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1. Introduction

We present a careful analysis of Convolution Quadrature (CQ) based on the Trapezoidal Rule (TR). The reason for this
is multiple. The original work of Lubich [1] extends his results [2] on multistep CQ for parabolic problems (parabolic
character is reflected in having the Laplace transform of the operator extended to a sector around the negative axis) to
hyperbolic problems (where the Laplace transform is defined only on a half plane). Because of Dahlquist barrier, only
second order multistep CQ methods are available for hyperbolic problems, and the analysis in [1] excludes the TRCQ
method for technical reasons. However, it is well known (and it has been tested repeatedly in the area of Time Domain
Boundary Integral Equations — TDBIE) that the TR based method outperforms the first order backward Euler method and
BDF2 which is much too dispersive. For a much detailed comparison of BDF2 and TR based CQ methods, including the
former one’s computational cost advantage in certain cases, we refer to [3]. Note that Runge-Kutta CQ schemes [4] with
higher order and less dispersion are also available, and that a detailed time domain analysis is also missing from [5,6].

As a warning to the reader, let us say that this paper is quite technical, but it closes an important question (left open
in the monograph [7]) as to how error estimates for TRCQ behave polynomially in time and there is no hidden Gronwall
Lemma argument that would lead to exponential in time upper bounds. In the appendix of Banjai’s paper [3], which we
are polishing up, the estimates are written for finite time intervals and the behavior with respect to the final time is not
specified.

Let us now briefly introduce the mathematical aspects of TRCQ. For algorithmic and practical introductions to
the CQ methods, we recommend [8,9]. For a detailed introduction to the distributional language required for a deep
understanding of CQ applied to TDBIE, see [7]. Our starting point is a couple of Banach spaces X and Y and the space
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B(X,Y) of bounded linear operators X — Y, whose norm will be denoted || - ||x_y. The second ingredient is the symbol
of a momentarily hidden convolutional operator: we assume that we have an analytic function

F:Cy — B(X,Y), Cy={se€C :Res> 0} (1.1)
satisfying

IF(s)lIx—y < Cr(Res)|s|*  VseCy (1.2)

where Cr : (0, 00) — (0, 00) is non-increasing and Cr(x) < cox~™ for some m > 0 when x is close to zero. We will be
interested in symbols F where the parameter 1« > 0 in (1.2), but we will show some results (based on [1]), for negative
values of w as well. The TRCQ approximation of this symbol consists of defining

3(e” "5) 2 KS 1-¢
F(s)=Fs) 8= = ~tan h(z), =25 (1.3)
Here « > 0 is the constant time-step (see more explanations later) of the underlying TR scheme (recall that § in (1.3) is
the characteristic function of the TR scheme). We will show that s, € C for every s € C;, so that the definition of F,
makes sense, and we will also show that F, is a symbol with properties (1.1)-(1.2), although with different parameters
to those of F.

Properties (1.1)-(1.2) ensure that F is the Laplace transform of a causal tempered B(X, Y)-valued distribution, which
we will name f. Moreover, F is the Laplace transform of the distributional time derivative of a certain order (depending
on ) applied to a function h : R — B(X, Y) which is causal (h = 0 in (—o0, 0)), continuous, and polynomially bounded.
See full details in [7, Chapters 2 & 3]. Under these conditions, we can define a convolutional product f * g of the operator
valued f acting on a causal X-valued distribution g, outputting a causal Y-valued distribution. Informally, we are dealing
with

(f )t /ft—r

Similarly, F, is the Laplace transform of a causal tempered B(X, Y)-valued distribution f,, and the TRCQ approximation
consists of substituting f * g by f, * g. In practice, what is computed are the values

(fe xg)ta) thi=nk neZ, nx0, (1.4)

although the theory is developed for the full real distribution f, *g. The time-step values of f, xg are given by the discrete
convolution

(fe % )ta) = Za) (g (tn),  F(S(L)/K) = Za) (1.5)

In practice, the discrete convolutions (1.5) are computed using a parallel process, FFTs, and some kind of contour
integration [8-10]. If applied to a linear system of ODEs with vanishing initial conditions, TRCQ is reduced to the TR
scheme applied to the original system. One of the main field of applications of CQ for hyperbolic problems is in the
area of TDBIE, using the language and ideas of the seminal papers of Bamberger and Ha-Duong [11,12]. More examples,
including coupled systems of wave equations in bounded domains with TDBIE in their exterior, can be found in [13].

Even before its convergence analysis was entirely completed, TRCQ already found applications in the literature.
Studying time-dependent scattering problem involving various types of obstacles, such as, anisotropic, thermoelastic,
or piezoelectric, the authors of [14-17] presented numerical evidence for the convergence of TRCQ (see [17, Table 3-
4 & Section 7], [16, Table 4-6]). The second order convergence properties of TRCQ were also observed studying the
two-dimensional Schrédinger equation [18], Volterra equation with a convex kernel [19], and PDEs with memory [20].
More recently, a rich domain of applications of TRCQ has been opened in the numerical approximation of propagation of
viscoelastic waves [21], as well as the HDG discretization of transient elastic waves [22].

2. The main theorem

To state the main theorem, we will use the Sobolev-Bochner space
WIR; X) = {g e " '(R; X) : g=0in(—00,0), g™ eL'(R;X)}.

Note that if g € W(R; X), then g/™(0) = 0 for m < n — 1. Moreover, since g™ € L'(R; X), the functions g™ : R — X,
for m < n — 1, are polynomially bounded, hence have well-defined Laplace transforms. We will also need the mth order
linear differential operator

(Pag)(t) == e~!(e"g)™(t) = Z(m>g“>(t).
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The remainder of this paper will consist of a proof of the next theorem. Some easy (but somewhat cumbersome details)
are avoided. The reader is welcome to look for the arXiv version of this document to find a much detailed proof of each
single step. In the appendix, for a convenient comparison, we also included [1, Theorem 3.1] and [3, Theorem A.2] which
are improved by the following main result of this paper.

Theorem 2.1. Let F satisfy (1.1)-(1.2) for u > 0 and with Cr fulfilling the conditions given after (1.2). Let f be the distributional
inverse Laplace transform of F and f, be its TRCQ approximation, i.e., the inverse Laplace transform of F, given in (1.3), for any
given time-step « € (0, 1]. Consider the parameters

m:=[ul, o= |u—m]+5, B = max{2m + 4, m + «}. (2.1)
Forany g € Wff(]R; X)and t > 0, we have

I — ) 8Oy < 2 ( / g e + / t ||7>mg<m+4>(r)||xdr) , 22)
where

C(x) := Cr (min{x, 1}/4) ﬁ e:=max{2m —u+ 1, [u] — pn+ 3},

and C, is a positive constant depending only on f.

Note that

4, n#m, 2m+4, u >0,

3. The TRCQ discrete derivative

a={5’ p=m, ﬂ:{S’ w=0, 1+ max{m, 1} < & < 2 4+ max{m, 1}.

We now introduce some key functions for the estimates that follow. First of all, note that the function

w >

tanh(w/2) —w/2 8 —w — »
2 w3 = w3 = Z bew
£=0

is even and analytic in B(0; 7). We then define
(o]
D(w) = foz w*, ap = |bl,
=0

and note that D is also analytic in the same disk and that the function [0, 7) 5 x +— x2D(x) is strictly increasing,
non-negative and diverges as x — 7. Therefore, there exists a unique

co € (0, 7), such that  ¢ZD(co) = 1.
Next, we define

(14 o*)" -1

En(®) = max{D/(w):j=1,...,m} > ,

w

and notice that E; = D. Using these, we are going to present some properties of the characteristic function of the TR rule.
At the end of this section we will give a technical result which will be a key tool in the proof of Theorem 2.1.

Lemma 3.1. The following inequalities hold:
1
(a) Reéd(e7%) > 5 min{Rez, 1} for all z € C,..
8
(b) 18(e7?)| < ————— forallz € Cy.

min{Re z, 1}
(c) |8’”(e*22 — 2™ < En(1z)|z|™*2 for all m > 1 and all z € C. with |z| < 7.

(d) Re 2

>1—|z|>D(|z]) for all z € C, with 0 < |z] < ¢ < 7.

Proof. For |{| < 1, it is easy to verify that Re % > 1;—:?: Using this with ¢ = e for Rez > 0 and noting that

le™?| = eR¢Z we write

1 1—eRez Rez
—Red(e?)> ———— =tanh | — ).
2 14 e Rez 2
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The proof of (a) follows then from
X 1
tanh - > - min{x, 1}.
27 4
We prove (b) by using (3.1) together with the triangle and reverse triangle inequalities in the following way

1 14 eRez Rez 4
S18(e” )|_7 coth| — | £ ———.
2 1 — e Rez 2 min{Rez, 1}

To show (c) and (d), we define

§(e?)—z
Z3

and observe that |q(z)| < D(|z|) which holds because of the definition of D. Using this, it is not hard to see that

CLNBO; )2 z+— q(z):=

)

|8™(e7%) — 2| = |z + Zq(2))" — 2"
m—1
( )IZIJD'"_] (zDIzP™ ¥ < En(lz])lzI™*2,
j=0

j
which proves (c). For (d), we write

8(e7?) -

4

Re 1-lzPlaz)| = 1 - [zPD(lz])  Vz € C4 NB(O; 7).

1637

(3.1)

Note that the result is stated (and later used) only for |z| < ¢y < 7, which ensures that the right-hand side of the above

inequality is positive. O

The discrete version of this lemma will be a building block for the rest of this paper.
Proposition 3.2. For « € (0, 1], the following inequalities hold:

1
(a) Res, > 3 min{Res, 1} for all s € C,.
8
b) |sx] £ ——— foralls € C,.
(B) sl = szm{Res,l}f *
(c) Is¢ —=s™| < Em(lcs)i?|s|™2 for all m > 1 and all s € C,. with |ks| < .
(

d) Re ?K > 1 — |ks|?D(|«s]) for all s € C4 with 0 < |ks| < ¢y < 7.

Proof. The result follows from Lemma 3.1 by simply inserting z = «s and noting that x € (0, 1]. O

Lemma 3.3. Forg e Wi(R; X), G := £{g}, and o > 0 we have

e . T [ .
/ I6(o + iw)lxdo < © / 1E(0)lxdr.
— 0

oo

Proof. We can easily estimate

o0 o]
1
[ 6t +lido = [~ e + 06l + i)l
_ 0 0t w

oo

*®  dw . b1
< sup G(s)lx / S0 = sup L@

Res=o —00 0%+ w Res=o
This finishes the proof. O
Proposition 3.4. Ifg € W2"4(R; X) with m > 0, and
G(s) = L{g}(s),  H(s) = (s —s")G(s),

then for all o > 0 we have

B Cl )
[ o + oo <t [T pngm o,
_ ) 0

(0¢8]

where C) is a positive constant depending only on m.
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Proof. For the sake of convenience, we will abuse notation by eliminating the explicit dependence with respect

to w in
. 1 —(o+iw)k
s =5(w) =0 +iw, Se = Se(w) == —d(e ),
K

where 0 > 0 is fixed. We now take an arbitrary but fixed value of ¢ € (0, ), and define the integration regions
I' = {weR :|o+iw| <c/k} and I? := {w € R: |0 +iw| > c/k}, covering the entire real line. We split our target
integral into three pieces, and work on them one by one

o0
[ JH(s)xdeo < / IS ™ IG(S xdo + / 501" 1G(5)llxdeo + / 1™ 1G(8)l1xdoo.
— 1 I I

o0

Since |«s| < c on I' and E,, is increasing, Proposition 3.2(c) yields

oo
[1 Is¢ = s"11G(s)lIxdw < KzEm(C)/ IsI™ 2 1G(s)lIxdew.
1

—00

For the second integral, using Proposition 3.2(b) and the fact that ¢ < |«s| on I?, we have

2 8m oo
/ 1™ 2G(s) e doo.
—00

K

S ™ IGS)|Ixdw <€ — ————

/,z ™ 165N Ixdor < Gy e
Lastly, the definition of I? implies that

K2 [es] 5
/ IsI™ IG(s)llxde < 7/ lIs™*G(s)lIxdew.
12 c —00
Combining these three estimates we can write

f IH(s)xdoo < k7 —me / (14 Is™)lIs™26(5)l1xdeo, (3.2)

o0 min{o™, 1} J_.

where

. 1 8"
€m,c = Max Em(C) + sz, (‘21”74—2 .

The definition of P, implies that
(1+5)"s™2G(s) = L{Pmg™*}(s).

Therefore, using that 1+ |s|™ < 2™2|1 +s|™ for s € C. and Lemma 3.3, we can write

o0 o0
/ 11+ s)7S™2G(s) o < 272 / (1 + )™ 2G(s) xdo

o] —00

o

T[ o0
< 2T / |(Pug ™)1 xdr.
0

This inequality and (3.2) prove the result with G, = 2™2x e, .. However, the dependence on ¢ € (0, 7r) is limited to e,
so we can eliminate c by taking e, := n(lgn)em,c in the bounds. O
ce(0,mr

4. Revisiting a result of Christian Lubich

In this section, we work on some key results when F satisfies (1.1)-(1.2) with u < 0. We start with showing that F,,
like F, is the Laplace transform of a causal tempered B(X, Y)-valued distribution. In Proposition 4.4 we revisit Lubich’s
[1, Theorem 3.1], and prove it for —1 < u < 0 by including the case u = 0 which was missing in that manuscript, and
add the explicit dependence with respect to the time variable in the bounds.

Proposition 4.1. If F satisfies (1.1)-(1.2) with u < 0, then

(@) IFe(8)llx—>y < ©1(Res) forall s € Cy.
(b) IF(s)llx—y < @z(Res)|s|* forall s € C,.
(€) IIFc(s) = F(8)llx—y < «?O; (3 min{Res, 1}) Os(|«s|)[s|"“*> for all s € C N B(0; co/k).
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In the above bounds

©4(x) = (3 min{x, 1})" C¢(3 min{x, 1}),
21-#

O(x) = Cr(5X),

O3(x) == D(x)(1 — x*D(x))*.
The functions ®, and ©, are defined on (0, co) and they can be bounded by a negative power of x as x — 0. The function ®3
is defined on (0, cg), is increasing, and when u # 0 it diverges as x — co.

Proof. To prove (a), we first observe that Proposition 3.2(a) implies s, € C, therefore (1.2) gives
”FK(S)”X—>Y =< CF(RESK)|SK|H'

The rest of the proof follows from Proposition 3.2(a) and the fact that C¢ and (-)* are non-decreasing functions on (0, co).
For (b), we use same ideas given in the proof of [7, Proposition 4.5.3]. Defining the curve Z(s) .= {z € C: |z —5s| =
1Re s} with positive orientation, we write

1 F(z)

F(s)= —
( ) 2mi 2(s) (Z — 5)2

dz.

We finish the proof of (b) using the fact that §|s| < |z| and JRes < Rez for z € Z(s).
To show (c), we write the following by using the Mean Value Theorem

[IFc(s) = E(S)llx—y < IF(Asc + (1 = 2)8)llx—vy Ise —sl,

for some A € (0, 1). Now, we define z(s) := As, + (1 — A)s, and use (a) to write
IF(2)lx—y < O(Rez)z|".

This can be bounded by observing
Rez > min{Res,, Res}, |z| > |s| Reg > |s| min {Re S?K ]} ,

and then using Proposition 3.2(a) and (d). We finish the proof by using Proposition 3.2(c) with m = 1 and noting that
E] =D O

Lemma 4.2. The following holds for allc > 0, @ > 1, x € (0, 1] and ¢ > 0:

20 K\o—1
(a) / o + iw| ™ do < <7) .
loHiolzc/k a—11\c

2 2
(b)/ lo +iw] *dw < — + .
ao(

oo a—1

Proof. In order to prove (a), for fixed o, ¢ and «, we define the domains of integration I' := {w € R : |0 + iw| >
c/k,|w| <c/k}and I? ;== {w € R : |w| > c/k}, which give

/ lo + iw|™* da)=/ lo + iw|™* dw—i—/ lo + iw|™* dw.
|lo+iw|>c/k il 2

We bound the first integral using the fact that |6 + iw|™® < (c/k )~ on I'. We rewrite the second integral using a change
of variables and bound it in the following way

2 a—1
k! / lo + iw| ™ do < k7! / lw| ™ dw = —— (f) ,
lw|=c lw|>c oa—1\c
which finishes the proof of (a). We prove (b) by simply writing

% ! o0 2 2
/ |a+iw|_“dw§2/ a‘“da)—i—Z/ o %dw = — + . O
—00 0 1 o* a—1

Proposition 4.3. If F satisfies (1.1)-(1.2) with —1 < u < 0 and o = | + 5], then for all o > 0 we have

o0
[ IR i) o+ i)l o + 017 do < 7L Gl

oo
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where

B Cr(4 min{x, 1})

G(x) = minp, 1) d=lul—n+1e(0,1],

and C :L is a positive constant depending only on p.
Proof. For fixed o, « and c € (0, ¢y) we will make use of the following domains of integration

MN={weR:|o+iv|<c/k}, P={weR:|o+iol>c/k},

and the notation s = s(w) := ¢ + iw. Using these we can write

/ [IFe(s) = F(S)llx—y Is|™* do < f [IF(s) = F($)lIx—v Is]™ dew
— I

oo

+ f () + ) y) 15| dao.
12

We bound the first integral on the right-hand side using Proposition 4.1(c) and Lemma 4.2(b)

. 2 2
[ IR = RSl 117 o < utminor 1/2065(0) (s +
I o h3 g —pu—4
el ©;(c)
< k%Cp(min{o, 1}/4)—2— ",
= ¥ Ce(min{o, 1}/4)
where e}L is a positive constant depending only on . Next, with the help of Proposition 4.1(a) and Lemma 4.2(a), the
second integral is bounded in the following way

2 a—1
/ (ISl + IESlxoy) IsI do < (@1(0) + Celo)o™) —— (E)
12 a—1\c

62 C17a
< k2Cp(min{o, 1}/2)—-—
- ’ min{o, 1}
Here efL is a positive constant depending only on x. Combining these estimates we write
o0 C
Fe(s) — F(8)llxy IS dw < k2Cp(min{o, 1}/4) ——="—,
/W IFe(s) = Kby 517 do> < i Celmingor, 1)/4) s

with C, ¢ == e}t Os(c)+ ei c'~*. Note that this estimate holds for all ¢ € (0, cy), therefore we finish the proof by replacing

O
the constant C, c with C, :== min C,.. O
c€(0,¢c0)

Proposition 4.4. [f F satisfies (1.1)-(1.2) with —1 < u < 0, and g € W{(R; X) with o := [ + 5], then

t
16 1)l < C e [ 1
0
holds for all t > 0, where Cﬁ is a positive constant depending only on .

Proof. For any o > 0 and t > 0, using the inverse Laplace transformation, we write
errt o] ) S
(e =) =gy < 5, Sup IIS“ll{g}(S)IIx/ [(Fe —F)o + iw)llx—y lo + io|™ do.
T Res=o —0

Next, the definition of Laplace transformation together with Proposition 4.3 and setting o = t~! give
o0
16 =)0l =200 [ Ig e,
0
for a positive constant C i. Now, we are going to obtain an integral bound over the interval (0, t). For a fixed t > 0, we

define the following function

g(r), T <t

a—1
P(v) = Z(T_t)zg“’(t), T >t

L
=0
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It is not hard to see that p € W{(R; X), in other words, p satisfies the conditions of the proposition. Using the fact that
p =g on(—oo,t)and pi = 0 on (t, o0), we write

(e —F)*&Olly = (e =) *pt)ly < x>Ch cz(r”)/ Ip“)(z)lIx dz
0

t
=2 cia [ g ar,
0

which finishes the proof. O
5. Proof of Theorem 2.1

In this section we prove the main theorem. We start with presenting a lemma to obtain upper-bounds integrated over
the interval (0, t) rather than (0, co), which will be used in the proof of the main theorem.

emma J5.1. etm=>0,g¢ ; ,h:=e'g ,and t > e a fixed real number. e define the function
L 51. L 0 WITH(R; X), h (m+4) and t > 0 be a fixed real number. We define the functi

m

R> 0+ j@)=e")

-1
(w
=0

— [)Z
O,

and, for n > 1, the integration operator

(8’"f)(t):=f / / " o) don . .. deop doon.

The function
&(7), T <t
m+3
= (t—1)f m—4.
PE= Y 20+ 67 mm, tz e
=0 ’

satisfies that p € W2™(R; X) and P,,p™** = 0 on (t, co).

Proof. We observe that, for 0 < k < m + 3, the functions
R> 1+ (307 4j)(r) = (0™ *kj) 1)

vanish when t = t. From there, it is not hard to see that p € ¢™"3(R; X). Next, since h € ¢™(R; X), we know that

h(z), T <t
L m—1 o\
q(r) = Z %hm(t), -
=0 ’

is also in ¢™"!(R; X), and so is e~"q = pU™*¥. This shows that p € c?*™+3(R; X). The function j™ e L(t, oo; X) and
therefore p@m*+4) e L'(R; X). The rest of the proof follows from the fact that

m m—1 13
(Pmp™)(1) = e (Z Mh”(r)) (1)=0 Vre(t,00). O

drm 2!
=0

Proposition 5.2. et g € Wﬁ’"*‘*(R; X) with m > 0, and F satisfy (1.1)-(1.2). We define (9} )"g such that
L{(37)"g}(s) = s'G(s),  G(s) = L{g}(s)-
The following estimate holds for all t > 0

t
If * ((3)"g — ™)y < k2Ci(t™Y) sup  |[F(S)lxy / [ Pmg ™ (7)|IxdT,
0

Res=t—1

where

Cm
C =,
1) xmin{x™, 1}

and Cy, is a positive constant depending only on m.
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Proof. For any o > 0, using the inverse Laplace transformation, we write
eat e}
IF * (3 )"g — g™ XO)lly < 5= sup [[F(s)llx—y / IH(o + iw)lxdw,
27T Res=o —00
where H(s) := s7'G(s) — s™G(s). Here, with the help of Proposition 3.4 and inserting o = t~1, we obtain
(o]
IF * (3 )"g — g™ O)lly < .®Co(t™") sup [IF(S)lx—y / [Pmg ™ (2)lIxde. (5.1)
0

Res=t—1

Now, our goal is to have an integral bound over the interval (0, t). To do that, for fixed t > 0, we consider the function
p introduced in Lemma 5.1. Since p € Wim““‘(R; X), in other words, it satisfies the conditions of this proposition, we can
have the estimate (5. 1) for p as well. Therefore, using the properties of this function, we write

If * ((9F)"g — g™)O)lly = IIf * (3 )™ — p"™ D)y

o0
<Gt sup IES) oy / 1Pup™ (0 xd e
0

Res=t—1

t
— PG sup [IES)lxoy / 1Pmg™ () lxdr.
0

Res=t—1

This finishes the proof. O

Proof of Theorem 2.1. For s € C,, we define
F(s) :=s7"F(s) = £{f"}(s),  Fl(s) = s, "F(s¢) = L{f"}(s),
and
G(s) == £{g)(s), H(s) := sI'G(s) — s™G(s) = £{h}(s).
Using these definitions it is not hard to see that
(e =) xg =" =™ g™ + £ 5 h.
Now, we will obtain bounds for the terms on the right-hand side. For the first term, since g™ ¢ WE(R; X) and
[F"llx»v < Ce(Res)Is|*™™ Vs eCy,

where u — m € (—1, 0], we can use Proposition 4.4 to write

1™ — ™) g™(Olly < 2 Gt / ™) d (5.2)
0

Next, we bound the second term using Proposition 5.2 in the following way

I = h)XE)lly < k*Ci(e™") sup I S)le»y/ 1Pmg™ 4 (x)llx de.

Res=t—1
Here, using the definition of C; and Proposition 4.1(a) we have

m Cm 2—u+m
G F ~y =G 1}/2)—————,
109 sup 2]y = Crlminix, 11/2) s

for all x > 0. Combining this with (5.2) and defining C, = max{C? Cn27#*tM} finish the proof. O

u—ms
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Appendix

Here, for the reader’s convenience, we summarize existing results related to the convergence of TRCQ that have been
improved by this paper. In this section, p(¢) denotes the characteristic function of a general multistep CQ method, e.g., for
BDF2 we have p(¢) = % -2+ %;2, and for the TR rule p(¢) = 2 }+§ We start with the following hypotheses:

(H1) The method is A-stable, i.e., Re p(¢) > 0 for || < 1.
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(H2) The method is of order p, i.e., 1 p(e™") =1+ O(hP) as h — 0.
(H3) p(¢) has no poles on the unit circle.
(H4) p(¢) has no zeros on the unit circle, with the exception of ¢ = 1.

Note that, all these hypotheses except (H3) are satisfied by the TR rule.

Theorem A.1 ([1, Theorem 3.1]). Let oy > 0 and F satisfy (1.1) with ||E(s)|lx—y < Cr(oo)|s|* for Re s > oy. Let f be the
distributional inverse Laplace transform of F and f, be its CQ approximation for any given time-step k € (0, ko). Here, kg is a
constant that depends on oy and p(¢ ). For the discretization method, assumptions (H1) and (H2) are to be satisfied. Furthermore,
(H3) for ;v > 0, or (H4) for i« < 0 should hold.

Let m > max{p + 2 + p, p} and g € c™([0, T]; X) with g(0) = --- = g™=D(0) = 0. For all t € [0, T], the following
estimate holds

t
16, =) % &(Olly < <P C / 1£™()lxdr.

0
where C is proportional to Cg(oy), and it depends on 1, T, oo as well as the discretization method.

Theorem A.2 ([3, Theorem A.2]). Let F and f be as in Theorem A.1 with u > 0, and f, be TRCQ approximation of f. Let

m > 2[u] + 3, g € ¢™([0, T]; X) with g(0) = --- = gM™=1(0) = 0, and the interval [0, T] be discretized with t; = ji for
j=0,1,...,N. The following estimate holds for all x € (0, 1]
N 1/2
kY NG =Hrg@ly | = o).
j=0
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