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Abstract

A long standing open problem in extremal graph theory is to describe all graphs that
maximize the number of induced copies of a path on four vertices. The character of the
problem changes in the setting of oriented graphs, and becomes more tractable. Here
we resolve this problem in the setting of oriented graphs without transitive triangles.

An oriented graph is a directed graph without 2-cycles. In this paper, both undirected
graphs and oriented graphs are considered, and the following definitions apply to both classes.
For a graph G, we use |G| to denote the number of vertices of G. We use P, to denote the
path on n vertices. Given graphs G and H, the density of H in GG, denoted dg(G), is defined
to be

_ # of induced copies of H in G

(v i)

du(G)

Given a fixed graph H and a family G of graphs, investigating the maximum or minimum
value of dy(G) over all graphs G € G is an important area of research in extremal graph
theory. This question was formulated by Pippenger and Golumbic [32], where they define
the (maximal) inducibility of a given graph H, denoted I(H), as
I(H) = lim max dg(G).
n—oo |G\:n
They initiated the study by considering the family of undirected graphs, and they proved

that for a graph H, the value max|g—, dg(G) is nondecreasing and the limit /(H) always
exists. A natural line of research is to to refine the question by considering an (infinite) family
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G of graphs (instead of the family of all graphs), and define the (mazimal) inducibility of H
in G as
I(H,G) = lim max du(G),
n—o0 |G|=n,GEG
if the limit exists.

Given a graph H, natural candidate graphs for maximizing the number of induced copies
of H are the iterated balanced blow-ups of H: Partition n vertices into |V (H)| classes of sizes
[IV(n—H)I] and LIV(n—H)IJ’ corresponding to the vertices of H. Add all possible edges between any
two classes corresponding to an edge of H. Now iterate this process inside each class. When
H has k vertices, a simple calculation shows that a sequence of iterated balanced blow-ups
of H gives I(H) > k!/(k* — k). In the original paper by Pippenger and Golumbic [32], they
conjectured that for cycles of length at least 5, this bound is tight. This is still an open
question for almost all values of k. A graph H is called a fractalizer if the iterated balanced
blow-ups of H are the only graphs maximizing the number of induced copies of H for every
n. In particular, for each fractalizer the bound is tight. Interestingly, Fox, Huang, and
Lee [14}]15] showed that almost all graphs are fractalizers by considering random graphs. A
similar result was recently published by Yuster [35].

Recently, investigating the inducibility of small graphs received much attention, thanks
to the flag algebra method invented by Razborov [33]. With the notable exception of P,
the inducibility of graphs on at most four vertices is well understood, see Even-Zoha and
Linial [12]. For Py, the known best lower bound on I(Py) is 1173/5824 ~ 0.2014, provided
by a construction from [12], and the best upper bound 0.204513, obtained by Vaughan [34]
using flag algebras.

Inducibility of 5-vertex graphs is also not completely resolved. Recently, by proving
I(C5) = 5, Balogh et al. [5] determined that the bound is tight for C5. Before this result,
Hatami et al. [21] and independently Grzesik [19] solved the Erdés pentagon problem, which
asks for the value of I(C5, T), where T is the family of triangle-free graphs. In [31], this last
problem is resolved for graphs of all orders. The main difference between the problems of
determining I(C5,7T) and I(Cs) is the extremal construction. A balanced blow-up of Cj is
the extremal construction when considering triangle-free graphs, and an iterated balanced
blow-up of Cj5 is the extremal construction when there are no restrictions on the graphs
under consideration. When determining I(Cs, T ), the flag algebra method gives the exact
upper bound on I(Cs,T). On the other hand, proving a tight upper bound on I(C5) by
merely using flag algebras appears out of reach, and stability methods are used to improve
the bound from flag algebra.

In this paper, we consider inducibility of oriented graphs. Hladky, Kral, and Norin [24]
announced that I(P;) = 2 and the extremal construction is an iterated blow-up of Cy. We
conjecture that this generalizes to longer oriented paths, namely, the number of induced
copies of P, is maximized by an iterated blow-up of 6k+1.

Conjecture 1. The number of induced copies of ﬁk over all oriented graphs on n vertices



1s mazximized by an iterated balanced blow-up of 6k+1. As a consequence,

» k!
M) =Gt

Note that Conjecture (1] states that the graph maximizing the number of induced copies
of P, is the same graph as the graph conjectured to maximize the number of induced copies
of Cji1. The statement regarding I (Cs) is a consequence of a result by Balogh et al. [5] on
I(Cs5). Note that Hu et al. [25] resolved I(Cy), where the extremal example is an iterated
blow-up of C'y. This last construction is not extremal in the undirected case.

Let T denote the transitive tournament on three vertices. Similar to triangle-free graphs
in the class of undirected graphs, T;g—free oriented graphs do not include iterated blow-ups
of small graphs. Therefore, extremal graphs often have simpler structure. In this vein,
we attack Conjecture [lf first by considering the same inducibility parameter but for Ti-free
oriented graphs. We formulate the following conjecture.

Conjecture 2. The number of induced copies of Py over all fg—free oriented graphs on n
vertices is mazimized by a balanced blow-up of Cyy1. As a consequence,

L !
(P, T) = (G

where T is the famaly of fg—free oriented graphs.

()

Figure 1: (a) The blow-up of Cs and (b) the iterated blow-up of Cs.

In this paper, we prove Conjecture 2| for ]34, and we also show the uniqueness of the
extremal construction for sufficiently large graphs.



Theorem 3. Let T be the family of oriented graphs without T;.

L . 24
[<P4,T):E5

Moreover, for n that is either sufficiently large or divisible by 5, the balanced blow-up of C'5
15 the only oriented n-vertex graph that maximizes the number of induced copies of PinT.

Our proof uses the flag algebra method. The method was developed by Razborov |33] and
it has been successfully applied in various settings, see [2-416,7,9H11}[13}[16H18}23,26-28,30].
The method has been already described in many previous papers, so we do not describe it
here and merely use it as a black box. For an accessible introduction to flag algebras, see [§].

In Section |1} we first show the stability of the extremal construction, and then we obtain
the exact result in Section . Utilizing a tool developed by Pippenger and Golumbic [32] and
Kral, Norin, and Volec [29] in order to study the value of I(C}), we discuss upper bounds
on [ (ﬁk) and [ (ﬁk, 71), where T are Th-free oriented graphs, for all k, in Section .

From now on, we will use C_’::,(n) to denote the balanced blow-up of C5 on n vertices, see

Figure [I(a).

1 Stability

This section is devoted to proving the following stability lemma.

Lemma 4. For every e > 0, there exist ng and ' > 0 such that every oriented fg—free graph
G of order n > ng with dp (G) > % — ¢’ is isomorphic to Cs(n) after adding, removing,
and/or reorienting at most en? edges.

Our main tools to prove Lemma [4| are flag algebras and a removal lemma. We use
the following removal lemma, which follows from a more general theorem by Aroskar and
Cummings [1].

Lemma 5 (Infinite Induced Oriented Graph Removal Lemma [1]). Let F be a (possibly
infinite) set of oriented graphs. For every egr > 0, there exist ng and 0 > 0 such that for
every oriented graph G of order n > ng, if G contains at most on*™) induced copies of H
for each H in F, then there exists G’ of order n such that G’ is induced H-free for all H in
F and G’ can be obtained from G by adding/removing/reorienting at most egn?® edges.

The following derivation of Lemma , as a special case of 1, Theorem 6], was provided
by James Cummings. First start with a language £ that has the equality symbol and one
binary relation symbol R that corresponds to a directed edge. The two axioms of the theory
T are Ve—R(z,x) and VaVy(x # y = —(R(y,z) A R(x,y))), representing no loops and
no 2-cycles, respectively. The models for 7" now correspond exactly to oriented graphs.
(In [1, Section 2.2], partitions that are potentially relevant are {{1,2}} and {{1},{2}}.)
This gives DH{}, 51, = {z : R(z,7)} = by the no loops axiom, and DH}}, 1y = {(z,y) :
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Figure 2: Forbidden induced subgraphs.

x # yand R(x,y)}. Hence the distance d(Gy,G2) between two oriented graphs G; and Gy
on a vertex set V with n elements is D/n?, where D is the number of ordered pairs (v, w)
of distinct elements of V' such that G; and G5 disagree on the existence of the directed edge
from v to w. Observe that a missing edge contributes 1 to the distance while reversing an
edge contributes 2. Finally, p(Gy,G2) is the usual density, which we denote as dg, (G2) in
this paper. In this setting, [1, Theorem 6] is Lemma

Let F be the oriented 4-vertex graphs depicted in Figure [2} we call them the forbidden
oriented graphs. A standard flag algebra calculation shows that the forbidden oriented graphs
rarely appear in extremal examples.

Lemma 6. For every § > 0, there exist ng and &' > 0 such that every oriented fg-free graph
G of order n > ng with dp (G) > %45 — ¢’ contains at most én* induced copies of an oriented
graph in F. Furthermore, G contains at most on> directed triangles.

Proof. We perform a calculation using the plain flag algebra framework. We obtain that

if (Gr)ken is a convergent sequence of oriented T3-free graphs, then klim dﬁ4(Gk) < 12745.
—00

Moreover, if limdp (Gy) = 2, then for every F € F, it follows that lim dp(Gy) = 0. It
k—oo 4 k—o0

was sufficient to execute the calculation with flags on 4 vertices and two types. Rounding
was performed as described in [7]. All technical details of the calculation, including rounded
solution matrices, are available at http://1idicky.name/pub/P4noT3 and on thearXiv. [

Proof of Lemmal{ Fix e > 0. We use positive numbers ¢ and £ that depend on Lemmas
and [0l We specify the dependency later at the end of the proof together with ng and &’

Let G be an oriented graph of order n > ng with dj, (G) > % — ¢’ Notice that

24 —
dp,(G) > oF e =dp(Cs5(n)) — ' +o(1). (1)
By Lemma @ G contains at most én* induced copies of oriented graphs in F, and at
most dn? triangles. By Lemma , there exists an oriented T3-free graph G’ (on the same
vertex set as @) differing from G in at most egn? pairs that avoids all oriented graphs in F
and all triangles.

Claim 7. G' is a (not necessarily balanced) blow-up of Cs.

Proof. Let P = vy, v,,v3,v4 form an induced 154 in G'. We call a vertex z a clone of v; if
x and v; have exactly the same in-neighbors and out-neighbors on P. Let Xi,..., X5 be

bt
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pairwise disjoint subsets of V(G’), where

X; = {x : zis a clone of v; in P} for 1 € {1,2,3,4},
Xs={z: Nt (x)nV(P)={v}, N (x) NV (P) = {v4}}.

Using the list F of forbidden oriented graphs, we show that Xi,..., X5 is a partition of
V(G). Let y € V(G')\ {v1,v2,v3,04}. By Fy, y has at least one neighbor on P. By Ty and
53, y cannot have two consecutive neighbors on P. In particular, ¥ cannot have three or
four neighbors on P.

Assume y has exactly two neighbors s and t on P. If {s,t} = {v1,v3}, then y € X5 by
Fs and Fr. If {s,t} = {vq, 04}, then y € X3 by Fg and Fr. If {s,t} = {v1,v4}, then y € X;
by F3 and F}.

Assume y has exactly one neighbor z on P. By Fj3 and Fy, we know z ¢ {vy,v4}. If
z = v, then y € X; by Fj, and if z = vs, then y € X, by Fj. O

Next, we show G’ is close to being a balanced blow-up of Cs.

Claim 8. For every eg > 0, there exist egp > 0 and ' > 0 such that if ng is sufficiently large
and G and G' differ in at most egn® pairs and dp (G) > 4= — €', then Cs(n) and G' differ
in at most egn® pairs.

Proof. Given an oriented graph H, let 15;1(H ) denote the number of induced copies of P, in
H. Since G’ was obtained from G by changing at most ezn? pairs, Py(G’) is large:

Bi(@) 2 B(G) - enn’. (2)

Notice that dp (G) > 5t — &’ implies that for sufficiently large n,

BAC) > (% —5’) <Z) >5. (gf et (3)

Recall that G’ is a (not necessarily balanced) blow-up of Cs by Claim . By evaluating
P,(G") and combining it with (2)) and (3) we obtain:

(H |Xz|) : (Z ﬁ) > 154(G') >5 <g>4 —e'nt —epnt = (% —e = 5R> nt.

1

The product on the left is maximized when |X;| = ¥ for each i € {1,2,3,4,5}, and the
maximum value is 75‘—;1 Hence, for every eg > 0, there exist eg > 0 and ¢’ > 0 such that
if ¢’ + eg is small enough, then (1_%) n < |X;| < (H%) n. Therefore, in order to obtain
Cs (n) from G’, we need to move at most egn vertices between parts, which means changing

at most epn? pairs. O

Let ep = ¢/2. Let eg < €/2 be small enough such eg, £p, £/, and ng satisfy Claim (8| Let
0 > 0 be small enough to satisfy Lemma [5| with . Finally, let ¢’ and ng be small and big,
respectively, enough also for Lemma [6] when applied with . These choices will guarantee
that G is different from Cs(n) in at most (e + ex)n? < en? pairs. O

6



2 Exact Result

This section contains the proof of Theorem [3] The proof follows the following outline. We
start with an extremal example G with order n and use Lemma [4] to conclude that G is
almost Cs(n). We first put “unruly vertices” aside and argue that the rest of G is exactly
a (not necessarily balanced) blow-up of 65. We then argue that the “unruly vertices” have
drastically different sets of neighbors compared to the rest of the vertices in G. Finally,
we show that if there is a unruly vertex, then it would be in too few copies of an induced
P, Hence, there are no “unruly vertices”, and we finish the proof by showing that G is a
balanced blow-up of Cs.
Given an oriented graph H and a set of vertices A C V(H), let ]34(H , A) be the number
of induced P,’s in H containing all vertices in A. If A = {a}, then we simplify the notation
and write Py(H, a) instead of P,(H,{a}).

Proof of Theorem 5. For simplicity, we fix £ to be sufficiently small, say 0.0000005. Let ng
be big enough to apply Lemma [4] with e such that every extremal oriented graph H of order
at least ng satisfies d (H) > 55 — €.

Let G be an extremal oriented graph of order n > ng. By Lemma [ the vertices of G
can be partitioned into five parts Xi,..., X5 with sizes as equal as possible such that the
graph can be turned into 65(n) after adding, deleting, and/or reorienting the edge between
at most en? pairs of vertices.

Call a pair of vertices where the adjacency needs to be changed weird. Use f to denote

the number of weird pairs in GG, and we know that
f <en’

For a vertex v € V(G), let f,(v) denote the number of weird pairs containing v. Move
every vertex with f,(v) > 0.001n to a new set Xy, so we know the following two inequalities
hold:

1 Xo| < 2£/0.001n = 0.001n
fp(v) <0.001n for all v e X, U--- U X5.

Let z,,;, and x,,4, be a lower bound and an upper bound, respectively, on the size of X;
for all © € {1,2,3,4,5}. Since we started with a balanced partition and |X,| < 0.001n, we
may use

Timin = 0.198n < | X;| < [0.2n] = e fori € {1,2,3,4,5}.

Claim 9. G — X is a blow-up of Cs.

Proof. Let uv be a weird pair in G — Xo. Obtain Gy, from G by making uv not weird.
All induced P4 s in exactly one of Guv and G must contain both u and v. Recall that
Py(H, {u,v}) is the number of induced Py’s in H containing vertices u and v.

Note that v and v form, up to indexes, one of the Type 1-4 weird edges depicted in
Figure Type 5 is excluded, as otherwise u and v would have a common outneighbor

7
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Figure 3: Possible weird pairs.

forming a f3, which is forbidden. Every P, contains two vertices other than v and v from

two different sets of Xi,...,X5. This would give 3 - 22 choices, yet, weird edges may

prevent some of these from actually becoming Pis. Hence we get an easy lower bound.
ﬁ4<Guv7 {U,’U}) >3- ‘T?nm —n- fp<u> -—n: fp(U) - f

For G, note that every induced P, containing the weird pair wv must contain either a
vertex from X, or another weird pair. Hence

Py(G, {u,v}) < n- folu) + 1 fo(v) +n- | Xo| + f.
By the extremality of G, we get

Py(G, {u,v}) > PGy, {u,v})
0>3-a22,, —2n- f(u) —2n- f,(v) —n-|Xo| — 2f

min

0> (3-0.198* = 5-0.001 — 0.000001) n* > 0.1n?,

which is a contradiction. O
Claim 10. Fori € {1,2,3,4,5} and a vertex v € Xy, if v is moved to X;, then f,(x) > 0.17n.

Proof. Fix a vertex z € Xy and without loss of generality let ¢ = 1. There are five possible
types of weird pairs containing z, see Figure

If z is in a weird pair of Type 3 and Type 5, then x is not adjacent to a vertex in X5 and
X5, respectively, because T; is forbidden. Hence, the number of weird edges incident with x
is at least z,,;, = 0.198n.



Therefore, we may assume that all weird pairs involving = are of Type 1, 2, or 4. Let xy
be a weird pair of Type 1, 2, or 4. Obtain G, from G by making zy not weird. Recall that
Claim [9] implies that all weird pairs in G — (X, — z) contain z. This allows us to use slightly
better estimates when counting the possible induced Py’s containing x and y. We get

fo()

PG o) < sl + (7

and .
P4(ny7 {‘Ta y}) Z 31‘1271171 - 2xmamfp($)'
By the extremality of GG, we get

ﬁ4(Gv {$’ y}) Z ﬁ4(G1‘y’ {ZL‘, y})

tnantyla) + (757 )+ Xal 2 3 = 200
2
@ + 3% man fo(®) — 322, + | Xo| - n >0

This gives f,(z) > 0.17n and finishes the proof of Claim [10] O
Claim 11. For every vertexr x, ]34((}', x) > 0.19(’;).

Proof. First we show that all vertices of G are in approximately the same number of induced
Py’s. Suppose to the contrary that z and y are two vertices such that P,(G, z)—Py(G,y) > n?.
Obtain G’ from G by deleting y and adding a clone of x, denoted by 2’. Note that there is
no edge between x and z’ in G’. If 2’ was in a fg, then = would also be in a fg since x and 2’
are not adjacent to each other. Hence G’ is fg—free. The only induced ]34’8 that are different
in G and G’ are the ones containing both y and x’. Hence

PG — Py(G) = P(G, z) — Py(G,y) — Py(G, {z,y}) > 0,

since Py(G, {x,y}) < n2. This contradicts that P;(@) is maximum. Hence for two arbitrary
vertices = and y, |Py(G, z) — Py(G,y)| < n?. Since Py(G) = 0.192(%) 4+ o(n*) and every P,
contains four vertices, the average number of Py’s containing one fixed vertex is 0.192 (”gl) +
o(n®) = 0.192(%) + o(n®). Therefore, Py(G,x) > 0.19(%) for every vertex z when n is
sufficiently large. m

Claim 12. |X| =0.

Proof. Suppose to the contrary that = is a vertex in Xy. We will show that x violates
Claim [11l

For j € [5], let i;, oj, and n; denote the number of in-neighbors, out-neighbors, and
non-neighbors, respectively, of x in X; divided by n. This allows us to count the number
of induced Py’s containing x and no other vertex from Xg. To simplify the notation, for all



Jj > 5 we define ¢; = i;_5, 0; = 0j_5, and n; = n;_5. The following program provides an
upper bound on the number of induced P,’s containing z divided by n3.

maximize Y7, (05m5102 + 1j0j12M 45+ Myij110145 + 1T 48)

subject to i 4+ 0; +n; < 0.21 for j € [5],
0j + 15 + My + i1 + Gjg2 + 042 + 43 + 0j43 + Ny + 044 = 0.17 for j € [5],
z'j,oj,nj >0 fOI‘j S [5]

(P)

The objective in (P) counts the number of induced Py’s containing z. The first set of
constraints count relations between z and vertices in each X,;. Notice that we used a very
generous upper bound on |X;|. The second set of constraints comes from Claim , where
we count the number of weird pairs containing x if z was in X.

We aim to provide an upper bound on the value of an optimal solution of (P). We do
this by sampling points in the space of feasible solutions of (P) and then upper bounding
the maximum by using first derivatives. Unfortunately, the program has ten variables, which
seems to be too many for generating a sufficiently refined grid.

Fortunately, the presence of some edges incident with = blocks presence of other edges.
If there are no edges from z to Ui€[5] X;, then we can reverse all edges of G. If there are
still no edges from x to Uie[5} X;, then all neighbors of z are in Xy and z is in at most

| Xol(3) < 0.001n? induced Py’s, which contradicts Claim .

By symmetry, assume there is an edge directed from x to a vertex in X;. This already
prevents all edges between x and X5, and also edges from z to X5, since G is fg,—free.

All the possible combinations of allowed edges are depicted in Figure 4] possible to verify
by case analysis. In each of them, there are only four variables. We examine them separately,
run a mesh optimization program, and show in the following paragraphs that v is in at most
0.08 (g) induced 1341’8, which contradicts Claim .

The mesh optimization program works in the following way. For each variable, it samples
100 points uniformly distributed in [0,0.21]. That means examining 100* points. For each
of the points, we test if it is a feasible solution to (P) and if yes, then we remember the
solution with the highest value of the objective function of (P). The optimal solution of (P)
must be in each coordinate at distance at most 0.21/100 from some point we sampledﬂ The
largest value among the sampled feasible points is less than 0.04.

The first partial derivative of the objective function in any variable is at most 6-0.21%2 =
2.52. Hence the difference between the point and the optimum is at most 4-2.52- % < 0.03,
and the value of the optimum solution is at most 0.07.

This implies that x is in at most 0.07(3) induced 134’s that avoid Xy. There are at
most | Xo|(}) other induced Py’s containing x. Hence there are at most 0.08 (%) induced Py’s

containing x, which contradicts Claim [T1]
O

'We actually also sample points that slightly violate the constraints of (P) to make sure our grid captures
the optimal solution if it is on the boundary of feasible solutions of (P).

10



Figure 4: Possible neighborhoods of a vertex z, depicted in the center, in Xj. If solid edges
are present, then dashed edges are not present. The solid edges cover all options if there is
an edge from z to a vertex in Xj.

Claim 13. G is a balanced blow-up. That is, || X;| — | X;|| < 1 for alli,j € [5].

Proof. Suppose to the contrary that there exist ¢ and j such that |X;| — |X;| > 2. Let

{a,b,c; =[5\ {1, 7}

We will obtain a contradiction by deleting a vertex in X; and duplicating a vertex in X},
and show that this will increase the number of induced ﬁ4’s Let y € X; and z € X;. Obtain
G' from G by deletlng y and addlng a clone of z, denoted by z'. If 2/ was in a fg, then z
would also be in a Ts as z and 2/ are not adjacent to each other. Hence G’ is Ty-free. For
w € [5], let z, = | X,|. By checking all possible embeddings of an induced P4, we calculate

]34(0, 2) = TaZpTe + TaTpTi + ToliTe + TipTe
]34(G, Y) = TaTpTe + ToTpTj + TaZjTe + T;TpT,
]5’4(G> {27 y}) = TqTh + TaTe + TpXe
Notice that the induced Py’s containing only z’ or y contribute to the difference of the number
of induced P,’s in G’ and G. In particular,
= 2y(Tap + TaZe + TpTe) — Tj(TaTp + TaTe + TpTe) — Taly — TaTe — TpTe

= (x; — xj — 1)(xaxp + To2c + 2p2)
> ToTp + ToTe + TpTe > 0,

which contradicts that Py(G) is maximum. O

11



The last remaining part of the proof of Theorem 3| is to show that it holds for all n
divisible by 5. Assume that n = 5¢ for some ¢ > 1 and G is a graph maximizing the number
of induced ]34 among all n-vertex graphs. Our goal is to show that G is isomorphic to C%(n),
which is a balanced blow-up of Cs on n vertices. By the extremality of G, we get

ﬁ4(G) > ﬁ4(C_"5(n)) = 504,

Now consider a blow-up B of GG, where every vertex of G is replaced by j vertices. That is,
B has 53¢ vertices. Every P, in G yields j* copies of P, in B. Hence Py(B) = 5j4*. If j is
sufficiently large, we have already proved, that C5(5;¢) is the unique extremal construction.

Hence o .
554* = Py(C5(55¢)) > Py(B) = 55*¢*.

Therefore, B is isomorphic to 6_"5(5 j¢). Since B was obtained as a blow-up of GG, we conclude
that G is isomorphic to C5(n). This finishes the proof of Theorem . O

3 Longer directed paths

We use methods developed for determining the inducibility of cycles in non-oriented graphs
in order to obtain bounds for oriented paths of arbitrary length. The first general upper
bound shown in Lemma (14| utilizes an approach by Pippenger and Golumbic [32]. Hefetz
and Tyomkyn [22] developed a more complicated approach, and Krél, Norin, and Volec |29]
recently improved the result via a simple counting argument. Similar technique was in [20] by
Gresnik and Kielak. We use the method from [29] for Ti-free graphs, as proven in Lemma .

Lemma 14. .
I(B)< — "

(Pe) < (k —1)k1
Proof. Let G be an oriented graph on n vertices. We try to build a path vy, ..., v, by starting
at v; and trying to append one vertex at a time. We can choose v; to be any of the n vertices.
Now in each step, let w; be the number of candidates for v;. That is, w; = n, wy = [N (vy)],

w3 = |[NT(vg) \ N(v1)|, and so on. Then, the total number of choices to build a path on k

vertices is
k k n k—1 nk
Ewi:n'gwgn(k—l) N

Therefore,

nk

5 . (k—D)FT k!
I(Fy) < lim —+— = :
NN
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In the above proof of Lemma the worst case of the calculation is achieved when
w; = "5 for all ¢. Instead of naively building the path, we will consider different orderings
of the path (this is a trick inspired by [29]) in order to modify the worst case to be w; = 7
for all 7. This gives a further improvement on the bound, but it falls short of the best known

construction, a blow-up of a Cj ;.

Lemma 15.

[(ﬁkatfi) S kk_17

where T is the famaly of fg—free oriented graphs.

Proof. This proof follows the approach developed in [29]. Let G be an oriented graph
on n vertices. Let T = (z1,...,2;) be a k-tuple of vertices of G. We will consider
Dy(T),...,Di(T), where D;(T) denotes the following permuted k-tuple of 7"

Ry RBi—1y + v 5 R332y Z1y Zit 1 Bit2y « + + 5 Rk

Intuitively, we will think of the sequence 21, ..., 2, as an order of picking the vertices and
D;(T) as an order in which these vertices form a copy of P,. We define a weight w as

1
w(Di(T)) = :
i1 Vg
7=1
where n; ; = n and n; ; is the number of possible candidates for z; given that z;,..., 2, are

already chosen and the copy of Py is being built according to Dy(T).

For a fixed D;, we call a k-tuple T' good, if the ordering of the vertices in D;(T") induces
a copy of Py. Let D; be fixed. By using reverse induction on m, the sum of the weights
of all good k-tuples (z1,...,z;) with respect to D; that starts with (z1,...,z,) is at most
[T, -~ Hence, the total sum of weight of all good k-tuples with respect to D; is at most

J=1 n;

By summing over all i € {1,...,k}, we conclude that the sum of all weights of all k-tuples
that are good for at least one D; is at most k.
Let vy, vy, ..., v, be an induced Py, in G. For ¢ € {1,...,k}, let

T, = (%%‘—1, ceey U2,V1, Vg1, Uiy, .. ,Uk)-

Notice that T; is a good k-tuple for D;. We will later show that

k

% S w(Di(T)) + w(De(12)) + - + w(Di(T)). (4)

Since the contribution to the sum of the weights of all good k-tuples is at least i_]; for each
P, in GG, and the total sum is at most k, we conclude that the number of induced P.’s is at
most k’,}—: By considering the limit, we get

k

_ P 1
I[(B) < lim B — =
oo (1) KR

13



It remains to prove . We will use the AM-GM inequality twice. The first use is

k

(Hw(Dz(Tz))) < w(D:(T3) + - k + w(Dk(Tk))‘ 5)

The second comes in

k 1 D k C=)
i=1 =1

i=1

Our next goal is to show that every vertex x of G can contribute at most one to n; o4+ -4n;
for each 7 in @, and moreover, that there is one 7, where x does not contribute at all. This
would give that the big sum in (6) is upper bounded by n(k — 1).

If x has no neighbors among vy, ..., vg, then it does not contribute at all. Let a be the
smallest index such that v, and z are adjacent. If zv, € E(G), then x does not contribute to
w(D1(T1)). Let b be the largest index such that v, and x are adjacent. If v,z € E(G), then
x does not contribute to w(Dy(T})). Hence assume v,2 € E(G) and zv, € E(G). Since G is
fg—free, x is not adjacent to v,;1 and hence it does not contribute to w(D,1(T,+1)). Notice
that if G was not fg—free, then it might be the case that b = a + 1 and x would contribute
to w(D;1(Tiy1)) for all i € {1,... k}.

By replacing the big sum in (6]) by its upper bound n(k — 1) we obtain

1 k

(Hw(Dm)) Sre-p "R

(7)

Y
—
&
]
=T =
=
N—
|
IN
s
| E

k—i <k- (H w<Di(Ti)>> < w(Di(Th)) + w(Da(T3)) + - - - + w(Di(Tx)),

which proves and finishes the proof of Lemma . ]



4 Conclusion

Flag algebra calculations support Conjectures [1| and [2| for other small values of k. For
Conjecture [I}, we compute the following bounds:

6 -
0.1935483870 ~ 31 < I(Py) <0.19356

24 .
0.092664002 ~ 5 < I(F5) < 0.092676

120 .
0.0428418421 ~ oo < 1(F) < 0.04323

When restricted to fg—free oriented graphs, we get the following exact results for paths
on five and six vertices, respectively:

Theorem 16. For the family T of fg—free oriented graphs,

L . o5l L. 6l
[<P577—>:@ I(PﬁaT):%

For ]37, we compute a numerical upper bound matching Conjecture 2l when n — oo. This
means that we successfully rounded numerical solution by flag algebras for P; and }36, but
fell short to do so for P;. We expect that the approach we used for P, in this paper could
also work for stability and exactness of ]35 and ]36.
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