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ABSTRACT
Complex search tasks that involve uncertain solution space and
multi-round search iterations are integral to everyday life and
information-intensive workplace practices, affecting how people
learn, work, and resolve problematic situations. However, current
search systems still face plenty of challenges when applied in sup-
porting users engaging in complex search tasks. To address this
issue, we seek to explore the dynamic nature of complex search
tasks from process-oriented perspective by identifying and predict-
ing implicit task states. Specifically, based upon the Web search
logs and user annotation data (regarding information seeking in-
tentions in local search steps, in-situ search problems, and help
needed) collected from 132 search sessions in two controlled lab
studies, we developed two task state frameworks based on intention
state and problem-help state respectively and examined the connec-
tion between task states and search behaviors. We report that (1)
complex search tasks of different types can be deconstructed and
disambiguated based on the associated nonlinear state transition
patterns; and (2) the identified task states that cover multiple subtle
factors of user cognition can be predicted from search behavioral
signals using supervised learning algorithms. This study reveals the
way in which complex search tasks are unfolded and manifested in
users’ search interactions and paves the way for developing state-
aware adaptive search supports and system evaluation frameworks.
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1 INTRODUCTION
Search systems are a major component of the intelligent assistance
that is situated in broader sociotechnical ecosystems. People’s in-
teractions with search systems are often motivated by tasks that
emerge from evolving, continuous problematic situations [5, 6].
Search systems and technologies have experienced phenomenal
success in recent years, especially in addressing fact-finding and
navigational search tasks [58]. However, current search systems,
task and interaction models, and the underlying algorithms still
face plenty of challenges when applied in supporting complex tasks
which are intellectually challenging and involve multi-round, mul-
tidimensional search interactions (e.g., planning a research project,
evaluating dental plans) [1, 18]. To address this problem, it is critical
for interactive information retrieval (IIR) researchers to define an
analytical, dynamic approach that is both theoretically meaningful
and practically applicable to the anatomy of complex tasks.

The idea of classifying and conceptually deconstructing tasks is
not new in information seeking and IR communities. Many existing
task models (e.g., [13, 31, 34]) have jointly supported a large body
of IIR studies concerning identifying and responding to users’ tasks
as static, overarching goals that motivates search actions. However,
very little research has attempted to explore how search tasks are
unfolded and evolve during the process of search interaction, and
how we can optimize search system supports according to the
dynamic states of complex search tasks.

Task as a multi-level concept in information seeking and IIR
research can be defined with a nested model where search task is a
subset of the associated information seeking task within the context
of an overarching work task [11]. From a process-oriented perspec-
tive, the sequence and transitions of states in a search session often
reveal essential properties of a search task, the associated work
task as well as the task doer. In the light of Newell and Simon’s
human problem-solving framework [45], the transitions of states
and actions can be considered as representations of users’ iterative
explorations in the evolving solution space behind the task.

Integrating the human problem-solving perspective with the
static definitions of task complexity, we define complex search task
as search tasks that involve potentially broad, uncertain solution space
or space of methods. This uncertain solution space usually leaves
limited potential for planned actions and is constantly shaped by
multiple factors during a search session, such as: 1) predefined
search goal(s); 2) users’ search skills, topic and procedure knowl-
edge regarding the task at hand, and the internal structure of in-
formation processing systems (IPS); 3) unanticipated results and
search problems; 3) supports from the available search system(s).

In contrast to the static view of task complexity (e.g. [13, 31]),
the process-oriented definition of complex search task is built upon
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a fundamental assumption: the complexity of a search task is not
only determined by a set of predefined problems or desired goals
(which may change during information seeking episodes), but also
shaped by users and the search systems they interact with. In other
words, we cannot fully reveal the nature of a complex search task
without understanding the process of doing it.

Hence, from the process-oriented perspective, it is critical to
investigate how people perform complex search tasks and explore
the uncertain solution space behind the associated problem on
multiple dimensions. At the operationalization level, we can dig
deeper into the nature of complex search tasks through studying
how these tasks are translated into and reflected in the patterns
of intention states [38], cognitive biases [57], behavioral states in
search session segments [25], encountered problems [56], level of
search satisfaction [29] and other aspects of search interactions. In
order to explore this in greater depth, this study aims to:

• Characterizing the dynamic nature of complex search tasks
from a process-oriented, state-based perspective.

• Predicting the implicit task states from observable behavioral
signals using supervised learning algorithms.

Based upon the empirical evidences from two user studies, we
seek to address the above two research problems and advance
knowledge in two aspects: 1) representing and explaining the dy-
namic aspect of complex search tasks using the distributions and
transition patterns of task states; 2) revealing the connection be-
tween task states and users’ search tactics and thereby paving the
way towards building state-aware adaptive search supports.

2 RELATEDWORK
2.1 Complex Search Tasks
An important branch of IIR research involves understanding and
measuring the impacts of task facets on search behaviors, experi-
ences, and performances [34]. Task complexity is one facet that has
received considerable attention. Based on different task properties,
researchers have developed multiple frameworks to define task
complexity in the context of information seeking and searching.

For instance, Byström and Järvelin [12] studied the impacts of
work task complexity on information seeking and use and devel-
oped a five-class complexity framework. Based on a qualitative
investigation, they found that in complex tasks, the intentions of
understanding, sense-making and problem formulation are essen-
tial and requires different types of information through a variety
of information sources at different points of information seeking
epsides. Kelly et al. [31] explored the cognitive complexity of task
and adopted Bloom [8]’s taxonomy of learning domains in charac-
terizing different levels of task complexity. Their results indicate
that complex search tasks required significantly more search activi-
ties from users. Urgo et al. [54] further extended Kelly’s work by
integrating knowledge dimension with learning dimension in task
design and learning assessments. Capra and his colleagues used
task prior determinability (i.e. the level of uncertainty about task
outcomes and processes) as a representation of task complexity
and argued that the variations in needed items and the clarity of
dimensions for result evaluation significantly affects task deter-
minability [13, 14]. Liu et al. [38] extracted two major static task

facets, task product and task goal, from Li and Belkin [34]’s frame-
work and used the combination of these two facets to define task
complexity. They found that tasks of different levels of complexity
can be represented by different patterns of local intentions. Sim-
ilarly, He and Yilmaz [24] also employed multiple task facets to
identify and disambiguate tasks of different types in field settings.

The last few years have seen the interactive IR communities
tackle more complex search tasks that involve multiple rounds of
search iterations [18, 36]. Many of the existing studies represented
different levels of task complexity using one or more static task
features and revealed some of its behavioral effects (e.g., [17, 31,
37]). However, there has been little data-driven work representing
complex search tasks as sequences of cognitive states in forms
suitable for computational modeling. As a result, we still lack an
effective approach to exploring the connections between predefined,
static task properties and the dynamic transitions of task states.

2.2 Process Models of Search Tasks
When conceptualizing tasks from process-oriented perspective, we
are essentially focusing on the process of doing tasks. In the IR com-
munity, a number of models and techniques have been developed
to describe and explain different aspects of tasks and search activ-
ities. Bates [2] proposed the berrypicking model and argued that
single-query, best-match model cannot capture the evolving nature
of search tasks. In contrast to the traditional single-query model of
ad hoc IR, berrypicking model illustrates the interactive process of
searching and has been empirically supported by many task-based
information seeking studies [20, 32, 47, 52]. Based on Kuhlthau’s ISP
model as well as a series of empirical works, Vakkari [55] developed
a general framework of task-based information searching which
consists of three stages: pre-focus, focus formulation, and post-focus.
His studies also indicate that there is a close association between
the participants’ problem states in task performance and the infor-
mation need, the search tactics employed and the assessment of
document relevance and utility. Similarly, Belkin [4] proposed a
conceptual model that represents session-level information seek-
ing episode as a sequence of users’ iterative interactions with an
interactive search system and the retrieved information objects.

The classical models discussed above are widely applied in de-
scribing the process and stages of tasks, information seeking and
searching. However, Most, if not all of them, offers limited implica-
tions for building computational frameworks of task processes and
developing dynamic supports for complex tasks at different mo-
ments [35]. To address this issue, some researchers seek to develop
computationally-congenial models for representing task states and
simulating task-based search interactions. For instance, Cole et
al. [17] investigated user activity patterns in tasks of different types
and demonstrated that task types and levels of task difficulty can
be disambiguated by the sequences of user activity states (derived
from page visiting behaviors) and cognitive processing states (ap-
proximated using eye movement patterns). To develop an effective
formal model of search interactions, Fuhr [23] proposed the IIR-PRP
for extending probabilistic IR to IIR context and representing users’
situation transitions at different moments of information searching
episodes. The IIR-PRP model serves as an important step towards
building a computational framework for supporting the functional
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design of search systems. However, this model abstracts out a vari-
ety of user characteristics and lacks effective representations of the
task states and associated cognitive variations.

2.3 Intentions, Problems, and Help Needed
Users often seek to accomplish different things (e.g., find specific
item, explore a new topic) at different points of task-based search
interactions. These local goals that users try to achieve in individual
query segments or search iterations within the context of a global
search task can be defined as information seeking intentions [38, 43].
In complex search tasks that involve multiple rounds of search
iterations, the combinations of information seeking intentions can
be considered as a representation of the active, planned dimension
of task states. In this sense, the changes in intention combinations
can partially reveal the implicit transitions of task states.

The IR community’s exploration of information seeking inten-
tions started with theoretical research on classifying short search
sessions. For instance, Broder [10] developed a search session typol-
ogy which consists of three categories: navigational, transactional,
and informational. Similarly, Kellar, Watters, and Shepherd [30]
proposed a classification scheme of users’ intentions, including fact
findings, information gathering, browsing, and transactions. Be-
yond the theoretical speculation on intention classification, Xie [59]
empirically studied users’ motivations in information seeking and
search interactions and identified a set of interactive intentions and
search tactics. In the context of Web search, Jansen and Booth [28]
developed a three-level hierarchy of user intent, aiming to automat-
ically classify Web search queries based upon the intentions behind
queries. Rha et al. [46] proposed a typology of twenty informa-
tion seeking intentions based on Xie [59]’s work and explored the
connection between users’ intentions and their associated query
reformulation strategies. To develop a more comprehensive under-
standing of Web search activities, Liu et al. [38, 40] investigated
the connections between static search task features (i.e. task prod-
uct and task goal), the distribution and transitions of information
seeking intentions, and users’ search behaviors and performance.

In addition the the active dimension of search tasks, to gain a
deeper understanding of search interactions, many IIR researchers
have also explored the unanticipated, situational aspect whichmainly
covers users’ search problems and help needed for addressing the
problems in tasks of different types [22, 50]. The common barriers
that users face when searching for information include internal
barriers (e.g., lack of knowledge, unable to articulate information
need) [7], external barriers (e.g., time constraints, institutional re-
strictions) [49], interpersonal barriers (e.g., lack of help from other
people) [53], and other types of barriers [16]. Previous research also
identified various possible causes that lead to these barriers, such as
users’ lack of domain and topic knowledge, system knowledge, and
necessary search skills. Regarding help needed, when people come
across any problem while looking for information, they often seek
help or supports of different types from system and/or people [27].
Existing studies showed that help-seeking situations are primarily
influenced by users’ personal and cognitive characteristics as well
as the nature of task [60]. Based on the existing work on search
barriers and help-seeking behaviors, Sarkar et al. [48] investigated
the connection between the situational aspect of task and users’

behaviors and demonstrated that search behavioral signals can in-
form us about users’ in-situ search problems and supports preferred
at different points of task process.

In sum, to develop adaptive supports for complex search tasks,
it is critical to construct a task state framework which speaks to the
implicit cognitive variations in task process and can support the
computational modeling of state transitions and search interactions.
Previous explorations on users’ information seeking intentions,
in-situ problems and help needed shed lights on the dynamic na-
ture of complex search tasks. From process-oriented perspective,
the factors from both active and unanticipated dimensions can be
considered as basic ingredients of task states. Investigating the com-
binations of these factors and the transitions of the combinations
can enhance our understanding of how complex search tasks are
unfolded in users’ explorations of the uncertain solution space.

3 RESEARCH QUESTIONS
To address the research gaps discussed above and develop a state-
based framework of complex search tasks, this work reports on
two controlled-lab-based studies which investigated the active di-
mension and situational, unanticipated dimension of task states
respectively. These two studies collected data on users’ local infor-
mation seeking intentions, encountered problems and help needed
in complex search tasks of different types. Our work sought to
answer following research questions (RQs):
• RQ1: What are the states of complex search tasks?
• RQ2: What are the transition probabilities between the states in

complex search tasks of different types?
• RQ3: To what extent can we predict search task states fromWeb

search behavior?
Among the RQs above, RQ1 and RQ2 focus on identifying and ex-

tracting dynamic task states from intentions, encountered problems
and help needed at different points of search and characterizing the
state transition patterns in varying task types. RQ3 speaks to the
connection between behavioral signals and implicit task states and
seeks to inform state detection and adaptive support development.

4 METHODOLOGY
This work includes two controlled lab studies, information seeking
intention (ISI) study and problem-help (PH) study. ISI study explored
users’ information seeking intentions and search actions in different
query segments of complex search tasks, and PH study investigated
the association between users’ encountered problems, help needed,
as well as their search behavior. Analyzing the empirical evidences
collected from these two studies enabled us to characterize and
model the states of complex search tasks from different perspectives.

4.1 Information Seeking Intention Study
4.1.1 Information Seeking Intentions. To collect data on users’ in-
formation seeking intentions in search iterations, this study em-
ployed the search intention typology developed by Rha et al. [46]
based on a subset of Xie [59]’s classification scheme of interactive
intentions. The researchers gave a detailed description of this typol-
ogy to the participants before their search sessions were replayed
for intention annotation. Then, participants were asked to identify
their intention(s) for each query segment ( all that occurred between
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one query and the next, including the queries) based on the typol-
ogy. Participants could identify multiple intentions for the query
segments where they sought to achieve multiple local goals. Thus,
the intentions identified by users were not mutually exclusive and
should be considered as different dimensions of task states. Table 1
presents the typology of twenty information seeking intentions.

4.1.2 Complex Search Tasks and Participants. To simulate complex
search task context and elicit rich search interactions and intention
transitions, we designed four tasks within the domain of journalism,
including copy editing (CPE), story pitch (STP), relationships (REL),
and interview preparation (INT). To minimize the potential effect of
knowledge background, we recruited forty undergraduate students
majoring in journalism from a research university.

The four types of complex search tasks were designed mainly
based on two facets from Li and Belkin [34]’s classification scheme:
Product and Goal. Regarding task product, intellectual task refers
to a task which motivates people to produce new ideas or plans,
whereas factual task mainly focuses on locating objective facts or
information items. In terms of goal, task with specific goal refers
to a task with a goal that is explicit and measurable. Task with
amorphous goal has no explicitly defined process or outcome. Each
task type has two versions corresponding to two different topics
(i.e. coelacanths; methane clathrates and global warming) that our
participants were thought likely to not be familiar with. We chose
these two topics to control the potential impact of topic familiarity
and also to better simulate the context of complex search tasks.
Each of the participants was asked to conduct two search tasks of
varying topics and types, in Latin Square design, pairing CPE with
INT, and STP with REL, to balance tasks by topic and facet values.

The four search tasks (Coelacanth topic) are presented as follows:
• Copy Editing (Factual Specific): Assignment: You are a copy editor at

a newspaper and you have only 20 minutes to check the accuracy
of six italicized statements in the excerpt of a piece of news story
below. Task: Please find and save an authoritative page that either
confirms or disconfirms each statement.

• Story Pitch (Factual Amorphous): Assignment: You are planning to
pitch a science story to your editor and need to identify interesting
facts about the coelacanth ("see-la-kanth"), a fish that dates from
the time of dinosaurs and was thought to be extinct. Task: Find and
save Web pages that contain the six most interesting facts about
coelacanths and/or research about their preservation.

• Relationship (Intellectual Amorphous): You are writing an article about
coelacanths and conservation efforts. You have found an interesting
article about coelacanths but you need to be able to explain the rela-
tionship between key facts you have learned. Task: In the following,
there are five italicized passages, find an authoritative Web page
that explains the relationship between two of the italicized facts.

• Interview Prepration (Intellectual Amorphous): You are writing an
article that profiles a scientist and their research work. You are
preparing to interview Mark Erdmann, a marine biologist, about
coelacanths and conservation programs. Task: Identify and save au-
thoritative Web pages for the following: Identify two (living) people
who likely can provide some personal stories about Dr. Erdmann and
his work. Find the three most interesting facts about Dr. Erdmann’s
research. Find an interesting impact of Dr. Erdmann’s work.

4.1.3 Study Procedure. The user study started with a demographic
questionnaire and a tutorial video on the additional interface fea-
tures offered by our browser plugin. Participants were free to search

anywhere on the web, with the only restriction being to conduct
their searches in the browser with our plug-in turned on for logging
their search actions and enabling them to save pages. After reading
the task description and answering questions about their topic-
and task-related knowledge, participants had up to 20 minutes to
complete the first assigned task by searching on the web and book-
marking useful pages. Participants could choose to enter the next
phase early if they completed it to the best of their ability.

Afterwards, we asked participants to complete a post-task ques-
tionnaire on their overall search experience. Then, they were asked
to read a guidance of the intention annotation task and to watch a
short video explaining how to annotate information seeking inten-
tions. We then replayed the entire search session, query segment by
query segment, asking for intention annotation for every segment,
in sequence. The intention annotation assignment had no time limit.
Participants were asked to choose which intentions applied to each
query segment in the search session based on the predefined ty-
pology. Within each query segment, participants could select any
number of intentions from the typology (see Table 1). Participants
could choose "other" if their intention did not match the 20 inten-
tions listed. This intention selection process was repeated for every
query segment during the process of intention annotation. The
same study procedure was then followed for the second task, and
the study session ended with an exit interview with open-ended
questions related to participants’ search experience and perfor-
mance. The entire user study process took about two hours for each
participant. More detailed descriptions regarding the questionnaires
and intention annotation interface are reported in [40, 46].

4.2 Problem-Help Study
4.2.1 In-situ Search Problems and Help Needed. To gather empirical
evidences concerning users’ search problems and help preferred at
different points of search, this study developed a list of problems and
possible supports based on the findings from previous IIR studies
on search barriers and help-seeking activities (e.g., [16, 50, 60]). We
introduced the problem-help list/typology to participants and asked
them to identify the problem they encountered and help needed
based on our list every time before they intended to formulate a
query during their search sessions. Similar to intention annotation
in the ISI study, participants in the PH study could identify multiple
types of problems and help for applicable query segments. Table 2
presents the list of questions designed for the PH study.

4.2.2 Complex Search Tasks and Participants. Similar to ISI study,
in the PH study we designed two search tasks by manipulating the
type of information need (cognitive or social), task goal, and task
product based on Li and Belkin [34]’s classification framework. In
addition, we asked every participant to complete a 5-min warm-
up task before they started working on the two "formal", 20-min
complex search tasks, aiming to familiarize them with the study
procedure (especially the in-situ problem-help annotation and use-
ful document identification), search interface and lab environment.
Adding the warm-up task is critical for gathering reliable data here
as the in-situ annotation is not part of the natural search process
and participants might need extra time to adapt to the change [39].

The description of search tasks are presented as follows:
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Table 1: Typology of Information seeking intentions.

Type of Intention Information Seeking Intentions
Keep record Keep record of a link (KR)
Identify search information Identifying something to start (IS); Identify something more to search (IM)
Learn Learn domain knowledge (LK); Learn database content (LD)
Find Find known item(s) (FK); Find specific information (FS); Find items sharing a named feature (FN); Find items without predefined criteria (FW)
Access item(s) Access a specific item (AS); Access items with common characteristics (AC); Access a website/homepage or similar (AW)
Evaluate Evaluate correctness of an item (EC); Evaluate usefulness of an item (EU); Pick best items from all the useful ones (EB); Evaluate specificity of

an item (ES); Evaluate duplication of an item (ED) (i.e., determine whether the information in one item is the same as in others)
Obtain Obtain specific information to highlight or copy (OS); Obtain part of an item (OP); Obtain a whole item(s) (OW)

Table 2: The question for eliciting potential in-situ search problems
and help needed, and the possible responses.
Question:What problems are you facing at this moment? Select all that apply.
- I do not know how to express my need in search queries.
- I see a lot of not good or useless results.
- I do not know enough about the topic.
- I am feeling impatient.
- I do not know if I can trust the information that I am seeing.
- I may not know all the good or useful sources of information.
- There is just too much information.
- What I am looking for does not seem to be available.
- No problem encountered.
Question:What kind of things would help you at this moment? Select all that apply.
- Recommendations by the system about useful search queries.
- Recommendations by the system about potentially useful web pages.
- Recommendations about useful search steps and strategies.
- Find me people (e.g., domain expert) who may be able to help.
- I am not satisfied with any help from system, therefore, I would like to talk to
someone whom I know (e.g., family, friends, colleagues).
- No help needed.

• 5-min Warm-up Task (Factual Amorphous): You need to write a class
report on HIV/AIDS treatments in Africa. For this, you need to
answer a central question: what are the current available treatments
of HIV/AIDS in China, Germany, USA, and Uganda?

• Cognitive Task (Intellectual Amorphous): Lara Dutta of India was
crowned Miss Universe in 2000, and between 1994 and 2000 women
from India won two Miss Universe competitions, four Miss World
competitions, and many less well-known competitions. These facts
inspired you to explore the relationship between these wins and the
Indian government’s decisions and policies in your final paper for
Indian Society class. To what extent can decisions and policies of
the Indian government be credited with these wins? As a part of
your final paper, please offer your brief answer to this question and
identify the useful pages (from the bookmarked pages) which were
actually used for constructing your answer.

• Social Task (Intellectual Amorphous): You will be attending a social
gathering this evening. It is a birthday party for your sister (a high
school student) being held at a local restaurant. You do not know
many of your sister’s friends in attendance. You thought you could
facilitate conversations with new friends if you were up-to-date on
some recent topics of interest. You have decided to look into a wide
expanse of topics and events based on your estimation of the other
guests’ interests, preferences and backgrounds. To be fully prepared,
please create a list of at least five interesting up-to-date topics. For
each topic, please identify the useful web pages and a very brief
explanation for why you choose this as a potentially suitable topic.

4.2.3 Study Procedure. The PH user study started with a brief
questionnaire provided by the customized browser plugin-in about
participants’ task and topic familiarity as well as a series of demo-
graphic factors. Then, participants had up to 20 minutes to complete
each assigned search task. During the search session, when a par-
ticipant was about to formulate a new query during the search

process, a pop-up window appeared with the problem-help ques-
tionnaire (see Table 2), asking the participant to report his or her
in-situ search problem(s) at the moment and the help needed for
resolving the problems. After each search task, participants were
asked to complete a short post-search questionnaire about their
perceived task difficulty and overall search experience. Participants’
search activities (e.g., query, timestamp, clicks, URLs, page type)
were recorded with a Google chrome browser plugin and Morae.
Simiar to the ISI study, the PH study session ended with an exit in-
terview where we asked open-ended questions about participants’
encountered problems and why they prefer certain types of help
at different points of search sessions. The entire user study pro-
cess took about one and a half hours for each participant. More
detailed descriptions regarding the task-related questionnaires and
problem-help annotation interface are offered in [48].

4.3 Measurements and Data Analysis
4.3.1 RQ1: Identifying Task States. The data collected from ISI and
PH studies enabled us to model the states of complex search tasks
from active aspect and situational, unanticipated aspect respec-
tively. In the datasets, each intention, problem, and help item was
represented using a unique binary variable (present=1, absent=0).
For state identification, we used K-modes clustering analysis for
extracting clusters out of user annotation data. K-modes clustering
as a unsupervised learning method extends the traditional K-means
paradigm to cluster categorical data [15]. In the clustering analy-
sis, different information seeking intentions, in-situ problems, and
types of help needed were considered as separate elements within
the vectors representing unique task states.

To test the validity of the task state categories extracted from
annotation data, we ran external judgment of state types with two ex-
ternal assessors. Specifically, we randomly extracted 10% of searches
from each type of tasks and ask the two assessors to manually an-
notate task state for each query segment independently given the
four-state typology we defined. Each assessor were provided with
the video of participants’ search process, the intention or problem-
help annotation and search behavior data, and the clustering results
(i.e. the specific task state a given query belongs to) were removed.
To measure the validity of task state labels, we computed three
Cohen’s Kappa coefficients, between 1) the two annotators, 2) the
annotator A and the clustering algorithm, and 3) the annotator B
and the clustering algorithm. To ensure the quality of task state
labeling and judgment, we recruited two advanced Ph.D students
majoring in IR as our external state annotators here.

4.3.2 RQ2: Understanding State Transition Patterns. After we iden-
tified and validated task state labels, we computed the transition
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probabilities between different task states. Focusing on the process-
oriented, dynamic aspect of tasks, we aim to reveal the nature of
complex search tasks of varying types by investigating the differ-
ence in their task state transition patterns.

4.3.3 RQ3: Predicting Task States from Search Behaviors. To inform
the development of state-aware adaptive search supports, RQ3 seeks
to examine the extent to which we can predict implicit task states
from behavioral signals. To answer this question, we employed
multiple supervised learning algorithms and utilized a series of
widely-used search behavioral measures for building classifiers.

The search behavioral features include: query behavior: query
length, query reformulation type; browsing behavior : number of
clicks; number of content pages visited; dwell time (second): mean
dwell time on each search engine result page (SERP); mean dwell
time on each content page; total dwell time on content pages; and
usefulness judgment: number of bookmarks. Based on these basic
measures, we adopted three types of feature sets for predicting task
states: 1) behavioral measures in current query segment associated
with the target task state, 2) session-level behavioral measures before
current query segment, and 3) the combination of 1) and 2) sets.
Regarding the session-level behavioral measures, we computed the
average values of behavioral measures for the associated search
session (before current query segment).

5 RESULTS
To answer the proposed three RQs, we analyzed the search behav-
ioral data and user annotations collected from ISI and PH studies.
In ISI study we collected data from 693 query segments generated
by 40 participants in 80 task-based search sessions. The PH study
elicited data from 273 query segments generated by 26 participants.
The search sessions (measured by number of query segments) are
relatively long (mean length in ISI study: 8.66; mean length in PH
study: 5.25), indicating that the simulated complex search tasks
were successful in eliciting rich search iterations. To clarify the con-
tribution and implication of our study, in this section, we organize
the results from data analyses according to the proposed RQs.

5.1 RQ1: Identify Task States
The identification of task states started with K-modes clustering
analysis. Before that, we employed average silhouette method to de-
termine the optimal number of clusters. We extracted four clusters
as separate task states from the ISI dataset and six clusters from the
PH dataset. The clustering analysis for PH study was conducted
based on 216 query segments as the problem-help annotation was
missing for some of the repeated queries due to system errors.

focusing on the active, intention aspect of task state, we iden-
tified the following four states of complex search tasks. We inter-
preted each extracted task state based on the main (most frequent)
information seeking intentions within the state.
• Exploitation (E) (frequency: 54.3%, 376 query segments): The two most

frequent intentions are find specific information (39.4%) and iden-
tify something more to search (40.4%). Meanwhile, the intention of
identifying something to start searching never occurs. In this state,
users may have a clear topic in mind and they try to follow the
current search path, keep exploiting the information patch at hand
and search for more relevant pages.

• Known-Item (K) (frequency: 18.2%, 126 query segments): The two most
frequent intentions are find specific information (100%) and obtain
specific information items (100%). In this state, users may have very
specific, well-defined information need(s) or item(s) in mind.

• Exploratory (EX) (frequency: 16.6%, 115 query segments): The most fre-
quent intention in this state is identify something to start searching
(100%). In this state, users may try to adopt new search strategies,
explore unknown subtopics, or open new search paths.

• Learn and Evaluate (L) (frequency: 10.9%, 76 query segments): In this
state, most intentions under the Evaluate category (above 60%) and
the intentions of learning domain knowledge and keeping useful
links (both above 80%) occurred frequently.

Similarly, with respect to the situational (problem-help) aspect
of task state, we identified six task states and explained them based
upon the most frequent search problem(s) and/or help needed. We
use acronym to represent each state here as it is difficult to assign
any meaningful label to cover all traits of these problem-help states.
• IO-P (frequency: 21.3%, 46 query segments): The most frequently oc-

curred problem is information overload (IO) (34.8%) and main type
of help needed is Web page (P) recommendation (74%).

• ASK-LT-PE (frequency: 11.6%, 25 query segments): In this state, users
are very likely to experience the anomalous state of knowledge [3]
(ASK: do not know how to express their information need or what
exactly they are looking for) (64%) and other barriers, such as lack
of topic knowledge (LT) (72%) and not knowing potentially useful
information sources (64%). In this state, they usually prefer to have
people (PE) who can guide them through the search process.

• ASK-SU-M (frequency: 11.6%, 25 query segments): In this state, users
are very likely to encounter the ASK issue (76%) and the problem of
not knowing useful sources (80%). Here, users often prefer to have
multiple types of supports, such as page recommendation (88%),
query recommendation (96%), and strategy recommendation (92%).

• NP (frequency: 36.1%, 78 query segments): In this state, users often have
no explicit search problem (NP) (70%) and thus do not need any
specific help from the search system (88.6%).

• LT-M (frequency: 4.6%, 10 query segments): In this state, the problem
of lacking topic knowledge frequency occurs (89%) and users need
multiple types of help, such as page recommendation (89%), people
recommendation (89%), and search strategy recommendation (100%).

• SU-QU (frequency: 14.8%, 32 query segments): In this state, users are
very likely to encounter the problem of not knowing useful in-
formation sources (63%) and usually prefer to have useful query
recommendations from the system (75%).

Table 3: Behavioral variations across different intention-
based task states: (*: p<.05, **: p<.01).

behavior Dunn’s posthoc test
querylength* E>EX*,K>EX*,E>L*,K>L*
dwellSERP** K>EX*,E>L*,K>L**
dwcontent** K>E*,K>EX*,L>E*,L>EX*
N.content** E>L*,K>L*, E>EX**, K>EX**
totalcontent** K>E*,K>EX*,L>E**,L>EX*
N.clicks** L>E**,L>K**,L>EX*, EX>E*
N.bookmark** L>E**, L>EX**, L>K*

To test the validity of the above task states extracted by K-modes
clustering algorithm, we invited two assessors to do manual task
state annotation and computed the Cohen’s Kappa coefficients κ
for all three pairs: 1) annotator A and annotator B: 0.782 (ISI-based
state), 0.768 (PH-based state); 2) annotator A and clustering algo-
rithm: 0.716 (ISI-based state), 0.717 (PH-based state); 3) annotator B
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and clustering algorithm: 0.744 (ISI-based state), 0.682 (PH-based
state). The Cohen’s Kappa agreements in all pairs are above 0.65,
which is considered substantial agreement [33]. This high level of
agreement demonstrates that the task state typology generated by
the clustering algorithm is reliable and can be used for further anal-
ysis. Also, it is worth noting that neither of the between-annotator
agreements crosses the threshold of "almost perfect" agreement
(0.8) [33], indicating that inferring implicit task states from search
interactions is not an easy job (even for human annotators).

To further explore the boundaries between task states, we exam-
ined the extent to which the identified states differ from each other
in terms of the associated search behaviors. We used Kruskall-Wallis
test to test the between-state behavioral differences as the results of
Shapiro-Wilk tests indicated that none of the search behavioral data
was normally distributed. Since we have multiple groups (states)
identified in both ISI and PH studies, we employed Dunn’s test with
Benjamini-Hochberg correction for post hoc pairwise analyses.

Table 3 presents the results of Kruskal-Wallis and Dunn’s post
hoc tests on the behavioral variation across different intention-
based task states. The descriptive statistics (median and IQR) are
omitted here for brevity. In general, when participants had a rela-
tively clear topic or specific item in mind (in exploitation or known-
item states), they tended to issue longer, more specific queries and
spend more time on seeking for most relevant information directly
on SERPs. In contrast, when participants were in learning and
evaluation state, they tended to stay longer on content pages and
do more clicks and bookmarks (for usefulness judgments and re-
sult evaluation). These results demonstrate that the transitions in
intention-based task states are closely associated with the variations
in participants’ search tactics in local search steps.

Table 4: Behavioral variations across different problem-
help-based task states (*: p<.05, **: p<.01).

behavior Dunn’s posthoc test
querylength* ASK-SU-M>IO-P**, ASK-LT-PE*, NP*, SU-QU*
dwellSERP** ASK-LT-PE>IO-P**, NP**,LT-M*, SU-OU*; ASK-SU-M>NP*, SU-OU**
dwcontent N.A.
N.content* ASK-LT-PE>IO-P*, ASK-SU-M*, NP*, SU-QU*; ASK-SU-M>NP*
totalcontent** ASK-LT-PE>IO-P*, ASK-SU-M*, NP*, LT-M*, SU-QU*
N.clicks** IO-P>ASK-SU-M*; ASK-LT-PE>ASK-SU-M*, LT-M*, SU-QU*
N.bookmark** NP>ASK-LT-PE**, ASK-SU-M*, LT-M*, SU-QU*

Table 4 illustrates the behavioral variations across different
problem-help states. The descriptive statistics (median and IQR) are
omitted here for brevity. The results indicate that we participants
encountered the problems of ASK and lacking topic knowledge
(ASK-LT-PE), they tended to be more active in browsing SERPs and
reading content pages, seeking to find useful cues for formulating
queries and deciding right search paths. When participants encoun-
tered the information overload problem (IO-P), they were likely
to be distracted by many (irrelevant) information items, which re-
sulted in more clicking actions. In contrast, when participants had
no explicit search problem, they tended to bookmark more useful
pages, indicating that they were on the right track of searching.

The above analysis on helps clarify the boundaries between
different task states at behavioral level and thereby paves the way
for predicting task states from search behavioral signals (RQ3).

5.2 RQ2: Understand State Transition Patterns
Aiming to go beyond predefined task properties (e.g. task facets)
and explore the dynamic aspect of complex search tasks, we exam-
ined the state transition patterns in tasks of different types. From
process-oriented perspective, the difference in state transition pat-
tern represents the divergence in the way in which people explore
the uncertain solution space associated with the task and thus may
help disambiguate different types of complex search tasks. Model-
ing state transition patterns can enhance our understanding of how
predefined task facets and the combination of facets are manifested
dynamically in search sessions. Figures 1-4 illustrates the state tran-
sition patterns of four types of complex search tasks assigned in
the ISI study, and Figures 5-6 presents the state transition patterns
of the two task types in PH study.

Figure 1: ISI copy editing task (factual specific).

Figure 2: ISI story pitch task (factual amorphous).

Overall, our results demonstrate that the process of doing a
complex search task is usually nonlinear. In all six tasks, we ob-
served transition loops both between and within task states (i.e.
remaining in the same state). The difference in task type (defined
by the combination of task facets, cf. [34]) was also reflected in
the variations of task state transition probabilities. For instance,
compared to the copy editing task (factual specific), the story pitch
task with amorphous task goal motivated participants to do more
exploratory, open-ended search (i.e. 50% chance of remaining in
the exploratory state). In copy editing task, participants searched
for known information items more frequently but rarely stayed in
the learn and evaluate state. Also, participants working on copy
editing task transited from learn and exploitation states to known-
item search more frequently. This finding indicates that in factual
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specific task, it might be easier for searchers to identify and extract
specific information items from previous learning, evaluation, and
topic exploitation process. In story pitch task, participants often
stayed within exploitation state and kept exploring the topic at
hand due to the ambiguity of task goal.

In the two intellectual amorphous tasks, participants tended
to transit more actively between exploratory state and learn and
evaluate state, and remained in these two states more frequently.
Note that in the story pitch task, participants never transit between
exploratory and learning states. Similarly, in copy editing task,
participants never stayed in the learn and evaluate state for two
continuous search iterations. This may be because the two intellec-
tual tasks motivated participants to take more information-literate
actions (e.g., learning connections between facts, evaluating useful-
ness of pages, exploring new information cues) for producing the
intellectual product(s). Besides, in the three goal-amorphous tasks,
participants remained in the exploitation state more frequently
(rather than frequently transit to known-item state) due to the
difficulty of searching with a vague, ill-defined goal.

Figure 3: ISI relationship task (intellectual amorphous).

Figure 4: ISI interview prep task (intellectual amorphous).

The problem-help-based task states offers us a different perspec-
tive on the dynamic process of complex search tasks. Figures 5
and 6 illustrate problem-help state transition patterns. Since the
problem-help approach produced six separate task states, to im-
prove the clarity and readability of these two figures, we omitted
the edges/transitions with a probability lower than 20%.

Overall, in the cognitive task, participants remained in the two
ASK-related states more frequently (ASK-SU-M: 40%, ASK-LT-PE:

44%), indicating that expressing information need(s) with query
terms is a major challenge here. Also, instead of simply transiting
to the NP (no clear problem encountered, no help needed) state,
participants frequently moved from the two ASK states to other
problematic states, such as SU-QU (unaware of useful sources) and
IO-P (information overload). In particular, the ASK-LT-PE state
did not even have a direct transition path toward NP state (i.e.
no edge between the two states). These results demonstrate that
participants were not well supported in this complex search task.
Going back to the original search session videos, we found that
many participants started with copying part of the task description
as search queries (hoping to get direct answers to the question)
but unfortunately received bad (irrelevant) results. After that, they
tried to formulate queries based on their own understanding of
the task and still encountered plenty of barriers. This might be
because this cognitive task required participants to build a bridge
between two topics from completely different domains (i.e. Miss
Universe competition and Indian government’s policies) , which is
intellectually challenging in the context of Web search.

In contrast, the social task appeared to be less complicated as the
probability of transition from ASK-LT-PE to NP was 44%, which is
much higher than that of the cognitive task (20%). Another possible
evidence of relatively low complexity is that participants remained
in the NP state more frequently in the social task (69%). In addition,
the ASK-SU-M and LT-M states never occurred in the social task,
indicating that participants were better supported by the system in
searching for information to satisfy their social needs.

Figure 5: PH cognitive task (intellectual amorphous).

5.3 RQ3: Predict Task States from Behaviors
The state transition patterns discussed above shed light on the
dynamic nature of complex search tasks. To develop state-aware
adaptive support for users, it is critical to examine the extent to
which we can predict task states from behavioral signals. To answer
RQ3, we built several classifiers based upon the behavioral features
introduced in the section 4.3.3. We trained and evaluated classifiers
with an 80/20 split on training/testing data and compared themwith
two baselines: 1) random baseline and 2) most frequent labeling.

The findings presented in Table 5 and Table 6 show that: 1)
overall, the best performers/classifiers built on behavioral features
significantly outperform the corresponding baseline models in the
overall accuracy of predicting task states; 2) constructing classifiers
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Figure 6: PH social task (intellectual amorphous).

Table 5: Accuracy score of task state prediction (ISI).

Classifier Current seg. Prev. session All data
Logistic Regression 0.588** 0.583** 0.594**
Support Vector Machine 0.527 0.535 0.547
XGBoost 0.559 0.535 0.562**
Random Forest 0.539 0.530 0.541
Decision Tree 0.433 0.410 0.427
Most Frequent 0.543 0.543 0.543
Random 0.249 0.249 0.249

Note: Significant values indicate whether the predictor is significantly better than the
best baseline (*:p<.05, **:p<.01). The best performer is boldfaced.

using behavioral data from current query segment only can always
outperform the baseline models; 3) using previous-session-based
classifiers, it is possible to predict task states with an accuracy
score significantly higher than that of the best baseline. Note that
in problem-help state prediction, the classification task involves six
different states. This typology contains distinctions that could be
too fine for a future interactive system to disambiguate. Thus, based
on the frequency distribution of specific features, we collapsed six
specific P-H states into three types. We found that our models
achieved better performances in this "lower resolution" prediction,
with the best performer reaching almost 70% accuracy. As our
response to RQ3, these results jointly illustrate the potential of
search behavioral models in predicting dynamic task states and
empirically proves that it is possible to monitor state transitions in
search and to develop state-aware adaptive system supports.

Table 6: Accuracy score of task state prediction (PH).

Classifier Current seg. Prev. session All data
Logistic Regression 0.511** 0.359 0.416**
Support Vector Machine 0.366 0.389 0.384
XGBoost 0.543** 0.522** 0.572**
Random Forest 0.580** 0.546** 0.574**
Decision Tree 0.587** 0.552** 0.577**
Most Frequent 0.361 0.361 0.361
Random 0.166 0.166 0.166

6 DISCUSSION AND CONCLUSION
To explore the dynamic aspect of complex search tasks and under-
stand how predefined task properties are manifested dynamically
in search sessions, we conducted two controlled lab studies and con-
structed task state framework based on users’ information seeking
intentions, in-situ search problems and help needed in local steps.
The finding of this study enhances our understanding of complex

search tasks from process-oriented perspective and demonstrates
that the abstract concept of task complexity can be embodied by
the transitions and variations of task states and search tactics. Re-
garding the RQs, we have following answers.

To answer the RQ1 (identify task states) and RQ2 (understand
state transition patterns), we extracted task states from annotation
data using clustering algorithms and validated the cluster/state
labels through manual annotations and assessments. The two state
frameworks we developed cover both the active, intention dimen-
sion and the unanticipated, situational dimension of task states.
Then, we examined the state transition probabilities in complex
search tasks and demonstrated that the difference in task type can
be detected from the variations in state transition patterns. These
findings enrich our understanding of the nature of complex search
task and extend the existing descriptive and computational models
of task-based search process (e.g., [2, 23, 55]) by better revealing
the subtle cognitive, situational changes in users’ exploration of
uncertain, evolving solution space and illustrating the nonlinearity
(e.g., loops, state repetitions) of task completion process.

With respect to RQ3, results indicate that both intention-based
and problem-help-based task states can be inferred and predicted
using classifiers built on search behavioral features. Therefore, it is
possible for intelligent search systems to detect task states in an on-
line fashion and leverage the knowledge of task state in adaptively
supporting searchers who have different local information seeking
intentions and/or encounter search barriers of different kinds at
different states of complex search tasks. In addition, the knowledge
of task states can also be incorporated into user-centered system
evaluation process and facilitate state-based search evaluation.

As always, there are limits to our work as well as needs for fu-
ture efforts. This study only studied three elements of task states
(i.e. intention, search problem, help needed) and left out other as-
pects that might significantly affect task completion process (e.g.,
emotional and knowledge states [42, 51]). However, this research
speaks to a promising direction of conceptually deconstructing
and computationally modeling complex search tasks from process-
oriented perspective and may encourage future research to explore
the changes and transitions on other dimensions and further enrich
the task state framework. In addition, the findings reported here
from two small scale user studies need to be tested based on the
datasets collected from different complex task contexts (e.g. struc-
tured information search in specialist databases [9, 41]) and study
settings (e.g., home environment [19]). It is also critical to investi-
gate how user traits (e.g., search skills, cognitive limits) and other
contextual factors (e.g. network latency) affect the distribution and
transition of task states at multiple levels. Based on larger scale
datasets and more fine-grained features (e.g., cursor movement sig-
nals [26], neuro-physiological features [21, 44]), it seems realistic to
believe that we will eventually be able to develop adaptive search
systems that can provide reactive and even proactive supports for
users according to the prediction of task states.
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