yellow area.

For this purpose, the determination of the features, rather than the
computation of the photo-z, is relevant. Because the best features
are not available for the entire sample, our purpose here is to list
them, for their use in other surveys. The computation of the photo-z
via ML is discussed in the second part of the paper and for the
reason described above it will be computed for the entire sample
also in a more traditional way using MLPQNA (Brescia et al. 2013;
Cavuoti et al. 2012, 2015a). Missing some of the best features, will
translate in the degradation of the accuracy.

For each of the sources, we provide also the PDZ through
METAPHOR (Cavuoti et al. 2017) and we will compare the photo-
z and the PDZ with the results presented in A17. In particular, we
will test the accuracy of the new photo-z at the depth of eROSITA
all-sky survey.

Outline: in Section 2, we describe the data used in this work,
while in Section 3, we briefly describe the methods involved in
our analysis. In Section 4, we analyse the parameter space and
its optimization, while in Section 5, we discuss the impact of
X-ray flux, photometry, and morphology in the quality of photo-
z. Sections 6 and 7 are devoted to the analysis of photo-z and
PDZ estimation, respectively. Finally, the conclusions are drawn in
Section 8. In Appendix A1, the catalogue of photo-z computed with
MLPQNA and used for this work are made publicly available, while
PDZs are available under request.

In this paper, unless differently stated, we use magnitude ex-
pressed in AB and adopt a cosmology of H0 = 70 km s−1 Mpc−1,
�M = 0.27, and � = 0.73.

2 DATA

This section is dedicated to describe all photometric and spectro-
scopic data used in the experiments.

2.1 PHOTOMETRY

The photometry used in this work is extracted from the catalogue
presented in A17, which lists the multiwavelength properties of the
counterparts to the X-ray sources detected in Stripe 82X. Compared
to the previous version of the catalogue presented in LaMassa et al.
(2016), this new catalogue uses deeper multiwavelength data for

the identification of the counterparts and for the computation of
the photometric redshifts via SED fitting. Although the catalogue
of A17 includes 6187 X-ray sources, we focus here only on the
5990 for which a reliable counterpart was identified. All the details
on the properties of the photometric data set are exhaustively
presented in A17. Here, we provide only the list of data that
we use for this paper, focusing on the central area of Stripe
82X, observed by Spitzer, as shown in Fig. 1. In particular, we
considered:

(i) FUV and NUV magnitudes and corresponding errors from
GALEX all-sky survey (Martin et al. 2005). They were not used in
this work due to the shallowness of the data;

(ii) u,g,r,i,z SDSS AUTO magnitudes and corresponding errors
from Fliri & Trujillo (2016);

(iii) J, H, and K from VISTA (Irwin et al. 2004). As shown in
A17 additional data in JUK, HUK, KUK data from UKIDSS (Lawrence
et al. 2007) are available for the same area but were not used in this
paper;

(iv) 3.6 and 4.5 μm magnitudes and corresponding errors from
IRAC. Here, two complementary surveys are used: SPIES (Timlin
et al. 2016) and SHELA (Papovich et al. 2016). Given the similarity
of the two surveys, we do not differentiate sources belonging to one
or another;

(v) W1, W2, W3, and W4 magnitudes and corresponding errors
from AllWISE (Wright et al. 2010).

In the first column of Table 1, we report the nominal depth of
each photometric band considered.

The original catalogue is complemented by soft, hard, and full-
band X-ray fluxes from XMM–Newton and Chandra (see LaMassa
et al. 2016, for details). It also includes morphological information
on the extension and variability of the sources in the optical band.
We retain such information, as it has been already demonstrated
in literature that they affect the accuracy of photo-z for AGN and
can be used as priors for improving performance (e.g. Salvato et al.
2009). While these data are not used directly for the computation
of the photo-z, they are employed to perform various experiments
by creating sub-samples in X-ray flux and morphology.
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Table 1. Summary table for depth, amount of sources, and redshift coverage. The first column refers to the nominal depth of the entire sample of reliable
counterparts in Stripe 82X, as presented in A17. The following columns refer to the magnitudes reached in the various experiments, i.e. the faintest magnitude
reported in the Stripe 82X catalogue for the various sub-samples for which the photo-z have been computed. The values in the column BEST represent the
faintest magnitudes of the sub-sample of sources in the yellow area of Fig. 1, used for the features analysis performed with �LAB, (Section 3.1). The bands
marked with a – symbol have been discarded from that specific experiment. † SPIES and SHELA have been used together (Section 2.1). The last rows of
the table list, for each of the sub-samples, the total number of sources, their amount with spectroscopic redshift available, those with a X-ray flux brighter

than 10−14 erg cm−2 s
−1

and the final depth expected by eROSITA all-sky survey. Note that here we use only the sources for which the determination of the
counterpart is secure, i.e. (SDSS,VHS,IRAC) REL CLASS= = SECURE in the catalogue of A17.

Filter Band depth
Nominal BEST SDSS SDSS and SDSS and SDSS and SDSS SDSS SDSS VHS

VHS IRAC WISE VHS and IRAC VHS and WISE IRAC and WISE

u 31.22 28.54 28.54 28.54 28.54 28.54 28.54 28.54 28.54
g 28.77 24.20 24.39 24.20 24.39 24.39 24.20 24.20 24.20
r 27.13 23.25 23.43 23.25 23.43 23.43 23.25 23.25 23.25
i 27.21 22.35 23.49 22.64 23.49 22.45 22.64 22.35 22.35
z 30.46 22.42 23.35 22.46 22.99 22.42 22.46 22.42 22.08
J 24.74 21.64 – 24.64 – – 21.64 21.64 21.51
H 24.15 22.87 – 22.87 – – 21.61 22.87 21.61
K 22.60 21.63 – 21.63 – – 21.63 21.63 21.63
CH1 SPIES 24.27 20.82† – – 21.64† – 21.06† – 20.49†

CH1 SHELA 22.80 – – – –
CH2 SPIES 22.88 20.49† – – 21.41† – 21.07† – 20.22†

CH2 SHELA 23.88 – – – –
W1 21.16 20.71 – – – 20.71 – 20.71 20.61
W2 20.74 20.59 – – – 20.63 – 20.63 20.59
W3 18.20 18.04 – – – 18.11 – 18.11 18.04
W4 16.15 16.06 – – – 16.13 – 16.13 15.94

Number of sources 5990 2290 4855 3218 2293 3291 1620 2696 1380

Number of sources 2933 1686 2793 2218 1596 2160 1279 1935 1121

w/zspec

Number of sources 2351 1249 2025 1649 1051 1619 888 1445 793

w/FX > 10−14

Number of sources
w/FX > 10−14 1550 1025 1483 1309 857 1256 758 1174 683
and zspec

2.2 SPECTROSCOPY

The spectroscopic coverage of the field (see Fig. 2) is ideal for
assessing the performances of photo-z for X-ray-selected sources
via ML. The spectroscopic surveys BOSS (Dawson et al. 2013)
and eBOSS (Delubac et al. 2017) in the lifetime of SDSS, provide
reliable redshifts for about 50 per cent of the sources (2, 962/5,
and 990). In addition Stripe 82X was also suitable for a dedicated
spectroscopic program during SDSS-IV, targeting specifically the
counterparts to X-ray sources (LaMassa et al. 2019). There, the
exposure time was of at least 2 h long, allowing the determination
of the redshifts also for faint sources. The training and testing
samples are formed only by sources with redshift available at the
time of the publication of A17. However, as additional blind test, we
checked the accuracy of the photo-z also using this new available
spectroscopic sample of 257 sources (see Section 6).

3 THE ALGORITHMS

We first performed a feature analysis on the sub-sample of sources
located in the yellow area of Fig. 1. This sample maximizes
the number of sources, the number of photometric bands, their
depth, and the faintest magnitudes available that are reported in
the column BEST of Table 1. The feature analysis was performed

Figure 2. Redshift and magnitude distribution for the sources with spec-
troscopic redshift. The blue sources were presented in A17 and have been
used in this work as training and blind test samples. The 258 yellow sources
are on average fainter and were recently presented in LaMassa et al. (2019).
They are used as additional blind test sample.
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with the algorithm �LAB, developed by our group and described
in Section 3.1. Obviously, the computation of the photo-z using
the best features would provide the best accuracy, but it would
dramatically limit the size of the sample for which the photo-z
could be computed. In fact, because in this work magnitudes were
used instead of fluxes, the sample includes many source missing
data in various bands.1 Rather than using specific but not yet fully
tested methods for recovering the missing data (see Brescia et al.
2018, for a discussion), we computed the photo-z for subsets of
sources that share the same photometric system (i.e. sources for
which a certain combination of bands does not include missing
data). The sub-samples naming convention is presented in Table 1,
together with the breakdown of the sources and the depth reached in
every filter. The photo-z were estimated with MLPQNA (described
in Section 3.2). For each source, we also derived the redshift PDZ
using METAPHOR, described in Section 3.3.

The three algorithms are described in the following subsections.

3.1 �LAB

Recently, in Delli Veneri et al. (2019), we presented a novel method
suitable for a deep analysis and optimization of any parameter space,
which provides in output the selection of the most relevant features.
The algorithm developed by our group is called �LAB. It is a hybrid
approach, including properties of both wrappers and embedded
feature selection categories (Tangaro et al. 2015), based on two
joined concepts, respectively: shadow features (Kursa & Rudnicki
2010) and Naı̈ve LASSO (Least Absolute Shrinkage and Selection)
statistics (Tibshirani 2013). Shadow features are randomly noised
versions of the real ones and their importance percentage is used
as a threshold to identify the most relevant features among the
real ones. Afterwards, the two algorithms, based on LASSO and
integrated into �LAB, perform a regularization, based on the
standard L1 norm, of a ridge regression on the residual set of weak
relevant features (i.e. a shrinking of large regression coefficients
to avoid overfitting). This has the net effect of sparsifying the
weights of the features, effectively turning off the least informative
ones.

LASSO acts by conditioning the likelihood with a penalty on
the entries of the covariance matrix and such penalty plays two
important roles. First, it reduces the effective number of param-
eters and, second, produces an estimate which is sparse. Having
a regularization technique as part of a regression minimization
law, represents the most evident difference with respect to more
traditional parameter space exploration methods, like PCA (Pearson
2010). The latter is a technique based on feature covariance matrix
decomposition, where the principal components are retained instead
of the original features. The two concepts, shadow features and
Naı̈ve LASSO, are then combined within the proposed method by
extracting the list of candidate most relevant features through the
noise threshold imposed by the shadow features and by filtering
the set of residual weak relevant features through the LASSO
statistics.

�LAB is detailed in Delli Veneri et al. (2019), where the method
has been used to investigate the parameter space in the case of the
photometric determination of star formation rates in the SDSS.

1Working with fluxes would have allowed to use also the faint sources
at background level, with negative fluxes but associated to a large, positive
photometric errors. By definition these sources are not present in a catalogue
that lists magnitudes.

3.2 MLPQNA

MLPQNA (Multi Layer Perceptron trained with Quasi Newton
Algorithm) is a Multi Layer Perceptron (MLP; Rosenblatt 1962)
neural network trained by a learning rule based on the Quasi
Newton Algorithm (QNA) which is among the most used feed-
forward neural networks in a large variety of scientific and social
contexts, such as electricity price (Aggarwal, Saini & Kumar 2009),
detection of premature ventricular contractions (Ebrahimzadeh &
Khazaee 2010), forecasting stock exchange movements (Mostafa
2010), landslide susceptibility mapping (Zare et al. 2013), etc.

Furthermore, it has been successfully applied several times in
the context of photometric redshifts (see for instance Biviano et al.
2013; Brescia et al. 2013, 2014b; Cavuoti et al. 2015a; de Jong et al.
2017; Nicastro et al. 2018). The analytical description of the method
has been discussed in the contexts of both classification (Brescia,
Cavuoti & Longo 2015) and regression (Cavuoti et al. 2012; Brescia
et al. 2013).

3.3 METAPHOR

METAPHOR (Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts; Cavuoti et al. 2017) is a modular workflow,
designed to produce the redshift PDZs through ML. Its internal
engine is the MLPQNA already described in Section 3.2. The core
of METAPHOR lies in a series of different perturbations of the
photometry in order to explore the parameter space of data and
to grab the uncertainty due to the photometric error. In practice,
the procedure to determine the PDZ of individual sources can be
summarized in this way: we proceed by training the MLPQNA
model and by perturbing the photometry of the given blind test set to
obtain an arbitrary number N of test sets with a variable photometric
noise contamination. Then, we submit the N + 1 test sets (i.e. N
perturbed sets plus the original one) to the trained model, thus
obtaining N + 1 estimates of photo-z. With such N + 1 values we
perform a binning in photo-z (0.01 for the described experiments),
thus calculating for each one the probability that a given photo-z
value belongs to each bin. In this work, we used N = 999 to obtain
a total of 1000 photo-z estimates.

3.4 Statistical estimators

For brevity, we define �z as:

�z = (zphot − zspec)/(1 + zspec) (1)

Then, in order to be able to compare the accuracy with that
available for other surveys/methods present in literature, we use the
classical basic statistical estimators, applied on �z, described as
following:

(i) mean (or bias);
(ii) standard deviation σ ;
(iii) σ NMAD = 1.4826 × median(|�z|);
(iv) σ 68 that is the width in which falls the 68 per cent of the �z

distribution;
(v) η, defined as the fraction (per centage) of outliers or source

for which |�z| > 0.15.

Due to the limited number of data samples, a canonical splitting
of the data set (or knowledge base) into training and blind test set
cannot be applied. Therefore, in order to circumvent this problem the
training + test process involves a k-fold cross-validation (Hastie,
Tibshirani & Friedman 2009; Kohavi 1995): the knowledge base
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Figure 3. Results of the feature analysis performed with �LAB. The
importance of each feature is estimated for the case in which only magnitudes
are considered for the sample BESTmagopt.

has been manually split into four not-overlapped subsets. In this
way by taking each time three of these subsets as training set and
leaving the fourth as blind test set, an overall blind test on the entire
knowledge base sample can be performed, i.e. each object of the
available data sample has been evaluated in a blind way (i.e. not
used for the training phase).

4 RESULTS ON PARAMETER SPACE
OPTIMIZATION

We started our experiments by considering the BEST sample that
maximizes the number of sources with spectroscopic redshift and
with the maximum number of photometric points available (as
discussed in Section 2.1). The BEST sample includes 15 bands:

(i) u, g, r, i, z;
(ii) J, H, K;
(iii) CH1, CH2;
(iv) W1, W2, W3, W4;
(v) X-FLUX.

Using �LAB on the BEST sample, we valuated the most relevant
features, considering the parameter space of photometry alone,
named BESTmagopt (Fig. 3). We then repeated the feature analysis
on the BESTmagopt space, in which we added the direct derived
colours (i.e. those obtained by couples of adjacent magnitudes only),
obtaining the optimized parameter space named as BESTmagcolopt.
Fig. 4 shows the impact of each selected feature in this case. Finally,
(as done in Ruiz et al. 2018), we considered also the case of the
full feature space, by including all BESTmagopt magnitudes and all
possible derived colours, for a total of 78 features:

(i) all five SDSS magnitudes and related 10 colours;
(ii) all three VHS magnitudes and related three colours;
(iii) all two IRAC magnitudes and related one colour;
(iv) the two previously selected WISE bands W1, W2, and related

one colour;
(v) all 15 combinations of colours among SDSS and VHS;
(vi) all 10 combinations of colours among SDSS and IRAC;

Figure 4. Results of the feature analysis performed with �LAB. The
importance of each feature is estimated for the case in which magnitudes
and colours are considered for the sample BESTmagcolopt.

(vii) all 10 combinations of colours among SDSS and the two
selected WISE bands;

(viii) all six combinations of colours among VHS and IRAC;
(ix) all six combinations of colours among VHS and the two

selected WISE bands;
(x) all four combinations of colours among IRAC and the two

selected WISE bands.

In this case, our method extracted a set of 67 features considered
suitable for the photo-z estimation. Table 2 reports the feature
importance ranking for all the selected features.

Table 3 reports the statistical results about the photo-z predictions
for the various selected feature spaces. The photo-z estimation
experiment performed with the largest selected parameter space (i.e.
using the 67 features selected by �LAB among the 78 available),
provided statistical results comparable with the BESTmagcolopt
case, thus inducing to consider the latter as the best candidate
parameter space, due to its smaller number of dimensions. When
only magnitudes are considered, the K band is by far the most
important feature. The reason is easily understood keeping in mind
the SED of a galaxy. The rest-frame K band indicates the knee
of the SED and this clear feature is indeed suitable to determine
the redshift. However, the optimal feature combination turned out
to be the mixed one, i.e. including colours and some reference
magnitudes belonging to different surveys (for instance, GRIZ for
SDSS, JHK for VHS, CH1 for IRAC, and W1 for WISE). From
the data mining viewpoint, this could appear rather surprising,
since the kind of information should not be expected to change
by introducing linear combinations between parameters, as colours
are obtained by subtraction between magnitudes. However, from
an astrophysical point of view, colours define the SED of the
sources and their evolution with redshift, and for this reason, they
are crucial in the process of determining photo-z. The additional
reference magnitudes, on the other hand, contribute to minimize the
degeneracy in the luminosity class for a specific object type.

By keeping in mind such arguments, it appears less surprising
that the information importance carried by magnitudes within the
parameter space devoid of colours, drastically decreases in the
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Table 2. Results of the feature analysis (percentages of estimated feature
importance) performed with �LAB in the case of the parameter space
composed by considering all magnitudes and colours available.

Feature
Importance
(per cent) Feature

Importance
(per cent)

R–Z 14.51 J–K 0.40
G–I 12.44 U–CH1 0.35
CH1–CH2 7.50 H–CH1 0.34
U–G 6.00 R–CH2 0.33
Z–W1 5.84 U–I 0.33
Z–CH1 4.24 R–W2 0.33
G–R 4.03 K–CH1 0.33
K 3.14 R–W1 0.31
G–Z 3.03 U 0.30
I–W1 2.00 U–J 0.30
I–CH2 1.94 G–W2 0.27
H 1.81 G–CH2 0.24
R–I 1.67 I–J 0.23
I–CH1 1.51 CH1–W2 0.23
J 1.45 G 0.22
H–K 1.34 J–CH2 0.21
R 1.21 G–CH1 0.21
I 1.21 G–K 0.20
W1 1.18 J–W1 0.20
I–Z 1.08 H–W2 0.20
Z 0.99 K–CH2 0.17
H–W1 0.97 K–W2 0.16
K–W1 0.83 U–W1 0.16
Z–W2 0.83 Z–J 0.16
CH2–W1 0.77 U–K 0.15
Z–CH2 0.68 R–CH1 0.14
U–R 0.68 H–CH2 0.13
U–Z 0.62 CH1 0.13
G–W1 0.56 Z–H 0.13
J–CH1 0.54 U–H 0.12
Z–K 0.52 J–W2 0.09
I–W2 0.50 I–K 0.08
J–H 0.46 R–K 0.07
W1–W2 0.45 – –

Table 3. Accuracy of photo-z computed with MLPQNA on BEST, BEST-
magopt, and BESTmagcolopt samples, after the optimization of the param-
eter spaces with the features analysis and selection performed with �LAB.
All quantities are calculated on blind test sets only.

ID BEST BESTmagopt BESTmagcolopt

Number of sources 1686 1686 1686
Bands 14 12 20
|bias| 0.0159 0.0105 0.0102
σ 0.141 0.135 0.121
σ NMAD 0.079 0.074 0.056
σ 68 0.091 0.083 0.069
η 16.09 13.88 12.74

mixed parameter space, where some representative colours result
as the most significant features. In fact, the first four colour features
of the BESTmagcolopt parameter space (Fig. 4), contain about
65 per cent of the importance carried by the whole set of magnitudes
present in the BESTmagopt parameter space (Fig. 3). Furthermore,
the strong relevance carried by the colours in the ranking list is
reflecting the importance decreasing of related magnitudes, now
represented by their colour combinations, causing in some cases

Table 4. Same of Table 3, but considering only objects with FX > 10−14.

ID BEST BESTmagopt BESTmagcolopt

Number of sources 1029 1029 1029
Bands 14 12 20
|bias| 0.0157 0.0183 0.0130
σ 0.144 0.138 0.122
σNMAD 0.078 0.072 0.057
σ 68 0.092 0.077 0.074
η 15.90 12.31 13.12

the rejection of some magnitudes (e.g. U, CH2 ,and W2) from the
optimized parameter space.

4.1 Impact of feature analysis on photo-z

The identification and consequent rejection of the non relevant fea-
tures, allow us to obtain more accurate photo-z. This is demonstrated
in Table 3 where we report the accuracy and fraction of outliers for
the photo-z computed with MLPQNA for the BEST sample, with and
without the removal of unimportant features for both BESTmagopt
and BESTmagcolopt. Table 4 is the same as Table 3, but this time
the metrics are computed by limiting the samples to the sources
that eROSITA will be able to detect. The comparison between the
two tables points out something that is already well documented in
literature in the case of photo-z computed via SED fitting: namely,
the accuracy of photo-z for AGN increases when the sample includes
faint AGN, dominated by the host galaxies, easier to be modeled. As
soon as the sample is limited to bright AGN, the quality of photo-z
decreases.

5 THE IMPACT OF X-RAY FLUX,
PHOTOMETRY, AND MORPHOLOGY IN THE
QUALITY OF PHOTO-Z

After having identified the most relevant features, we were inter-
ested in exploring under which range of parameters the photo-z
could be further improved. We have investigated in this respect the
impact that photometric errors, X-ray depth, and lack of information
on optical morphology have on the results, again using the sample
BESTmagcolopt as reference.

It is worth noting that ideally, we should have also checked
whether the feature analysis itself was influenced by these parame-
ters. However, the samples are not sufficiently large for such kind of
test. Therefore, we assume that the feature analysis is not affected
and simply quantify the accuracy in photo-z for different sub-
samples extracted from BESTmagcolopt, using different selection
criteria reported in the following sections.

5.1 Impact of photometric errors

The photometric catalogues used in Stripe 82X are relatively
shallow, implying that the fainter sources in general have a large
photometric error. Unlike SED fitting, until recently ML techniques
could not handle the errors associated to the measurements and
the same weight was incorrectly assumed for each photometric
value (but see Reis, Baron & Shahaf 2019, for a counter example
application). We tried to assess how this is impacting on the
result, by reducing BESTmagcolopt to sub-samples of decreasing
photometric errors in all the bands. More specifically, we considered
only sources with an error in magnitude smaller than 0.3, 0.25, and
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Table 5. Statistical results of the BESTmagcolopt photo-z estimation
experiments after having removed objects with photometric errors larger
than 0.3, 0.25, and 0.2 respectively.

BESTmagcolopt with Mag err limit
0.3 0.25 0.2

Number of sources 1686 1442 1372 1275
|bias| 0.0102 0.0152 0.0126 0.0122
σ 0.121 0.134 0.157 0.151
σNMAD 0.056 0.056 0.059 0.054
σ 68 0.069 0.065 0.069 0.065
η 12.74 11.93 12.90 12.24

Table 6. Comparison between statistics for the complete best sample and
for the sub-sample limited to eROSITA flux also in the training sample.

BESTmagcolopt At eROSITA depth

Number of sources 1686 1029
|bias| 0.010 0.013
σ 0.121 0.142
σ NMAD 0.056 0.064
σ 68 0.069 0.075
η 12.74 12.73

0.2, thus reducing the original sample by ∼15 per cent, ∼19 per cent,
and ∼24 per cent, respectively (see Table 5).

Considering only sources with small photometric errors provides
the best accuracy (σ NMAD = 0.054), but the bias increases with
respect to the original sample. The best trade-off is obtained by
keeping sources with a photometric error smaller than 0.3 mag.

5.2 X-ray depth

The general experiment on Stripe 82X has demonstrated that reliable
photo-z of the same quality, or even better than those computed via
SED fitting, can be obtained for X-ray-detected AGN also with ML,
as long as a large number of photometric points is available and the
spectroscopic sample is representative. But we are also interested to
evaluate the accuracy obtained for a sub-sample of the sources, such
as the brightest or the faintest detected in X-ray. And, in particular,
the expected accuracy that can be reached for eROSITA. The final
depth after 4 yr of observations will be of ∼ 10−14 erg s−1 cm−2 for
the all-sky survey. The survey will detect AGN also at high redshift,
but it will be dominated by bright, nearby AGN, for which the
computation of the photo-z is typically more challenging. Table 4
already reported a partial answer to the questions: namely, the
accuracy in photo-z for X-ray bright AGN is worse than for the
entire sample. This means that the good results obtained in the
second column are driven by the fact that the faint AGN, easier to
fit because galaxy dominated, are more numerous than the bright
AGN. However, in that experiment, the training in the photo-z
computation was done using all the sources in the BESTmagcolopt,
with the cut in X-ray flux done a posteriori on the output. In the
following experiment instead, also the training sample is limited to
the bright sources that eROSITA will detect. The result of test is
presented in Table 6. By comparing the last column of that table with
the last column of Table 4, we see that, while the bias and σ NMAD

remain unchanged, the fraction of outliers decreases. It means that
we could improve our result, if, in addition to good photometry for
the entire sample, we could increase the training sample of bright
objects by the time when eROSITA survey will be available. Photo-

z computed via ML for X-ray-selected sources in 3XMM-DR6 and
3XMM-DR7 where recently presented also in Ruiz et al. (2018) and
Meshcheryakov et al. (2018), respectively. While we are in overall
agreement with the first, our results are less optimistic than those
obtained by the second group. However, the results is not surprising
when noting that their results are specifically obtained for QSO or
type 1 only, having as targets sources in ROSAT and 3XMM-DR7
that are presented in the spectroscopic catalog SDSS-DR14Q (Pâris
et al. 2018). In our work, there is no any pre-selection and the
sample includes QSO, type 1 and type 2 AGN and galaxies.

5.3 Point-like versus extended

Given the resolution of the ground-based optical imaging, extended
sources can only be found at low redshift (zspec≤1), with not
significant contribution to the emission by the host galaxy. In
contrast, point-like sources are mostly dominating the high-redshift
regime, with the emission due to the nuclear component. This is
taken into account when computing photo-z via SED fitting by
adopting a prior in absolute magnitude (e.g. Salvato et al. 2009,
2011; Fotopoulou et al. 2012; Hsu et al. 2014, A17). More recently,
the separation of the sources in these two subgroups is becoming the
standard also when computing photo-z via ML (e.g. Mountrichas
et al. 2017; Ruiz et al. 2018). One limitation of this method is that
it relies on images that are affected by the quality of the seeing,
which can alter the morphological classification of the sources.
This has been demonstrated in Hsu et al. (2014) where the authors
shown how the sources can change classification (and thus their
photo-z value), depending on whether the images used are from
Hubble Space Telescope or ground based. In Stripe 82X, out of
1469 sources at z >1, 77 (∼5 per cent) are classified as extended. In
the BESTmagcolopt sample, the fraction is approximately the same
(27/704, ∼4 per cent). Given the resolution of SDSS, this is clearly
nonphysical.

In this section, we first measure separately the accuracy for the
point-like and extended sources in the BESTmagcolopt sample.
Here, a mixed training sample was used. In our second approach,
we created two training samples: one that includes only sources
classified as ‘extended’ and having redshift smaller than one; a
second including only sources classified as ‘point-like’ and/or at
redshift larger than one. The sources in the test samples were
separated accordingly.

The resulting statistics are shown in Table 7, with the first column
reporting for convenience the first one of the two previous tables.

The second and third columns show the accuracy for the same
sources of the BESTmagcolopt sample, but this time divided
according to their extension.

As expected, the photo-z for extended sources are more reliable,
with 50 per cent less outliers than the point-like sources. Columns
4 and 5 show the extreme case, in which the training sample is split
in two ab initio. In this case, the photo-z for extended sources have
the same accuracy of the best photo-z for normal galaxies, virtually
without outliers or bias.

In contrast, the photo-z for point-like sources show about
20 per cent of outliers. This is clearly understood, again thinking
about the SED of these objects, by comparing Column 3 with
Column 5 of the table. This suggests that the training sample for
point-like sources must include also sources with a contribution
from the host. The last column of the table shows which precision for
the entire sample is achieved by two training samples (one specific
for extended and nearby sources and the second for a generic one).
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Table 7. Photo-z estimation accuracy for the sources in BESTmagcolopt using a unique training sample (Column 1), afterwards divided between extended
(Column 2) and point-like (Column 3). The photo-z are also computed by splitting the sources between the two groups and training them separately. For this
case, the accuracy for extended and point-like are presented in Columns 4 and 5. In Column 6, we recombine the sample. The improvement can be seen by
comparing the column Combined with BESTmagcolopt. All quantities are calculated on the blind test set extracted from the BESTmagcolopt sample.

BESTmagcolopt Limited to: With specific training:
Extended Point-like Extended Point-like Combined

Number of sources 1686 598 1088 598 1088 1686
|bias| 0.0102 0.0097 0.0107 0.0005 0.0168 0.0099
σ 0.121 0.089 0.136 0.051 0.142 0.109
σ NMAD 0.056 0.042 0.068 0.029 0.082 0.053
σ 68 0.069 0.050 0.082 0.032 0.096 0.071
η 12.74 7.69 15.57 1.67 19.40 12.59

6 PHOTO-Z ESTIMATION AND RELIABILITY

In the previous section, we analysed the impact of different factors
on the accuracy of photo-z for X-ray-selected sources. However,
that analysis was done only on a small sample of the sources in
Stripe 82X, for which all the photometric points were available. It
will be possible to use all what we have learned on tens of thousands
of square degrees of sky only when surveys such as LSST (Ivezić
et al. 2019) and SpherEx (Dore 2018) will come online. For the
time being, in case of photo-z estimated via ML using catalogues of
photometric points expressed in magnitudes, we face the problem
that for many sources some of the values are missing. For this
reason, in order to provide a photo-z for most of the sources, we
prioritized the sample divided in subgroups that share the same
multiwavelength coverage, sorted by accuracy in terms of σ NMAD:

(i) SDSS, VHS, WISE, and IRAC (sdssVWI)
(ii) SDSS, VHS, and WISE (sdssVW);
(iii) SDSS, VHS, and IRAC (sdssVI);
(iv) SDSS and WISE (sdssW);
(v) SDSS and IRAC (sdssI);
(vi) SDSS and VHS (sdssV);
(vii) SDSS.

In addition, with the goal of comparing the results with those
obtained via SED fitting in A17, we have created a sample,
MLPQNAmerged, where for each source we consider the photo-z
computed via MLPQNA using the data set with the highest accuracy
available.

This sorting, with the obvious limitation of producing photo-
z with different accuracy across the field, offers nevertheless the
possibility to characterize their quality as a function of the amount of
photometric bands and the wavelength coverage. The results of the
metrics used for measuring the quality of the photo-z are presented
in Table 8 for the entire sample and in Table 9 for the sources
that are in common to all samples. A visualization of the results is
also presented in Fig. 5, which provides the comparison between
spectroscopic and photometric redshifts computed with MLPQNA
for the sources in each sub-sample and in A17. Here, we plot only
the sources that eROSITA will detect. The photometric coverage,
limited to all optical bands, reduces the sample by 5 per cent, from
1535 down to 1471 and produces an excess of high-redshift values
for sources that are actually at low redshift. The effect can be
mitigated by adding redder bands, with the MIR bands from WISE
being more efficient than the NIR bands from VHS. The combined
addition of NIR and MIR photometric points removes most of the
outliers, but it also reduces the original sample by 35 per cent (from
1535 to 1019 sources).

However, at the X-ray flux of eROSITA, and when SDSS, VHS,
WISE, and IRAC data are simultaneously available, MLPQNA
performs better than the SED-fitting technique, with a lower fraction
of outliers and the reassuring absence of systematics (Fig. 6). The
result is even more impressive if we consider the limited size of
the training sample (contrary to Ruiz et al. 2018, only spectroscopy
available within the Stripe 82X field is used).

At the depth of eROSITA, the two methods are equally per-
forming, with essentially the same accuracy and fraction of outliers
(Fig. 7).

ML facilitates the process of computing reliable photo-z when
the number of photometric points is sufficient, because it avoids
any assumption on the type of templates needed in the library when
SED-fitting technique is used. As underlined in A17, this is a lengthy
and risky procedure, since a slightly different set of template SEDs
can produce vastly different results. However, when only a limited
number of photometric points is available, SED fitting remains a
better approach, as it provides more reliable results and smaller
fraction of outliers for the entire sample.

Fig. 5 also shows that the performance of sdssVWI is higher
compared to sdssVW and sdssVI. This is due to the fact that, as
can be seen in Fig. 4 of the official WISE web site,2 although W1
and W2 are centred almost at the same wavelength of IRAC/CH1
and IRAC/CH2, they are broader, with W1(W2) extending to
shorter(longer) wavelength, with respect to CH1(CH2). Using
simultaneously the four bands increases the characterization of the
SEDs.

IRAC photometry is deeper and more precise (i.e. smaller
photometric errors) than WISE photometry and this explains why, at
the depth of eROSITA, sdssVI performs better than sdssVW. As we
discussed in Section 5.1, a precise photometry helps in disentangling
the correct SED of the sources and this is particularly true for the
bright X-ray sources. In contrast, Table 8 shows that when the
sample includes also faint sources, sdssVW performs better that
sdssVI. This can be explained by considering that the sources start
to be dominated by the host, with less differences in their SED and
for this reason better determined using a larger wavelength coverage
than a precise photometric point.

It is worth noting that, although IRAC data are available only
for certain areas of the sky, the all-sky observations with WISE is
ongoing. Already the most recent data release (Schlafly, Meisner &
Green 2019) is 0.7 mag deeper than the data used here. So it
is plausible to predict that the precision over the entire sky for
eROSITA is well represented by the sdssVI case and will not be
worse than the sdssVW case.

2http://wise2.ipac.caltech.edu/docs/release/prelim/expsup/sec4 3g.html
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Table 8. Summary of all statistical results for the sub-samples with different photometric coverage, listed in decreasing order or reliability (based on σNMAD).
In MLPQNAmerged, we list the best photo-z available for each source. All quantities are calculated on blind test sets. For comparison, on the last two columns
we report σNMAD and η for the same sub-sample in A17.

Number of
sources |bias| σ σ 68 σNMAD η σNMADA17 ηA17

(1) sdssVWI 1686 0.0102 0.121 0.069 0.056 12.74 0.059 13.3
(2) sdssVW 1889 0.0163 0.169 0.077 0.065 16.20 0.060 13.2
(3) sdssVI 1279 0.0210 0.134 0.079 0.067 16.50 0.057 13.4
(4) sdssW 2121 0.0193 0.190 0.078 0.069 16.55 0.061 13.8
(5) sdssI 1595 0.0152 0.170 0.089 0.077 17.49 0.059 15.1
(6) sdssV 2142 0.0247 0.264 0.108 0.089 23.24 0.060 13.9
(7) sdss 2747 0.0410 0.270 0.104 0.087 24.17 0.063 15.7
(8) MLPQNAmerged 2780 0.0178 0.173 0.082 0.068 16.51 0.063 15.9

Table 9. Same of Table 8, but using only sources in common across all
samples.

|bias| σ σ 68 σNMAD η

(1) sdssVWI 0.0075 0.119 0.070 0.059 11.99
(2) sdssVW 0.0147 0.166 0.077 0.065 16.57
(3) sdssVI 0.0164 0.126 0.078 0.065 15.07
(4) sdssW 0.0197 0.188 0.078 0.066 14.97
(5) sdssI 0.0096 0.143 0.088 0.075 15.07
(6) sdssV 0.0257 0.233 0.110 0.090 21.37
(7) sdss 0.0287 0.224 0.107 0.085 22.79
(8) A17 - - - 0.059 11.96

We usually assess the accuracy of photo-z using a single value
and we tacitly assume that two independent methods with similar
statistics will provide the same photo-z value for a given source. This
is clearly not the case, as shown in Fig. 7, where, for the sources in
sdssVWI with spectroscopic redshift, we plot the difference between
photo-z and zspec for the redshifts computed with MLPQNA (in
cyan) and LEPHARE (in red). It is interesting to note that only a small
number of sources are simultaneously outliers in both methods. The
majority are method-dependent, thus ruling out the possibility that
these sources are outliers because they are peculiar objects (e.g.
varying objects).

Fig. 5 has already shown how, by adding more bands, the overall
accuracy improves and the fraction of outliers decreases. But, are the
outliers just being reduced or are there sources that became outliers
with the increasing of the photometric bands? To this question we
answer in Fig. 8. There, for each combination of bands, we see
that there are sources having the correct photo-z computed with a
limited number of bands and that become outliers when more bands
are considered. These are a small fraction of the sources, and they
can be explained by either unstable photometry (i.e. photometry
with large errors), or by a non-representative spectroscopic sample.

Finally, the left-hand panel of Fig. 9 shows, for each source
with spectroscopic redshift, the details of the relative comparison
between the photo-z computed via MLPQNA for the various
photometric sets and LEPHARE from A17. Because all the photo-
z incarnations used the same spectroscopic sample, the bulk of the
sources in each plot lies on the one-to-one relation (red dotted lines).
This is generally not the case when the same comparison is done
using the sources for which no spectroscopic redshift is available
(right-hand panel of Fig. 9). However, it is reassuring that, despite
the small size of the sample, the photo-z computed with MLPQNA,
using SDSSVWI sample, agree with those computed in A17. In
contrast, the second column of the right-hand panel of Fig. 9 shows

how computing the photo-z using only SDSS creates an excess of
sources at z ∼0.7 and ∼1.1. The remaining comparison cases are
reported, for completeness, in Appendix A (Figs A1 and A2).

To further test our accuracy, we decided to compare the results
against the 257 new spectroscopic redshifts newly presented in
LaMassa et al. (2019). Table 10 shows the photo-z accuracy for
MLPQNA and LEPHARE for this sub-sample of objects. Once again,
the noticeable difference in the accuracy and fraction of outliers
obtained (see Tables 8 and 9 for the comparison) for every data
set, points to the importance of the training sample that must be
representative of the entire population, in type, but also in fraction
to the total. This new sample covers the same redshift range as the
original one, but it is dominated by fainter sources (see Fig. 2). The
same issue affects, although marginally, also the photo-z computed
with SED fitting. This is not surprising if one takes into account the
fact that the templates, to be considered in the library, are determined
by looking at the properties of the spectroscopic sample. However,
in the case of SED-fitting the effect is minor, because only the SED
type is considered and not its frequency in the sample.

7 PDZ ESTIMATION AND RELIABILITY

It is well known that SED-fitting algorithms tend to underestimate
the error associated to the photo-z (Dahlen et al. 2013). But what
about the PDZ?

The PDZ is a standard product of SED-fitting algorithms and can
be used in assessing how reliable a photo-z and consequently fitted
SEDs are. Larger the PDZ, more secure the redshifts. In addition,
the PDZ is now routinely used in luminosity functions (e.g. Buchner
et al. 2015; Miyaji et al. 2015; Fotopoulou et al. 2016, to quote just
a few). The computation of the PDZ is a novelty in ML and here we
want to test the reliability of the PDZ computed using METAPHOR
with respect to the PDZ computed in A17 with LEPHARE.

For the analysis described below, it is important to understand
how the PDZ is represented in the two methods. For LEPHARE, the
range covered is pre-defined by the user. In A17, the photo-z was
searched between redshift 0 and 7, in bins of 0.01 up to redshift 6.
Between redshifts 6 and 7, the bin sizes are set to 0.02. Thus, for
each source we have a file of 651 bins. For each source, the higher
PDZ is normalized to 1. It can happen that the PDZ has non-zero
values only in a limited range of bins, when the photo-z solution
is well defined. In METAPHOR, although the range covered could
be pre-defined by the user, it is recommended to set it within the
extremes of the zspec distribution of the training sample. This because
METAPHOR, having an empirical method as internal engine, does
not produce results outside the limits of zspec. Therefore, in this case,
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Figure 5. Comparison between spectroscopic redshift and photo-z for the sources cut at the eROSITA flux and divided on the basis of available photometric
points. For comparison, the result from A17 is reported in the lower right panel of the figure. By comparing the accuracy and the fraction of outliers in every
panel with the corresponding row in Table 8, we see that computing photo-z using only SDSS for bright X-ray sources is not recommended.

it has been set to [0, 5.5] and since only one size of bins is allowed,
we choose 0.01. It means that for each source we have a file of 551
bins. As for LEPHARE, also with METAPHOR, if the solution is well
defined, the PDZ has non-zero values only in a limited range of bins.

As discussed in Amaro et al. (2018), a unique and universal
method to evaluate the PDZ reliability is extremely difficult to find.
One value often used is: PDZ BEST = ∫ zbest+0.1(1+zbest)

zbest−0.1(1+zbest)
PDZ(z)dz

(cf. LEPHARE, Ilbert et al. 2006, documentation3). Here, in
order to compare the results, we calculated PDZ BEST also for
METAPHOR. For illustrative purpose, Fig. 10 shows an example

3http://www.cfht.hawaii.edu/ arnouts/LEPHARE/DOWNLOAD/lephare d
oc.pdf

of PDZ computed with METAPHOR and compares it with the
PDZ computed with LEPHARE for the same random sources in the
catalogue.

First, we tested how often the spectroscopic redshift is close to the
peak of the PDZ. This is somewhat similar to what is done in Dahlen
et al. (2013), where the fraction of sources with spectroscopic
redshift is within 1σ or 3σ error from the photo-z. The analysis
is shown in Table 11, where we split the cases in classes, with the
following meaning:

(1) zspec is in the bin including the PDZ peak;
(2) zspec is in the bin beside to one including the PDZ peak;
(3) zspec is in a bin for which the value of PDZ is zero, but it is in

a bin beside to the one containing the PDZ peak;
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Figure 6. The same as the last two bottom right panels of Fig. 5, but this time limiting the sources from A17 to the same for which MLPQNA can compute
photo-z using all the photometry available. The sources are colour coded as a function of their X-ray fluxes. With SED fitting, the outliers with overestimated
redshift are basically X-ray bright.

Figure 7. Difference between spectroscopic redshift and photo-z computed
via MLPQNA and LEPHARE for the sub-sample of 1689 sources with SDSS,
VHS, WISE, and IRAC photometry, regardless their X-ray flux. Sources
that are outliers for MLPQNA (LEPHARE) are plot in cyan (orange). For
this sub-sample, with complete photometry, the accuracy and fraction of
outliers are very similar for the two methods. Nevertheless, the majority of
the outliers are such only for one of the two algorithms. For the common
outliers along the black one-to-one line, the two methods agree in terms of
predicted photo-z.

Figure 8. One-to-one comparison of accuracy for photo-z computed via
MLPQNA with different combinations of photometry. For this plot only
sources present in all the sub-samples have ben used.

(4) zspec is in a bin for which the value of PDZ is more than zero
(i.e. it contains classes 1 and 2);

(5) zspec is in a bin for which the value of PDZ is zero, but beside
to a bin for which the value of PDZ is not zero;

(6) zspec is in a bin for which the value of PDZ is zero (contains
classes 3 and 5).

For this test, we have considered only the sources with zspec

and for which the photometry in SDSS, VHS, WISE, and IRAC is
always available. In this way, the two methods got access to the same
information. From Table 11, it seems that METAPHOR is superior
to the PDZ produced by LEPHARE in all the classes considered for the
comparison. However, it is worth to keep in mind that the numbers
presented in table are depending on the bin sizes chosen for the two
experiments. We did not experiment with different bin sizes.

Second, in Fig. 11 we looked at the PDZ BEST cumulative
distribution for the sub-samples and compared with the results from
A17, separating the sources with reliable photo-z (left-hand panel)
from the outliers (right-hand panel).

Overall, METAPHOR is more conservative; while with LEPHARE,
less than 10 per cent of the sources with spectroscopic redshift have
PDZ BEST<50 per cent, the distribution for the sub-samples with
PDZ computed by METAPHOR is completely different (32 per cent,
64 per cent, 98 per cent, 86 per cent, and 33 per cent for sdss, sdssV,
sdssW, sdssVW, and sdssVWI, respectively).

The overconfidence of the PDZ computed by LEPHARE is even
more evident in the right panel of Fig. 11, where we focus on the
outliers. The various PDZ computed with METAPHOR are low for
the large majority of the samples, with no PDZ computed at all for
the outliers in sdssVWI. In contrast, LEPHARE assigns a PDZ BEST
>80 per cent to the 42 per cent of its outliers.

This indicates that the PDZ computed via SED fitting, using
only a limited number of broad-band photometric points, cannot
be compared with the accuracy obtained in deep fields with many
bands, where the precision of the PDZ is well tested (e.g. XMM–
COSMOS Lusso et al. 2010). Here, with less than a dozen of
photometric points, the PDZ BEST is very high for the majority
of the outliers. One can argue that the outliers are not more than
20 per cent overall. However, neither the outliers nor their photo-z
are randomly distributed. Therefore, a too optimistic PDZ is more
affecting certain regions of the mag/redshift/luminosity parameter
space. In contrast, ML does not oversell the photo-z for the outliers
and the PDZ BEST remain very low in general.
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Figure 9. Details of the comparison between photo-z computed via SED fitting (A17) and MLPQNA for the sample for which spectroscopic information is,
respectively, available (left-hand panel) and not available (right-hand panel). The cyan points indicate the sources for which the redshift could be computed
only after considering supplementary photometry in addition to SDSS.

8 SUMMARY AND CONCLUSIONS

With the launch of eROSITA, we are facing the challenge of
computing the photo-z in a reliable and fast manner for about 3
million sources distributed in the entire sky, with multiwavelength
data that are non-homogeneous in depth and wavelength coverage.

Given that photo-z computed with ML are becoming the trend
in cosmological surveys involving normal galaxies, we wanted
to test whether this is a viable solution also for AGN. With this
purpose in mind we have used the multiwavelength catalogue of the
counterparts to the X-ray-selected sources detected in Stripe 82X
(LaMassa et al. 2016), presented in A17. As ML method we have
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Table 10. Summary of all statistical results for the new sample of 258 spectroscopic redshifts presented in LaMassa et al. 2019.

Number of sources |bias| σ σ 68 σNMAD η

A17 258 0.0066 0.292 0.129 0.089 27.07
sdss 227 0.0037 0.367 0.158 0.129 33.48
sdssV 135 0.0357 0.322 0.211 0.149 41.48
sdssW 144 0.0073 0.288 0.173 0.137 34.03
sdssI 110 0.0119 0.202 0.184 0.163 40.91
sdssVW 111 0.0459 0.272 0.167 0.143 33.33
sdssVI 58 0.0343 0.255 0.161 0.116 32.76
sdssVWI 25 0.0298 0.151 0.152 0.104 32.00
MLPQNAmerged 229 0.0182 0.270 0.192 0.154 38.43

Figure 10. Example of PDZ obtained by METAPHOR and LEPHARE for
the object ID1431 (SDSS J221448.69 + 002508.7). The true redshift is
represented by the black dashed line. The coloured areas represent the
PDZ BEST. In this specific case, the PDZs are both limited to the redshift
range 1–3 for illustration purposes.

Table 11. Distribution of sources with spectroscopy from A17 and in the
sdssVWI sample, among classes defined as a function of the position of the
redshifts within the PDZ.

Class METAPHOR (per cent)
A17 (per

cent)

1 5.4 2.8
2 14.0 7.8
3 0.0 0.1
4 99.9 96.8
5 0.0 0.3
6 0.1 3.2

tested MLPQNA (Brescia et al. 2013). The catalogue containing
the photo-z computed for this paper, is released here. An excerpt of
it is shown in Appendix A1.

We have compared our photo-z with those computed via SED
fitting with LEPHARE (Arnouts et al. 1999; Ilbert et al. 2006),
presented in A17. The main conclusions drawn from the comparison
are:

(i) Before computing the photo-z with MLPQNA and ML in
general, a feature analysis should be performed. Besides the obvious
advantage of reducing the parameter space under analysis (i.e. to
minimize the regression problem complexity), the feature selection
mechanism aims also at finding an exhaustive subset of features,

able to maintain a high photo-z prediction accuracy, but avoiding
any information redundancy occurrence and thus degeneracy in the
results. The best features are not fixed but change, depending on
the data set available. When only magnitudes are considered, the
K band is by far the most important feature. The reason is easily
understood keeping in mind the SED of a galaxy. The rest-frame
K band indicates the knee of the SED and this clear feature can be
used to determine the redshift. When also colours are available, the
importance of single-band photometry is drastically reduced and
the first four colours in Fig. 4 represents more than 63 per cent of
the key feature relevance.

(ii) In this particular experiment, with a rich training sample able
to represent the parent population and with optical, NIR, and MIR
data available, the accuracy of the photo-z computed with MLPQNA
is comparable to the accuracy obtained via SED fitting with LEP-
HARE. Comparable are also the fractions of outliers. When limiting
the sample to the bright X-ray sources that eROSITA will detect
(by comparing Table 8 and Fig. 6), MLPQNA performs slightly
better (smaller fraction of outliers and absence of systematics).
This is reassuring, given that these types of data are or will be
available for the entire sky, thanks to the increasing depth of WISE
(Schlafly et al. 2019) and the planned launch of SpherEx (Dore
2018).

(iii) Once that the training sample is large enough, the remaining
limitation for ML algorithms is in the treatment of missing data.
Currently, in our experiment, about 35 per cent are lacking a photo-
z for this reason. However, the use of fluxes instead of magnitudes
and adding the photometric errors to the list of parameters (using
e.g. Reis et al. 2019) should solve the issue.

(iv) As for photo-z computed via SED fitting, the accuracy of
photo-z can improve for AGN with small photometric error and for
which information on the morphology (e.g. point-like or extended)
is available.

(v) As mentioned already in literature, the completeness of the
training sample is extremely crucial for ML algorithms. We can
confirm that this is even more the case for AGN. It can be seen
by comparing the accuracy obtained with the spectroscopic sample,
available when this work started, with the accuracy obtained on the
257 new, fainter sources from LaMassa et al. (2019). The accuracy
decreases and the fraction of outliers increases noticeably. The
problem is not limited to ML, as also the results from A17 worsened
for this new sample. As discussed in A17, the selection of the
templates is based on the available spectroscopic sample. It means
that irrespective of the method that will be used for computing the
photo-z for eROSITA, we will need to make sure to define a training
sample gathering from all the various surveys, (CDFS, COSMOS
etc.), all the sources with X-ray properties typical of those that
eROSITA will detect. This is similar to what Ruiz et al. (2018) has
done for 3XMM.
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Figure 11. PDZ BEST cumulative distribution for the entire spectroscopic sample (left) and for the outliers in the respective sub-samples used in this work
(right), compared with the results from A17. The comparison is missing sdssVI and sdssI, only for brevity. While the majority of the sources have a high
PDZ BEST (e.g. larger than 85 per cent) in A17, METAPHOR is much more conservative and only a handful of sources reach such value. Surprisingly,
LEPHARE assigns a high reliability to the photo-z (high PDZ BEST) also to the outliers, with more that 50 per cent of the outliers having PDZ BEST> 80.

(vi) The PDZ computed by METAPHOR is reliable and tends to
be in general more conservative than the one computed by LEPHARE.
Even in the best case of complete multiwavelength coverage only
for very few sources, the PDZ from METAPHOR is high. This is
contrary to what happens with LEPHARE, where a high PDZ BEST
is obtained also for sources for which the photo-z is an outlier.
While we recommended to always use the PDZ when working with
photo-z, we also want to point out that in surveys covering wide
areas with shallow data, the accuracy of the PDZ computed via SED
fitting should not be taken for granted. It is important to underline
that this is not the case for the PDZ provided, for example, in
COSMOS, where not only the photo-z are reliable, but also the type
1/2/gal classification is mostly correct (e.g. Lusso et al. 2010). The
limited reliability obtained here with PDZ computed via SED fitting
is due to the photometry available only from broad-band filters, with
a complete lack of photometry from intermediate- and narrow-band
photometry (see Salvato et al. 2018, for a complete discussion).
To be aware of the issue is important when, e.g. computing
luminosity functions for sources with limited photometry. This was
also noticed and pointed out in Buchner et al. (2015). There, the
authors suggested a method to correct the PDZs, making them
more realistic and showing how the correction needed was a factor
of two larger for the survey with photo-z computed using only
broad-band photometry (i.e. Aegis-X; Nandra et al. 2015), rather
than for COSMOS (Salvato et al. 2011) and CDFS (Hsu et al.
2014), where also intermediate- and narrow-band photometry was
available.

(vii) Assuming that a large and representative spectroscopic
sample can be constructed for eROSITA, the only real limitation
remains the multiwavelength coverage on the entire sky. Although
many all-sky surveys exist (e.g. DES, SkyMapper, Pan-StARRS,
VHS, AllWISE/unWISE, deep enough surveys, able to allow
reliable results with ML, are still not available in all bands. Adopting
Stripe 82X as reference, we expected that for eROSITA, at least for
2/3 of the final sample, reliable photo-z computed with ML can be
obtained. SED-fitting will continue to provide more reliable results
for the rest of the cases. The public catalogue with all our photo-z
estimations is publicly released (see Appendix A for details.)
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SUPPORTING INFORMATION

Supplementary data are available at MNRAS online.
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content or functionality of any supporting materials supplied by
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directed to the corresponding author for the article.

APPENDIX A: PHOTO-Z COMPARISON AND
PUBLIC CATALOGUE

A1 Catalogue release

The produced catalogue of photo-z, obtained by different cross-
matches among available surveys as well as their final best com-
bination, is made publicly available via the CDS Vizier facility. A
sample of the internal structure is shown in Table A1. The catalogue
is indexed on the first column, which can be used to retrieve all
other information about spectroscopic redshifts and X-ray source
counterparts, by cross-matching this catalogue with the one referred
in A17. The other columns, from left to right, are respectively,
RA and Dec. of optical counterparts, followed by the photo-z
estimations obtained by all discussed combinations of surveys, i.e.
SDSS, VHS, IRAC, and WISE. The last column is related to the best
photo-z obtained from all the previous combinations, as explained
in the main text.
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Figure A1. Comparison between photo-z computed via SED fitting (A17) and MLPQNA for the sample for which spectroscopic information is available. The
cyan points indicate the sources for which the redshift could be computed only after considering supplementary photometry in addition to SDSS.
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Figure A2. Comparison between photo-z computed via SED fitting (A17) and MLPQNA for the sample for which spectroscopic information is not available.
The cyan points indicate the sources for which the redshift could be computed only after considering supplementary photometry in addition to SDSS.

Table A1. Example of contents of the photo-z catalogue made publicly available.

REC NO CTP RA CTP DEC sdssVWI sdssVW sdssVI sdssW sdssI sdssV sdss MLPQNA merged

1 0.980191 0.2046045 1.06487 1.11284 −99.0 1.0867 −99.0 1.16123 1.10542 1.06487
2 0.9812111 0.1268089 1.19282 0.955105 −99.0 0.98219 −99.0 1.10901 1.14375 1.19282
3 0.9939954 0.0559024 −99.0 −99.0 −99.0 −99.0 −99.0 −99.0 1.44947 1.44947
4 1.0114936 0.1948067 −99.0 0.194302 −99.0 0.10898 −99.0 0.25149 0.16807 0.194302
5 1.0116661 0.1634697 −99.0 −99.0 −99.0 −99.0 −99.0 −99.0 −99.0 −99.0
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