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NEW ANALYTICAL TOOLS FOR HDG IN ELASTICITY,
WITH APPLICATIONS TO ELASTODYNAMICS

SHUKAI DU AND FRANCISCO-JAVIER SAYAS

ABSTRACT. We present some new analytical tools for the error analysis of hy-
bridizable discontinuous Galerkin (HDG) methods for linear elasticity. These
tools allow us to analyze more variants of the HDG method using the projec-
tion-based approach, which renders the error analysis simple and concise.
The key result is a tailored projection for the Lehrenfeld—Schoberl type HDG
(HDG+ for simplicity) methods. By using the projection we recover the error
estimates of HDG+ for steady-state and time-harmonic elasticity in a simpler
analysis. We also present a semidiscrete (in space) HDG+ method for tran-
sient elastic waves and prove it is uniformly-in-time optimal convergent by
using the projection-based error analysis. Numerical experiments supporting
our analysis are presented at the end.

1. INTRODUCTION

The paper is devoted to presenting some new techniques for the a priori error
analysis of a new class of hybridizable discontinuous Galerkin methods. The meth-
ods in this class use a special type of stabilization function that was first introduced
by Lehrenfeld and Schéberl in [16]. We will call them HDG+ methods for simplic-
ity. Instead of attempting to reach for maximal generality, we will focus on linear
elasticity on tetrahedral meshes.

We begin by reviewing some existing works. The first HDG method for linear
elasticity was proposed in [23]. The method strongly enforces the symmetry of the
stress and uses order k polynomial spaces for all variables. It was then proved in
[13] that the method is optimal for displacement but only suboptimal for stress
(order of k + %), they also showed the order is sharp on triangular meshes in
the numerical experiments. To recover optimal convergence (based on which the
superconvergence by postprocessing is possible), there are mainly three approaches.
The first approach relaxes the strong symmetry to weak symmetry [11]. In general,
mixed finite element methods based on weak symmetric stress formulations are
relatively easier to implement but use more degrees of freedom and therefore can
be more costly to compute. The second and the third approaches are all based on
strong symmetric stress formulations, where the conservation of angular momentum
is automatically preserved. The second approach [4] exploits the M-decompositions
from [5] to enrich the approximation space for stress by adding some basis functions.
The approach recovers optimal convergence and also provides an associated tailored
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projection as a useful tool for error analysis. However, the added basis can be
rational functions instead of polynomials and therefore can lead to some difficulties
in implementation.

The focus of this paper is the third approach, which is to use the HDG+ method
for linear elasticity. This method was originally proposed in [16] for diffusion prob-
lems, then applied to steady-state linear elasticity in [19]. It uses only polynomial
basis functions, achieves one order higher convergence rate for the displacement
without postprocessing, and its computational complexity is the same as the stan-
dard HDG method (order k for both stress and displacement) for their global sys-
tems. Despite these advantages, the existing error analyses of HDG+ methods are
all based on using orthogonal projections [15,18-21], which make the analyses more
complicated (it requires a bootstrapping argument to prove convergence of all vari-
ables, as opposed to consecutive energy and duality proofs), and detached from the
existing projection-based error analysis of HDG methods [3,6-11,14], where specifi-
cally constructed projections are used to make the analysis simple and concise. This
motivates us to find a new kind of projection for HDG+ for elasticity. The goal of
the projection is twofold: first of all, it takes care of all the off-diagonal terms in
the matrix form of the equations (except for a 2 x 2 block which is considered as
a single diagonal term) and allows us to do a simple energy estimate for some of
the variables; second, it facilitates a duality argument where the adjoint equation
is fed with the missing error terms to estimate, by using the adjoint projection
(consisting of a simple change of sign in the stabilization parameter 7). This has
been done in [12] for diffusion problems. The novelty of this paper is the fact that
we complement the projection with an error term that does not affect the error
bounds or the simplicity of their proofs. We have attached this error term to the
projection to make the arguments simpler.

In summary, we have devised a projection for the HDG+ methods for linear
elasticity that enables us to (1) recycle existing projection-based error analysis
techniques for HDG+ methods, (2) make the error analyis simple and concise, and
(3) build connections between the theory of M-decompositions [4,5] and HDG+
methods. To be more specific, we introduce a semidiscrete HDG+ method for
transient elastic waves that acheives a uniform-in-time optimal convergence. We
show that the proof for optimal convergence can be easily obtained by using the
new projection and some existing techniques in traditional HDG methods for evo-
lutionary equations [6]. In addition, we recover the error estimates for steady-state
elasticity [19] and frequency domain elastodynamics [15] by using the projection-
based analysis, and we show that the analysis can be simplified in both cases. Since
the construction of the HDG+ projection first involves constructing a projection
associated to an M-decomposition, it also sheds some light upon the connections
between these two kinds of methods.

To provide a more intuitive view, we present the main procedures of constructing
the projection in the flow chart Figure 1. The associated boundary remainder term
related to the projection behaves like interpolation error and depends only on the
local projection. As we will see later in the applications, the boundary remainder
together with the stabilization parameter play a key role in the optimal convergence
of the HDG+ methods, allowing us more flexibility, since now we only need to
find a projection such that its associated boundary remainder is small enough to

Licensed to Univ of Delaware. Prepared on Mon Jul 6 13:29:53 EDT 2020 for download from IP 132.174.254.72.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HDG PROJECTION FOR ELASTICITY AND ITS APPLICATIONS 1747

'szm x Py

M-decomposition (Section 3.1)

,

(P @ Zgnm) X Py

weak commutativity (Section 3.2)

<

(PP™ @ Zanm) X Prtt

L? projection (Section 3-3)” oundary remainder (Section 3.3)
Pir™ X Prga Ry
push forward (Section 4) push forward (Section 4)
PY(K) x Pryr(K) [R(0K)|

FIGURE 1. Main procedures to contruct the projection. The pro-
jection is first constructed on the reference element and then
pushed forward to the physical element K.

guarantee optimal convergence, instead of enforcing it to vanish, which is the case
of the standard projection.

The rest of the paper is organized as follows. In Section 2, we present the main
theorem about the projection and its main properties. In Section 3, we construct
the projection on a reference element. In Section 4, we develop a systematic ap-
proach of changes of variables to obtain the projection on the physical element. In
Sections 5 and 6, we recover the error estimates in steady-state elasticity [19] and
elasto-dynamics [15] using our projection-based analysis. In Section 7, we present
a semidiscrete HDG method for transient elastic waves and prove it is optimally
convergent, uniformly in the time variable. Finally, we give some numerical exper-
iments to support our analysis.

2. THE PROJECTION

Since the main tool and one of the principal novelties of this article is the new
HDG projection for elasticity, we first introduce its main properties in Theorem
2.1. The reader just interested in the applications can skip the sections devoted to
its construction and analysis (Sections 3 and 4) and jump directly to how it is used
(Sections 5, 6, and 7). To speed up the introduction of the projection we give a
quick notational list to be used throughout the paper.

e For a domain O = R?, the respective inner products of L?(O;R3) and
L?(O;R3X3) will be denoted

sym

oo = | uv.  (epo=| oip

where in the latter the colon denotes the Frobenius product of matrices and
R3%3 is the space of symmetric 3 x 3 matrices. The norm of both spaces

will be denoted | - |o.
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e For a Lipschitz domain O, the inner product in L?(80;R3) will be denoted

R :=J p-mn
00

and the associated norm will be denoted || - [s0.
e The Sobolev seminorm in H™(O;R?) and H™(O;R23) will be denoted
| . |m-,C’)-

e The symmetric gradient operator (linearized strain) is given by
e(u) := :(Du + (Du)"),

and the divergence operator div will be applied to symmetric-matrix-valued
functions by acting on their rows, outputting a column vector-valued func-
tion.

e When O is a Lipschitz domain, we will consider the space

H(O,div;R3X3) := {o € L*(O;R%X3) : dive e L*(O;R?)},

Sym Sym

and the normal traction operator 7, : H(O,div; R3%3) — H~Y2(00;R?),
defined by Betti’s formula

(Yo, Y00 = (0,e(v))o + (dive,v)o Vv e H'(O;R?).

Here 7 is the trace operator, H~2(0O;R?®) is the dual space of
HY2(00;R?), and the angled bracket denotes their duality product that
extends the L2(0O;R?) inner product.

For discretization we will consider a sequence of tetrahedral meshes 7, and the
following notation:
e K is a tetrahedron, of diameter hx and inradius at most chg for a fixed
shape-regularity constant ¢ > 0.
e F(K) is the set of faces of K.
e Pp(K;X) is the space of X-valued polynomial functions of degree up to
k=0, where X € {R? R3%3}.
* Riu(0K;X) = [lperx) Pr(F;X) is the space of piecewise polynomial
functions on the boundary of K, with X as above.
e P : L?(K;X) — Pr(K;X) is the orthogonal projection onto the image
space, with X as above.
e Py 1 L2(0K;R?) — Rp(0K;R3) is the orthogonal projection onto the
image space. This operator will often be applied on the trace of a function
in H'(K;R3) on 0K.

o T e Ro(OK;RED) is a so-called stabilization function satisfying

1) ChRtlulic < e < CohFlnlZ Ve LK RY),
for fixed positive constants C; and Cy, independent of h (i.e., of the par-
ticular mesh).

e The wiggled inequality sign a < b hides a constant a < C'b that is indepen-
dent of h, while a ~ b means a < b < a.

Theorem 2.1. Fork > 1, there exists a family of projections and associated bound-
ary remainder operators

I: HYK;REX3) x HYK;R?) — PrL(K;R2X3) x Pry (K;R?),

sym sym
R: H'(K;RYD) x H'(K;R?) — Ry (0K; R?),
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depending on T € Ro(aK;ngxrg), where T is a constant positive definite matriz on

each face of K, and if (ok,uk) = (o, u;T) and §x = R(o,u;T), the following
conditions hold:

(2.2a) (ug —u,v)g =0 Vv e Py (K;R?),
(2.2b)

—(div (o — o), w)k + TPy (ug —u),whorx = 0, wHox Yw € Pry1(K;R?),
(2.2¢) (o —o)n —T(ug —u), wWorx = Ok, wyorx Ve RL(OK;R?).

Moreover, if T satisfies (2.1) and (o,u) € H™(K;RZ53) x H™H(K;R?) with 1 <
m < k + 1, then we have the estimates

(23) ok —olx +hilux —ulic + hi |8k lox < CHR (10| mic + [ethmri0)-

The constant C depends only on the polynomial degree k, the constants Cy and Co
in (2.1), and the shape-regularity constant c. Finally, the “adjoint” projection can
be defined as

(2.4) (o, u;—7) == (oK, uK), where (ok,—uk) :=U(o, —u;T).

This projection satisfies the properties (2.2) with the same 0k, if we substitute T
by —T.

Note that conditions (2.2) are not enough to define the projection II but are
exactly the ones that will be needed for the applications. As a final note, notice
that by combining (2.2b) and (2.2¢), we have

(o —o,e(w))k =0 Yw e Py, (K;R?).
Since k > 1 and Py(K;R3X3) < e(P1(K;R?)), we have

sym
(2.5) (xk —0.0)k =0 VO e Py(K;RY:Y).

3. THE PROJECTION IN THE REFERENCE ELEMENT

3.1. Preparatory work on the reference element. In this section we will work
on the reference tetrahedron K := {(z1,79,m3) € R3 : 21,29, 03,1 — 21 — 29 — 3 >
0}. The trace for vector-valued functions on the reference element will be denoted
~, and the normal traction operator on the reference element will be denoted 7,,.
We will use shortened notation for the following spaces:

(3.1a) V= Pu(K;RY), V.. =P (KR, V., :i=Pu(K; R,
. 7o R3%3 S S . dive — A g = \
(3.1b) X = Pr(K; RS, Y . ={oeX :dive=0, 7,0=0de(V).

A new space ihr will be defined once we have introduced some tools for it. Note
that these constructions can be done directly on any tetrahedron K [4].

The first of these constructions is a lifting of the traction operator. It will act
on the space

L3 (0K R®) = {pe L*(0K;R%) : (u,Am)y,z =0 Yme M},
where M is the six-dimensional space of infinitesimal rigid motions
M:={m(x):=b+ Ax : AT = —A, beR?}
={me H'(K;R%) : e(m) = 0}.
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Note that the trace space of M is also six-dimensional, i.e., if m € M vanishes on
the boundary of K, then m = 0. We thus define the operator A5 L3 (0K R3) —
H(K,div;R3x3) by

Sym

(3.2a)  Afp:=e(u), where we H'(K;R®)/M,

(3.2b) (e(w), e(w)) g = (. Av)sg Yo e HY(KRY),
or equivalently,

(3.3a) +p:=0o, where oce(H (K;R?)),

(3.3b) (0.6(0)) = (wAvp Vo€ H'(R5RD).

The definition (3.2) is correct since it involves the solution of a coercive variational
problem on a quotient space, due to Korn’s Second Inequality. From (3.3) it is clear
that

(3.4) divy,fp=0,  AAfmw=n Ve L3 (0K;R?).
We next consider the spaces
M = Ry (0K R?), Sg:={oe : dive =0},
={neM : (oo +im, pyz =0 V(o,m)e s x M},
and
Eﬁ]l = ’/)\/;@
Theorem 3.1. The following properties hold:
(a) diva =0 forall o€ f]ﬁn,
(b) 7 n is an isomorphism between © and Ygn, and its inverse is Yy,
(C) Eﬁ]l N E {0},
(d) M=0® S5 @M with orthogonal sum.
Proof. Properties (a) and (b) are easy _consequences of (3 4). By (a), Sann S =
Zﬁn N ES and, therefore, if o € Zﬁn N ES, then 4,0 € 0 n 'ynZS = {0} (the latter
two sets are orthogonal to each other by definition of 9), but then (b) proves that
o = 0, which proves (c). Finally, if o0 € ¥s and m € M, then
<’Vn0'a7m>“[{ (leO’ m)K + (O‘,G(m))g =Y
which shows that the sum ans + AM is orthogonal. Since O is the orthogonal
complement of the latter set, (d) is proved. O
The Cockburn—Fu discrete pair for elasticity [4] is given by the spaces
§)+ =3 ) f]ﬁu (the sum is direct because of Theorem 3.1)

and V. In their context of M -decompositions for elasticity, the following result is
a key one that we will need to use to work with our extended pair ¥ x V.

Theorem 3.2. The following properties hold:
(a) e(V)c S_,
(b) divE, c V_,
(c) AnSy +3V < M,
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(d) dim M = dim £+ + dim ‘7{, where the orthogonal complement $L is taken
mn f)Jr, while ‘7{ is taken in ‘7,

(e) M = 'Aynflf @7‘71;, with orthogonal sum,

(f) The map SLx ‘7{ 5 (o,u) — Y0 +Ju € M is an isomorphism.

Proof. Property (a) follows by definition and (b) is a 51mple consequence of Theorem

3.1(a). To show (c), note simply that AnSan = O M while all other elements
are polynomials of degree less than or equal to k.
To prove (d) to (f), it will be convenient to identify the set

(3.5) 2 :={oced :dive =0, F,0=0}= ker Yn|g .,

which appeared in the definition of $_ (3.1).
By Theorem 3.1(d) and (3.5), we have

(3.6)
dim M = dim © + dimﬁnis + dim yM = dim San + dim f]s — dim i% + dim M.

Using the definitions of ii we have
3.7) dimEt =dimE, —dimS_ = dim S + dim Sgy; — (dim S% + dime(V))
= dim V_ + dim &g + dim Sg — (dim 8% + dim V — dim M),

where in the last equality we have applied that div : I ‘7_ is onto (this is easy

to prove), its kernel is £, and the kernel of € : V — (V) is M. The equalities
(3.6) and (3.7) prove (d).
Due to parts (a) and (b) of this theorem, we have

~ A1
Ao, YUy = = 0 VoeXt, weV_,
<'Y Y >0K

~ A1 ~ 1L —~
which proves that the sum of 3,5+ and 4V _ is orthogonal. Since 3 : V_ — M
is injective (this result is known; see, for instance, [22] and [12]), property (e) will
follow from having proved that 7, : St Mis 1nJectlve

We first prove the following technical result: if o € E+ satisfies dive = 0 and
Ano = 0, then o € X, i.e., the component in Xg; vanishes. To do that, take
o =01+ 035 € X+ Xgy and note that Theorem 3.1(a) shows that if dive = 0, then
divoy = 0. Since

0= ;}\/no' = :?na'l + ;}\/no'Q € &nzs @65

by Theorem 3.1(d), it follows that 7,01 = 3,02 = 0, which proves that o2 = 0 by
Theorem 3.1(b).

The proof of injectivity of ,|¢. is then simple. If o € £ satisfies 5,0 = 0,
then by part (a),

(dive,v)z = —(0,e()z =0 YoeV,

and, taking v = div o (by part (b)), we prove that dive = 0. Therefore, o € i% c
Y._ and hence o = 0. This completes the proof of (e) and (f). O
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For the rest of this section we fix the stabilization parameter 7 € Ro(aK Rg;‘n‘f)
such that

(3.8) 7|p is positive definite  VF € F(K).

3.2. A projection on an extended space. Given

o,u) e HYEK;R3*3) x HY(K,R?),
sym

we look for
(3.9a) ﬁo(a,u;'r) = (oz,up) € S xV,
satisfying
(3.9b) (up —u,v)z =0 VoeV_,
(3.9¢) (6p—0,0)p = VeeS_,
(3.9d) Onlog —o) —TPyA(ug —u), w7z =0  Vue M,
~L
(3.9¢) —(div(egz —0),w)z +{TPA(ugz —u),yw),z =0 YweV
~ L ~ ~
where V' is the orthogonal complement of V' in V. Note that (3.9¢) is equivalent
to
~ ~ ~ ~1
(07 — 0,e(w)p — Gulog — ) — TP AU —u), W)z =0 Vwe V™,

and, since e(V) < S_ and 3V < M, equations (3.9¢) and (3.9d) imply that we
can substitute (3.9e) by the condition
(3.10)  —(div(oz — o), w)z + (TP gA(up —u),Jw),= =0  Ywe V.,

which contains redundant restrictions already imposed in the other equations. Note
also that the projection P 17 can be eliminated in (3.9d) but not in (3.9e) or in (3.10),
and that the bilinear form

(TP, M5

is symmetrlc bounded, and positive semidefinite in L2(8K R3). We next prove
that HO is actually a well-defined projection onto E+ X V+

Proposition 3.3. The process of defining the projection ﬁo in (3.9) is equivalent
to a square invertible linear system.

Proof. Note first that by Theorem 3.2(d),
~ A~ —~ ~ 1 A~ A~ ~ 1 ~
dmV_ +dimX_ +dimM +dimV " =dimV_ +dim¥_ +dimV_ +dim2*
+ dim ‘A/+ —dimV
= dim §:+ + dim ‘74_,

which proves that (3.9) is equivalent to a linear system with as many equations as
unknowns. We thus only need to prove uniqueness of the solution.
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A homogeneous solution of (3.9) is a pair (o5, ug) € §)+ X ‘A/'Jr satisfying (recall
how (3.10) is a consequence of (3.9))

(3.11a) (ug,v)z = VoeV_,
(3.11b) (05.0)7=0 VOeS_
(3.11c) Aoz — TP uR, w7 =0 Y e J/\Zf,
(3.114d) —(diveg, w)z + (TP gAug, Yw),z =0 Vwe V..

~ 1 A~
We now take w = ugp € V_ (with the complement in V', ; also see (3.11a)) in

(3.11d), recalling that diveoz € V_ (cf. Theorem 3.2(b)) and obtain
(TPyyug. ug) g = TPiug Ppyug).z = 0.
This argument uses that 7 is piecewise constant, so that multiplication by 7 is an
endomorphism in M. Since T is positive definite on each face, this proves that
Pgyugz = 0. N
Using the above conclusion and taking g = 4,07 € M in (3.11c) (cf. Theorem

3.2(c)), it follows that 4,07 = 0. Given the fact that o € e (by (3.11b)) and

Theorem 3.2(f), this proves that o7 = 0.

Note finally that dive(uz) € V _ (Theorem 3.2(b)) and Ane(ug) € M (Theorem
3.2(c)), so that

(e(ug).e(ug))g = — (dive(ug),uz) gz + (Gne(ug), Yug)z
=<ﬁn€(uf()7 P]\//]:}\’uf(\>gf( =0,

and therefore uzz € M. This implies that Yupz = Pug = 0 and, therefore,

uz = 0, which completes the proof. O

Looking at the proof of Proposition 3.3, it is clear that we could have also defined

the projection for any T € Ry (0K R2%3) such that 7| is negative definite on each
face.

Proposition 3.4 (Stability). For any Tmax = Tmin > 0 and k > 1, there exists
C = C(Tmax; Tmin, k) such that if (0, uz) = llo(o,u; ), then

(312) loglz + luglz < Clol, z + lul, z) V(o,u)e H (K;RGD x RY),

sym
whenever T € Ro(OK; R3%3) satisfies
(3.13) Tumin < - (TIPp) < Tmax VR eR? |u| =1 VFe F(K).

Proof. Numbering the faces of K and the entries of a symmetric matrix with indices
from one to six, we can identify Ro(0K; R3x3) = (R3x3)* = R**. We can thus make
the identification

{1 € Ro(0K;R3%3) : T satisfies (3.8)} = O « R*,

Sym

where O is an open set. We can also identify
(1T € Ro(0K;R33) : 7 satisfies (3.13)} = K < R*,

sym
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1754 SHUKAI DU AND FRANCISCO-JAVIER SAYAS

where K < O is compact. To be more specific, we can write the identification
T=x=(21,...,224) as follows:

24
T = Z xiXm
=1

where x; € Ro(0K;R3%3) satisfies that X6(p—1)+q 15 supported on the pth face

sym
(p =1 —4) and that its gth entry (¢ = 1 — 6) in R3%3 is equal to 1, and the rest
of the entries are all equal to 0.
Consider now the continuous trial and test spaces

U :=H"(K;R3:3) x H'(K;R?),

sym
V =L2(K;R3%3) x L}(K;R®) x L*(0K;R®) x H'(K;R?),

sym

and their discrete counterparts
L{k::fhrxfhr, Vk::‘A/_xi_xMx‘A/.
We can define bilinear forms
aj :U XV —-R, 7 =0,...,24,
as follows:

aO((Uv u)v (’U, 0, 122 w)) = (0-7 e)f{\ + (U, v)[? + <;)\/n0'a /J’>a[? - (diVO‘, w);?,
aj((o,u), (v,0, p,w)) = =GP g 7w, w5 + OGP 7w, Yw) 47

We can see that a; are all bounded 7-independent (but dependent on k through
the operator P ;) bilinear forms. Then equations (3.9) can be rephrased in the

following form: given U € U, find I,U € Uy, such that

24
(3.14) a (MU — U, V) + > wja;(TU —U, V) =0 YV eV

j=1

Equation (3.14) is uniquely solvable for every x € O (this is a restatement of Propo-
sition 3.3) and defines a bounded linear operator Ty (x) : U — Uj. The function
Ty, from O to the space of bounded linear operators from U to Uy, is rational and
therefore bounded on the compact set K. We can thus bound

(3.15) [TVl < kK )Tl YU eld,
where | - |+ is any norm we choose in Uy. If we select the norm

(o wl. = ol + Julz.
in Uy, then (3.15) becomes (3.12). O

A simple argument shows that algebraic condition (3.13) is equivalent to asking
that the spectrum of 7|p is contained in [Tiin, Tmax] for all F' € F(K) and also to
the inequality

(3.16) TminHN”;f( ST W < Tmaxul‘“;g Vue L2(IK;R?).
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3.3. The projection and the remainder. Now let Py : L2(K R3X3) — S be

Sym

the orthogonal projection onto 3. For (o, u) € H!(K; Rf;rg) x HY(K;R3) we define
(3.17a) (o, u;7) := (0%, ug)€ SxV,, R(o,u;7) = In(og—0%) € M,
where

(3.17b) 0% =Pgoz, (oz, up) = o (o, u; 7).

Since SxV | < 5, x V., it follows that [I(8, v; T) = (0,v) for all (8,v) € SxVy,
and therefore

(3.18) (0,v:7) = (6,v), RO,v;7)=0 V(O,v)ecExV,.

In particular, flis a projection onto S x ‘7+. Note that we do not give a set
of equations to define ﬁ which is given as the application of ﬁo followed by an
orthogonal projection applied to the first _component of the output. However the
following equations relate the projection II and the associated remainder R.

Proposition 3.5. Let e Ro(0K; R3X3) satisfy (3.8). Then (a%,uf() =M(o,u; 7)

sym

and 05 1= R(o,u;T) satisfy

(3.19a) (up —u,dive)z =0 VO e s,
(3.19b)

—(div(e% — o), w); + TPyA(ug —u), Jw),z = 6z, Yw),z Ywe V.,
(3.19¢) —(n(0% —0) —TPpA(ug —u), W,z =0z, W,z TRE M.

Proof. Following the definition (3.17), we introduce the intermediate projection
(oz ug) = I}O(U,Au;ﬂ') so that 0% = Pgog and 6 = n(op —0%).
Since divY < V_ (this is a direct consequence of the definitions), (3.19a) is

a consequence of (3.9b). Note also that e(V,) ¢ & (again by definition) and

therefore
(3.20) (0% -0z e(w)p=0 Ywe V..
The identity (3.19¢) is a direct consequence of (3.9d). Finally, by (3.10) and (3.20),
—(div(e% — o), w)z + (TPy(ug — uw),Yw),z = — (div (6% —0z), w)z
== nlo% —og)Tw)z,
which proves (3.19b). O

Proposition 3.6 (Estimate in the reference element). For any Tmax = Tmin > 0,
and integers k =1, 1 < m < k+ 1, there exists C = C(Tmax, Tmin, k, M) such that if

(0%, ug) = (o, u;nr), (o,u)eH™(K; R3%3) x H™ (K R?), 0#neR,
8 = Ro i),

with T € Ro(0K; R3%3) satisfying (3.13), then

sym

o — 0%l + Il [u - uglz + 1871z < C (o, & + Inl Il ) -
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Proof. Let (o3, up) = ﬁo(a,u;n'r). Note that (o7, nug) = ﬁo(a,nu;T) (this
is obvious from the equations that define Iy, namely (3.9)), and therefore
(c%nug) = (o, nu; ), & = Rlo,nu;T).
By Proposition 3.4, we have
loglz + Inlluglz < Cleol, 7 + Inllul; ),

for some constant C' depending only on Tuwin, Tmax, and k. Since 7, : f]+ - M is
bounded, there exists a constant D = D(k) such that

6%

log <Dlog—o0%lz <2D|o—oz|z + D|o —Pgo|z.
Now taking 6 € 3 and v € V., and applying (3.18) to the pair (8,nv), we have
lo—ozlz +Inlle—ugzlz < 1+ C)lo 0], % + nl|u—v], %)

and

107 lo7 < 2D+ C)(|o = 0], 7 + [nl|u = |, ) + D|o - Pgo|z.

Note that Pg is the L2 projection onto S Therefore, there exists a constant
C’ = C'(Tmin, Tmax, k) such that

veV L

lo—ozlz+Inl lu—uzlz+loz] %z < C* (;ﬂg lo =6,z +nl inf Ju— vlu?) :
€

Finally, notice that o — 0% = o — Pgo + Py, (6 — o). The result now follows by
a compactness argument (Bramble—Hilbert lemma). O

4. THE PROJECTION IN THE PHYSICAL ELEMENTS

4.1. Pull-backs and push-forwards. In this section we derive a systematic ap-
proach to changes of variables for vector- and matrix-valued functions from a general
shape-regular tetrahedron to the reference element. The language mimics that of
[22] (or [12]). Let K be a tetrahedron, and let F : K — K be an invertible affine
map from the reference element to K. We will denote B := DF and J := det B.
We also consider the piecewise constant function a : oK — (0, 00) such that for all

integrable ¢,
[ o= taoor
oK oK

The trace and normal trace operators on K will be denoted v and ,,. Given

*:K >R o,0f: K->RX3 pup*: 0K — RS

sym )
we define
4:=BTuoF K — R, w*:= |JB 'u* o F: K — R?,
&:=|[JBHooF)B T :K >R¥3 &% :=BT(c* o F)B: K - R,
ﬁ;:BTHoF ;aK—>R7 i/l,*1= |(L|B_1H*OF16K—>R3,

where B~T = (BT)~!. The following properties are easy to prove.
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Proposition 4.1 (Change of variables in integrals). We have the following identi-

ties:

(4.1a) (uw,u*) g = (@, 0") 3 Vu,u* € L?(K;R?),
(4.1b) (0,0%)k =(6,6%)% Vo,o0* € L*(K; R3S,
(4.1¢c) (s or = LBz Y, p* e LP(0K;R?).

The next group of results about changes of variables involves the interaction of
integrals with differential operators or trace operators.

Proposition 4.2 (Change of variables in bilinear forms). We have the following
indentities:

(4.2a) (o.e(u)k = (6,8(n)z Vo e L*(K;RYSY) Vue H'(K;R?),
(4.2b)  (u,dive)x = (4, ofv&)f{ Vo e H'(K;R3D) Vu e L (K;R?),
(42¢) (o, Yu)or = (nG, 70, Vo e H'(K; R3S Vu e H' (K;R?),
(4.2d) (Yo, wox = b, W,z Vo e HY (KGR Ve e LP(OK;RY),
(42e)  (Tyu,pwox = FAG, ),z Vue H' (K;R?) Vue L*(0K;R?),
(4.2f)  (Tyu,ywyex = (FAU,AD),z  Yu,ve H'(K;R?).

Here T € Ro(0K;R3%3) and

sym
(4.3) 7= [a[B7H (1 0 F)B™T € Ro(OK;RED).
Proof. Using the definitions, it is easy to prove that
(44) cw) =e@). Fu=7u  Ta=Fj
Then (4.2a), (4.2e), and (4.2f) are easy consequences of Proposition 4.1. Now let
B = (bi;)? ;- and A = (as)};_; = B~'. Using implicit summation for repeated
indices, we have for each 17

(div)i = 03,6 ki = |J|ak1@im0s, (01 © F)

= |J|aklaimbjk(axj0'lm) oF = |J‘5jlaim(awjglm) oF

= |J[aim(0z;05m) © F' = |J|aim(div o)y, o F

= |J|B ' dive); o F = (dive);,
and therefore divé = dive. This and (4.1a) prove (4.2b). Note next that, using
identities we have already proved and Proposition 4.1, we have

(4.52)  (Yno,AU),p =(Tn0, YU,z = (0, U)ok = (dive,u)k + (0,e(u))k

(4.5b) =(dive, u)z + (5,€(w) gz = (Gn0, V),
and (4.2c) is thus proved. Since HY?(0K;R?) is dense in L?(0K;R?), (4.2d) follows
from (4.2c¢). O

The final result of this section contains all scaling inequalities. Shape-regularity
can be rephrased as the asymptotic equivalences (recall that we are in three dimen-
sions)

(4.6) IBl ~ ke, BT ~ byt I~ ki ol & b
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1758 SHUKAI DU AND FRANCISCO-JAVIER SAYAS

Therefore

(4.7) lol ~ B2 |do Flz,  |8lox ~ hicldo Flz.

For the hat transformations, we have the following scaling rules, which can be
easily proved using (4.6), (4.7), and the chain rule.

Proposition 4.3 (Scaling equivalences). With hidden constants depending on
shape-regularity and on m > 0, we have

(4.8a) G|, =~ hp Plulmx  Yue H(K;R?),
(4.8b) 61, 7 ~ b Plolmix Vo e H™(K;RED),
(4.8¢) |l ~ 18]z ~ lrlox Vpe L*(0K;R?).

4.2. The projection and the remainder on K. Consider the spaces
S(K) :={o € LX(K;RE3) : 6 € 5} = Pp(K;RED),
Vo (K):={ue l*(K;R?) : e V,} = Pri1(K;R?),
M(0K) :={p e L*(0K;R?) : fie M}
={pe L2(0K;R?) : ie M} = Ry, (0K;R?).

The projection and the remainder are defined by a pull-back process: given (o, u) €
HY(K;R33) x HY(K;R?), we define
(4.9a) M(o,u;7) = (oK, ux) € D(K)x Vi (K), R(o,u;7):=0dx€ M(OK)
by the relations
(4.9b) (@r.ur) =0(6,4;7), F:=l|aB (o F)B',
(4.9¢) Sk = R(6, ;7).

We now prove Theorem 2.1. We start by proving a technical lemma, continue
showing that equations (2.2) hold (we present this as Proposition 4.5), and finish
by proving the estimates (2.3).

Lemma 4.4. If Py, is the L?(0K;R3) orthogonal projector onto M (0K), then

(4.10) Pup=Pgii  Vpe L*(0K;R).
Therefore, if T € Ro(0K; R3%3), we have

(T Py, mok = (FP A, )7 Vue H' (K;R®) Vue L*(0K;R?),
(T Pyyu,ywhox = (FPAU,A0),z  Yu,ve H'(K;R?),
with 7 defined in (4.9b).

Proof. Tt follows from the definitions that P/]\-/[\u € M and that p* e M(K) if and
only if i* € M. Therefore,

Par, B p = Prrpe, w*dox = (o, w* Yok

A~ vk

=, i) = P B, Yp* e M,

and (4.10) is proved. The next two identities in the statement follow from (4.10)
and Proposition 4.1 and (4.4). O
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Proposition 4.5. Assume that T € Ro(0K;R3X3) satisfies

sym
(T, o >0 Vue L?(0K;R?), up#0.

If (ok,uk) =1l(o,u;T) and dx = R(o,u;T), then the following equations hold:

(4.11a) (ug —u,divl)g =0 VO € 2(K),

(4.11b)

—(div(okg — o), w)k + {TPuy(ux —u),yw)sx = 0, yw)sx Yw e V  (K),
(4.11c¢) —plog —0) —TPyy(ug —u), ok = 0k, ok e M(OK).
Proof. The equality (4.11a) follows from changing variables to the reference el-
ement, and applying (3.19a) and (4.2b). Similarly, (4.11b) follows from (3.19b)

using (4.2b), Lemma 4.4, (4.1c), and (4.4). Finally, (4.11c) follows from (3.19¢)
and applying (4.2d), Lemma 4.4, and (4.1c). O

Assume now that 7 is of order h', as expressed in (2.1). By (4.6) and Propo-
sition 4.3 we can write (take n = f1 for p € L?(0K;R3))

(412)  aCihd Inlle < Fnmdag < asCobilInl2z  Wne (0K R®),

where a1 and ao are constants related to the shape-regularity of K. We are now
ready to apply Proposition 3.6 with 7,3, = @1C1, Tiax = @2Cs and n = hl_(1 (com-
pare (4.12) with (3.16)). Using the definition of the projection (4.9), Proposition
4.3 for the scaling properties, and Proposition 3.6 for the estimates, we have

1/2

lo — okl +hi e —wk|x + hy |6k x

1/2 ~ — — ~ — g

~ 2|6 — ok + hit|a - axl g + 10k 52)
1/2

< h (8], 7 + i, 2)

~ h%(|a|m,K + |u|m+1,K)a

and (2.3) is thus proved.

5. STEADY-STATE ELASTICITY

5.1. Method and convergence estimates. From now on, we shift our attention
from the construction of the projection to its applications. We begin by introducing
more notation for the rest of the paper. Let €2 be a Lipschitz polyhedral domain in
R3. We denote the compliance tensor by A € L®(; B(R3:3)), where B(RZ%3) is
the space of linear maps from ngxrg to itself. We assume p = pg for some positive
constant pg, and A is uniformly symmetric and positive almost everywhere on €2,

i.e., there exists Cy > 0 such that for almost all x € €2,
(A(x)€) : x = & (Ax)x) } VE.x

(A(x)§) : €= Co€ : € X

Let 7y, be a family of conforming tetrahedral partitions of €2, which we assume
to be shape-regular. Namely, there exists a fixed constant ¢y > 0 such that & e S Co

for all K € 7Ty, where px denotes the inradius of K. We denote h := maxge7;, hx
as the mesh size and set the following discrete spaces:

=[] Pe(KRED), Whi= [] Pera(BR?), My, = [[ Ri(0K;R?).
KeTy KeTy KeT

R3><3

sym*
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The related discrete inner products are denoted as

(0-77-)77,, = Z (0-7 T)K7 (uu ’U)Th = Z (uvv)Ku <H7 A>5Th = Z <N7 A>9K
KeT KeTh KeT

Finally, we use the following notation for the discrete and the weighted discrete

norms:
b= G Illom = Cadan
P O S Y P CRp -t

where #; = A or p, and g = 7 or 7', Here 7 € [[xcr Ro(0K;R3%3) is the

stabilization function which we assume to satisfy (2.1) on every element K.

In this section, we give a projection-based error analysis to the HDG+ method
introduced in [19]. We will show that the analysis can be simplified by using
Theorem 2.1. To begin with, we review the steady-state linear elasticity equations:

(5.1a) Ao —e(u) =0 in Q,
(5.1b) —dive = f in Q,
(5.1c) Yu =g on I' := 09,

where f € L*(Q;R?) and g € HY/?(I'; R?). The HDG+ method for (5.1) is: find
(oh,up,tp) € Vi, x Wy, x My, such that

5.2a) (Ao, 0)7,, + (up,divl), — (up, Ondsr, =0 VO e Vy,

5.2b) —(divep, w)7, + (TPum(up — Up), whsr, = (f,w)7, Ywe Wy,
5.2¢) {opn — TPy (un — Up), o r = 0 Yue My,
5.2d) @p, yr =g, wr Y € M.

Since we will use a duality argument to estimate the convergence of wj, here we
write the adjoint equations for (5.1):

(
(
(
(

(5.3a) AU +e(®) =0 in €,

(5.3b) divl = © in Q,

(5.3c) P =0 on T,

with input data © € L?(2;R?), and we assume the additional elliptic regularity
estimate

(5.4) [%]1.0 + [@]s0 < Cg O],

where Cieg is a constant depending only on A and 2. The following convergence
theorem will be proved in Subsection 5.2.

Theorem 5.1. Fork>1and1 <m <k + 1, we have

lo —onfa < Cih™(lo|mao + [wlm+10)-
If (5.4) holds, then we also have

lu —unlo < Coh™ (om0 + [ulm+1,0)-

Here, C1 depends only on the polynomial degree k and the shape-reqularity of Ty,
while Co depends also on A and Clreg.

Note that in [19, Theorem 2.1] the meshes 7}, are assumed to be quasi-uniform,
whereas here we only require 7, to be shape-regular.
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5.2. Proof of Theorem 5.1. To begin with, we use the element-by-element pro-
jection defined in (4.9) (we will only use Theorem 2.1, not the definition) on the
solution (o, u):

(o, [Tu) = H H(U|K’U‘K;T‘9K)7 9= H R(U‘K’U}K;T’(?K)’
Ke7—h Ke7—h

and define the error terms and the approximation terms:

gy i=Hu—up, €] :=Io—op, e :=Pyu—uy,

e, =llo—0o, e,:=1u—u.
We aim to control the terms €} (* = u,o,u) by the terms e, (+ = o,u) and 6.

Proposition 5.2 (Energy estimate). The following energy identity holds:

(5.5)

(Aef, )7, + (TPul(ey —ep), (e — €n))oms, = (Aeo, €77, + (8, €} — €})or;, -
Consequently,
(5.6) leflZ + [Par(el —ei)l? < lleo|% + 18]35

Proof. The proof here will be similar to the proof of [7, Lemmas 3.1 and 3.2]. By
Theorem 2.1, we first obtain a set of projection equations satisfied by Ilo, Ilu, and
d. We then subtract (5.2) from the projection equations and obtain the following
error equations:

(5.7a) (Aef,0)7, + (€}, div0) 7, — (el On)or, = (Ae,,0)T,,
(5.7b) —(divef, w)7, + (TPup (e} — €l), whar, = (8, waT,,
(5.7¢) (efm —TPu (e} — ef), worr = —(8, Wars
(5.7d) (el myr = 0.

By (5.7¢) and (5.7d) we have

(5.8) (efm — TP (el — €}),€or, = —(8, €} -

Now taking @ = 7 in (5.7a), w = e} in (5.7b), and then adding (5.7a), (5.7b),
and (5.8), we obtain the energy identity (5.5), from which the estimate (5.6) easily
follows. O

Proposition 5.3 (Estimate by duality). If kK > 1 and (5.4) holds, then
lekll7 < hC (leql7, + 6] +-1)-
Here, C is independent of h, but depends on A and Creg.

Proof. The proof here will be similar to the proof of [7, Lemma 4.1 and Theorem
4.1]. Consider the adjoint equations (5.3). We take ® = &} as the input data and
apply the projection on (¥, ®) with —7 as the stabilization function. Namely,

(MW, 10®) = [ [ W(®],, 8|, —7]0), A= [ RO¥|,, @i —7]0)-
KeT, KeTy
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By Theorem 2.1, II¥, II®, and A satisfy
(ATIW, )7, — (P, divO) T, + (Py®,0n)sr, = (AP — P),0) 7, ,
(divII®¥, w)7, + (TP (2 — @), w)or, = (), w)7;, — (A, w)or;,,
—(I¥n + 7Py (1P — @), wor;\r = (A, woT 15
Py®, p)r =0.

We now test the above equations with 8 = €, w = €}}, and pu = s}z, and then test
the error equations (5.7) with 8 = II¥, w = II®, and p = Py;P. By comparing
the two sets of equations, we obtain

(AT® — @), e7)7, + efi]7;, — (A, Puei — eior, = (Aey, 1) 7,
+<{8, Py (II® — @) Do, .
After rearranging terms, we have
lehl 7, = —(A(I® — ¥), 0 — )7, — (Ilo — o, e(®))7,
+ (APl — epyor, + (8, Par(II® — ®))or, .
By Theorem 2.1 (with m = 1) we have
¥ — |7, + Al < h([¥]10 + [@]2.0)-

By (2.5) we have
(lo —0,&(®))7, = (llo — 0,&(P) = Poe(®@))7;, < hles|

@]

Th 2,0-

Finally, (2.1) implies

1/2

[Par(T1® — @) ~ ( >, IngPPar(n — @)%K) < (| Zg +[2]20).
KeTyn

We next use (5.4) to control the term (|¥|1 o + ||®|2,q) and use Proposition 5.2 to

control the terms || A(o — o)1, and |Pasejl —€j|-. The proof is thus completed.
([

Combining Proposition 5.2, Proposition 5.3, and Theorem 2.1, Theorem 5.1
follows readily.

6. FREQUENCY-DOMAIN ELASTODYNAMICS

6.1. Method and convergence estimates. In this section we give new proofs of
error estimates to the second HDG+ method studied in [15] by using projection-
based analysis for the following time-harmonic linear elasticity problem:

(6.1a) Ao —e(u) =0 in 0,
(6.1b) —dive — k*pu = f in €,
(6.1c) Yu =g onI':= 0Q,

where f € L?(Q;C?), g € H/?(T';C?), and p € WH*(Q;R) denotes the density
function. We assume that the wave number x > 0 and that 2 is not a Dirichlet
eigenvalue so that (6.1) is well-posed. Note that because of the different proof
techniques, the dependence on the wave numbers of the error estimates will be
different and not easy to compare. The emphasis here will be the simplified error
analysis thanks to the introduction of the projection.
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The HDG+ method for (6.1) is: find (o, upn,up) € Vi x Wi, x M, such that
6.2a) (Ao, 0)7, + (up,divl), — (up,0ndsr, =0,
6.2b)  —(diven, w)7, + (TP (un — @n), whor, — (2 pun, )7, = (f,w)7;,
6.2¢) {onn — TPy (un — n), wor\r =0,
62d) <ah7 p’>F = <gu H>F7

forall @ e Vi, we Wy, and p € My,. Here, the spaces Vi, W, and M, are the
same as those defined in Section 5.1 except now the functions contained in these
spaces take complex values.

For © € L?(2;R?), we assume that the solution to the adjoint equations for

(
(
(
(

(6.1),
(6.32) AT +e(@®) =0  inQ,
(6.3b) divl — %p® =0©  in Q,
(6.3c) v® =0 on T,
satisfy

(6.4) [@ll2,0 + [¥[1,0 < Ck[ O],

where we make the dependence on x explicit for the constant C. For the rest of
this section, the wiggles sign < will hide constants independent of h and k. We aim
to prove the following theorem.

Theorem 6.1. Suppose k > 1 and (6.4) holds. If (h?k? + hk)C,; is small enough,
then

lu—unlo < ((1+ COR™ " + Cu(s® + K)R™2) (om0 + [ulmr1.0)
lo —onle < (h™ + (1 + Co)rh™ 1 + Cu(s® + k)R F2) (Jo|ng + [ulni1e)
with 1 <m <k + 1.

6.2. Proof of Theorem 6.1. Since the solution (o, u) in (6.1) can take complex

values, directly applying Theorem 2.1 is not feasible. However, this can be easily

fixed by defining a new complex projection based on the original one: for (o, u) €

H'(K;C33) x H'(K;C?), we define

(6.5) II(o,u) := II(Reo,Reu) + ill(Imo, Imu).

It is easy to show that this complex projection also satisfies (2.2) and (2.3) (the only

difference is that now the test functions 6, w, i in (2.2) can take complex values).
Similar to the beginning of Section 5.2, we first define the projections (Ilo, ITu),

the remainder term 6, the errors €}, €7, €, and approximation terms e,, e,.

Proposition 6.2 (Garding-type identity). The following energy identity holds:
lef 1%+ [Par (el — eIz — w2kl
= (A&, €7)7, + (8,€i; — €ior, — K (peu. €f) 7.
Consequently,
(6.6) 7]

7 + [Par(el — i)l < lerlr + rlewln + les |7 + 6]
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1764 SHUKAI DU AND FRANCISCO-JAVIER SAYAS

Proof. By similar ideas used in the proof of Proposition 5.2, we obtain the following
error equations:

(6.7a) (Aef, 0)7, + (€}, divO) 7, — (e}, On)or, = (Ae,,0)7;,
(6.7b)

—(divef, w)7, + (TPu(ef — ep), wyor, — (K pef, w)7, = (8, w)or,

- (KJQpeu, ’LU)'Th,

(6.7¢) (efm — TPu(eh — ep), worr = —(8, W
(6.7d) (i =0,
forall @ e V), we Wy, and p € M. Taking @ = €7, w = e, and pp = %, then
adding the equations, we have the energy identity.

Denoting A% := [e7]2. + |Pas(e} — €})|2 and applying the Cauchy—Schwarz
inequality on the identity, we have

42 5 e, + 2l

7. + Alles|7, + 18]--1).

The estimate (6.6) now follows by using Young’s inequality. a

Proposition 6.3 (Estimate by bootstrapping). Suppose k = 1 and (6.4) holds. If

(h?k?% + hi)C,, is small enough, then

7. S h(k? + 1) Cyey]

le 7. + |Par(el — i)l < (1 + huCo)(les |7 + [6]--)
+ (k + hCw (K* + &%)|lew 7, -

7 + hCx (6] 71 + [es]

] Ti);

Proof. Consider the adjoint equations (6.3) and take ® = e}!. Following similar
ideas in the proof of Proposition 5.3, we first apply the projection on (¥, ®) with
stabilization function —7 to obtain the projection equations (about (IIW, II1®, A)).
We next test the projection equations with 7, €}, and €}!, test the error equations
(6.7) with II®, II¥, and P,;®, and compare the two sets of equations. Then we
obtain (define ey :=II¥ — ¥ and eg := II® — @ for convenience)
(Aeq, TT®) 7, + (8,TI® — Pay®)or;, + £°(p(u — un), [I®)7,
= (Aev,ef)7, + 1 (0@, €i) 7 + lei]F, — (A el —eiber.

After rearranging terms, we have
(6.9) 13, = K2 (ew plu — un))7, + K2(o, u— Tu),

+ (Alon — o), ex)7, — (€5,8(®))7;,

+(8,T1® — Py ®)or;, + (A, el — €pyors.-

By Theorem 2.1 (with m = 1), we have

hteslr, + |ew|n + @ — Py @[ + Al < h(|¥]10 + [®]20),
and also
K (p®,u — )7, = £°(p® — Po(p®), u — )7, < he?|plwre ) |®]10led -
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HDG PROJECTION FOR ELASTICITY AND ITS APPLICATIONS 1765

By (2.5) we have (e,,&(®))7, = (€y,&(®) —Poe(®))7;, < hles|T,|®[2.0. Now we
use (6.4) in (6.8) to obtain
leill7, < h*K*Crllu —unlg, + he?Colllu — |7, + hCyllo — a7, + hCiles| T,

+hCy 8] -1 + hC,|Puef — €fi]-

< PR*Cpleplz, + he?Crlleu]lr + hCxles| T,

+ hCyl|0] -1 + hCy(lef |75, + [Parel — il -).

Next we use (6.6) and bound
lehlln < (h*6* + hi)Crlleq |7, + (his + he?)Crcllew] 7, + hC(lles|7, + 8] --1).
Therefore, when (h?k% + hr)C,, is small enough, we have
leilz, < (he + he?)Crlleul T, + hCx(lles |7, + [8]7-1).

The first inequality is thus proved. The second inequality can be proved by com-
bining (6.6) and the above inequality. a

Theorem 6.1 now follows easily from Proposition 6.3 and Theorem 2.1.

7. TRANSIENT ELASTO-DYNAMICS

7.1. The semi-discrete HDG+ method. In this section, we present a semi-
discrete (in space) HDG+ method for transient elastic waves and prove it is optimal
convergent uniformly-in-time. The equations we consider are

(7.1a) Ao (t) —e(u(t)) =0 in Q x [0,7T],
(7.1b) pu(t) — dive(t) = f(¢) in Q x [0,7T],
(7.1c) yu(t) = g(t) on I x [0,T7,
(7.1d) u(0) = ug on ,
(7.1e) u(0) = vg on €,

where f € C([0,00); L*(Q;R?)) and g € C([0,00); HY/?(T;R?)). For the initial
conditions, we assume ug, vo € L?(Q; R3).
The HDG+ method for (7.1) looks for

o-h,uh,ﬁh : [0,00)—>Vh X Wh XMh

such that for all t > 0

(7.2a) (Aon(t),0)7, + (un(t),dive)r, — (un(t), Onyer, = 0,
(7.2b)
(pun (1), w)7;, — (diven(t), w)7, + (TP (un(t) — un(?t)), wyer, = (£(t),w)7,,
(7.2¢) (on(t)n — TPy (un(t) — un(t)), wor\r = 0,
(7.2d) (an(t), myr = {g(t), wr,

forall@ eV, we Wy, and u € My,. For the initial conditions of the method, we
use ideas from [6]. The initial velocity p(0) is defined by using the projection in
Theorem 2.1,

(73) (X,ﬂh(0)> = H(.A_le(’vo),’vo;T),
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1766 SHUKAI DU AND FRANCISCO-JAVIER SAYAS

and the initial displacement up,(0) is defined to be the solution of the HDG+ dis-
cretization of the steady-state system

(7.4a) Ao (0) —e(u(0)) =0 in Q,
(7.4b) —dive(0) = —div (A 'e(ug)) in Q,
(7.4c) u(0) = g(0) on I
Namely, we find (6,(0), u,(0),ur(0)) € Vi, x Wi, x M, such that
(7.5a)

(A5 (0),0)7, + (un(0), divO)7, — (un(0),0n)o7, =0,
(7.5b)

—(divep(0), w)7, + (TPas(un(0) — @n(0)), wyar, = (—div(A~ " e(ug)), )7, ,
(7.5¢) (or(0)n — TP (un(0) — an(0)), worir = 0,
(7.5d) (@n(0), wr = (g(0), wr,

for all (0,w,p) € V), x Wy x M. For notational convenience, we define the

following space-time norms
or T 1/ p
= <L|~mmd0 ,

where * can be replaced by H™(Q), Q, T, A, p, 0Ty, T, or 7~ 1. The parameter p
takes values in {1,2, 00}, and when p = o0, we consider the supreme norm in time
instead of LP integration. Now we define the projections and the remainder terms
for all £ = 0:

(Ho (), TTu(t) == [ | e ()] wt)];i 7] x);
KeTh

6(t) = 1_[ R(O’(t)‘K,u(t”K;T

KeT

o)

The related error and approximation terms (for all ¢ > 0) are denoted

ef(t) :=To(t) —on(t), ei(t):=Tu(t) —uy(t), ei(t) = Pru(t) — an(t),
e, (t) :=Ilo(t) —o(t), eyu(t):=Tu(t) —u(t).

For the rest of this section, the wiggles sign < will hide constants independent of h
and T. The main results in this section are Theorems 7.1 and 7.2.

Theorem 7.1. For k > 1, the following estimates hold:
lef (T)].a + [Par(eh(T) — E%( ))Hr + HéZ( )Mo
< lea(0)a + lleally D+ s, + nant,
[€7(T) )4+ [Par(€4(T) — €R(T ))Hr + HEh( Mo
< e (O)a+ [eu (), + 2o I + 2l + 1815 + 181722
For the next theorem, we need to assume that the elliptic regularity condition

(7.6) 'e(®)]10 < Cregldiv (A~ e(®))]
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HDG PROJECTION FOR ELASTICITY AND ITS APPLICATIONS 1767
holds for any ® € H'(£2;R?) such that the right-hand side of the above inequality

is finite. Note that (7.6) is the same as (5.4). We rephrase it here to have it in the
form in which we will use.

Theorem 7.2. Ifk > 1 and (7.6) holds, then

lei(Mle < h(1+ 1) (Iea( o + lleallGzs + el

71,00 7100

OT OT
DT e )

+ 8(0) [ pr + 181105 4 g8 )

+ (1 +T)2<|eu(0)

Therefore, for 1 <m <k +1,

3

m OT 0, T

lei(T) o <A™ (1+T)2 Y (|a<“|Hm]m S LR [ ey OC)
1=0

We next give the proofs for the above two theorems in the following two subsec-
tions, respectively.

7.2. Energy estimates. In this subsection, we give a proof to Theorem 7.1. We
first present two lemmas, which give the error equations when ¢ > 0 and the error
equations when t = 0, respectively.

Lemma 7.3. For allt = 0, the error equations

(7.72) (Aef, (), 0)7;, + (efi(1), divl) 7, —(efi(t), On)or, = (Aeq (1), )7,
(pE5(8), w) 7, — (dive] (t), w)7, + (TPar(efi(t) — € (1), wor, = (péu(t), w)T,
(7.7b) +{0(t), wyar,,
(7.7¢) (ef(tn — T (eh(t) — en (1)), waomar = —(B(t), WoTr
(7.7d) (), mr =0,

(7.7¢) e;(0) = Hug — up(0),
(7.71) €,(0)=0

hold for all (6,w, ) € Vi x W, x Mj,.

Proof. Use (7.1), (7.2), (7.3), (7.5), and Theorem 2.1. O

Lemma 7.4. The error equations
(7.82)  (Aef(0),0)7, + (€}:(0),divO)7, — (e} (0), 0n)or;, = (Aes(0),0)7;,
"

(
(0))v w>ﬁ771,

(7.8b)  —(divef(0), w)7, + {(TPum(ep(0) — e =(6(0), wyor,

(7.8¢) (e7(0)n — 7(}:(0) — €5(0)), wyoriar = —(8(0), worrs
(7.84) (ER(0), e =0

hold for all (6,w, ) € Vi, x W, x Mj,.

Proof. Use (7.4), (7.5), and Theorem 2.1. O

The next proposition gives estimates to the error terms when t = 0.
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1768 SHUKAI DU AND FRANCISCO-JAVIER SAYAS

Proposition 7.5. The following estimates hold:

(7.9) €7(0)1% + 1P ar(e5(0) — € (017 < lea (0% + 18 (0)]17-1,
(7.10) €5 (0) % + IPar(€5:(0) — €(0)) 7 < lew (0)]% + 18(0) 3,
(7.11) 1€x(0), < [€u(0)1l,

Proof. Taking 6 = €7(0), w = €}(0), and p = €(0) in the error equations (7.8)
and adding the equations, we have

€7 (0) % + [Par(5:(0) — €5 (0)[7 = (Aes (0), €7(0)) 7, + (8(0),€};(0) — €5 (0))o7s,-

The first estimate (7.9) then follows from the latter identity.
Consider the error equations (7.7). We take the first-order derivative of (7.7a)—

(7.7¢) and test the equations with 8 = &7, w = &%, p = L. We next add the
equations, evaluate them at ¢t = 0, and use the fact that £;,(0) = 0. Then

[€5(0) 12 + [P ar(€5:(0) — 5:(0)) 3 = (Aeé,(0), €7 (0))7; + (5(0), €}:(0) — €5 (0))er.s

from which the second estimate (7.10) follows.
Finally, taking ¢t = 0 in (7.7b) and subtracting (7.8b), then taking w = &}(0),
we have

(€4(0),€5,(0)), = (€4(0),€5(0)),,

which implies (7.11). O

Note that the boundary remainder operator R defined in Theorem 2.1 is linear,
thus commuting with the time derivative

3(t) = R(&(t), u(t); 7).
This commutativity holds for the projection II as well as for similar reasons.

Proposition 7.6. Fort > 0, we have

(112) 5 (IeT0I% + Pa(ek(t) — B + ek 0)12)
= (pu (). £1(1)) + (Aeq (), £7.(1)) +(B(0), 1(8) — £7.(1),
(113) 35 (L0 + IPar(et ) — 5013 + 1€50I2)

= (p&u(t), &5 (1)) + (A&, (1), &7 (1) + (8(1), &, (1) — &R ().

Proof. Taking the first-order derivative of (7.7a) and testing it with @ = € (¢), then
choosing w = &(t) in (7.7b) and p = &1 (¢) in (7.7¢), and finally taking the first
order derivative of (7.7d) and then adding the equations, we obtain (7.12).
Taking the second-order derivative of (7.7a) and testing it with 8 = &7 (¢), then
taking the first-order derivative of (7.7b) and testing it with w = &} (¢), taking the
first-order derivative of (7.7¢) and testing it with g = &}(¢), and finally taking the
second-order derivative of (7.7d) and adding the equations, we obtain (7.13). O

The final ingredient we need is a Gronwall type inequality.
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HDG PROJECTION FOR ELASTICITY AND ITS APPLICATIONS 1769

Lemma 7.7. Suppose ¢, 3,1 are continuous and positive functions defined on [0, )
and r is a constant. If

r+2f¢ (s)ds + B(t)I(E),

2
H*(t 2r+( Jﬂ )ds + s%pt]l( )> .

Proof. Consider the interval [0,¢] and let ¢(t*) maximize ¢ in the interval. Then
we have

then

A2 (%) <7 + B(t%) ( B(s)ds + sup (s ))

s€[0,t]

2
ér—i—% 2 (t*) ( B(s)ds + sup l(s))

s€[0,t]
|
With Propositions 7.5 and 7.6 and Lemma 7.7, we are ready to prove Theorem
7.1.
Proof of Theorem 7.1. Integrating (7.12) from 0 to T, we have
t=T
l o 2 P u _2u 2 U 2
5\ len (2 + [Par(e () — i (@)= + [en @)l
t=0
R t=T
=(0(t), Pr(eh(t) —€p(t))er,
t=0
T . ~
| ((0ul0). 10D, + (Ae(0).£5.0), = B, Pas(ef(t) = eft))em )

<[S(T) |1 [Par(4(T) = E(T)) |+ + [6(0) |1 (s (0)]% + [8(0)]2-1) "
e[ (e + 17+ Paero — <aniz)
0 h P h A h h T
. 1/2
(a2 + e (1)1 + 1612 " a

where we used (7.9) to estimate ||Pas(€%(0) — &}(0))||» in the last step.
Now we define

¢ () = |en ()7 + €7 (D)% + IPar(eis(t) — en(®))]3,
B2(t) = eu ()] + lea(t)|% + 1803,
U(t) = 216(0)]o-+,
ri=2]eq (0)[% + 3[8(0) |7
Note that by (7.9) and (7.7f), we have ¢*(0) < [es(0)|% +[8(0)|2_,, and therefore,

T+QJ 6(1)B(1)dt + ¢(T)(T).
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By Lemma 7.7, we have

2
»*(T) 2T+< B(t)dt + sup l()) <r+ sup IP(t (f Bt dt)
te[0,T7] te[0,T7]

2
< 18(O)12 + leo 1% + (1811277,

T 2
* (j (12u )l + leo(t) | + n«'smnrl) dt>

0,77
< (leo)La + 18IL7L, + el

T
D e + )’

711
Similarly, for the second estimate, we integrate (7.13) from 0 to T, then use
(7.10) to estimate |Pas(€5(0) — €4(0))|+, and then obtain

t=T
= (7O + 1ParEr(t) — 512 + 183 0)12)

t=0

< BT |+ [Par (E1(T) — @) + 130} (12O + 1602 ) "
+ f (leno1+ P02+ EO )

2

(@2 + e (03 + 182 ) at

Now we define

62 (1) == |ER (D% + [P (1) — ER )13 + IR M]3,

B2(t) = [€u (B + € (6)]1% + 0() 5,

(1) = 208(t)] -,
r = 2]eq (0)[2 + 318(0)]13 -1 + €. (0)].

Since by (7.10) and (7.11) we have ¢2(0) < [e,(0)|% + Hé(())H?r,1 + [|é.(0)]2, and
it follows that

r+2f H(HB(H)AE + H(T)I(T).
Using Lemma 7.7 again we obtain the second estimate. (Il

7.3. Duality argument. In this subsection, we give a proof to Theorem 7.2 by
using the duality argument. To begin with, we consider the adjoint equations of

(7.1):

(7.14a) AW +&(®) =0 in Q % [0,7],
(7.14b) p® + divl =0 in Q x [0,77,
(7.14c¢) 7P =0 on I x [0,T],
(7.144) ®(T) = on €,

(7.14¢) ®(T)=¢e(T) onQ.
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For a time-dependent function f : [0,00) — X, we write

0= s

The following proposition allows us to control the solution of (7.14) in certain
energy norms. Similar results can be found in [10].

Proposition 7.8. The following inequality holds:
0,T] 0,T] u
(7.15) @150 o + 157 < Clei(T)]o.
If (7.6) holds, then
[0,T 0,71 u
(7.16) IG5 o + IR0, . < Cler (@]
Proof. By conservation of energy we have

[@O17 + (@) (D)5 = leh(DI,

for all ¢ € [0,7]. Now (7.15) follows by using Korn’s Second Inequality.
Integrating (7.14a) and (7.14b) from ¢ to T, we have

AT(t) +e(@(t) =0,  dive(t) = p@(t) — p@(T),

for all ¢ € [0,T]. Combining the latter equations with (7.6) and (7.15), we obtain
(7.16). O

Now we define the dual projections and boundary remainder terms for the adjoint
problem (7.14) (for all ¢ € [0,T]):

(11w (t), 11®(t)) :

[T 0®®)] 0 B0 i =70
KeTy

H R(‘I’(t)}K"I)(t)‘K;fT‘aK)'
KeTy,

A(t):

We also define the corresponding approximation terms:
eq(t) =P (t) — ®(¢), ey (t) =TT (t) — T(t).
Proposition 7.9. The following identity holds:

HEh Hp Z Tla

where
) T
Ty = (pB(0), Iuo — wn(0))7,. 7= | <o), eattpomat
T T
- —fo (A®), €L () — eb(O)ondt,  Tyim f (Aeq (1), o(t) — on(t))mdt,
T T
T5 = —L (Aes (1), ()7, dt, T = _L (p®(1), €u(t)) 7, dt,

T
Tr = [ (pliu(t) — in (1)), en (1)) 7t

0
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Proof. From the adjoint equations (7.14) tested with (7 (¢), el (t), e} (t)), and from
the properties of the adjoint projection (see Theorem 2.1), we obtain

(AT (2), €7 ()7, — (H@(t), divef ()7, + Pu®(t),€f (H)n)or,

= (Aew(t), €7 (1) 7,
(divII®(t), €5 ()7, + (TP (IID(t) — B(1)), €5(t))or,
—~(A), e ()or, — (p2(t), €} (D)7,

(
(¥ (t)n + T(12(t) — @(1)), €4 (t)omar = (A, e (t)aTrs
(Prr®(1), € (t)n — TPus(efi(t) — ej(t))r =0.

(Note that ® = 0 on I'.) Now taking 8 = II¥(¢), w = [1®(¢), p = PpP(), and
p =¥ (t)n + 7Py (IIP(t) — ®(¢)) in the error equations (7.7a) to (7.7d), and
comparing the two sets of equations, we have

— (A(t), ef(t) = e (D)o + (Aew(t), € (8))7, — (pB(2), €5 (1)7,
= (Aeo (), T (1)) 7;, + <8(1), LIR(L) — @(t))or;, + (p(an(t) — a(t)), 112(1))T,

After rearranging terms, we have

(7.17) (p®(t), ()7, = — (A1), €} (1) — i (t)or, — (S(t), 1B (t) — B(t))er,
— (p(an(t) — (1)), 11®) 7, + (Aew(t), o(t) — on(t))7,
- (-Aea(t)v ‘Il(t))Th'

Now define
n(t) == (p@(t), (1) 7 — (p®(1), €31 (1)) 7.,
which satisfies
n(T) = (pei(T), ei(T)) 7., 1(0) = (p(0), g — un(0))7,,

due to ®(T) = 0, ®(T) = e(T), e(0) = Mug — ux(0), and }(0) = 0 (see (7.7)
and (7.14)). By (7.17), we have

0(t) =(p(t), it (D)7 — (p (1), €1 (1)) 7,
= — (A(t), ef(t) — ef (D)o, — (8(1), ea(t))or
+(Aeg(t),0(t) —an(t)) 7, — (Aes (1), ¥(1))7,
+ (p(6(t) — @n(t)), e ()7, — (pP(1), €u(t))T; -

Therefore
T .
I T, = [ et + (8 (0). T — un (0)
and the proof is completed. O

The next proposition gives an estimate for the term 77 in Proposition 7.9.
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Proposition 7.10. If (7.6) holds, then

0,7
Tz| < hlen(T)]|7. (Ieh( iz + Tlleq 155

+ |Pareii(0) — €5 (0) |- + T|Pasé

+ hl&u(0)| 7, + hT|fe, |7 +|6<MT1+7wa|°T]>.

-1 o0

Proof. In the coming arguments, for the sake of shortening some estimates, we will
prove bounds in terms of the quantity

(7.18) O(T) := sup |®(t)|2,0+ sup |¥(t)],
te[0,T] te[0,T7]

which we have shown in Proposition 7.8 that, assuming (7.6), we have the estimate

(7.19) O(T) < ller(T) -

Note that
T T

(7.20) Tr; = f (PEp (1), ea(t)) 7, dt — J (péu(t), es(t)) T, dt.
0 0

For the second term of (7.20), we have

T

@%@ﬁﬂ@n+£@%@£ﬂmnﬁ

T
‘f@@m@amnw:

0

<12 (1€u(0) 7, + TIN5 ) ©().

We next estimate the remaining term in (7.20). Since sZ(t)}K € Pry1(K;R3) for
all K, we have

T T
j'<péz<w,e¢<w>7hdt=:J‘<péz<w,Pz+1e¢<w>7kdu

0 0

where PQH is the p-weighted L? projection onto Py (K;R3). Testing the second
error equation (7.7b) with w = P} eqs(t) we have

(PER (1), Ph 1ea(t))T, = (divey (1), Py ea(t))T,

— (TP (ep(t) — e (1), PP, e (t))or,
+ (péu(t), Py i ea(t)) 7, +(0(1), Py ea(t))or,
FQ1(t) + Q2(t) + Qs(t) + Qalt).
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Now we use integration by part and obtain
T

T
L Qi1 (t)dt = (divef (0), Py, ea(0))7, +L (divey (1), Py, ea(t)) 7, dt,

T
fo Qs(t)dt = —(TPrs(e1(0) — €(0)), PL, ea (0))or

T ~
- f (TP (E8() — E5(1)). PL, ven(t))or dt,
T

T
f Qs()dt = (p.,(0), PL,,ea(0))7; + j (P (t), PL, ea(t)) 7 dt,

f@ 1)dt = (6(0), PL, ea(0))er, + f<6 PL . ea(t)or dt.
Note that
PY_ea(t) = P, (I1B() — B(t)) = T1B(1) — () — P &(r) + B(1).

Combining the above with the convergence properties about IIW(¢) and II®(t) (see

Theorem 2.1) we have
[PLrea®)x < hic(12() ]2k + [2(H)]15),
|712Py ea(®)lox < hic(IB ()2 + [ ()]1,k)-

Now back to the estimate of So Q;(t)dt, we have

L Qu(t)dt] < h(le5(0)] 7, L1 e (1),
T
jo Qa(t)dt] < h(|Prrep(0) — el (0)]5 + T|[Parét — &2 SThe(T),

T
jo Qs(D)dt| < h2(J€u(0)]17 + TlIE. )2 ™e(T),

jo Qs()at] < h(I6O)],+ + TSI Yo(T),

where we used the fact that |dive | < hi'|o|x for any o € Py (K;R3%3). Finally,

Sym

we use (7.19) to bound ©(T') and the proof is completed.

Now we are ready to prove Theorem 7.2.

Proof of Theorem 7.2. Consider Proposition 7.9. We will give estimates for the

terms T; fori =1 — 7.
For Ty, by (7.15) we have

T3] = |(p2(0), Huo — un(0)7:| < lefi (D)7 (Ilato — woll 7, + o — un(0)]7,)-

Note that u,(0) is the solution of the HDG+ scheme (7.5). By Theorem 5.1 in

Section 5.1, we have

[ (0) = wol 7 < h(les (0)|7, + [6(0)] ).
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Therefore,

‘(p‘i’(O),H’UIO —up(0))7,

For T5, we have

< |en(T)]

eu(0)|

7, + s (0)]

7 ( 7. + h[6(0)] ).

T3] = j (6(8), IB(t) — () dt
T
— 1(8(0), TIB(0) — B(0))ar, + L (5 (1) TIB(t) — B(t))r, dt
T .
< 5(0) |+ |12 (0) — B(0)], + j 8(1)]5— (1) — ®(t)], dt
< bk (g (180)-— + T8, )

where we used the convergence properties about II® (by Theorem 2.1) and then
equation (7.16) to bound ©(T) (see (7.18) for the definition).
Using similar ideas, for T3 we have

T ~
T3] = f (A(L), €(t) — el (t))omdt
~ T ~
_ ‘<A(O), €1(0) — 8 (0)yor, + f (A1), EL(t) — 8 (t))om dt
< A1 [Par(€£(0) — £ (0))] + j JAW)os [Par(EL(E) — () |dt

< bl (Tl (IPar(e4(0) = R ()l + TUPar(s — eIV

and for T}, we have

T
Ty = f (Aeq (1), o (t) — o (t))7,dt

0
< [(A(ITZ(0) — ¥(0)),0(0) — 1(0))7,|

T
" f (AR () — B(1), &(t) — 64 (8)) 7t

0

< hlek(D)lz (o (0) = ou(0) |7 + Tl — o

[OﬁT])
Th,0 ) -

For Ts, by (2.5) and (7.16), we have

ITy] = j (e (1), e(®) (1)) 7, 1

0
< |(o(0) — o(0),&(2)(0) — Poe(2)(0))7,

T
T f (16 (s) — (1), e(®)(t) — Poe(®)(1))7,dt

0

u . . T
< bk (D)7, (10 (0) - o (0)]7, + T|Te — o127
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For Ty, we simply use (7.15) and obtain

fTu@ e

Now we use Proposition 7.10 to estimate 7%, and finally obtain

len(D)7. < (lew(0)]7 + hles(0)]7, + h[6(0)]--1)

0, T
D < Tled() |7 e

I Ts| = sl®lhs

+h (18— + T8,

o b (IPas (e3(0) — €F0)) 1 + TlIPar e — 0192
+ 1 (Jef.0)m + TR

+h(\|eg I7 + Tlles I57) ) +Tlleu)l'> ™)

; h2(|éu< Y + TlE)e) )

Combining the above estimates with Proposition 7.5 and Theorem 7.1, the proof is
completed. 0

8. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to support our error
estimates in Section 7. Note that there are experiments for the steady-state and
time-harmonic cases in [19] and [15], respectively.

0.8
0.6
04 o3

FIGURE 2. Visualization of meshes used for error tests.

Convergence test. The experiments in this part are carried out on a cubic domain
Q= (0,1)% and a nonconvex polyhedral domain (we will refer to it as the chimney;
see Figure 2), the time interval is [0,T] with T = %, and we aim to estimate the

relative L2 errors

g, .= 1on(@) — o(D]o g . lun(@) —u(@)]e

(D) o |w(T)[o
We consider a nonhomogeneous isotropic material
1 A
Ao = —0 — —————trol,

24 2u(2p + 3X)
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with Lamé parameters
2+ 2% +y? + 22
A= —————,
L+a2 +y? + 22
and the mass density is constant p = 1. As an exact solution we take u(x,t) :=
U(x)H (t), where

U = (cos(mz) sin(7y) cos(72), 5a2yz + 4wy*z 4+ 3xyz* + 17, cos(2x) cos(3y) cos(2)),

=3+ cos(zyz),

and the temporal part is H(t) = t3(1 —t)2. The input data f and g are chosen so
that (7.1) is satisfied. Note that we have chosen the exact solution w that has van-
ishing initial conditions. This simplifies the calculations of up(0) and 4y, (0) (they
are automatically 0 by (7.3) and (7.5)). When u does not have vanishing initial
conditions, the calculation of w,(0) involves projecting 4(0) to a space enriched
by the M-decomposition spaces, which we have not found an easy way to imple-
ment. Finding easier ways of calculating 7, (0) for nonvanishing initial conditions
will constitute our future works.

For the numerical schemes, we use the HDG+ method (7.2) for space discretiza-
tion and the Trapezoidal Rule Convolution Quadrature (TRCQ) (see [1,17]) for
time integration. This is equivalent to using Trapezoidal Rule time-stepping in the
semidiscrete system. The time interval [0, 7] is equally divided and each timestep
is of length k. Since the error from the TRCQ is O(x?), we choose k ~ h(¥+2)/2 50
that the error from the time discretization does not pollute the order of convergence
of the space discretization.

From Figure 3 or Table 1, we observe that the orders of convergence for o, (1)
and uy,(T) are O(h*+1) and O(h**2), respectively, agreeing with the estimates in
Theorem 7.1 and Theorem 7.2.

TABLE 1. History of convergence for o, (T) and wu,(T') with se-
quence of uniform refinements in space and over-refinements in

time.
Cube Chimney
E, E, E, E,
k h Error | Order | Error | Order | Error | Order | Error | Order
1.6329 | 2.82E-1 - 4.32E-2 - 1.27E-1 - 3.93E-2 -

110.8164 | 7.06E-2 | 2.00 | 6.16E-3 | 2.81 | 3.12E-2 | 2.02 | 5.36E-3 | 2.87
0.4082 | 1.93E-2 | 1.87 | 5.44E-4| 3.50 | 8.16E-3 | 1.93 | 4.92E-4 | 3.44
0.2041 | 4.79E-3 | 2.01 | 5.65E-5| 3.27 | 1.99E-3 | 2.03 | 5.09E-5 | 3.28
1.6329 | 1.30E-1 - 1.84E-2 - 6.44E-2 - 1.68E-2 -
2108164 | 1.72E-2 | 2.92 | 1.52E-3 | 3.59 |6.83E-3| 3.24 | 1.23E-3 | 3.78
0.4082 | 2.31E-3 | 2.89 | 5.92E-5 | 4.68 | 8.96E-4 | 2.93 |4.74E-5| 4.70
0.2041 | 2.86E-4 | 3.02 | 2.52E-6 | 4.55 - -
1.6329 | 4.36E-2 - 9.50E-3 - 2.18E-2 - 7.74E-3 -
310.8164 | 3.90E-3 | 3.48 | 3.35E-4 | 4.83 | 147E-3 | 3.89 | 2.59E-4 | 4.90
0.4082 | 2.56E-4 | 3.93 | 6.34E-6 | 5.72 | 9.54E-5 | 3.94 | 4.88E-6 | 5.73

Locking test. Note that the HDG+ method was shown to be free from volu-
metric locking for the steady-state system in [19]. We here conduct some locking
experiments for elastic waves. Most of the experiment settings will be the same as
the convergence test. Let us just mention the differences. We shall conduct two
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FIGURE 3. History of convergence for o, (T) and w,(7T) with a
sequence of uniform refinements in space and over-refinements in
time. The top two figures are for cubic meshes and bottom two
are for chimney.

experiments (denoted by A and B) on the cubic domain where the Lamé parame-
ters are chosen as (\, ) = (1.5 x 10%,3) for test A and (A, ) = (1.5 x 104, 3) for
test B. Their corresponding Poisson’s ratios can be easily calculated: v ~ 0.49 for
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test A and v &~ 0.4999 for test B. For the exact solutions, the temporal part H (t)
is unchanged while the spacial part is changed to

U= (—2*(z—1)%y(y— 1)(2y — 1)z(1 — 2),y*(y — 1)’z(z — 1)(2z — 1)2(1 — 2),0) .

This choice of the exact solution is a simple 3D adaptation of those used in [2,19]
for locking experiments in 2D. We collect the history of convergence for o, (T) and
up(T) in Table 2.

TABLE 2. History of convergence for op(T) and up(T) with a
sequence of uniform refinements in space and over-refinements in
time. All experiments are conducted on the unit cube.

v~ 0.49 v ~ 0.4999
E, E, E, E,
k h Error | Order Error Order | Error | Order Error Order
1.63e+00 | 8.21e-01 2.29¢+-00 8.25¢e-01 2.29e+00

1| 8.16e-01 | 4.66e-01 | 0.82 | 4.47e-01 | 2.36 | 4.69e-01 | 0.82 | 4.46e-01 | 2.36
4.08e-01 | 1.78e-01 | 1.39 | 5.78e-02 | 2.95 | 1.79e-01 | 1.39 | 5.75e-02 | 2.95
2.04e-01 | 4.52e-02 | 1.98 | 7.43e-03 | 2.96 | 4.54e-02 | 1.98 | 7.41e-03 | 2.96
1.63e+00 | 5.19e-01 - 1.36e+-00 - 5.20e-01 - 1.36e+4-00 -
2] 8.16e-01 | 1.98e-01 | 1.39 | 1.24e-01 | 3.45 | 2.00e-01 | 1.38 | 1.24e-01 | 3.45
4.08e-01 | 3.70e-02 | 2.42 | 7.61e-03 | 4.03 | 3.73e-02 | 2.42 | 7.58e-03 | 4.03
2.04e-01 | 4.79¢-03 | 2.95 | 4.33e-04 | 4.14 | 4.82e-03 | 2.95 | 4.31e-04 | 4.14

From Table 2, we observe no degeneration of the convergence rates for o, (7T)
and w,(T') as the Poisson’s ratio v approaches the incompressible limit 0.5. This
supports that the HDG+ method is volumetric locking free for elastic waves.

9. EXTENSIONS AND CONCLUSION

For the sake of conciseness, we have limited the discussion to the setting of
elastic problems on simplicial meshes. However, the tools we introduce here can be
extended to construct HDG projections in a much wider setting. We next discuss
three possible extensions.

(A) Elasticity on polyhedral meshes. The HDG+ projection for elasticity
can be extended to a projection on polyhedral elements. One way to achieve
this is to construct the projection directly on the physical element, instead
of first constructing the projection on the reference element and then using
a push-forward operator (this is what we did in this paper). This alternative
approach is feasible since the M-decomposition can be applied on general
polyhedral elements (see [4,5]).

(B) HDG+ for elliptic diffusion. The HDG+ projection can be constructed
for steady-state diffusion. We have explored this in [12] for simplicial
meshes. For general polyhedral meshes, the projection can be obtained
by following a similar procedure as demonstrated in Figure 1. It can be
summarized in three steps: (1) enrich the approximation space for the flux
so that the M-decomposition is achieved; (2) define an extended projec-
tion by enforcing the weak-commutativity property on the homogeneous
polynomial space of order k + 1 (similar to (3.9¢)); (3) define a composite
projection and collect the remainder term on the boundary of the element.
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(C) Standard HDG for elasticity. We can also construct a projection for
the standard HDG method for elasticity (where polynomial spaces of order
k are used for both the stress and the displacement). This is achieved
by defining the composite projection and the boundary reminder before
constructing the extended projection. To be more specific, suppose
Y HY (KRS x HY(K;R?) — PrL(K;RE3) @ San(K) x Pr(K;R?),

sym sym
(o, u) = (I3 (o, w), I (0, w))
is the M-decomposition associated projection. We then define
(o, u) = (P (o, u), ITY (0, u)),
6 =1 (o,u) -n— P, (o,u) n.

This completes the definition of the projection (and the associate boundary
remainder) for the standard HDG method for elasticity. The rest of the
error analysis follows the exact same procedure that we have discussed in
this paper. For instance, for the steady-state problem, we obtain the same
energy estimate (5.6), namely,

lef % + IPar(el — €i)l7 < lealZ% + 16]7-.

In this case, the term |§],—1 has an O(R*+1/2) convergence rate because
7 = O(1). We thus recover the existing suboptimal estimates obtained in
[13] in a unified way by using the same arguments, where the only difference
here is a simple change of the projection.

To conclude, we have proposed some new mathematical tools for the error anal-
ysis of HDG methods. The two most important ones are: (1) the extended projec-
tion constructed by enforcing the weak commutativity on a higher-order polynomial
space (see (3.9¢)); (2) the boundary remainder reflecting the discrepancy between
the normal traces of the M-decomposition associate projection and a composite
projection (see (3.17a)). These tools allow us to flexibly devise projections for
more variants of HDG methods. We have demonstrated this by constructing the
projection for the Lehrenfeld—-Schoberl HDG (HDG+) method for elasticity. By
using the projection, we are able to recover the existing error estimates in a more
concise analysis for the steady-state and the time-harmonic elastic problems. For
elastic waves, we have successfully used the projection to devise a semidiscrete
HDG+ scheme (the initial velocity of the semidiscrete scheme is defined by us-
ing the HDG+ projection) and prove its uniformly-in-time optimal convergence.
Improving the generality of the tools will constitute the future works.
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