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Abstract

Materials with tailored microstructures are an emerging class of materials with applications
to battery electrodes, organic electronics, and biosensors. Tailoring microstructural features
that control properties of these materials depends on the ability to first identify the salient
features governing properties and next to alter the microstructure accordingly. Choosing
robust microstructure representation is pivotal towards completing both steps. In this paper,
we focus on the first step and present the methodology for abstracting and quantifying a
hierarchical set of microstructural features covering topology, shape and size aspects of the
microstructure. Finally, we leverage this methodology to determine the coarsening rates of
microstructure expressed in terms of four different microstructural features.

Keywords: feature extraction, microstructural descriptor, organic solar cells, heterogenous
microstructure, computational geometry, clustering

1. Introduction

Quantifying structural features from microstructural samples is a fundamental step for
establishing reliable structure-property relationships in materials (SPR). Establishing SPR
provides quantitative means to understanding the behavior of materials subjected to various
stimuli, but it is rarely a trivial task for several reasons [I, 2, [3]. First of all, the structure
of materials has a wide spectrum of features ranging from atomistic to microstructural that
may involve chemical, compositional, geometrical or topological characteristics. Although
each feature, or combination of features, may potentially govern the materials properties of
interest, it is reasonable to assume that only some structure aspects control the given class
of properties. With such an assumption, the goal of quantitative SPR is to identify salient
features of the microstructure that reliably explains most of the variability of the behavior of
materials under consideration. The distilled key features become the basis for the predictive
modeling, exploration, optimization, and design of materials with desired properties.

The textbook example of SPR relations is the Hall-Petch scaling law [4]. It explains the
strength of the materials through the average grain size of the microstructure. This law has
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been harnessed to explain the properties for a wide spectrum of materials [5]. The average
grain size, or in the more general case the characteristic length scale, is typically the first
choice for the salient features. Nevertheless, the geometrical [6] and topological aspects [7]
are more and more often discussed in the context of structural features governing properties
of materials. For example, Mangipud et al. [7] showed that the prefactor in scaling law
of stiffness and strength of nanoporous materials scales linearly with the genus of topology.
This is an important example of SPR as it demonstrates that a more general SPR can be
derived if the expanded set of structural features is available.

The above example belongs to the hypothesis-driven protocol for deriving SPRs, where
carefully designed experiments generate samples spanning the preferably wide range of struc-
tural features and properties. Physical laws are used to interpret the results and propose
scaling laws. Recently, another class of SPR has emerged that is based on machine learning
to generate the model from large and diverse sample sets. In this approach, each sample
is annotated with a suite of descriptors that may govern measured properties. Statistical
methods are subsequently used to discover the SPRs. These SPRs are high predictive capa-
bilities but do not necessarily provide a physical explanation. Finally, visualization methods
are also developed to facilitate the visual inspection of the microstructural features and their
link with the properties [8, 9, [10]. All these approaches have their strength and weaknesses,
but they both rely on the structural characterization. Especially the second one heavily
depends on the exhaustive structural characterization.

In this paper, we address the need for comprehensive microstructure characterization
with focus on hierarchical feature extraction. We describe the methodology to simulta-
neously extract topological features, shape and size characteristics from heterogenous mi-
crostructural samples. We apply the skeletonization algorithm to extract the topology of the
microstructure. Next, we segment the backbone to demarcate mesoscale patches. Finally,
we characterize each patch with local features, e.g., curvature, to infer shape and size. This
is a unique aspect of morphology quantification, as it allows extraction of the local features
rather than volume averaged quantities. We apply this methodology to quantify the mor-
phology evolution of spinodal decomposition and derive the corresponding scaling laws for
selected features. Although Park et al. demonstrated the evolution of local principal cur-
vatures for spinodal decomposition. [11], the authors derived the semi-analytical approach
to rate laws for the mean curvature. In this paper, we focus on the morphological segments
and patches providing more comprehensive insight into the morphological features.

2. Hierarchical feature extraction from microstructure sets

We propose the hierarchical feature extraction that consists of three steps. In the first
step, we extract the topology of the microstructure by determining the skeleton or backbone
of the microstructure (see Fig. . Next, using the skeleton as a topological abbreviation of
the microstructure, we partition the microstructure into patches. In particular, we generate
patches along the skeleton (see Fig. [§(a)) with patch size dictated by the local resolution of
the microstructural features. Finally, for each patch, we further characterize its shape by
calculating the curvature distribution (see Fig. [3(d)).
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Figure 1: The elements involved in extracting the skeleton: the left column illustrates the steps for 2D
while the right column illustrates them for 3D. Panel (a) shows the original morphology. The black regions
represent one phase, white regions represent the second phase and the gray region in between represents
the interface. The blue axis represents the z-direction along film thickness while the red axis represents the
x-direction. The anode corresponds to the line parallel to the x-direction at z=70 while the cathode is the
line at z=0. Panel (b) shows the distance field computed from the given morphology. The color code reflects
the distance from each voxel to the nearest interface. The figure shows a color map which assigns yellow to
all distances bigger than 7 pixels. Panel (c) shows the skeleton computed from the distance field overlaid on
a transparent slice of the given morphology. The skeleton represents the medial axis inside the black phase.

2.1. Microstructure representation

Microstructure is typically imaged via microscopy [12, I3] or predicted by numerical
simulation [14},15]. Depending on the specifics of the techniques used, the level of information
extracted from the sample varies. For example, atom probe tomography [16] or molecular
dynamic simulations [I5] extract the information about position of individual atoms, while
optical microscope [12], tomography or continuum simulations [14} 3] stores information in
the voxel-based format. For this work, we assume that microstructure is stored as an array
of voxels Z, where each voxel encodes the local phase. For two-phase microstructure, a phase
is given as discrete variable {0, 1}, where 0 represents one phase (marked black in figures)
while 1 represents the second phase (marked white in figures).

Extracting topology of heterogenous microstructure

In the first step, we extract the microstructural backbone using skeletonization algo-
rithm [I7]. Skeletonization is a classical algorithm in computational geometry that extracts
the medial axis from 3D volumes. In general, the medial axis is the subset of points (from
input 3D volume) having more than one closest point on the object’s boundary. For example,
Figure [1| (a and c¢) depict the two-phase input morphology and the corresponding skeleton
determined for one phase (black phase for 2D microstructure and semi-transparent grey for
3D microstructure, respectively). Note that determined skeleton constitutes the medial axis
for the black domains where the white/black interface is the object boundary. The analogous
skeleton can be determined for the opposite phase.
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Figure 2: The steps of extracting the skeleton: distance field calculation to the interface, the thinning
algorithm resulting in the subset of voxels, and spatial graph construction.

In general, different approaches for performing skeletonization exist (distance trans-
form [I§], Voronoi based [19], thinning [20, I7]). In this paper, we leverage the thinning
algorithm proposed by Pudney [17]. Details of the algorithm are given in the original pa-
per [I7], and here we only provide the outline of basic steps to introduce basic terms required
to describe our method.

The algorithm involves three main steps (Figure : (i) calculating distance map to the
boundary, (ii) volume thinning, and (iii) spatial graph construction. The distance map
generates a distance field (in our case, it is the set of shortest distances from each black
voxel to the interface (as shown in Fig. [1|b)). Instead of using the actual Euclidean distance
metric, the algorithm uses the chamfer distance transform, that determines the order of the
voxel from the interface. The transform is defined by :

d(p) = min{d(q) + D(p,q)},p € F,q € Nag(p),0 otherwise (1)

where Nag(p) is the set of 26 neighbor voxels of p (3 x 3 x 3).

The order of voxels, d(p), is a crucial element of the second step of the algorithm when
voxels are successively deleted based on the order in the distance map. At the end of this
step, the medial axis is determined as a subset of the input set. Formally, the thinning is
performed on a 3D uniform lattice of voxels, Z, with the neighborhood of a constituting
point defined by (m,n) to determine the medial axis F' € Z. The neighborhood definition is
needed to deploy the thinning algorithm and locally delete voxels until the unique F' (thin
skeleton) is determined.

In the final step, the subset F' from Z is converted into a spatial graph. This is an
important step, as the discrete set of points is now formally converted into a set of edges
with connectivity matrix denoting the topology of the skeleton. Formally, the graph is an
ordered pair G = (V, E') comprising a set V' of vertices, nodes or points together with a set
E of edges, which are 2-element subsets of V. In the simplest case, the edge is a straight
line. In the most complex case, the shape of the edge is described by a spline or curved
surface. In general, the graph is a data structure that has several advantages important
for this work. First of all, it provides a compact representation of microstructural topology.
By converting microstructure into the graph, classic algorithms from graph theory can be
applied to quantify various topological features, such as connectivity. Finally, in the context
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Figure 3: Protocol of patch extraction: Panel (a) shows three overlaid views of the 2D morphology (distance
field, morphology pixels, and the skeleton. The zoomed-in view shows an example of a patch. C represents
the patch center which always lies on the skeleton (or close to the skeleton). The distance field value is
determined at C. The patch size is then a cube with size 2(D+d) pixels. Where d is a parameter selected by
the user and 1 is the extra pixel at the center. In this example, D = 10 pixels and d = 5 pixels. Panels (b)
and (c) represent the extraction of the interface and curvature extraction. Panel (d) represents the PISD
histogram for one patch.

of this work, the graph is a preferred data structure as it guides the path extraction from
the morphology.

Ezxtracting patches and associated sizes

In the second step of the methodology, we identify a meaningful local region that we call
patches (see Fig.[3). A patch is a local region inside the morphology that captures various
aspects of the microstructure. This is an important step of the analysis as it introduces
meso-scale into the microstructure representation. It allows partitioning the microstructure
into building blocks facilitating the hierarchical quantification.

The choice of patch size is the most important aspect of patch extraction. In particular, it
should reflect the mesoscale and enable statistical analysis. For example, too small patches
capture very local features potentially missing key features. In other words, each patch
would be indistinguishable defying any structure-property analysis. Too large patches, on
the other hand, would lead to a very similar outcome as each patch would capture unique
aspects of the microstructure making any statistical analysis infeasible. We additionally put
the following constraints:

(1) The patch needs to include two or more corresponding interface fragments.
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Figure 4: Two strategies for patch center selection, where the circles show the patch centers both in 2D and
3D. Panel (a) shows the choice of the patch centers guided by segmentation of the 2D morphology (upper
row). In this strategy, we place the patch at the intersection between every two segments. This helps when
the hour-glass shapes need to be identified. (b) Uniform distribution of the centers, on the backbone. The
patches, in this case, are placed based on the length of the backbone as well as the patch sizes. This strategy
is used when it is required to extract all curvatures and not hourglass shapes only. The 3D image to the
right shows a sample of some patches with different sizes and centers.

(2) Each interface fragment captured within the patch needs to be large enough to define
meaningful curvature while maintaining the locality of the patch.

(3) To avoid redundancy, the neighboring patches should not overlap.

To address the above requirements, we extract patches along the backbone of the morphology.
To define the patch we need to choose the center. Since the backbone by definition is the
medial axis of the structure, the patch center can be easily identified by retrieving one point
from the skeleton. More importantly, any point chosen from the skeleton automatically
satisfies the first constraint. Once path centers are chosen, the size of the patch needs to
be decided. Here, we use the distance map determined in the skeletonization step (D).
Accordingly, given a patch center C;, the corresponding distance D; from distance field is
retrieved. Essentially, the distance D; informs on the distance to the nearest interface as
shown in Fig. [3{(a). It is used to guide the patch size (constraint 2), where the final size S is
chosen - as shown in Fig. [3[(b) according to equation :

S =2(D +d) (2)

where d is the off-set chosen arbitrarily (constraint 3). The patch is either square or cubical
with size S in 2D and 3D, respectively. The above protocol guarantees that patch extraction
is adapted to the local features of the morphology. In particular, partitioning of morphologies
with complex underlying topology will result in smaller patches, while coarse morphologies
will lead to fewer patches of a larger size.



Finally, to guide the selection of the patch center, in the process of patch extraction
input, morphology is decomposed into a set of patches along with the domain size. Two
strategies can be employed:

1. Topology-guided patch center distribution For each backbone edge e from skele-
tal graph G, we compute the edge length [.. Next, we place a patch center in the
midpoint of that edge. From distance map D, we retrieve the distance d. for the path
center. If d. < [, we add additional two patch centers on the backbone such that the
edge is divided into three equal parts. The process is repeated until the condition is
satisfied. The results are demonstrated in Figure (b) This strategy aims at uniform
coverage of the backbone topology.

2. Domain size-guided patch center distribution For each backbone edge e from
skeletal graph GG, we extract an array of distances from map D. The array corresponds
to all points from F' constituting an edge e. Next, we place a patch center at the point
where corresponding distance changes significantly along the edge. Effectively, the
center of the patches is placed at the intersection of the regions as shown in Figure[ff(a).
We achieve this by applying a Watershed algorithm [21] on the distance map along with
persistence-based [22] merging step. Example results are depicted in Figure 7 where
color coding reflects regions of different sizes. In essence, this strategy is guided by local
domain size and aims at extracting patches of similar size separated by bottlenecks.

Regardless of the strategy chosen, it is worth noting that the size of local features can be
simultaneously extracted.

Patch Interface Shape Distribution (PISD) computation

Finally, once the patches are determined, we proceed to quantifying their shapes as
follows. For each patch, we reconstruct the interface fragments as shown in Figure[3{(b), (c).
Next, for each point at the reconstructed surface, we calculate the principal curvatures (kq,
ko). We aggregate the curvatures information in the form of distribution through Patch
Interface Shape Distribution (PISD) [23]. PISD is defined by the probability density that a
randomly chosen point on the patch surface will have a value between k; and x;+dk; and
ko and ko+dks. This is computed as follows:

PISD(M, %2) = A(/ﬁ, 52)/5%15/@/11, (3)

where A(k1, k2) is the sum of the areas of the triangles in the interface mesh that has principal
values of (K1, ka), Ay is the sum of the areas of all the triangles that fall on the patch interface
surface. To get a meaningful comparison among the patches that have different sizes, we
normalize the principal curvature. In particular, for each patch, we divide k1 and ks by
the surface-volume ratio Sy = A;/V, where V is the volume of the one phase. An example
histogram is depicted in Fig. 3d). In Figure [ (a), two patches with the corresponding
PISD are depicted. We have chosen these shapes to demonstrate that PISD has capabilities
to differentiate between significantly different shapes. In both cases, the interface is color-
coded using Gaussian curvature. Three additional shapes are depicted in Figure [5 (b),
namely sphere, and cylinder.
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3. Technical details

Results generated for this paper leveraged a myriad of software. We used Amira to build
our basic visualization system that has been adapted by implementing specialized plugins.
We also used MATLAB and D3.js K-medoids clustering plugin to generate cluster view.
Preprocessing and visualization were executed on Intel Xeon CPU E5-2698 v3 @ 2.30GHz
with two processors with 128 GB RAM.

4. Results

To showcase the capability of our framework, we perform three step quantification of
the representative microstructures that follow spinodal decomposition [24] 25]. Spinodal
decomposition is a microstructure evolution mechanism. It is crucial for many applications
including fabrication of organic solar cells [24] that has been the main science driver for
this work. In particular, the kinetics of spinodal decomposition is directly linked with the
fabrication process and controls the properties of these devices. Hence, understanding how
morphological features evolve in time is of importance for the design of the fabrication pro-
cess [24]. The methodology presented in this paper is leveraged to perform characterization
and enable quantitative understanding of morphology evolution. The results section is or-
ganized into four sections, and we begin by providing details on the data generation process
and then discussing three-step quantification of morphological samples.

4.1. Data generation

We study microstructure evolution of a binary system following spinodal decomposi-
tion [25]. This is an interesting mechanism characterized by a rich and complex collection
of interacting phenomena. In our example, the binary mixture of two polymers initially
separates into phases very rapidly (phase-separation), followed by slow, and sporadic coars-
ening events. We use the physics-based framework to generate large data sets of morpholo-
gies [20, 25]. The framework is based on a governing equation called the Cahn-Hilliard
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Figure 6: The time series of microstructure along with the backbone extraction and statistics (table).

200 200 0.25 0.150
@<NE>=69.85t 0-767 = -0.731 <dE> = 0.188 t °-85
1% N 150 ._’.<Nv> 64.30t 0.2 .._.' 0.100 . i)

N A q A 0.15 A : e
8 1 e Sa0 | Mo, 4 - g e
v ceele \ .. v 01 Q. \

<0 0 ° 0.050

0.05 <d> =0.105 t 0252
0 0 0 0.000
02 045 0.7 095 1.2 02 045 07 095 1.2 02 045 07 095 1.2 02 045 07 095 1.2

t t t t

Figure 7: Rate of change for selected features for spinodal decomposition microstructures: number of edges
< Ng >=69.85t7%77 number of vertices < Ny >= 64.3t7 %7, edge length < dp >= 0.188t%-%5, and patch
size < d >= 0.105t-25.

equation that encompasses the kinetics of both phase separation and coarsening:
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where ¢(z,t) is the volume fraction of the polymer, which evolves in time and space, M is
the mobility, Cn is the Cahn number and f is the free energy. By solving this equation, we
predict the spatiotemporal morphology evolution, in the form of ¢(z,t), for a two-component
system (two polymers). Example time series evolution of the binary system is illustrated
in Figure [0, where two components are mixed with a 1:1 ratio. We selected a dataset of
5 morphologies representative for few stages of the underlying process. We quantify five
three dimensional morphologies corresponding to selected times: t=0.2, 0.4, 0.8 and 1.0,
respectively. In each case, the size of each morphology is 50x50x50 voxels. White regions
correspond to a phase that is rich in one polymer, while gray regions correspond to a phase
rich in another polymer.

cn2v2¢> (4)

4.2. Topology quantification

For each microstructure in the dataset, we compute the backbone following the procedure
detailed in section 2.1 Figure [6] depicts the backbones along with the corresponding mor-
phologies and extracted statistics. In particular, the top panels of this figure illustrate the



phase distribution within the sample volume, while bottom panels depict the corresponding
backbones for five morphologies. It should be noted that topology can be determined by both
phases (black and white), here we only show backbones computed for the semi-transparent
grey phase (top panels).

The first time snapshot corresponds to the morphology representative for the phase sep-
aration process. At this stage, the backbone consists of 167 edges exposing the richness of
initial morphology (t=0.1) with 83 branching vertices. As time progresses, and morphology
coarsens, the number of edges gradually decreases to 67 edges for the last studied snapshot
(t=1.0). This is not surprising, as in this evolution stage (between t; and t5) morphology
exhibits clear coarsening process. During coarsening, the interfacial energy is dissipated. It
is accompanied by (i) a decrease of the interface area between phases and (ii) an increase
in the domain size. To quantify the rate of morphological changes, we determine the corre-
sponding coarsening laws. In general, the coarsening laws have been mostly centered around
effects of domain sizes, e.g., < d >~ t/3 where d is the domain size [28, 29]. Recently,
coarsening laws have been discussed in the context of topology [30]. The protocol developed
in this paper expands this discussion into another set of morphological features. We select
few features of backbone and trace the rate of change for the dataset. The corresponding
results are depicted in Figure [6]

We selected four topological descriptors for investigation: the total number of edges,the
total number of vertices, and the average edge length and the average patch size. This figure
also includes the associated power laws for each descriptor. The analysis of the power laws
reveals the diverse range of scaling exponent. For example, the average edge length, < dg >,
increases with time following a power law with the exponent of 0.85 (< dp >= 0.19t%%).
This is 2.5 times higher than the scaling exponent typical for the domain sizes [28] 29)].

4.8. Size quantification

Next, we move to the size quantification. In our framework, two types of domain sizes
can be extracted: main backbone edge length and the patch size. Moreover, as a part of
the skeletonization algorithm, we compute the distance field from the domain boundary.
We also looked into the rate of change of domain size for morphology evolution. Figure
shows the average patch size increasing with time (< d >= 0.105t%5). This is similar
trend to the edge length trend discussed in the previous subsection. However, this time,
the determined exponent is much smaller, namely 0.25. It is interesting to observe that
although both descriptors capture domain size feature, they follow different scaling laws.
The distinction between two types of size features becomes more important for the highly
fibrous networks [31], and motivates quantifying the myriad of size-related features.

4.4. Shape classification

The final step of morphology quantification involves the shape classification. Here, we
focus on the local shape extraction as opposite to shape quantification averaged over the en-
tire sample [30]. Similar to size quantification, we begin with partitioning morphologies into
patches. We leverage the skeletons computed in the previous step (Figure . As an outcome
1234 patches are generated using the domain size-guided strategy from subsection and
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Figure 8: The figure illustrates the patch PISD views used for exploring the given data set. Panel (a)
illustrates the cluster view produced by the t-SNE algorithm. This view gives an overview of all the patches
of the dataset. Panel (b) illustrates the medoid patches generated by the k-medoid algorithm.

Figure |3| For each patch, we compute a PISD (30X30 resolution of interface reconstructed)
and executed Principal Component Analysis (PCA) to reduce the representation of PISD
into a manageable feature vector. Next, we execute the t-SNE algorithm [32] to view shape
distribution of all patches while preserving the similarities between them. We use the first
ten components of the PCA to execute t-SNE. The view generated by the t-SNE is shown
in Figure |8l This algorithm gives each data point, in this case each patch, a location in a
two-dimensional map. The outcome map provides quick insight into the dataset and can be
used for clustering and classification.

To demonstrate the utility of this step, we chose cylindrical patch shape and extracted
all patches of this type. To achieve it, we first identify PISDs characteristic for cylindrical
shapes. Next, we performed k-medoids clustering algorithm on PCA-based feature
vectors. We found that our data set nicely into ten clear clusters. Finally, we extract the
medoid that represents the cylindrical cluster along with the patches. The corresponding
cylindrical patches are shown in Figure |§| (a) along with selected PISD. Inspection of these
patches confirms that they are cylindrical, although none of the patches is a perfect cylinder.
Finally, the extracted patches are mapped back to the input morphologies. We computed
the total number of cylindrical patch per microstructure. The distribution of the cylindrical
patches is represented in Figure |§| (b). Our analysis reveals that the number of cylindrical
patches per morphology gradually decreases with time, while patch fraction remains constant
with time.

5. Conclusion

In this work, we presented the methodology to extract morphology descriptors ranging
from topology to size-related descriptors. The unique aspect of this work lies in the system-
atic protocol to fine tune various features, rather than focusing on one well-defined feature.
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Figure 9: The figure illustrates the visual views used to explore one cluster of interest. The cluster includes
the patches that have high distribution along the x-axis which denotes the high distribution of cylindrical
regions. The left view shows the patches that belong to the cluster. The histogram shows the distribution

of these patches at each microstructure. The icons show 3D examples of the patches that belong to this
cluster.
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For example, we extract two types of domain sizes, namely the averaged edge length, and the
patch size. Using this methodology, we determined the scaling laws for the rate of change for
selected features during spinodal decomposition. Interestingly, the rate laws are sensitive to
the type of size considered. Here, we only showcase the utility of the feature extraction and
their utility to establish rate laws, and we defer detailed discussion on the coarsening laws
to the separate paper. The methodology is extensible to other types of the microstructure.

The work presented in this paper is the first step towards more extensive feature extrac-
tion from heterogeneous microstructural samples. This methodology opens novel avenues to
study coarsening laws in materials science. Finally, this methodology lays the foundation for
microstructure property-based machine learning, where salient feature selection is derived
from the comprehensive library of diverse descriptors.

Data availability

The datasets generated and analyzed during the current study are available from the
corresponding authors on reasonable request.
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