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ABSTRACT

Interactive information retrieval (IIR) researchers often conduct
laboratory studies to understand the relationship between peo-
ple seeking information and information retrieval systems. They
develop extensive data collection methods and tools create new
understanding about the relationship between observable behav-
iors, searcher context, and underlying cognition, to better support
people’s information seeking. Yet aside from the problems of data
size, realism, and demographics, laboratory studies are limited in
the number and nature of phenomena they can study. Hence, data
collected in laboratories contains different searcher populations
and collects non-overlapping user and task characteristics. While
research analyses and collection methods are isolated, how can we
further IIR’s mission of broad understanding? We approach this as
a structure learning problem on incomplete data, determining the
extent to which incomplete data can be used to predict user and
task characteristics from interactions. In particular, we examine
whether combining heterogeneous data sets is more effective than
using a single data set alone in prediction. Our results indicate that
adding external data significantly improves predictions of searcher
characteristics, task characteristics, and behaviors, even when the
data does not contain identical information about searchers.
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1 INTRODUCTION

One of the goals of interactive information retrieval (IIR) research
is to understand the relationship between searchers, their search
goals, and their observable activities and to better support the ac-
complishment of the goals of their search. There has not only been
a desire to determine which environmental or personal character-
istics affect search behavior, but there has also been a desire to
determine which characteristics are worth factoring into a person-
alized or contextualized search experience. Several such important
characteristics include a searcher’s task [20, 24], her general knowl-
edge about the search topic [12], and time pressure experienced
at a moment [6], among others. Determining a searcher’s task has
been shown to be useful in improving query recommendation [24]
and ranking [16, 36]. Further, a suite of studies have shown how
differing topic familiarity can affect querying strategies, which in
turn suggests different conceptual models of searchers and perhaps
in turn different methods for recommendation [12]. Moreover, with
dynamic search tools on the rise, such as conversational search
assistants [29], it will not only be important for an algorithm to
infer such characteristics for a personal search experience but to
do so quickly.

Researchers typically attempt to build understanding of searcher,
task, and behaviors piecemeal, by collecting the search activity
of a few dozen participants in a controlled environment like a
laboratory. Researchers control and manipulate the tasks assigned
to searchers or even the characteristics of the searchers (e.g., the
time pressure experienced). In turn, researchers examine whether
behavior is affected by these changes or inversely whether the
characteristics can be predicted from behaviors. Since assigned
tasks and a laboratory setting are occasionally criticized for a lack of
realism, recent work expanded this paradigm to a more naturalistic
setting, with a small set of users self-reporting the nature of their
real tasks [10]. But both data collection paradigms still pervade
current research practice. In either setup, the value in this data is in
the ability to derive searcher and task characteristics from human
annotations, which currently cannot be derived from large scale
Web logs.

To create a completely personal picture of one particular searcher,
several aspects about her may need to be extracted, including time
pressure, the difficulty experienced with the task, the intentions for
issuing particular queries, and so on. Additionally, she may need
to be observed in the context of each possible type of task. First, it
is unfeasible to ask for this quantity of annotation from a single
searcher, let alone for even one of her search sessions. Secondly,
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an exhaustion of laboratory resources is likely, as the number of
searchers required for a study would increase linearly at best as
more searcher and task variables are added as desired predictions.
Lastly, more task characteristics are discovered and studied even
today, as shown in recent work [4].

Hence, in practice, studies are limited to analyzing a specific
isolated phenomenon, and it is not clear how to practically combine
and validate these insights to further IIR’s broader mission. How
should the insights from any individual study be reconciled with
the user and task factors they do not consider? While different labo-
ratory studies may address different research questions, they often
share several characteristics. Common sets of behavioral features
may be used to make inferences about searcher and task. One study
may find a strong relationship between task type, topic familiarity,
and query strategies. It may not examine the relationship between
the same query strategies and time pressure, while another may
discover such an important relationship. If insights from one study
can be transferred to the other, this could perhaps alter the nature
of the findings of the study or even improve predictions of task
and searcher characteristics from behavior. Perhaps the partial and
sometimes heterogeneous information of multiple studies can be
used in conjunction with each other to practically further the larger
goals of IR, all while maintaining today’s data collection paradigms.
We hence ask the following research question: Can predictions of
the relationships between task characteristics, searcher character-
istics, and behavior on a data set be improved when adding data
from additional studies, rather than the single data set alone? In
particular, we frame this as a structured prediction problem, pre-
dicting the user and task characteristics of query segment-based
interactions and training on heterogeneous data (namely, data with
non-overlapping missing values).

The rest of this paper is organized as follows. Section 2 discusses
a more extensive treatment of IIR research practice and the afore-
mentioned limitations. Section 3 discusses the structured prediction
framework, as well as the novel application of a prior structured pre-
diction framework in this IIR setting. Section 4 discusses 3 data sets
from different laboratory studies combined in the experiments. Sec-
tion 5 discusses the experimental framework combining multiple
data sets and reports the results. Section 6 concludes by discussing
implications for IIR as well as room for future work. In summary,
we discovered that both on average and with respect to particular
features, predictions can be improved by incorporating external
data from other studies. Moreover, the studies do not necessarily
need to include identical features or even the predictors to see such
improvement.

2 BACKGROUND

Here, we discuss the necessary background: common and accepted
data collection practices in IIR studies, characterizations of searcher
and task, and the current practice in predicting relationships be-
tween searcher, task, and behavior.

2.1 Data collection in IIR

It should be acknowledged that some research pertaining to search
tasks applies to large scale search logs. A large body of the work,
for instance, has developed task extraction algorithms to transform
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otherwise unstructured logs into cohesive search tasks [14, 22,
34]. The goals for such large scale Web work typically involve
improving upon standard recommendation problems, for instance
using searchers’ task preferences to create effective cohort-based
query recommendation [24] or to recommend future useful queries
specifically for complex search tasks [9]. In Web search logs, the
research often creates latent structure from messy data to directly
improve recommendations.

Laboratory studies address complementary research problems.
Data often consists of a few dozen searchers with one or two search
sessions instead of millions of users with several search sessions. In
the Web, people may multitask, work on a task intermittently over
several days, and otherwise have search performance influenced by
other external factors. The laboratory reduces the effects of such
confounding factors; searchers often focus on a single task curated
by the researchers. The lab is additionally used as an opportunity to
capture richer characteristics about a searcher, often through pro-
vided surveys. Deriving rich self-reports from a publicly available
commercial search engine is unrealistic, impossible, or otherwise
rarely done if ever.

A common criticism of labs is a potential lack of realism, but re-
searchers have responded to this in several ways. Early work by Bor-
lund and Ingwersen developed the notion of the simulated work
task, in which a search task, while designed by a researcher, elicits
a ‘simulated information need’ by describing to the participant “the
source of the information need, the environment of the situation,
the problem which has to be solved, and also serves to make the
study participant understand the objective of the search” [1]. This
type of work task is meant to instill a controlled information need
in the searcher, balancing the desire for control yet also for realism,
and this framework has been used extensively [2]. Furthermore,
tasks from the general public and from work organizations have
been studied in decades of research. A seemingly infinite number
of search tasks have been condensed into simpler core attributes
which all allegedly share. One such notable categorization includes
that of Li and Belkin [15]; subsequent research has since designed
search tasks according to this schema and studied their influence
on searchers [11, 13, 20].

He and Yilmaz [10] addressed the lack of realism with a different
approach. They had participants work on their own search tasks
and hand-annotate them, although this nevertheless was a small
research effort conducted by a small number of searchers. Such
small settings — whether in a laboratory or naturalistic setting —
have become a staple of IIR research, with such data collection
spanning decades and even today [4]. A large body tasks assigned
in laboratories — and their associated papers — can be found at the
Repository of Assigned Search Tasks!.

2.2 Task and Searcher Relationships

Classifications of search, including that of Li and Belkin, span
dozens of user and task characteristics. Li and Belkin include the
product of the task — whether the task is about finding facts, pro-
ducing insights, making a decision, or creating a product — and
the goal of the task — whether it is well-defined, ill-defined, or

!https://ils.unc.edu/searchtasks/search.html
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somewhere in between [15]. Another heavily researched dimen-
sion is the task’s objective complexity, proposed by Campbell and
described as searcher-independent and comprised of the number of
possible paths to the outcome, the number of outcomes, interdepen-
dence among paths, and uncertainty between paths and outcomes.
A large number of these attributes are solely dependent on the
task description and independent of the searcher [3]. Additionally,
the number of task characteristics of interest continues to grow.
Recent work by Capra et al. defined “determinability” as whether
task aspects were explicitly defined, distinguishing differences in
behavior among different levels of determinability [4].

Moreover, researchers are also interested in attributes of the
searchers, some of which are dependent on their task and some
of which are independent. One task-independent feature includes
general search expertise; Marchionini shows that experts and non-
experts have different mental models for searching, with experts
being more efficient [23]. Another task-independent feature is time
pressure, shown to similarly affect searching and browsing behav-
iors [6, 19]. In contrast, a popular task-dependent feature is topic
familiarity, which has been associated with a suite of differences in
behavior — not only search efficiency [12] but also eye movement
patterns [5] and querying behavior [35]. These properties describe
task or searcher properties of an entire search episode. Yet some
properties of interest characterize search session dynamics and are
only capable of being captured in the midst of a search session.
One such example is “interactive search intentions”, proposed by
Xie and describing the activity on a single query and subsequent
pages, including intentions to “locate a specific link” or to “learn
domain knowledge” [37]. Hence, interests in characterizing the
search session span multiple levels of granularity.

2.3 Characterization and Prediction in IIR

The purpose of such characterization is to ultimately provide tai-
lored predictions of behavior and tailored recommendations. Tra-
ditionally, researchers examine how changes in searcher and task
characteristics affect commonly observable behaviors - e.g., how
querying patterns differ between fact-finding and exploratory tasks,
between topic experts and non-experts, or each of these 4 combi-
nations. Results can then be used in predictive models, using be-
haviors observed during a search session to predict the state of the
searcher and the nature of the task. Prior work has examined such
a predictive relationship directly between tasks and behaviors. For
instance, Liu et al. and Jiang et al. showed differences in browsing
behaviors and even eye tracking patterns between tasks with dif-
fering goals and products [13, 20]. Differing task complexity has
similarly been shown to affect query reformulation patterns [17]
and other observable behaviors. Prior work has also characterized
direct relationships between searcher characteristics and behavior.
Topic knowledge and domain knowledge affect query reformula-
tion patterns, search efficiency [12], eye movement patterns [5],
types of domains visited, and word usage in queries [35]. Increased
time pressure specifically decreases task time and overall results in
shallower page reading and shallower searching behavior [6, 19].
Intuitively, characteristics like familiarity with a task or topic
should be a function of the task itself, and general search expertise
may not affect behavior when a task is simple or fact-finding. Prior
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work has explored interactions between task and searcher charac-
teristics on behaviors. Relationships have been discovered between
task complexity, task type, and browsing behaviors [33]; task dif-
ficulty, domain knowledge, and time spent on content pages [18];
task type, task difficulty, and behaviors [21]; and task topic, behav-
iors, and perceived difficulty and success [11]. To another extreme,
the same patterns used to identify tasks have been shown to more
reliably predict who is searching rather than the task, suggesting
a possible interaction between task and personal characteristics
generally [25]. While each isolated finding regarding task, user,
and behavior can be seen as a component to a larger network, few
works have explored this possibility in practice. We previously
applied structural equation modeling in such a fashion, using a
combination of meta-analysis and parameter learning to estimate
a network between task characteristics, searcher characteristics,
and browsing behaviors. They showed that such network-based
estimation is empirically necessary, as their findings complemented
old results but discovered new patterns. Accounting for more task
and user characteristics simultaneously could better help explain
searcher behaviors [26].

Therefore, estimating the influence of several searcher and task
contexts simultaneously on behavior is necessary. But as a practical
limitation, no studies attempt to inventory a complete-as-possible
list of searcher and task characteristics, except in meta-analyses.
A laboratory study participant would need to complete extensive
pre-task, post-task, and in-session surveys comprised of dozens
of questions. Hence, several studies will contain non-overlapping
information about participants. If one study inventories the effects
of time pressure on behavior, how can this be reconciled with the
findings of task versus behavior from another study that did not
consider time pressure? Can the findings from one study be used to
improve prediction of user and task characteristics from the find-
ings in another? Therefore, we must learn the complex interaction
between searcher, task, and behavior with incomplete information.
This work therefore addresses a problem largely unexplored in
IIR: 1) learning a structure on relationships between searcher, task,
and behavior, and 2) learning such a structure from heterogeneous
data — namely from multiple data sets recording non-overlapping
searcher and task characteristics.

3 METHODOLOGY

Here, we discuss and motivate the necessary framework for under-
standing structure learning, the main approach used in prediction.
We consider cases where data is both complete and incomplete in
our experiments, with both cases discussed below.

3.1 Structure Learning

One formulation of a relationship between task, searcher, and be-
havior is of a graph G = (V, E), where the characteristics are vari-
ables/vertices V and each edge represents the strength and direction
of influence between variables, e.g., a unit increase in time pres-
sure decreases result dwell time by 3 seconds. Structure learning
is decomposed into the joint problems of learning 1) which edges
to include and 2) the strength of these edges (parameter learning).
Prior work investigated whether human cognitive modeling could
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benefit from a structure learning approach [32]. Consider a Gauss-
ian Bayesian Network as an example. Given n data points D each
consisting of o observations (e.g., logged behaviors) and i inputs,
our data is broken into Y € R™°, X € R™ and triangular matrix
B € R, and error terms € € R™© that maximizes P(B|G, D) such
that:

Yo = Zﬁi,oxi + €o (1)
i

P(Y,|Parents(Y,)) ~ N[ By, + BioXisol|  (2)

X;€Parents(Y,)

One can engage in parameter learning without structure learning
when one can justifiably skip the first step and manually specify a
graph - e.g., when one has expert knowledge about which searcher
traits and behaviors affect each other. Social applications managing
the safety behavior of employees [27] and decision support for
medical procedures [28] have benefited from parameter learning.
The IIR work discussed in Section 2.3 can be seen as parameter
learning, hand-selecting which interactions of variables to measure.
We previously performed a meta-analysis to hand-construct struc-
tural equation models for analyses [26]. Yet for a more accurate
determination of how variables affect each other, it can be beneficial
to engage in both steps of structure learning. Structure learning has
been shown to be more accurate than parameter learning (i.e., ex-
pert construction with parameter estimation) in applications such
as lung cancer decision support [31].

Structure learning is NP hard so is generally approached with
three types of approximation algorithms: constraint-based, score-
based, and hybrid. Constraint-based algorithms determine the edges
between nodes based on conditional independence relationships.
Algorithms such as the PC algorithm first connect dependent nodes
directly with an edge, then prune away edges and orient them.
Score-based algorithms attempt to maximize a network score repre-
senting the goodness of fit of the graph to the data. For instance, hill
climbing — a greedy approach — greedily adds edges that maximize
the following score:

Score(G : D) = LL(G : D) — ¢(|D])||Gl| (3

LL(G : D) is the log-likelihood of data D under G. |D] is the
size of the data ||G]|| is the number of parameters in the graph,
and ¢ refers to a complexity measure function, essentially used for
regularization. Hybrid algorithms borrow techniques from both
constraint-based and score-based approaches, proceeding in two
phases. The first phase applies a constraint-based technique to limit
the number of graphs to explore. The second phase uses a score-
based technique to find the optimal graph within this space [30].

If we consider the learned graph to be a directed acyclic graph
(DAG), G is a graph consisting of the i + o variables as vertices, and
directed, weighted edges are represented by B. In our specific exper-
iments, the i inputs are task and searcher characteristics, and the o
outputs are searching behaviors. A DAG is suitable for our problem
setting, which assumes the following hierarchical relationship:

o Tasks are pre-specified independently of the searcher
e Searchers bear some characteristics independently of the
task (e.g., general search expertise)
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o Searchers bear some characteristics relative to the task (e.g.,
topic familiarity)
e Searchers subsequently exhibit outward behaviors.
The relationship between searcher, task, and behavior is under-
standably more complex, which will be discussed in Section 6.

3.2 Structure Learning with Missing Data

Common structure learning methods work well for cases where
data is complete. In our case, this means that every single behavior,
user, and task characteristic is recorded. Suppose we are to examine
data from multiple laboratory studies. If they each take place on
a desktop computer while browsing the general Web (a likely sce-
nario), identical browsing features can be derived from each. Yet as
mentioned above, not every single aspect about a searcher’s context
will be reported in each study. One study may design tasks with
differing goals and products and collect information about time
pressure. Another may only vary task goals while asking about
topic familiarity. That is to say that these combined data sets are
heterogeneous, inasmuch as there are missing values.

A structure learning algorithm which considered missing values
was derived by Friedman [7]. Specifically, if we consider D to be
our data set, we can consider DO to be the set of observed values
and DM to be the set of missing values. Similarly to the above
approaches, this attempts to maximize the following score on graph
(G, B), which includes terms for log-likelihood and regularization
on the observations:

Spo = logP(D®|G, B) — ¢(G, B, D°) ()

When all data is provided, this score can be computed directly.
However, in the case of partially missing data, we look at the ex-
pected values of the missing data DM, maximizing an expectation
score instead:

= E[logP(D®,DM|G, B) - ¢(G,B,D°)]  (5)
= Ygepm pallogP(DC. d|G, B) — $(G, B, D)](6)

Q(G, B|G*, BY)

Where p; = P(d|D°, G*, B*). Therefore, an expectation maxi-
mization algorithm can be derived as follows [7]:

(1) Choose G° and B randomly

(2) Loop for n =0, 1, ... until convergence
(a) Find a model G™*! that maximizes Q(., B®|G", B")
(b) B™*! = argmaxﬂQ(G””,mG",B")

3.3 Evaluation of Structure Learning

The primary method of evaluating a Bayesian network is with
scores derived from the log-likelihood LL(G : D). They include some
penalty for model complexity, such as the Bayesian Information
Criterion (BIC) defined as: BIC(G : D) = LL(G : D) — 22020 5|
In all cases a higher score is preferred. These scores can be used
to evaluate prediction performance on individual nodes or also on
the entire graph (as the sum of the scores on the nodes). We adopt
both approaches here, specifically applying the unregularized log-
likelihood score, as the number of included and excluded variables
varies greatly between experiments.
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Table 1: Task type and session characteristics for intentions
(INT), searching as learning (SAL), and expert opinion (EOP)
data sets.

l Data Set [ Task # [ Product [ Goal [ |T| [ 10| ‘
INT 1 Factual Specific 22 | 206
INT 2 Factual Amorphous | 18 | 108
INT 3 Intellectual | Amorphous | 18 | 155
INT 4 Intellectual | Amorphous | 22 | 224
SAL 5 Mixed Specific 30 | 168
SAL 6 Intellectual Specific 30 | 187
SAL 7 Intellectual Specific 30 | 110
SAL 8 Intellectual Specific 30 | 129
EOP 9 Factual Specific 30 | 161
EOP 10 Factual Amorphous | 30 | 75
EOP 11 Factual Specific 30 | 294
EOP 12 Factual Amorphous | 30 | 256
EOP 13 Factual Specific 30 | 249
EOP 14 Factual Amorphous | 30 | 239

4 DATA SETS

This section details three independent laboratory studies conducted
by the researchers, including the experimental setup and the user
and task characteristics recorded in each. We show where the re-
spective data sets overlap and where they differ.

4.1 Data: Laboratory and Naturalistic Logs

Our data consists of search logs collected from three independently
conducted IIR studies, both in laboratory settings and naturalistic
settings. Participants in the studies were undergraduates recruited
from a university. In each study, participants conducted several
search tasks designed by the researchers. While having different
topics and task descriptions, the tasks were manipulated to have
specific task goals and products according to the classification of Li
and Belkin [15]. Each task required multiple queries to accomplish.
A summary of each data set is provided in Table 1. In all studies,
participants were incentivized to perform well with an additional
bonus payment that would be given to “best participants”.

The first data set (intentions — INT) centered around search be-
havior for journalism-type tasks. The purpose of this experiment
was to measure the search intentions of participants. Participants
(undergraduates) conducted 2 consecutive search sessions in a lab-
oratory, and the tasks for each participant were rotated to reduce
ordering effects. A participant’s session began with a demographic
questionnaire, and each search session was preceded by a pre-task
interview and proceeded by a post-task interview. Participants had
two 20 minute search tasks but could choose to finish each early.
Search activity was recorded in a Firefox plugin. The search tasks
were on the topics “coelacanths” (a type of fish) and “methane
clathrates and global warming”. The study consisted of 40 searchers
who conducted 693 queries over 8 different tasks.

The second data set (searching as learning — SAL) centered
around tasks that required learning. The purpose of this study
was to observe learning effects of searchers conducting a task over
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the course of several days. This study was conducted in a natu-
ralistic setting. Participants downloaded a Chrome extension that
allowed them to interact with study materials (e.g., questionnaires),
view the task descriptions, and record search activity. Participants
were hence allowed to conduct the study activities in any arbitrary
setting, not under the supervision of a research coordinator. Partic-
ipants were general undergraduate students required to be at least
in their second year of study. They were also required to use Google
Chrome to complete the study. While participants were asked to
complete 4 search tasks over three consecutive days of their choos-
ing, participants otherwise had no imposed time limits. The topic
of each task was cyber bullying. Participants were similarly asked
demographic, pre-task, and post-task questionnaires. Multitasking
for unrelated tasks was considered when cleaning data for analyses
in this paper. In the INT data, this was of no concern, since all
activities were conducted in a controlled laboratory setting. In total,
the study consisted of 40 searchers who conducted 594 queries over
4 different tasks.

The final data set (expert opinion — EOP) was collected in a
mixed environment — participants conducted search activity in
both naturalistic and laboratory settings. The purpose of this study
was to measure differences in behavior and search performance
after participants were exposed to expert advice on search strate-
gies, peer advice, or nothing at all. General undergraduates were
also recruited for this population, with the only requirement be-
ing the use of Chrome for the study. For the naturalistic setting,
participants similarly downloaded a Chrome extension, which was
also used in the laboratory. The study was split into three parts,
with participants required to conduct two tasks in each part. Par-
ticipants in this study also conducted demographic, pre-task and
post-task questionnaires. This study contained more heterogeneous
topics, such as in travel, retirement, and entertainment. In total, the
study consisted of 40 searchers who conducted 1274 queries over 6
different tasks.

As previously mentioned, participants answered several ques-
tionnaires, both general questionnaires and ones with respect to
the task. Each study had some similar or identical questions that all
studies asked. The first was general search expertise: INT and SAL
asked for this in a demographic questionnaire on a 1 to 5 scale. EOP,
due to its design around expert advice, asked 4 questions regarding
general search expertise on a 1 to 5 scale; for analyses here, we
combined these in an average score. In the pre-task, each study
asked how familiar the participant was with the topic, ona 1 to 5 or
1 to 7 scale. The features, overviewed in Table 2, were transformed
accordingly.

Each study also collected a common set of browsing behaviors,
courtesy of the installed Chrome and Firefox extensions, also shown
in Table 2, which also includes statistics on each of these variables.
INT and SAL asked about the number of years participants spent
conducting online searching and the frequency with which partici-
pants use search engines or other online search tools. INT exclu-
sively asked how often participants conducted online searching
with respect to their domain of expertise (journalism), on a 1 to 4
scale. It also exclusively asked pre-task how much experience the
participant has with the type of assignment (e.g., copy editing), not
the topic. INT and EOP asked post-task whether the participant had
sufficient time to complete the task successfully, on a 1 to 5 scale.
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Table 2: Features absent (-) present in the intentions (INT), searching as learning (SAL), and expert opinion (EOP) data sets.
Statistics on each feature are also provided, as well as the number of query segments |Q| per data set.

Feature
General Search Expertise

INT (|0]=693)
p=4.8750 =1.00

SAL (|0]=594)
1 =4.16,0 = 0.68

EOP (|Q[=1,274)
p=4.0750 =0.46

Years Spent Searching
Search Frequency

Professional Domain Expertise

Topic Familiarity
Assignment Experience

1 =10.65,0 = 3.01
p=16.750=0.59
p=3.350=0.92
u=1.7250=1.30
p=3.050=1.383

1 =9.43,0=4.37
p=313,0=0.92

§=2.78,0=1.09

p=3.11,0=170

(Post) Search Difficulty u=2.8,0=165 u=186,0=0.91 u=3.83,0=1.83
Adequate Time p=410=1.03 - u=4.07,0=0.94
# Pages u=5750=296 1 =2250 =331 1 =2.00,0=3.45
Total content time 1 =76.01,0 =9547 | p=74.32,0 = 134.09 | pp =53.73,0 = 90.83
Total SERP time u=28790=14.61 | p=13.80,0 =26.69 | p=9.72,0 =22.45
Query length 4 =497,0 =3.83 g =4.41,0 =4.79 1 =5.76,0=3.96

The unit of analysis in our experiments is the query segment — the
behavior conducted starting from when a person issued a query
up until the next query. While our data is comprised of only 100
search sessions, it is comprised of 2,561 query segments.

5 EXPERIMENTS AND RESULTS

Each experiment follows a similar template: a structure learning
algorithm is applied on a training set and validated on a test set. Log-
likelihood on the test set is used in all cases to indicate prediction
performance. It is used to both determine fit on a specific variable
and an entire graph. The specific choice of training data, test data,
and learning algorithm depend on the goal of the experiment, as
well as whether the training and test data are partial or complete.
In experiments with complete data, we apply max-min hill climb-
ing (MMHC) for structure learning, which is a popular, effective
hybrid algorithm for structure learning [8], even for large data
sizes. In experiments with incomplete data, we apply the previously
mentioned EM-based method from Friedman [7].

5.1 Experiment 1: Control

Our first experiment is a benchmark to consider the performance of
algorithms when a single data set from one laboratory study is used
for both training and testing. First, how does performance change
as the ratio of training data to test data changes on a single data
set? Second, how does the amount of missing data in training affect
test performance? This will allow us to determine the effects of the
amount of missing data and amount of training data (absolute and
relative) on future experiments. To this end, we first take each data
set individually (i.e., INT, SAL, EOP) and apply MMHC on the set
of features present in each. Training and test sets are split by x%
and 100 — x%, respectively, where x = 10, 20, ..., 80. Next, we focus
on a 80%/20% split of training and test, instead randomly deleting
10%, 20%, ...60% values before training.

Results are provided in Figures 1-2. Figure 1 shows the results of
varying the ratio of training to test for each laboratory data set. The
log-likelihood on the test set increases linearly with the number of
points in the test set, with the smallest log-likelihood at 90% training.
But the log-likelihood function is a sum of the log-likelihood of each
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Figure 1: Experiment 1: Log-likelihood when varying ratio
of training to test data.

data point in the test set. Therefore, the log-likelihood effectively
stays constant, regardless of ratio of training to test. Figure 2 shows
the effect of omitting random values from the training set. The
results are once again effectively constant for different percentages,
and therefore no predictive accuracy is lost with the missing data.
In summary, for a single data set, the algorithms converge to a
roughly constant log-likelihood per data point. Any differences in
log-likelihood in future experiments, therefore, should be attributed
to other characteristics of the training data used, not purely training
data size or the percent of missing values.

5.2 Experiment 2: Combining Data Sets

Our second and main experiment determines whether predictions
of searcher characteristics, task characteristics, and behavior on
data from one study can be improved from data in other studies
that collects different information about its users. Refer back to
Table 2 for the list of user characteristics that are present and
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Figure 2: Experiment 1: Log-likelihood when varying the
percent of missing data on a test set.

absent in each laboratory data set. This experiment’s results can
help determine the utility of combining heterogeneous data sets.
To this end, suppose we have external data sets Dex; = {d1,d2, ...}
(e.g., SAL, INT) and our data set of interest djn; ¢ Dex: (€.g., EOP).
We train using 100% of the data from D¢y and 80% or the data from
dint, with 20% held out for test. When training and testing with one
data set alone (Dex; = 0), MMHC learns a graph on the features
present in djn;. When external data is added for training, the EM-
based algorithm is used to account for missing values in training
and testing. Afterwards, we conducted the same experiment while
varying the amount of additional training data D¢y, ranging from
10% to 100%. All features were used and estimated, unless the feature
is present in neither the training nor test data. Log-likelihood over
the general graphs shows the general improvement of graphs in
terms of their predictive power. Log-likelihood over specific nodes
shows the level of improvement in predicting specific variables.
We also examine structural hamming distance as a measure of
graph similarity, which is the number of edge changes required
(additions/removals/reversals) to convert one graph into another.

Our first results can be found in Table 3, which agree with the
general premise guiding this study. For the log-likelihood score
of an entire graph, it is generally better to rely on incorporating
external data, rather than just using a single laboratory data set
alone, with all improvements being significant. In particular, best
performance was achieved across the board when using all 3 data
sets rather than 1 or 2. Although the results for EOP seem to indicate
otherwise (-1934.02 versus -1995.01), these two figures were not
significantly different (p = 0.39). Figures 3- 5 suggest this result
is invariant to the amount of training data used from the external
training set. The combined data set often performs at least as well
as some other data set and is among the best data sets. In the case
of EOP, INT data is as good as SAL and INT combined, but both
are better than using SAL. In the case of INT, all are fairly close.
For SAL, INT and the combination of INT and EOP are better than
EOP.
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Table 3: Experiment 2: Log-likelihood scores on entire graph.
Columns indicate the data sets used for test and training,
as well as the log-likelihood scores. ** shows results signifi-
cantly better than when using one data set alone (p < .01).

Test | Training LL
EOP | EOP -2944.34
EOPINT -1934.02**
EOP,INT,SAL | -1995.01**
SAL -2613.91*"
INT | INT -2430.50
EOPINT -2504.07**
INT,SAL -2374.66*"
EOP,INT,SAL | -2381.30™"
SAL | EOP,SAL -1543.46
INT,SAL -1381.66™
EOP,INT,SAL | -1168.96™"
SAL -1561.56**

Exp2.1: Vary Training size
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Figure 3: Experiment 2: Log-likelihood as a function of the
percent of the data from the external data sets, for EOP.

A more striking result occurs when looking at the specific de-
tails, shown in Tables 4- 6. As generally expected and with a few
exceptions, adding data improves predictions on specific features.
Yet surprisingly and encouragingly, this improvement can occur
even when some or all of the training data does not contain the
feature that is improved. For the EOP data set (Table 4), for instance,
the user’s feeling of whether they had adequate time to complete
the task was improved by using all data combined, even when SAL
did not include such data. The INT data set (Table 5) contains all
features. Yet improvements can be seen for professional domain
expertise and assignment experience, when neither of the other
data sets contained such information. For SAL (Table 6), the years
spent searching could be better predicted using all data, even when
EOP contained no such information, and search frequency could
be better predicted with EOP.
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Figure 4: Experiment 2: Log-likelihood as a function of the
percent of the data from the external data sets, for INT.
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Figure 5: Experiment 2: Log-likelihood as a function of the
percent of the data from the external data sets, for SAL.

Moreover, results are overall stable in ways that one would ex-
pect, further demonstrated in Table 7. Smaller distance entails that
the graphs are similar. Graph structure tends to vary the least on
graphs formed with under the same experimental setup. In addition,
when using a set of data dy, ..., dy, the data set d; used for testing
does not affect the structural hamming distance much. Therefore,
log-likelihood scores — such as those in Table 3 - can be attributed
to the structures learned in those graphs.

Some curious results perhaps entail limitations in the data or
in the analysis method used here. First were some results for the
EOP data set. It is the only one whose likelihood changed as the
external data used to create the graph increased, demonstrated in
Figure 3. It moreover showed the markedly worst log-likelihood in
Experiment 1 when used alone but showed the most improvement
when external data was included. Yet EOP also had the least number
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Table 4: Experiment 2: Log-likelihood of features present in
EOP data. Columns indicate the feature, the log-likelihood
when only using EOP data, the training data that yielded the
best log-likelihood, and the respective score.

‘ Feature LL Best Data Best LL
Task Goal -151.03 SAL.EOP 150.77
Topic Familiarity -457.44 INT.EOP 25.05
General Search Expertise -148.58 INT.SALEOP 311.62
(Post) Search Difficulty -503.08 INT,SAL,EOP 13.02
Adequate Time -334.04 INTSALEOP -176.81
# Pages -340.14 SALEOP -304.70
Total content time -256.38 INTSALEOP -301.15
Total SERP time -349.41 SAL,EOP -338.39
Query length -355.20 SALEOP -192.30

of user characteristics. Performance increased as more such features
were incorporated into the training data, with the largest increases
when INT is included (which contained the complete features).
Similarly, SAL showed the least number of user characteristics,
with performance increasing marginally when EOP is included (no
new features) and substantially when other features are included.
Adding more features in training may hence considerably increase
accuracy.

Moreover, our experimental approach hit some ceilings. For one,
despite invariance in the log-likelihood, graphs still varied even
when the combination of training and test set sizes are held con-
stant, suggested by small but non-negligible structural hamming
distance. Also, consider that the structural hamming distance is
often small between configurations where all 3 data sets are used.
Nevertheless, there is still a substantial significant difference be-
tween log-likelihoods shown in Table 3 on the combined data, when
testing on EOP, INT, and SAL (-1995.01, -2381.30, and -1168.96, re-
spectively). We take this to mean that each data set has its own
characteristics. Why are the extracted graphs not completely stable
with a hamming distance of 0? We interpret this as a limitation
of the experimental setup, as query segments are treated as inde-
pendent points. For a tighter fitting model less prone to variance,
perhaps longer sequences of data are required, but this requires
more data and is the realm of future work. Also, why does the
log-likelihood vary so much when the training sets are nearly iden-
tical and the test set changes? This seems to suggest that there are
intrinsic limitations, due to some characteristics of the data set. But
from this experiment, an analogy can be drawn to crowdsourcing -
even with differing and sometimes imperfect data sources, in some
scenarios crowdsourcing can draw better results. Similarly in this
case, combining multiple data sets of incomplete and otherwise
different data can in the end improve prediction when combined.

6 CONCLUSION

In this paper, we advocated for a need for an experimental setup to
address the larger problem of IIR. How in practice can one combine
laboratory studies that address separate research questions to holis-
tically characterize the relationship between searcher, task, and
behavior? This paper shows that this can be done experimentally,
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Table 5: Experiment 2: Log-likelihood of features in INT.

‘ Feature LL Best Data Best LL ‘
Task Goal -83.12 INT -83.12
Task Product -53.93 SALINT -38.01
General Search Expertise  -163.00 INT,EOP -159.41
Years Spent Searching -326.47 INTEOP -318.22
Domain Expertise -199.12 INTSAL -185.20
Topic Familiarity -236.13 INT,SAL,EOP -204.13
Assignment Experience =~ -241.75 INT,SAL,EOP -219.94
(Post) Search Difficulty -250.00 INT,EOP -217.64
Adequate Time -141.09 INT -141.09
# Pages -194.56 EOP -141.21
Total content time -140.91 INT,SAL -99.01
Total SERP time -199.01 INT,SALLEOP -151.62
Query length -191.23 INT,SALEOP -167.61

Table 6: Experiment 2: Log-likelihood of features in SAL.

‘ Feature LL Best Data Best LL ‘
Task Goal -72.28 INT,SAL -63.35
Task Product 20.60 INT,SAL 30.65
General Search Expertise  -90.93 INT,SAL  -19.20
Years Spent Searching -321.47 INT,SALEOP -172.42
Search Frequency -149.69 SALEOP 106.69
Topic Familiarity -158.45 INT,SAL  -85.02
(Post) Search Difficulty -159.41 INT,SAL -14.96
# Pages -150.74 SAL -150.74
Total content time -140.59 INTSAL -127.71
Total SERP time -157.86 SAL -157.86
Query length -159.42 SAL -159.42

even under the common practical constraints where various studies
collect different types of data about their searchers.

Specifically, we discovered that combining data sets to predict
user and task characteristics is most often better than using a data
set alone. We discovered this both generally and with respect to
specific features (Experiment 2). This is not simply in virtue of col-
lecting more data for one particular laboratory study (Experiment
1). Rather, it is the data from other studies that improves prediction,
more so than the addition of data itself (Experiment 2). Part of
this is due to the features each study covers. As more features are
covered by the training data, this can tend to boost prediction. But
a study that covers all features is not necessary; even if a feature
is largely missing in training data from other studies, this training
data is still useful in even predicting that particular feature. De-
spite differences between data sets, the framework explored here
behaves much like crowdsourcing. Combining laboratory studies to
boost performance (in our case, on task/user/behavior prediction)
is better than using any data set alone, even when the laboratory
studies show various differences.

One implication of this work is a potential diagnostic model
when conducting laboratory studies. Suppose one study collects
several user and task characteristics but forgets time pressure or

423

SIGIR 19, July 21-25, 2019, Paris, France

for pragmatic reasons omits query-specific intentions. They are not
observing the results they would expect. How much of this can be
attributed to time pressure? Did these searchers perhaps exhibit
different intentions for their queries than the researchers would
have assumed? Applying a learned graphical model to this can help
diagnose possible causes of unexpected variations in data.

But with this work comes discussions predominantly revolving
around privacy. This work entails that it is necessary to combine
multiple data sets to achieve the goal of IIR. Not every researcher
has the luxury of housing multiple data sets that they can combine
to conduct the research performed here or to subsequently aim for
the broad goal of IIR. For an approach such as this to be deployed,
data would need to be shared, and hence the privacy implications of
such sharing would need to be considered. An alternative — which
still requires privacy research — is to develop a hybrid model that
aggregates smaller models learned on individual data sets, as with
a decision forest or some other aggregation function. But this is the
realm of future work, and we nevertheless think this is a promising
step towards holistic IIR.
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