
Galaxy Morphology Network: A Convolutional Neural Network Used to Study
Morphology and Quenching in ∼100,000 SDSS and ∼20,000 CANDELS Galaxies

Aritra Ghosh1 , C. Megan Urry2 , Zhengdong Wang3 , Kevin Schawinski4 , Dennis Turp4, and Meredith C. Powell2,5
1 Yale Center for Astronomy and Astrophysics, and Department of Astronomy, Yale University, New Haven, CT, USA; aritra.ghosh@yale.edu

2 Yale Center for Astronomy and Astrophysics, and Department of Physics, Yale University, New Haven, CT, USA
3 Department of Computer Science, Yale University, New Haven, CT, USA

4Modulos AG, Technoparkstr. 1, CH-8005, Zurich, Switzerland
5 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA, USA

Received 2019 September 11; revised 2020 March 25; accepted 2020 April 15; published 2020 June 2

Abstract

We examine morphology-separated color–mass diagrams to study the quenching of star formation in ∼100,000
(z∼ 0) Sloan Digital Sky Survey (SDSS) and ∼20,000 (z∼ 1) Cosmic Assembly Near-Infrared Deep Extragalactic
Legacy Survey (CANDELS) galaxies. To classify galaxies morphologically, we developed Galaxy Morphology
Network (GAMORNET), a convolutional neural network that classifies galaxies according to their bulge-to-total
light ratio. GAMORNET does not need a large training set of real data and can be applied to data sets with a range
of signal-to-noise ratios and spatial resolutions. GAMORNETʼs source code as well as the trained models are made
public as part of this work. We first trained GAMORNET on simulations of galaxies with a bulge and a disk
component and then transfer learned using ∼25% of each data set to achieve misclassification rates of 5%. The
misclassified sample of galaxies is dominated by small galaxies with low signal-to-noise ratios. Using the
GAMORNET classifications, we find that bulge- and disk-dominated galaxies have distinct color–mass diagrams, in
agreement with previous studies. For both SDSS and CANDELS galaxies, disk-dominated galaxies peak in the
blue cloud, across a broad range of masses, consistent with the slow exhaustion of star-forming gas with no rapid
quenching. A small population of red disks is found at high mass (∼14% of disks at z∼ 0 and 2% of disks at
z∼ 1). In contrast, bulge-dominated galaxies are mostly red, with much smaller numbers down toward the blue
cloud, suggesting rapid quenching and fast evolution across the green valley. This inferred difference in quenching
mechanism is in agreement with previous studies that used other morphology classification techniques on much
smaller samples at z ∼ 0 and z∼ 1.

Unified Astronomy Thesaurus concepts: Galaxies (573); Galaxy classification systems (582); Galaxy evolution
(594); Galaxy quenching (2040); Astronomy data analysis (1858); Convolutional neural networks (1938); Neural
networks (1933)

1. Introduction

We know from large-scale surveys that both local and high-
redshift galaxies show a bimodal distribution in the galaxy
color–mass space (Strateva et al. 2001; Baldry et al.
2004, 2006; Brammer et al. 2009) with a “blue cloud”, a
“red sequence”, and a “green valley.” Galaxy color–mass
diagrams are useful for studying galactic evolution, as the
stellar mass of a galaxy indicates its growth over time, and the
color tracks its rate of star formation. The standard interpreta-
tion of the bimodal color–mass distribution is that, because
there are few galaxies in the green valley, star formation in blue
cloud galaxies must be quenched rapidly, perhaps aided by
emission from an active galactic nucleus (AGN; Bell et al.
2004; Faber et al. 2007). Direct evidence of this AGN feedback
remains murky, however (Harrison 2017).

Galaxy morphology adds a third interesting dimension to the
color–mass space. Because elliptical galaxies typically form in
major mergers, and galactic disks usually do not survive them,
morphology can be used as a tracer of the recent merger history
of a galaxy. The observed bimodality in the color–mass
diagram (as well as interpretations therefrom) comes from
superposing distinct populations with different morphological
types, as first shown by Schawinski et al. (2014), who used
Galaxy Zoo morphological classifications to study local (z∼ 0)
galaxies. They suggested that there are two separate evolu-
tionary tracks for galaxies: (1) major mergers forming

ellipticals from disk-dominated galaxies, accompanied by
AGN triggering and rapid quenching of star formation, and
(2) slow, secular growth of disk-dominated galaxies, until they
reach a critical halo mass, after which the remaining cold gas is
slowly consumed and the stellar population gradually reddens.
At z∼0, the latter population is an order of magnitude larger
than the merger-created ellipticals.
Still, most star formation and the most pronounced galaxy

evolution happen not locally but at z∼1 and above. Thus, it is
important to investigate the galaxy color–mass diagram at
z1. Powell et al. (2017) studied galaxies from The Great
Observatories Origins Deep Survey (GOODS)-N and GOODS-
S at z∼1 and found that disks and spheroids have distinct
color–mass distributions in rough agreement with the results at
z∼0. From the distribution of X-ray-selected AGN hosts in
this sample, they concluded that AGN feedback may quench
star formation in galaxies that undergo major mergers, but these
are still less than half the galaxy population. However, this
study was done with a sample of only 2651 disks and 126
spheroids. Much larger studies, across a broader redshift range,
will better illuminate the effect of mergers and AGN on galaxy
evolution.
The two traditional ways of obtaining morphological

classifications—visual classification and fitting light profiles
—are not easily scalable to the large data volumes expected
from The Large Synoptic Survey Telescope (LSST), the Wide
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Field Infrared Survey Telescope (WFIRST), and Euclid. The
most popular galaxy light profile fitting program, GALFIT
(Peng et al. 2002), and automated versions of it like
GALAPAGOS (Barden et al. 2012), suffer from the fact that
the quality of the fit depends heavily on the input parameters,
and when dealing with hundreds of thousands of galaxies, such
hand-refinement of input parameters is an impossible task.
There have been attempts to employ visual classifications on
large galaxy samples via citizen science projects like Galaxy
Zoo (Lintott et al. 2008, 2011), but even these will fail to keep
up with the coming data volume. Moreover, reliable visual
classifications require a decent signal-to-noise ratio (S/N), take
time to set up and execute, and require an extremely careful de-
biasing of the vote shares obtained (Lintott et al. 2008;
Simmons et al. 2017).

For these reasons, using machine learning to classify galaxy
morphology is particularly attractive. Data available from the
Sloan Digital Sky Survey (SDSS) inspired early attempts at
using machine learning to classify galaxies morphologically on
a large scale (e.g., Ball et al. 2004; Kelly & McKay 2004;
Banerji et al. 2010). These methods required the user to select
proxies for morphology (such as color, concentration index,
and spectral features) as inputs to the models. However, as the
proxies could have an unknown and biased relation with galaxy
morphology, these early networks were not ideal substitutes for
the traditional classification methods.

In the last few years, convolutional neural networks (CNNs)
have revolutionized the field of image processing (Lecun et al.
2015; Schmidhuber 2015). They are ideal for galaxy morph-
ology classification as they do not require selection of
morphological proxies by hand and the network itself decides
on which features of the image best discriminate among the
different classes. The first serious attempt at using a CNN to
classify galaxies morphologically came out of the “Galaxy
Challenge” organized by Galaxy Zoo, where teams competed
to reproduce the vote shares of each question in Galaxy Zoo 2
using a CNN (the top entry was by Dieleman et al. 2015). This
was followed by the work of Huertas-Company et al. (2015),
who used a CNN to reproduce visual classifications for
galaxies in the Cosmic Assembly Near-Infrared Deep Extra-
galactic Legacy Survey (CANDELS). Tuccillo et al. (2018)
used domain adaptation combined with one-component Seŕsic
simulations to reproduce morphological classifications for
∼5000 CANDELS galaxies. There have also been attempts
at using CNNs for measuring photometric redshifts from
galaxy images (Hoyle 2016), doing star/galaxy separation
(Kim & Brunner 2017), detecting bars in galaxies (Abraham
et al. 2018), and detecting mergers (Ackermann et al. 2018).
Most of the previous work involving the use of CNNs to

study galaxy morphology has depended on the availability of a
large training set of galaxies with known properties. However,
if CNNs are to truly replace traditional methods for morph-
ology classification, then there needs to be a single prescrip-
tion/network that works across multiple data sets and does not
require an already classified large training set.

In this paper, we introduce Galaxy Morphology Network
(GAMORNET), a CNN that can classify galaxies according to
their bulge-to-total ratio (LB/LT) for very different data sets
without the need for a large, pre-classified training set of real
galaxies. We first trained our network on simulated galaxies
with both bulge and disk components and then transfer learned
on a small part of our real sample to produce bulge/disk

classifications for ∼80,000 (z∼0) SDSS g-band galaxies and
∼20,000 CANDELS (z∼ 1) H-band galaxies. A collection of
12 randomly chosen galaxy image cutouts from both data sets
with their GAMORNET classifications is shown in Figure 1.
Using the morphology classifications, we then examine the
color–mass diagrams of the two samples, separated by
morphology, in order to study the quenching of star formation
at z∼0 and 1.
We describe the details of the SDSS and CANDELS data

that we use in Section 2. In Section 3, we describe our
simulations, the CNNs we use, and our transfer learning
algorithm. In Section 4, we present the results of the
morphology classification, including the color–mass diagrams,
and in Section 5, we summarize our results and discuss future
applications of GAMORNET.
We make all of the source code used in this work public

along with the trained CNN models. We also release the
GAMORNET morphological predictions for all of the SDSS and
CANDELS galaxies in our data sets. All of the code is being
made available under a GNU General Public License v3.0, and
more details of the public data release are summarized in the
Appendix.

2. Data Sets Used

One of the primary aims of this paper is to demonstrate how
GAMORNET can be used to identify bulge- and disk-dominated
galaxies in different data sets without requiring extensive training
on real data. Here, we work with two data sets: the SDSS (York
et al. 2000), for nearby galaxies (z∼ 0), and CANDELS (Grogin
et al. 2011; Koekemoer et al. 2011), for galaxies at z∼1.
Together, these data allow us to probe galaxy evolution at
different epochs of star formation and black hole growth.
We first created galaxy samples with which we train and test

GAMORNET. Specifically, we identified galaxies in each
survey for which bulge/disk decomposition had already been
done or which had already been morphologically classified in
some other way.
For the SDSS sample, we used 112,547 galaxies in the redshift

range 0.02�z�0.07 that were imaged in the g band and had
bulge fractions determined by Simard et al. (2011), who fitted
double Sérsic profiles with fixed indices n=4 (pure bulge) and
n=1 (pure disk). For each galaxy, we prepared square cutouts
of 167 pixels on a side, centered on the galaxy, with a resolution
of 0 396 per pixel. We used 30,000 of these for the process of
transfer learning, described in Section 3.4 and the remaining
82,547 galaxies to test the performance of the network. In order
to calculate the u−r color for each galaxy, we used extinction-
corrected model SDSS magnitudes from the NYU-VAGC
(Blanton et al. 2005) and adopted K corrections to z=0.0. We
obtained aperture and extinction-corrected specific star formation
rates (sSFR) and stellar masses from the MPA-JHU DR7 catalog
(Kauffmann et al. 2003; Brinchmann et al. 2004), which are
calculated using SDSS spectra and broadband photometry.
For CANDELS reference data, we used Sérsic indices from

van der Wel et al. (2012), who fitted the galaxy surface
brightness profiles using GALFIT (Peng et al. 2002) with a
single (free) Sérsic component. From this catalog, we selected
galaxies with redshifts 0.7�z�1.3 and “good” fits (defined
by van der Wel et al. 2012 as matching the galaxy total
magnitude, and having fits that converged, with parameters
within an acceptable range). The ensuing sample of 28,946
z∼1 galaxies from the five CANDELS fields includes 6276
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from the Great Observatories Origins Deep Survey–North
(GOODS-N), 3942 from the Great Observatories Origins Deep
Survey–South (GOODS-S), 7425 from the Cosmic Evolution
Survey (COSMOS), 4911 from the Ultra Deep Survey (UDS),
and 6392 from the All Wavelength Extended Growth Strip

International Survey (AEGIS). We downloaded WFC3/IR
F160W(H) mosaics from the CANDELS website,6 then for
each galaxy, we made square cutouts of 83 pixels×83 pixels

Figure 1. The above figure contains randomly chosen galaxies from both our data sets classified by GAMORNET as being disk-dominated (left column panels), bulge-
dominated (middle column panels), or indeterminate (right column panels). Refer to Section 4.1 for the definitions of these categories. The top two rows show SDSS
cutouts, which are 33 07×33 07 (83 pixels×83 pixels), and the bottom two rows show CANDELS cutouts, which are 4 98×4 98 (83 pixels×83 pixels).
During training, GAMORNET focuses on galaxies located at the center of the image and, thus, can process cutouts with other objects in the frame besides the central
galaxy, as is evident from the images above.

6 http://arcoiris.ucolick.org/candels/data_access/Latest_Release.html
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with a resolution of 0 06 per pixel. We used 7200 galaxy
images for transfer learning and the remaining 21,746 for
testing the performance of GAMORNET. We took the rest-
frame U–R color, stellar mass, and sSFR of each galaxy from
the 3D-HST catalog (Brammer et al. 2012); the stellar masses
are based on spectral energy distribution (SED) fits to stellar
population models with the FAST code (Kriek et al. 2009) as
described in Skelton et al. (2014). The star formation rates used
are from Whitaker et al. (2014) and assume that UV light from
massive stars is re-radiated in the far-infrared.

It is well known that dust extinction can redden galaxies, and
significant reddening has been observed for high-redshift
galaxies (Brammer et al. 2009; Williams et al. 2009;
Cardamone et al. 2010). For the SDSS sample, we make no
reddening correction since Schawinski et al. (2014) showed
that dust correction has a negligible effect on the color–mass
diagram for local galaxies. However, for the higher redshift
CANDELS sample, we corrected the U–R colors using the
Calzetti et al. (2000) extinction law:

( ) ( )D - =U R A0.65 . 1V

The AV values, taken from the 3D-HST catalog, come from the
SED fits to stellar population models (Brammer et al. 2012).

For both data sets, we used only a fraction of the available
sample for transfer learning, leaving a much larger fraction for
testing the performance of GAMORNET. This demonstrates that
GAMORNET can effectively be trained initially on (more
extensive) simulations, then re-trained using a small set of real
data. Thereafter, GAMORNET can successfully classify a much
larger set of real images because it learns to generalize beyond
the training galaxies.

3. Training Our Convolutional Neural Network—
GAMORNET

The first hurdle in training a neural network to do
morphological classifications is finding a large data set that has
already been accurately classified. However, if neural networks
are to be used widely for astronomical analysis, we need a more
flexible approach—one that does not require extensive analysis by
old, slow (legacy) methods during the training phase and that can
be adapted easily to new data sets. Here, we describe how to use
simulated galaxies for the initial training of the classification
network, followed by the application of a machine-learning
technique known as “transfer learning”, wherein a much smaller
set of galaxies, classified using a legacy method, is used to fine
tune a partially trained network. This ensures that the network
becomes adept at classifying real galaxies without requiring too
many of them for the training process.

The process of training GAMORNET to classify galaxy
morphologies consists of the following steps:

1. Simulating galaxies corresponding to the desired data set
(here, SDSS or CANDELS).

2. Initial training of the neural network on those simulated
images.

3. Retraining the neural network using a small part of the
real data at hand; this process is known as transfer
learning.

4. Testing a similar amount of real data to validate the
results.

5. Processing the remainder of the real data through the
trained network to obtain morphological classifications.

The galaxy simulations are described in Section 3.1.
Section 3.2 contains a brief introduction to CNNs and describes
the architecture of GAMORNET, while Section 3.3 describes
the initial training of GAMORNET on the simulations. In
Section 3.4, we describe how we perform transfer learning to
produce the final trained state of GAMORNET.

3.1. Simulations

We simulated galaxies using the GALFIT program (Peng
et al. 2002), which is usually used to fit two-dimensional light
profiles of galaxies. Here, we use it instead to create two-
dimensional light profiles appropriate for the data sets we are
interested in analyzing with GAMORNET.
For each data set, we simulated 100,000 galaxies consisting

of a bulge (Sérsic component with fixed index n= 4; de
Vaucouleurs (1948)) and disk (Sérsic index n= 1). The surface
brightness for a galaxy with a Sérsic profile is given by

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( ) ( )kS = S - -r

r

r
exp 1 , 2e

e

n1

where Σe is the pixel surface brightness at the effective radius
re, n is the Seŕsic index, which controls the concentration of the
light profile, and κ is a parameter coupled to n that ensures that
half of the total flux is enclosed within re.
The parameters required to generate the Sérsic profiles are

drawn from uniform distributions (except the bulge magnitude
and position angle) and the ranges of the distributions used for
both sets of simulations are summarized in Table 1. The galaxy
size parameters were chosen to be representative of bright,
local galaxies (Binney & Merrifield 1998); bulges were chosen
to have a half-light radius between 3.0 kpc and 6.0 kpc; and
disks were assigned half-light radii between 6.0 kpc and
10.0 kpc. To obtain the corresponding pixel sizes, we placed
the samples at z=0.05 and z=1.0 (corresponding to the
mean redshifts of the two samples described in Section 2) using
WMAP7 cosmology (Komatsu et al. 2011) and using the pixel
scale for the appropriate data set. We ensured that the number
of simulated galaxies was sufficiently large such that even
when we consider subsets of galaxies with similar sizes, they
not only span the entire range of LB/LT values but also mimic
the overall bulge-to-total light ratio distribution.
The disk magnitudes were drawn from a uniform distribution

chosen so as to include most galaxies at these redshifts, and the
magnitude of each corresponding bulge is such that it differs
from the disk magnitude by a randomly chosen value between
−3.2 and 3.2. This was done to ensure that the bulge-to-total
ratio varies between about 5% and 95%. Not enforcing this
condition and allowing the bulge magnitude to be independent
of the disk magnitude causes most galaxies in the training set to
have a very high or a very low bulge-to-total ratio, which is not
the case for most galaxies and, in any case, is not detectable.
Instead, we want to train the network on a sufficient number of
galaxies with intermediate bulge-to-total ratios.
To make the two-dimensional light profiles generated by

GALFIT more closely resemble the actual data, we convolved
them with a representative point-spread function (PSF), then
added noise. For the SDSS simulations, we selected the
coordinates of one of the real galaxies in our sample, R.A.:
213.26064353, decl.: 0.14637573, and then reconstructed the
PSF at the corresponding location in the detector using the PSF
information stored in the relevant psField file that we obtained
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from SDSS. To generate the representative noise, we randomly
selected 1000 cutouts from our SDSS sample, masked the
sources in each cutout using SourceExtractor (Bertin 1996),
and then read-in the non-masked pixel values to generate a
large sample of noise pixels. We sampled this collection of
noise pixels randomly to make two-dimensional arrays of the
same size as that of the simulated images and then added them
to the images. To make sure that the PSF chosen is
representative, we reconstructed the PSFs for 12 more
randomly chosen galaxies in our sample and convolved each
one with a simulated SDSS galaxy, before adding noise. By
inspecting the difference images between each image created
using one of the new PSFs and the image created using the
originally used PSF, we found the average pixel value of each
of these difference images to be at least three orders of
magnitude lower than the average pixel value of the galaxy
image created using the original PSF.

For the CANDELS sample, we used the model PSF
generated by van der Wel et al. (2012) for the COSMOS field
and added noise following the same method as for the SDSS
simulations. To make sure that the COSMOS PSF is
representative, we followed a procedure similar to what we
did for SDSS using the GOODS-S and UDS PSFs. We again
found the average pixel value of the difference images to be at
least three orders of magnitude lower than the average pixel
value of the galaxy image created using the original PSF.

The effect of convolving the simulated galaxies with PSF
and adding noise is depicted in Figure 2.
The goal behind convolving with the PSF and adding noise

is not to recreate perfect replicas of the real galaxies in our
samples but rather to train the network on realistic simulated
images for which we know the intrinsic morphologies. This is
why we arbitrarily selected the COSMOS PSF instead of
making simulations for each field separately and used only one
random SDSS PSF. If we were to make more of an effort to
recreate exactly the real data in our sample, then the whole
purpose having a CNN is lost. In that case, the neural network
ends up having a low variance but an extremely high bias, as it
is too closely tied to the training set. Instead, here, the CNN
learns to generalize from fewer examples.
Since the galaxies were independently simulated, the

simulation code could be trivially parallelized, and we make
the simulation code available as a part of our public data release
(see Section A.4).

3.2. The Network

Artificial neural networks, consisting of many connected
units called artificial neurons, have been studied for more than
five decades now. The neurons are arranged in multiple layers
as shown in the schematic representation in Figure 3; each
network has an input layer via which the data is fed into the

Table 1
Parameter Ranges for Simulated Galaxies

Component Name Sérsic Index Half-light Radius Magnitude Axis Ratio Position Angle
(Pixels) (AB) (degrees)

SDSS sample at z∼0

Disk 1.0 10.0–30.0 15.0–22.0 0.3-1.0 −90.0–90.0
Bulge 4.0 4.0–17.0 Disk comp. ± (0, 3.2)a 0.3–1.0 Disk comp. ± (0, 15)b

CANDELS sample at z∼1

Disk 1.0 12.0–25.0 17.0–27.8 0.3–1.0 −90.0–90.0
Bulge 4.0 4.0–14.0 Disk comp. ± (0, 3.2)a 0.3–1.0 Disk comp. ± (0, 15)b

Notes. The above table shows the ranges of the various Sérsic profile parameters used to simulate the training data. Each simulated galaxy has an n=1 disk and an
n=4 bulge component, where n is the Sérsic index. The distributions of all of the simulated parameters are uniform except those for the bulge magnitude and bulge
position angle. See Section 3.1 for more details.
a The bulge magnitude differs from the disk magnitude by a randomly chosen value between −3.2 and +3.2.
b The bulge position angle differs from the disk position angle by a randomly chosen value between −15 and +15.

Figure 2. Three stages in simulating an SDSS galaxy. Panel (a): light profile generated by GALFIT with a bulge-to-disk ratio of 0.24. Panel (b): the left image
convolved with the SDSS PSF. Panel (c): SDSS noise added to the middle image. See Section 3.1 for details of the PSF convolution and noise addition.
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network and an output layer that contains the result of
propagating the data through the network, with additional
hidden layer(s) in between. Each neuron is characterized by a
weight vector ( )= ¼w w w w, , , n1 2 and a bias b. The input to a
neuron (coming from the outputs in the previous layer) is
usually written as ( )= ¼x x x x, , , n1 2 , and the output of the
neuron is given by

( · ) ( )s= +w xy b , 3

where σ is the chosen activation function of the neuron. The
process of “training” an artificial neural network involves
finding out the optimum set of weights and biases of all of the
neurons such that for a given vector of inputs, the output vector
from the network, ( )= ¼y y y y, , , n1 2 , resembles the desired
output vector ˆ ( ˆ ˆ ˆ )= ¼y y y y, , , n1 2 as closely as possible. The
process of optimization is usually performed by minimizing a
loss function, such as the popular cross-entropy loss function,

( ) ( )åå= -
= =

L
N

I p
1

log 4
j

N

c

M

j c j c
1 1

, ,

where Ij, c is a binary indicator function depicting whether class
label c is the correct classification for the jth observation. Also,
p is the predicted probability (by the network) that observation j
is from class c, M is the total number of classes, and N is the
total number of samples.

Out of the various algorithms available to minimize the loss
function, one that is used very widely is stochastic gradient
descent (SGD) and its different variants (Nielsen 2015). In
SGD, we estimate the gradient of L using a mini-batch of
training samples and update the weights and biases according
to

( )

h

h

¢ = -
¶
¶

¢ = -
¶
¶

w w
L

w

b b
L

b
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where η is a small positive constant known as the learning rate.
Calculation of the gradient is done using the back-propagation
algorithm, and we refer the interested reader to Rumelhart et al.
(1986) for details.

The artificial neural network that we use for this work is a
CNN (LeCun et al. 1998; Fukushima 1980). This is a type of
deep artificial neural network that has become extremely
popular for image processing in recent years. The input to the
network is the two-dimensional vector representation of an
image, and in a convolutional layer, each unit receives input
from a local image patch of the previous layer known as the
receptive field. Convolution involves taking a filter of a
particular size and repeatedly applying it (by moving it with a
specific stride) to each part of the input image, resulting in a
two-dimensional output map of activations called a feature
map. The different units in the feature map share the same
weight matrix, and hence, each feature map can be interpreted
as trying to locate a particular feature at different locations in
the image. Each convolutional layer is typically followed by a
max-pooling layer wherein the dimensionality of the feature
maps are reduced by only preserving the maximum value in a
small patch and thus making the network invariant to minor
distortions. The convolutional and max-pooling layers are
usually followed by a few fully connected layers that use the
output of the convolutional layers to infer the correct output for
the input image. We refer the interested reader to Nielsen
(2015) for a more detailed overview of the above concepts.
The architecture of GAMORNET is based on AlexNet

(Krizhevsky et al. 2012), a CNN that won the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILVRS), wherein
different teams compete to classify about 14 million hand-
annotated images. Very broadly speaking, the architecture of
GAMORNET consists of five convolutional layers and three
fully connected layers. Interspersed between these are local
response normalization, max-pooling, and dropout layers. The
dropout layers help to prevent over-fitting by randomly
ignoring or “dropping out” some number of layer outputs.
The size of the input layer corresponds to the size of the images
being fed-in, and the output layer corresponds to the three
classes into which the galaxies are separated, which are defined
in Section 3.3. The output layer happens to have the softmax
activation function and thus, the output value of the three
output neurons can be interpreted as the network’s prediction
probability that the input galaxy is in the corresponding
category. In total, GAMORNET has 17 layers, the details of
which are summarized in Table 2. Figure 4 shows a schematic
diagram of GAMORNET.
We implemented GAMORNET using TFLearn,7 which is a

high-level Application Program Interface for TensorFlow,8 an
open source library widely used for large-scale machine-
learning applications. We make the source code of GAMOR-
NET available as a part of our public data release (see
Section A.1 for more details).

3.3. Initial Training

Using the two sets of simulations corresponding to the SDSS
and CANDELS data sets, we trained two different networks,
both with the same structure as described in Section 3.2.
Henceforth, we refer to the networks trained on SDSS and
CANDELS simulations as GAMORNET-S and GAMORNET-C,
respectively. During the training process, we trained the
networks to separate galaxies into three different categories:

Figure 3. A schematic diagram showing a simple artificial neural network with
a single hidden layer.

7 http://tflearn.org
8 https://tensorflow.org
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1. Galaxies with LB/LT<0.45 , i.e., disk-dominated.
2. Galaxies with LB/LT>0.55 , i.e., bulge-dominated.
3. Galaxies with 0.45�LB/LT�0.55 , i.e., indeterminate.

Here, LB is the luminosity of the bulge component, and LT is
the total luminosity of the galaxy. Since these galaxies are
simulated, we used our knowledge of the actual LB/LT for each
galaxy to train the network.

Of the 100,000 galaxies simulated for each data set, we used
90% for training and the rest for validation. The validation set
was used to tune the different hyper-parameters in the network
(like the learning rate described in Section 3.2). We use a
learning rate of 0.0001 and a batch size of 64, as these lead to
>95% accuracy on the validation set and run-times of

( )~ 1 hr on Tesla P100 GPUs. The batch size refers to the

Table 2
Structure of GAMORNET

Order Type of Layer Layer Description Activation Function

1 Input Size: 167×167(SDSS),83×83(CANDELS) L

2 Convolutional No. of filters: 96,filter size: 11,strides: 4 ReLUa

3 Max-pooling Kernel size: 3,strides: 2 L

4 Local response normalization L L

5 Convolutional No. of filters: 256, filter size: 5,strides: 1 ReLUa

6 Max-pooling Kernel size: 3, strides: 2 L

7 Local response normalization L L

8 Convolutional No. of filters: 384, filter size: 3, strides: 1 ReLUa

9 Convolutional No. of filters: 384, filter size: 3, strides: 1 ReLUa

10 Convolutional No. of filters: 256, filter size: 3, strides: 1 ReLUa

11 Max-pooling Kernel size: 3, strides: 2 L

12 Local response normalization L L

13 Fully connected No. of neurons: 4096 tanh

14 Dropout Dropout probability: 50% L

15 Fully connected No. of neurons: 4096 tanh

16 Dropout Dropout probability: 50% L

17 Fully connected No. of neurons: 3 softmax

Notes. The various layers of GAMORNET along with the important parameters of each layer and the corresponding activation functions are shown in the table above.
The architecture of GAMORNET is based on AlexNet and, broadly speaking, consists of five convolutional layers followed by three fully connected layers. The source
code for GAMORNET is made public as described in Appendix A.1
a Rectified linear unit.

Figure 4. Schematic diagram of GAMORNET, a CNN optimized to identify whether galaxies are bulge-dominated or disk-dominated. Its architecture, which is based
on AlexNet (Krizhevsky et al. 2012), consists of five convolutional layers and three fully connected layers. Between these layers are max-pooling, local response
normalization, and dropout layers. The numbers inside the circles refer to the layer number and corresponding details for each layer can be found by looking up the
corresponding layer order number in Table 2.
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number of training samples the network works through before
the model’s internal parameters are updated

During the training process, we used the categorical cross-
entropy loss function and minimized it using the momentum
optimizer, which is a variant of SGD and accelerates SGD in
the relevant direction besides dampening oscillations during the
minimization process. Both SGD and the categorical cross-
entropy loss function are described in Section 3.2.

An “epoch” of training refers to running all of the training
images through the network once. After each epoch of training,
we evaluated the value of the loss function and calculated the
accuracy on the validation set. The process of calculating the
accuracy involves running all of the images in the validation set
through the network. Since the output layer in our network is a
softmax layer, the output value of each neuron can be
interpreted as the network’s predicted probability of the galaxy
image to belong to the particular category corresponding to that
neuron. A galaxy is said to belong to the LB/LT category for
which the predicted probability is the highest, and the accuracy
was calculated as the number of galaxies classified correctly
divided by the total number of galaxies. It is important to note
here that we used an additional criterion for classifying the real
images later on, as described in Section 4.1.

We trained both the networks until the values of the accuracy
and the loss function stabilized and a significant gain in
accuracy did not seem probable with further training. This
constituted training GAMORNET-S for 1000 epochs and
GAMORNET-C for 400 epochs. Both learning curves are
shown in Figure 5, which shows the accuracy as well as the
value of the loss function after each epoch of training.
GAMORNET-S and GAMORNET-C achieved net accuracies
of 93.55% and 88.33%, respectively, on the simulated images
being used for validation; note that these are simulated images
that the network did not “see” during the process of training.

3.4. Transfer Learning

CNNs have an extremely large number of free parameters
(weights and biases) that need to be tuned during the process of
training, and thus, if the size of the training set is not
sufficiently large, there is a chance of “over-fitting” after a
certain number of epochs of training. That is, with further
training, the accuracy of the network increases on the training

data but not on the test data, and hence, the network fails to
generalize.
Transfer learning involves taking a network trained on a

particular data set and optimized for a particular task, and re-
tuning the weights and biases for a slightly different task or
data set. The advantage here is that a much smaller training set
can be used to re-tune the network than to train it from scratch.
Transfer learning as a data-science concept has been around
since the 1990s (Pan & Yang 2010) and has been applied to a
wide variety of tasks, including image classification (Kulis
et al. 2011; Zhu et al. 2011; Li et al. 2014). As an example,
transfer learning was recently applied to detect galaxy mergers
(Ackermann et al. 2018), starting from a network that could
accurately identify images of everyday objects like cars, cats,
dogs, etc.
In the present work, since we want to enable morphological

classification even in the absence of a large training set, we use
only a small fraction of the SDSS and CANDELS data sets for
training. Specifically, we take the network trained on simula-
tions and then re-train it by transfer learning on ∼25% of the
real SDSS and CANDELS galaxy images.
In transfer learning, it is common to freeze the weights and

biases in the initial layers of the network (i.e., those close to the
input layer), while allowing variations in layers close to the
output layer. The logic behind this approach is that, in a CNN,
the deeper feature maps identify more complicated features
while the earlier layers identify more basic features (like lines,
shapes, and edges). Since transfer learning re-trains a network
to do a slightly different task than it was initially trained to do,
it is the last few layers that need to be re-tuned for the task at
hand. At the same time, since the earlier layers correspond to
more basic features, we do not expect that they will need re-
tuning. We heuristically tested a combination of the various
options mentioned above, and chose the one that maximized
accuracy, while not showing any signs of over-training. The
details of the transfer learning method used in both cases are
summarized in Table 3.
For the SDSS data, we have access to estimates of LB/LT for

each galaxy from Simard et al. (2011), wherein each galaxy
was fitted with an n=4 bulge and an n=1 disk component.
We used this as the “ground truth” for separating galaxies into
the three categories defined in Section 3.3. We randomly
selected 10,000 galaxies from each category to make up our

Figure 5. Learning curves for the process of training GAMORNET on simulated galaxy images. The accuracy evaluated on the validation set (brown curves, left axes)
and the value of the loss function after each epoch of training (blue curves, right axes) are shown for both GAMORNET-S and GAMORNET-C (left and right panels,
respectively). GAMORNET-S achieves an accuracy of 93.55% after 1000 epochs of training, and GAMORNET-C achieves an accuracy of 88.33% after 400 epochs of
training. For more details about the training process, see Section 3.3.
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transfer learning training data set; this constitutes about a
quarter of the full SDSS sample. We found that during transfer
learning, it is important to have an equal number of galaxies
from each category in the training set because otherwise, the
network attempts to maximize accuracy in the category with
more samples at the cost of other categories. Since both our
samples have many more disk-dominated than bulge-domi-
nated galaxies, a randomly selected training set would result in
a very high accuracy in classifying disk-dominated galaxies but
a very low accuracy in classifying bulge-dominated galaxies.
Using the configuration given in Table 3, we trained
GAMORNET-S for 300 epochs.

For the CANDELS data, no two-component bulge-disk
decompositions were available in the literature. Thus, we
translated the Sérsic indices from van der Wel et al. (2012) into
the three classifications used by GAMORNET using results from
Simmons & Urry (2008), who analyzed CANDELS-depth HST
ACS simulations of bulge+disk galaxies. The authors fitted
single Sérsic profiles to their simulations in order to find the
correspondence between Sérsic index and actual LB/LT.
Guided by their result in the redshift bin z=1.075 (see their
Figure 19), appropriate for the CANDELS galaxies we wish to
classify, we define galaxies with n<2.0 as disk-dominated,
n>2.5 as bulge-dominated, and 2.0�n�2.5 as
indeterminate.

To illustrate these choices, we reproduce in Figure 6 the
Simmons & Urry (2008) results, specifically, the range in
Sérsic index corresponding to different LB/LT values for the
simulated galaxies. The three broad classifications assigned by
GAMORNET-C—disk-dominated, indeterminate, and bulge-
dominated—are shown as shaded regions. There is no unique
or perfect way to go from Sérsic index to LB/LT; although, the
choice of n<2 is pretty clean, i.e., all such galaxies have
LB/LT<0.45 and are disk-dominated. For n>2.5, most
galaxies are bulge-dominated (i.e., have LB/LT>0.55) as is
evident from the top-right portion of the figure; although, a few
disk-dominated galaxies with LB/LT∼0.4 may be incorrectly
included in that category.

A higher n threshold (for, e.g., n∼6) leads to a purer bulge-
dominated sample, but drastically reduces the number of bulge-
dominated galaxies available for transfer learning, as is evident
from the histogram shown in Figure 6. As mentioned
previously, we need roughly equal numbers of galaxies in
each bin for the training process during transfer learning, and
thus, the upper limit on the total number of galaxies available
for training is set by the size of the least populous bin. The
above choices ensure a sufficient number of galaxies in each
category (needed for the transfer learning step) and produce
statistically acceptable classifications. Readers can set these

boundaries differently, as appropriate to their science goals,
using GAMORNET-C models trained only on the bulge + disk
simulations made publicly available via Section A.2. Instruc-
tions on how to train these models for transfer learning are
available in the GitHub repository.
Using the above definitions of the three classes, we re-

trained the simulation-trained GAMORNET-C for 75 epochs
using the Transfer Learning configuration in Table 3; note that
only the weights and biases in the last two of the total five
convolutional layers are adjusted during the transfer learning
step. For this process, we used 2400 galaxies from each of the
three morphological categories, or about a quarter of the total
CANDELS sample.

4. Results

4.1. Morphology Results

After using about a quarter of the images for transfer
learning, the remaining 82,547 galaxies in the SDSS sample

Table 3
Transfer Learning Parameters

Network Non-trainable Layersa Layers Trained from Previous Training Layers Trained from Scratch Learning Rate

GAMORNET-S None All convolutional layers (2, 5, 8, 9, 10) Last three fully connected layers 0.00001
(13, 15, 17)

GAMORNET-C First three convolutional layers Last two convolutional layers + first fully Last two fully connected layers 0.00001
(2, 5, 8) connected layer (9, 10, 13) (15, 17)

Notes. Details of the transfer learning algorithm used for both the SDSS and CANDELS networks. The numbers in parentheses refer to the layer numbers according to
Table 2. The above parameters were chosen by heuristically testing various options and choosing the ones that maximized accuracy, while not showing any signs of
over-training.
a These layers were optimized during the initial training on simulations and then frozen at those values for the transfer learning step.

Figure 6. The triangles show the input LB/LT vs. fitted Sérsic index for the
galaxies simulated by Simmons & Urry (2008; adapted from the lowest panel
in their Figure 19). The plotted points are the median of each bin’s distribution,
and the error bars mark the central 68% of sources in the bin. The shaded
regions correspond to our definitions of the three output classes used by
GAMORNET-C. The histogram shows the distribution of the Sérsic index for all
of the galaxies in our CANDELS sample, most of which are disk-dominated
(see Section 2). Clearly, all galaxies with n<2 are truly disk-dominated (i.e.,
have LB/LT<0.45), but, because of the spread in Sérsic indices, some disk-
dominated or intermediate galaxies may get misclassified as bulge-dominated.
Although a higher n threshold (for, e.g., n∼6) would lead to a purer bulge-
dominated sample, for reasons mentioned in Section 3.4, it would make the
transfer learning sample insufficiently small. Note that readers can choose
different bin boundaries, doing their own transfer learning step on the
simulation-trained network made available via Section A.2.
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were used as our test set. Since GAMORNETʼs output layer
consists of three softmax neurons whose output values sum to
1, each value can be interpreted as the probability that a galaxy
belongs to that LB/LT category. These probability values are
the primary output of GAMORNET. However, in order to
compare our results with previous classifications and keeping
in mind situations that necessitate rigid classifications, we
transform the probability values into classifications.

After some experimentation, we arrived at this decision tree
for classification:

1. Disk-dominated when GAMORNET-S reports �80%
probability that LB/LT<0.45.

2. Bulge-dominated when GAMORNET-S reports �80%
probability that LB/LT>0.55.

3. Otherwise, indeterminate.

This is slightly different than the criterion we used for the
initial training, as those galaxies were idealized, and the
classifications were unambiguous. For the real galaxies, simply
taking the highest probability neuron, including probabilities
below 80%, made the classifications far less accurate.
Requiring a threshold of 80% greatly improved the classifica-
tion accuracy at the expense of increasing the number of
indeterminate galaxies.

For each galaxy, we have access to its bulge-to-total ratio,
i.e., LB/LT value from Simard et al. (2011), which we consider
to be the “true” value. For mapping LB/LT to a classification of
being bulge- or disk-dominated, we used the same criterion as
during the initial training, outlined at the beginning of
Section 3.3.

Individual morphological classifications by GAMORNET-S
are reported in Table 4 and Table 5 compares the GAMORNET-
S and Simard et al. (2011) classifications of SDSS galaxies.
Assuming the latter are “true” for disk-dominated galaxies, we
achieved an accuracy of 99.7% and for bulge-dominated
galaxies, we achieved an accuracy of 94.8%, resulting in a net
misclassification rate of 0.7%. A total of 26,928 galaxies, or
∼32% of the SDSS test set, were found to have indeterminate
morphologies.

For the CANDELS data set, there were 21,746 galaxies in
the test set. We classified these using GAMORNET-C and,
again, experimented with thresholds for the final neuron values
in order to arrive at an acceptable balance between accuracy
and fraction with indeterminate morphologies. The thresholds
for the CANDELS classification (which are different from
those adopted for the SDSS data) are:

1. Bulge-dominated if GAMORNET-C reports �55% prob-
ability that LB/LT>0.55.

2. Disk-dominated if GAMORNET-C reports �36% prob-
ability that LB/LT<0.45 and this probability exceeds the
probabilities of LB/LT>0.55, 0.45�LB/LT�0.55.

3. Otherwise, indeterminate.

The choice of these confidence thresholds and their impact on
the results is discussed later in this section.
Table 6 reports the individual morphological classifications

by GAMORNET-C, and Table 7 compares these to the results of
van der Wel et al. (2012). From the Sérsic index of each galaxy
(van der Wel et al. 2012), we derive its LB/LT following
Simmons & Urry (2008) as described in Section 3.4. There-
after, we map these values to a classification of being bulge- or
disk-dominated using the same criterion as we did during initial
training, as described in Section 3.3. Assuming these as the
“true” classifications, GAMORNET-C has an accuracy of 91.8%
for disk-dominated galaxies and 78.6% for bulge-dominated
galaxies, or a net misclassification rate of 5.3%. A total of 8617

Table 4
Classification Probabilities for 82,547 SDSS Galaxies

ObjIDa R.A. Decl. Disk Prob. Bulge Prob. Indeterminate Prob. Classification

587722953304440846 237.4210352 0.2367580 0.1356 0.4439 0.4205 Indeterminate
587722981750014081 202.6811651 −1.0804622 1.0000 0.0000 0.0000 Disk-dominated
587722982831161384 219.5687676 −0.3497467 0.9384 0.0001 0.0615 Disk-dominated
587722983365279858 213.2606435 0.1463757 0.9977 0.0000 0.0023 Disk-dominated
587722983366721714 216.5747982 0.1543351 0.0590 0.7170 0.2240 Indeterminate
M M M M M M M

Notes.GAMORNET-S classification probabilities (of being disk-dominated, bulge-dominated, or indeterminate) and final classification for all of the galaxies in our
SDSS test sample. This table is published in its entirety as a part of the public data release (Appendix A.3). The first five entries are shown here for guidance regarding
its form and content.
a These are pre-DR8 ObjIDs.

Table 5
Classification Summary for 82,547 SDSS Galaxies

Predictions: Disks: 47,656,Bulges: 7963,Indeterminate: 26,928

Numbers

GAMORNET-S classifications

Disks Bulges

Simard et al. (2011) classifications Disks 47,526 329

Bulges 94 7552

Percentages

GAMORNET-classified disks that SCa also classified as disks 99.73%
GAMORNET-classified disks that SCa classified as bulges 0.20%

GAMORNET-classified bulges that SCa also classified as bulges 94.84%

GAMORNET-classified bulges that SCa classified as disks 4.13%

Total percentage of galaxies misclassified 0.7%

Notes. Results of running the entire SDSS test set of 82,547 galaxies through

GAMORNET-S. Values in the top section refer to the number of galaxies in each
category as predicted by GAMORNET-S with respect to the Simard et al. (2011)
classifications. For example, the top-left cell value of 47,526 means that out of the

47,656 predicted disks, 47,526 are also classified as disks by Simard et al. (2011).
a Simard et al. (2011) Classifications.
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galaxies were classified in the indeterminate category, which is
∼39% of the CANDELS test set.

The misclassification rate of CANDELS galaxies is higher
than that of SDSS galaxies. To find out why, we investigated
various relevant statistics for the misclassified galaxies. The
two most significant variables were the S/N and the half-light
radius (taken from van der Wel et al. 2012). Figure 7 shows the
distribution of both the correctly classified and misclassified
galaxies over these parameters. Although both the misclassified
and correctly classified galaxies are distributed similarly over
S/N, the misclassified population peaks much more sharply at
a lower S/N, showing that a much larger fraction of the
misclassifed sample has a low S/N compared to the correctly
classified fraction. Similarly, a much larger fraction of the
misclassified sample has low values of re compared to the
correctly classified galaxies. Therefore, we conclude that the
misclassified galaxies are essentially galaxies with a small half-
light radius comparable to the PSF and/or a low S/N, and thus,
it is inherently difficult for GAMORNET-C to correctly classify
these galaxies. The misclassified population in the SDSS data

set also peaks more sharply at a lower value of re compared to
the correctly classified galaxies; although, we have poor
statistics for this, as the misclassification rate is <1%.
The choice of the confidence threshold values to classify a

galaxy as bulge- or disk-dominated primarily affects two
parameters: the misclassification rate and the number of
indeterminate galaxies. Having a high confidence threshold
results in a low misclassification rate but a high number of
indeterminate galaxies, and vice-versa. We show in Figure 8
how changing the value of the confidence threshold affects the
number of indeterminate galaxies and the accuracy of both the
bulge- and disk-dominated galaxies for the SDSS sample. We
chose a threshold value of 0.8 or 80%, but as the figure shows,
even with a threshold of 60%, it is possible to get >85%
accuracy for both bulge- and disk-dominated galaxies with an
indeterminate fraction as low as ∼20%.
For the CANDELS data set, setting a common/joint

threshold as high as we did for the SDSS data led to most of
the data being classified as indeterminate. Thus, we use
separate confidence thresholds for the disk and bulge
classifications, and the variation of the indeterminate fraction
and accuracy with both thresholds is shown in Figure 9. We
chose the final threshold values of 0.36 and 0.55 for the disk-
and bulge-dominated galaxies, respectively, as a compromise
between the two competing requirements of having a low
indeterminate fraction and high accuracy.
For our choice of confidence thresholds, the indeterminate

fraction is >25% of the test set for both SDSS and CANDELS.
This indeterminate fraction consists of two kinds of galaxies:
those with intermediate bulge-to-total ratios (i.e., 0.45�
LB/LT�0.55) and those for which the network is not
confident enough to make a prediction, because of low S/Ns
and/or small sizes. For comparison, Powell et al. (2017) used
GALFIT to do single Sérsic fits to 4479 GOODS-S and
GOODS-N galaxies; they found that ∼38% of the population
could not be classified due to poor fits (χ2>1.5) or galaxies
having 2.0<n<2.5. Similarly, large fractions of Galaxy Zoo
classifications have 80% agreement among classifiers (Land
et al. 2008). Thus, even with stringent confidence threshold
values, GAMORNET is able to match the indeterminate fraction
of traditional studies.
The choice of the confidence threshold is arbitrary and

should be chosen appropriately for the particular task at hand.
Toward this end, Figures 8 and 9 can be used to asses the trade-
off between accuracy and completeness for both samples. We
have emphasized accuracy over completeness, since we have
very large samples already and can show that the misclassified

Table 6
Classification Probabilities for 21,746 CANDELS Galaxies

Field IDa R.A. Decl. Disk Prob. Bulge Prob. Indeterminate Prob. Classification

GOODSN 19 189.1464840 62.0957640 0.3356 0.3372 0.3272 Indeterminate
GOODSN 32 189.1314850 62.0973280 0.3762 0.2722 0.3516 Disk-dominated
GOODSN 63 189.1174320 62.1017230 0.3709 0.2877 0.3414 Disk-dominated
GOODSN 68 189.1499790 62.1017680 0.4039 0.1798 0.4163 Indeterminate
GOODSN 72 189.1432950 62.1022950 0.3006 0.3312 0.3683 Indeterminate
M M M M M M M M

Notes. GAMORNET-C classification probabilities (of being disk-dominated, bulge-dominated, or indeterminate) and final classification for all of the galaxies in our
CANDELS test sample. This table is published in its entirety as a part of the public data release (Appendix A.3). The first five entries are shown here for guidance
regarding its form and content.
a ID refers to the IDs assigned by the CANDELS team (Grogin et al. 2011; Koekemoer et al. 2011).

Table 7
Classification Summary for 21,746 CANDELS Galaxies

Predictions:- Disks: 12,549,Bulges: 580,Indeterminate: 8617

Numbers

GAMORNET-C classifications

Disks Bulges

van der Wel et al. (2012)
classifications

Disks 11,524 121

Bulges 992 456

Percentages

GAMORNET-classified disks that VdwCa also classified as disks 91.83%

GAMORNET-classified disks that VdwCa classified as bulges 7.90%

GAMORNET-classified bulges that VdwCa also classified as bulges 78.62%

GAMORNET-classified bulges that VdwCa classified as disks 20.86%

Total percentage of galaxies misclassified 5.3%

Notes. Results of running the entire CANDELS test set of 21,746 galaxies through
GAMORNET-C. Values in the top section refer to the number of galaxies in each

category as predicted by GAMORNET-C with respect to the van der Wel et al. (2012)
classifications. For example, the top-left cell value of 11,524 means that out of the

12,549 predicted disks, 11,524 are also classified as disks by van der Wel et al. (2012).
a van der Wel et al. (2012) Classifications.
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Figure 7. The normalized distribution of correctly classified and misclassifed CANDELS galaxies in the test set as a function of the S/N and half-light radius (re).
Both plots show that compared to the correctly classified galaxies, a higher fraction of the misclassified galaxies have a low S/N and/or small re. “Frequency density”
refers to the number counts normalized to form a probability density.

Figure 8. Relation of confidence threshold to completeness and accuracy of classification, for the SDSS data set. Panel (a): the fraction of indeterminate galaxies
increases with increasing confidence threshold. Panel (b): the accuracy of both disk-dominated (blue line, left axis) and bulge-dominated (orange line, right axis)
classifications increases with increasing confidence threshold. We decided on a confidence threshold of 0.8 (or 80%) for GAMORNET-S (star in both plots) as the
optimal compromise between accuracy and completeness.

Figure 9. Relation of confidence threshold to the accuracy (blue lines, left axes) and completeness (orange lines, right axes) of GAMORNET-C classification of the
CANDELS data set. Stars denote the adopted confidence thresholds. Panel (a): for the chosen disk confidence threshold of 0.36, provided the probability of being disk-
dominated exceeds the probabilities of being bulge-dominated or indeterminate, the classification accuracy is better than 92%, and the indeterminate fraction <40%.
Panel (b): for the chosen bulge confidence threshold of 0.55, we obtain an accuracy of >80% and indeterminate fraction <40%.
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objects simply have lower S/Ns and/or are too compact to
classify accurately.

4.2. Color–Mass Results

In this section, we study the quenching of star formation in
z∼0 (SDSS) and z∼1 (CANDELS) galaxies by examining
their color–mass diagrams constructed using the morphological
classifications obtained in Section 4.1. Refer to Section 2 for
details about the calculation of colors, masses, and sSFR for
both samples.

Figure 10 shows the u–r color–mass diagram for the z∼0
SDSS test set separated by disk- and bulge-dominated
morphologies. The color of each point in panels (a) and (b)
refer to the specific star formation rate of each galaxy. The
contours in all plots refer to the linear number density of
galaxies, and the straight lines in panels (c) and (d) mark the
location of the green valley, which we define to be the region
between the colors mentioned below:

( ) ( ) ( )- = - + ´u r M M M1.02 0.24 log 6

( ) ( ) ( )- = - + ´u r M M M0.88 0.24 log . 7

The U–R color–mass diagram for the z∼1 CANDELS data is
shown in Figure 11, and this figure is arranged in the same way

as Figure 10. We define the green valley, in this case, as the
region between U–R colors 1.0 and 1.5.
The demographics of galaxies by color and morphology for

both samples is summarized in Table 8. Note that the total
number of galaxies in the table does not match that in
Section 4.1 as we have omitted galaxies that lack estimates of
either mass or sSFR. The omitted fraction is ∼0.7% and ∼3.4%
for the SDSS and CANDELS samples, respectively.
For both the samples, we see that both bulge- and disk-

dominated galaxies span the entire range of colors (i.e., we see
examples of red disk-dominated galaxies as well blue bulge-
dominated galaxies). As expected, the disk-dominated galaxies
peak in the blue cloud while the bulge-dominated galaxies
dominate the red sequence. The green valley is not a feature for
either morphology; that is, there is no bimodality. Rather, the
number density of galaxies declines monotonically from a red
or blue peak. Thus, the green valley only arises when plotting
the color–mass diagram of all galaxies together, as was first
pointed out for z∼0 galaxies by Schawinski et al. (2014).
Figures 10(c) and 11(c) show that the disk-dominated

galaxies peak in the blue cloud and decline gradually to the red
sequence, in a unimodal way. This suggests that the disks
undergo a gradual decline in star formation as opposed to being
rapidly quenched through the green valley into the red

Figure 10. Color–mass diagrams for the galaxies in the SDSS test set, separated by morphology. Disk-dominated galaxies (panels (a) and (c)) are mostly blue until
they reach high masses (and presumably high halo masses), at which point they evolve to the red. In contrast, bulge-dominated galaxies (panels (b) and (d)) are
predominately red, and appear to evolve rapidly from a short-lived population of rare, blue ellipticals that likely formed from major mergers of disky star-forming
galaxies. Panels (a) and (b) show individual data points, with color indicating the sSFRs for each galaxy in units of yr−1. Contours show the linear density of galaxies
in this plot, and the numbers refer to the levels of the contours. Panels (c) and (d) are the same data plotted in terms of galaxy density. The lines mark the position of
the green valley.
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sequence. At high masses, there are relatively more red disk-
dominated galaxies, suggesting that high halo masses may play
a role in shutting off the gas supply and quenching star
formation. These conclusions agree with other studies of star
formation in local galaxies (Tojeiro et al. 2013; Schawinski
et al. 2014; Lopes et al. 2016; Powell et al. 2017).

Conversely, bulge-dominated galaxies in both samples show
a unimodal peak in the red sequence, with very few precursors
at green and blue colors. This is consistent with a scenario in
which bulge-dominated galaxies form from major mergers of
disk-dominated blue galaxies and then are rapidly quenched
through the green valley (Schawinski et al. 2014).

Figure 11. Color–mass diagrams for the galaxies in the CANDELS test set, separated by morphology. Similar to Figure 10, disk-dominated galaxies (panels (a) and
(c)) show signs of secular evolution, while bulge-dominated galaxies (panels (b) and (d)) appear to evolve rapidly from a short-lived population of rare, blue ellipticals.
Panels (a) and (b) show individual data points, with color indicating the sSFRs for each galaxy in units of yr−1. Contours show the linear density of galaxies in this plot
and the numbers refer to the levels of the contours. Panels (c) and (d) are the same data plotted in terms of galaxy density. The lines mark the position of the green
valley.

Table 8
Statistics of the Color–Mass Diagrams

SDSS CANDELS

Galaxy Sample Number % Population Number % Population

Blue Cloud 32870 69.16 10614 87.10
Disk-dominated Green Valley 7814 16.44 1330 10.91

Red Sequence 6845 14.40 242 1.99

Total 47529 100 12186 100

Blue Cloud 995 12.53 80 16.19
Bulge-dominated Green Valley 633 7.97 39 7.89

Red Sequence 6313 79.50 375 75.91

Total 7941 100 494 100

Note. The demographics of SDSS and CANDELS galaxies disaggregated by morphology and color. The green valley for both samples is defined in Section 4.2, and
the three zones are shown in Figures 10 and 11. We omit galaxies used in training GAMORNET (∼25% of each sample) as well as galaxies lacking estimates for the
mass or sSFR (∼0.7% for SDSS and ∼3.4% for CANDELS).
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The morphology-sorted color–mass diagrams we obtained
using GAMORNET classifications largely agree with the
previous results of Schawinski et al. (2014) at z∼0 and
Powell et al. (2017) at z∼1; although, in the latter case, we
present an order of magnitude more galaxies. For both samples,
the galaxy fractions in the three zones of the color–mass
diagram differ at the few percent level with respect to
Schawinski et al. (2014) and Powell et al. (2017). It is
important to note here that our definition of the green valley is
slightly different from that used by Schawinski et al. (2014)
due to their use of reddening corrected colors. Besides,
Schawinski et al. (2014) and Powell et al. (2017) used visual
classification and GALFIT, respectively, compared to our use
of GAMORNET. Finally, our sample sizes are much larger: at
z∼0, we have twice as many galaxies as Schawinski et al.
(2014), and at z∼1, we have six times the galaxies analyzed
by Powell et al. (2017). Larger samples are particularly
important for bins with low statistics. For example, Powell
et al. (2017) identified only five bulge-dominated galaxies in
the green valley, whereas we find 39, so the statistical
uncertainties on that fraction are lower.

Figure 12 shows the distribution of sSFR separated by
morphology. For both samples, the distribution of bulge-
dominated galaxies peaks at a lower sSFR, showing the
association of disk-dominated galaxies with consistent secular
star formation and bulge-dominated galaxies with recent
quenching.

5. Summary and Discussion

In this article, we introduced GAMORNET, a CNN that can
classify galaxies morphologically. We first trained GAMOR-
NET on simulations of galaxies with a bulge and a disk
component (Section 3.1) to separate galaxies according to their
bulge-to-total ratio. To make the network better at handling real
galaxies, we then transfer learned (Section 3.4) on ∼25% of
both the SDSS z∼0 and CANDELS z∼1 samples and
thereafter tested the network on the remaining ∼75% of both
the samples. The net misclassification rate (calculated by
weighting the disk- and bulge-dominated accuracies appro-
priately) achieved for both samples is 5%. For the SDSS test
set of 82,547 galaxies, we achieved accuracies of 99.7% for

disk-dominated galaxies and 94.8% for bulge-dominated
galaxies. The corresponding numbers for the CANDELS test
set of 21,746 galaxies are 91.8% and 78.6%. We showed in
Section 4.1 that the misclassified CANDELS galaxies are
dominated by galaxies with a half-light radius comparable to
the PSF and galaxy images with low S/Ns.
Although it has previously been shown that CNNs can be

used to recover single-component Sérsic fits of galaxies and
visual morphologies (e.g., Huertas-Company et al. 2015;
Tuccillo et al. 2018), according to our knowledge, this is the
first time it has been demonstrated that CNNs can be used to
classify galaxies according to their bulge-to-total ratios.
More importantly, this work demonstrates that GAMORNET

can be applied across different data sets to perform morpho-
logical classification without the need for a large training set of
real galaxies. By using a roughly 25–75 train-test split during
transfer learning, we have clearly demonstrated that even when
training on 25% of the total sample, GAMORNET can
generalize beyond the training data and classify galaxies with
high accuracy. This has very important consequences, as the
applicability of CNNs to future data-intensive surveys like
LSST, WFIRST, and Euclid will depend on their ability to
perform without the need for a large training set of real data.
We make the source code of GAMORNET, the trained

network models, as well the morphological classifications of all
of the galaxies in our sample available to the public
(Appendix). Although GAMORNET-S and -C were tuned for
g-band and H-band images, respectively, the networks should
perform with comparable accuracies in other nearby bands for
all SDSS z∼0 and CANDELS z∼1 galaxies. We also make
available the weights and biases of GAMORNET before transfer
learning, i.e., after training with simulations only, so that
additional data sets can be used for transfer learning. Our
general prescription of training on simulations and then transfer
learning should work for morphological classifications of any
data set.
In Section 4.2, we used the morphological classifications

obtained using GAMORNET (Section 4.1) to study the
quenching of star formation using the color–mass diagrams
of our samples at z∼0 and z∼1.

Figure 12. The normalized distribution of the sSFRs, separated by morphology, for the SDSS and CANDELS data sets as obtained from the MPA-JHU and 3D-HST
catalogs, respectively. “Frequency density” refers to the number counts normalized to form a probability density.
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For both samples, the morphology-separated color–mass
diagrams do not show any bimodality. The disk-dominated
galaxies peak in the blue cloud and then gradually extend to the
red sequence, suggesting that quenching in disks is a secular
process. Conversely, bulge-dominated galaxies in both samples
peak in the red sequence, with very few precursors in the green
valley and blue cloud. This is consistent with a scenario in
which bulge-dominated galaxies form from major mergers of
disk-dominated blue galaxies and then are rapidly quenched
through the green valley.

Our results largely agree with previous similar studies
performed at these redshifts. Our sample sizes are twice and six
times as large, respectively, as those in the two previous studies
done using visual classifications (Schawinski et al. 2014) and
using GALFIT (Powell et al. 2017). The reason that we were
able to use such large sample sizes is that GAMORNET, once
trained, can process large data sets very quickly and easily
compared to more traditional methods.

In the future, we aim to use GAMORNET to study the
correlation of AGN with host galaxy morphology. We also
plan to take GAMORNET beyond bulge/disk classification and
use it to derive different properties of AGN host galaxies.
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Appendix
Public Release of Code, Models, and Galaxy Morphological

Classifications

Here, we provide an outline of all of the material that we
make public as a part of this work. An up-to-date record of this
public data release will also be maintained at http://gamornet.
ghosharitra.com and http://www.astro.yale.edu/aghosh/
gamornet.html in case any of the URLs below stop working
over time.

A.1. GAMORNET Source Code

GAMORNET was implemented using TFLearn (http://
tflearn.org), which is a high-level Application Program Interface
for TensorFlow (https://tensorflow.org), an open source library
widely used for large-scale machine-learning applications.
The source code of GAMORNET is maintained as a GitHub

Repository and is available at https://github.com/aritraghsh09/
GaMorNet. Instructions for installing TFLearn and using
GAMORNET are available in the above GitHub repository. In
the near future, we will also release an implementation of
GaMorNet in Keras (https://keras.io) and the corresponding
trained models.

A.2. GAMORNET Trained Models

Trained Models for both GAMORNET-S and -C are being
made available as a part of this data release.
For more details about the various stages of training, refer to

Sections 3.3 and 3.4. All of the models below are being made
available via Yale Astronomy’s Public FTP service ftp://ftp.
astro.yale.edu/pub/aghosh/gamornet/trained_models.
You can copy and paste the above link into a browser

window to download the files, or you can also issue the
following commands from a terminal to login to the ftp server
ftp ftp.astro.yale.edu
Use the username “anonymous” and keep the password field

blank. After logging-in, do the following:

cd pub/aghosh/gamornet/<appropriate_subdirectory>
get <file_name>
quit

To list the files at your current location, you can use the “ls”
command.
The various subdirectories are named as follows in the list

below:

1. GAMORNET-S model trained only on simulations→/
trained_models/SDSS/sim_trained/

2. GAMORNET-S model trained on simulations and transfer
learned on real data→/trained_models/SDSS/tl/

3. GAMORNET-C model trained only on simulations→/
trained_models/CANDELS/sim_trained/

4. GAMORNET-C model trained on simulations and transfer
learned on real data→/trained_models/CANDELS/tl/

Models 2 and 4 can be applied directly to SDSS-g-band data
at z∼0 and CANDELS-H-band data at z∼1 (or data in other
nearby bands), respectively, without any further training.
However, if you plan to apply GAMORNET to data that is
different from the above mentioned data sets, we recommend
using any of the models above and then transfer learning on
your new data. The exact nature of the data will decide which
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of the models above is the best starting point for the transfer
learning process.

For more information on how to load these models in
TFLearn and use them, refer to the documentation of the
GAMORNET GitHub repository mentioned in Section A.1.

A.3. Tables with Predicted Probabilities and Classifications

The predicted probabilities (of being disk-dominated, bulge-
dominated, or indeterminate) and the final classifications for all
of the galaxies in our SDSS and CANDELS test sets, as
determined by GAMORNET-S and -C, are made available
below as .txt files. These tables are the full versions of Tables 4
and 6.

Both the tables are being made available via Yale
Astronomy’s Public FTP service ftp://ftp.astro.yale.edu/
pub/aghosh/gamornet/pred_tables. Instructions for accessing
the service from the command line can be found in Section A.2.
The two files are located according to the list below:

1. Full version of Table 4 corresponding to the SDSS data
set→ /pred_tables/pred_table_sdss.txt

2. Full version of Table 6 corresponding to the CANDELS
data set→ /pred_tables/pred_table_candels.txt

A.4. GalaxySim Source Code

The code that was used to simulate the galaxies described in
Section 3.1 is available as a GitHub repository at https://
github.com/aritraghsh09/GalaxySim.

This code makes use of GALFIT (Peng et al. 2002) to
simulate idealized double component galaxies. Since the
simulations of galaxy surface brightness profiles are indepen-
dent of each other, the code could be trivially parallelized.
Instructions for using GalaxySim are available in the above
GitHub repository.
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