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Abstract— We consider the problem of anomaly detection
among K heterogeneous processes. At each given time, one
process is probed, and the random observations follow two
different distributions, depending on whether the process is
normal or abnormal. Each anomalous process incurs a cost
until its anomaly is identified and fixed, and the cost is a
nonlinear (specifically, polynomial with degree d) function of the
duration of the anomalous state. The objective is a sequential
search strategy that minimizes the total expected cost incurred
by all the processes during the detection process under reliability
constraints. We propose a search algorithm that consists of explo-
ration, exploitation, and sequential testing phases. We establish
its asymptotic optimality, and analyze the approximation ratio
and the regret under computational constraints.

Index Terms— Anomaly detection, sequential hypothesis
testing, Sequential Probability Ratio Test (SPRT).

I. INTRODUCTION

Consider a system consisting of K processes. Each process
(say k) may be abnormal with an a-priori probability
independent of other processes. The processes can represent
components (such as routers and paths) in a cyber system,
channels in a communication network, potential locations of
targets, or sensors monitoring certain events. Each abnormal
process incurs a cost until the anomaly is identified and
fixed, and the cost is polynomial cy(t) = Zle ayit* of
degree d with the time that the process stays anomalous. At
each given time, one process is probed, and the observation
follows distributions f]go) or f,il) depending on whether the
process is normal or anomalous, respectively. The objective
is a sequential search strategy that dynamically determines
which process to probe at each time and when to terminate
the search so that the total expected cost incurred to the
system during the entire detection process is minimized under
reliability constraints.

A. Main Results

The above anomaly detection problem has a clear connec-
tion with the classic sequential hypothesis testing problem
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pioneered by Wald [2]. The presence of multiple processes
and the objective of minimizing the total cost (rather than the
detection delay), however, give the problem another dimen-
sion. In addition to quickly declaring the state of a process by
fully utilizing past observations, the probing order is crucial in
minimizing the total cost. It is intuitive that processes with a
higher probability of being abnormal and a higher cost when
abnormal should be probed first. At the same time, it may
be desirable to probe processes that require more samples to
detect their states (determined by the distance between f,go)

and f,gl)) toward the end of the detection process to avoid
long delays in catching other potentially abnormal processes.

There are several studies on sequential detection under
linear cost functions, including a fixed cost per sample [3]-
[5], and a fixed cost due to undetected anomalies per unit time
[6], [7]. Unlike these studies, in this paper we tackle a general
nonlinear cost setting (for a detailed comparison with related
work see Section I-C). We develop an effective algorithm,
referred to as Exploration, Exploitation, and Sequential Testing
(EEST), and analyze its performance in terms of regret,
approximation ratio, and asymptotic optimality. Specifically,
since the system cost depends on the unknown system state,
the EEST algorithm aims at learning the set of abnormal
processes while at the same time probing the processes in
a desired order so as to minimize the estimated system cost.
To ensure the accuracy of the learning process, a logarithmic
order of time is used to explore the state of all processes. In
the remaining majority of time instants, the EEST algorithm
exploits the information gathered up to this point to select the
processes in a desired order based on the estimated states.
The algorithm implements two exploitation phases, which are
referred to as the index selection phase, and the constrained
combinatorial search phase. Roughly speaking, the index
selection phase performs low-complexity probing (only linear
with K) with a bounded approximation ratio of the cost.
The constrained combinatorial search phase minimizes the
cost function directly (e.g., by performing branch and bound)
but only over a small set of processes (determined by the
required computational constraint). Then, in the sequential
testing phase, the algorithm applies a sequential test using the
collected observations to determine the state of the probed
process subject to constraints on type [ and type I errors.

We analyze the algorithm performance theoretically, and
show that the EEST algorithm is asymptptically optimal
in terms of minimizing the cost as the error probability
constraints approach zero. Since that achieving asymptotic
optimality requires to perform a combinatorial search over



the estimate abnormal set, we also establish performance
guarantees when computational constraints apply. Specifically,
we analyze the approximation ratio p, defined as the ratio
between the cost under the EEST algorithm and the optimal
cost, and the regret, defined as the performance loss of EEST
algorithm against a benchmark, in which the optimal probing
strategy with knowledge of the set of anomalous processes is
employed. We show that the approximation ratio is bounded
and the regret order is O (9~ log t) with time ¢ for d > 1. We
note that asymptotic optimality of the EEST algorithm (i.e.,
p=1) for d =1 (i.e., linear cost function) is obtained even
when computational constraints apply.

B. Applications

The anomaly detection problem considered in this paper
finds applications in systems where the loss incurred by
abnormal processes can be modeled by a polynomial cost with
time. In the following we give two specific examples.

Consider a cyber network consisting of K components
(which can be routers, servers, domains, etc.). Due to resource
constraints, only a subset of the components can be probed
at a time. An intrusion detection system (IDS) monitors the
traffic over the components to detect Denial of Service (DoS)
attacks (such attacks aim to overwhelm the component with
useless traffic to make it unavailable for its intended use until
it is detected and fixed). An objective of minimizing the total
loss in data rate during the DoS attacks translates to a cost
¢k (t) given by the expected data rate (or expected number of
packets) per unit time. This setting results in minimizing a
linear cost function with time. An alternative, and often more
relevant objective is to minimize the total loss in Quality of
Experience (QoE) of users during the DoS attacks, which is
commonly modeled by a polynomial function of time [8].
In this case, the cost ¢k (t) is given by the QoE for using
component k. This setting results in minimizing a polynomial
cost function.

A similar example arises in spectrum sensing in cognitive
radio systems, where a cognitive user aims at finding idle
channels for transmission. Due to narrowband sensing, only
a subset of the channels can be probed at a time. Similar to
the previous example, the objective of minimizing the total
loss in QoE during the sensing process leads to minimizing a
polynomial cost function.

C. Related Work

Sequential hypothesis testing was pioneered by Wald [2],
where he established the Sequential Probability Ratio Test
(SPRT) for binary hypothesis testing. For simple hypothesis
testing where the observation distributions are known, SPRT is
optimal in terms of minimizing the expected sample size under
given type I and type II error probability constraints. Various
extensions to M-ary hypothesis testing and testing composite
hypotheses have been studied in [9]-[13] for a single process.
In these cases, asymptotically optimal performance can be
obtained in terms of minimizing the expected sample size as
the error probability approaches zero. In this paper, we focus
on asymptotically optimal strategies with low computational

complexity for sequential anomaly detection over multiple
processes with a limited probing capacity. Different models
have considered the case of searching for anomalies (or
targets) without constraints on the probing capacity, where all
processes are probed at each given time (i.e., K = M, which
is a special case of the setting considered in this paper) [12],
[14]-[16].

There are several studies on sequential detection under
linear cost functions, including a fixed cost per sample [3]-
[5], and a fixed cost due to undetected anomalies per unit
time [6], [7]. Unlike these studies, in this paper we tackle
a general nonlinear cost setting. It should be noted that
there are fundamental differences between this paper and our
previous work [7] as detailed next. First, in terms of the
exploitation phase, in contrast to the linear cost case [7],
the index selection phase alone cannot achieve asymptotic
optimality under nonlinear costs (which can be shown by
counterexamples). Thus, a combinatorial search is needed,
and is a key feature to ensure asymptotic optimality. This,
however, brings a new challenge: an efficient tradeoff between
performance and computational complexity. Our approach to
this challenge is to carry out the computationally expensive
phase of the combinatorial search only when it has the
potential of bringing the most information. More specifically,
the combinatorial search is carried out only when the belief
about the abnormal set is sufficiently high (i.e., the posterior
probabilities of all processes are above the upper threshold or
below the lower threshold), and the thresholds represent the
tuning knob for trading off performance with computational
complexity. These design principles constitute fundamental
differences in terms of algorithm design as compared to
CL — wcN algorithm [7]. The theoretical analysis is thus
fundamentally different in this respect. Specifically, proving
asymptotic optimality and the approximation ratio requires
analysis of two different regimes. One is the asymptotic
optimality obtained by the combinatorial search phase (which
is absent in [7]). The second is the approximation ratio of the
index selection phase when computational constraints apply,
which is not asymptotically optimal in the polynomial cost
case in contrast to the linear case in [7]. Second, in terms of
the exploration phase, in [7], we only showed that it is possible
to achieve asymptotic optimality by exploring processes at rate
wy, log(t), but the value of the leading constant wj, remained
unknown, which results in difficulties when implementing the
algorithm. This issue is solved in this paper by establishing
explicit sufficient conditions for the design of the exploration
phase for general polynomial functions, which has significant
implications in both practical implementation and theoretical
study. Finally, regret analysis was not shown in previous works
even for the linear cost case.

There are a number of recent studies on sequential detection
involving multiple independent processes for various applica-
tions (see for example, [17]-[26] and the references therein).
Unlike this work, these studies have focused on minimizing the
total detection delay, which does not translate into minimizing
the total cost in the problem considered here. Other related
works have considered dynamic search and outlier detection,
as studied in [14], [27]-[35] (and the references therein)



under a sequential setting and in [36]-[39] (and the references
therein) under a fixed sample size setting, where the objective
was to locate a single target among multiple processes quickly
and reliably.

The anomaly detection problem studied in this paper can be
considered as a variation of the sequential design of experi-
ments problem first studied by Chernoff [40]. In this problem,
a decision maker aims to infer the state of an underlying
phenomenon by sequentially choosing the experiment (thus
the observation model) to be conducted at each time among a
set of available experiments. Classic and more recent studies
of this problem can be found in [4], [29], [41]-[43]. In [29],
[40]-[43], the objective of minimizing the total detection delay
was considered. In [4], the problem was extended to the case
where taking an observation under a specific experiment is
associated with a deterministic known cost, and the objective is
to minimize the total cost during the test. However, the setting
of a random and unknown cost (depending on the system state)
at each given time makes the problem considered in this paper
fundamentally different from the problem considered in [4].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system consisting of K processes, where each
process may be in an abnormal state (denoted by Hp) with
probability 7, or a normal state (denoted by H,) with
probability 1—7, independent of other processes. Let ¢ (t) =
ijl ayp ', where 0 < apq < oo for k = 1,..,K,
be a polynomial cost function of degree d, monotonically
increasing with ¢ > 0. Each abnormal process k incurs a
polynomial cost ¢ (t) until it is tested and identified. Processes
in a normal state do not incur cost. At each given time, a single
observation (or a fixed batch of observations) is collected
from a chosen process, and a measurement (say process k
observed at time n) y(n) is drawn independently. If process
k is in a normal state, yx(n) follows density f,go); if process
k is abnormal, yi(n) follows density f,gl). In Section III, we
examine the case where the densities f,E,O), f,gl) are known.
In Section IV, we extend the results to the case where the
densities have unknown parameters.

Let ¢(n) € {1,2,..,K} be a selection rule, indicating
which process is chosen to be tested at time n. Let y(n) =
{6(t), ysr)(t)},_, be the set of all the observations and
actions taken by time n. The selection rule ¢(n) is a mapping
from y(n—1) to {1,2,..., K'}. We also define the time series
vector of selection rules by ¢ = (¢(1),#(2),...). Let 71 be a
stopping time, which is the time (counted from the beginning
of the entire detection process) when the decision maker stops
collecting observations from process k£ and declares its state.
We also define the stopping time vector for the K processes by
T =(71,..., 7K ). Let Nj be the random sample size collected
from process k until declaring its state. Let d;, € {0,1}
be a decision rule for process k at time 7. dx = O if the
decision maker declares that process k is in a normal state,
and J; = 1 if the decision maker declares that process k is in
an abnormal state. We define the vector of decision rules for
the K processes by & = (01, ...,0x). An admissible strategy

s for the anomaly detection problem is given by the tuple

s=(7,0,¢).
Let

Ho 2 {k:1< k<K, process k is normal} ,

Hi1 = {k:1<k <K, process k is abnormal} ,

be the sets of the normal and abnormal processes, respectively.
The objective is to find a strategy s that minimizes the total
expected cost incurred by all the processes subject to type [
(false-alarm) and type I (miss-detection) error constraints for
each process:

irslf E{ Z Ck (Tk)}

kEH,
" (1)
st. PFA<ay Vk=1,.. K,
PMD < g, VE=1,..,K,

where PFA, PMP denote the false-alarm and miss-detect
error probabilities for process k, respectively.

III. THE EXPLORATION, EXPLOITATION, AND
SEQUENTIAL TESTING (EEST) ALGORITHM

Sequential detection problems involving multiple processes
are partially-observed Markov decision processes (POMDP)
[37] which have exponential complexity in general. For
tractability, a commonly adopted performance measure is
asymptotic optimality in terms of minimizing the objective
function as the error probability approaches zero (see, for
example, classic and recent results in [4], [9], [10], [15], [16],
[29], [30], [40]-[42]). Hence, we are interested in developing a
low-complexity algorithm that achieves asymptotically optimal
performance in terms of minimizing (1) as the error constraints
approach zero.

We first provide notations and definitions that will be used
to describe the EEST algorithm. Let 14(n) be the probing
indicator function, where 1 (n) = 1 if process k is probed at
time n and 1;(n) = 0 otherwise. Let

(1)
A (yx(n))
Oy (n) & log “L 2222 2
and .
Sk(n) £ E O ()15 (t) 3)

be the log-likelihood ratio (LLR) and the observed sum LLRs
at time n of process k, respectively. Let [C(n) be the set of
processes whose states have not been declared up to time n.
Let mx(n) denote the posterior probability of process k being
abnormal at time n. Let E(™)(N},) be the expected sample
size required for declaring the state of process k observed by
time n (which dynamically changes due to the changes in the
belief 7 (n)), where Ny is the random sample size required
to declare its state. Define
s TK(R)aka

Vk(n) = m s 4



where ay 4 is the dth-degree coefficient of the polynomial
function ¢ (t) as defined in Section II. Let Ly, Uy be thresh-
olds of process k, where 0 < Lj < U, < 1 (the setting of
Ly, Uy is discussed later). Let H1(n) be the set of processes
in C(n) that satisfy m(n) > Uy at time n with cardinality
|H1(n)| = Ng,(n). The set Hq(n) can be viewed as the
estimate of the set H; at time n. Let E(Ny|H;) be the
expected sample size required to declare the state of process k
under hypothesis H; (note that E(N|H;) is fixed over time).
The expected sample size E(Ny|H;) is determined by the
SPRT described later so that the error constraints are satisfied.
Finally, let No € {1,...,N} be a computational constraint
value.

A. The Algorithm

Next, we describe the EEST algorithm with respect to
the time index n. The algorithm parameters are described in
Section III-B. Since processes whose states have been declared
are no longer tested, we refer only to processes k € IC(n):

1) (Exploration phase:) If the number of observations that
have been collected from some process k € K(n)
satisfies:

Ni(n) < wglogn,
then ¢(n) = k and go to Step 1 again. Otherwise, go to
Step 2.

2) If Ny, (n) > N¢ or Ny, (n) = 0 or there exists a process
k € K(n) that satisfies L, < m(n) < Uy, then go to
Step 3. Otherwise, go to Step 4.

3) (Index selection phase:) Probe the process with the high-
est index:

¢(n) = arg kgllca(x) Yk (n),

and go to Step 5.

4) (Constrained combinatorial search phase:) Let

(Ul (n)7 XX} UNHl (n) (n))
be a permutation of #;(n). Probe the next process ¢(n)
according to the permutation order that minimizes:

o(n) =

NH, (n) a;(n)
Z Coi(n) Z E(N;|H1)
=1 j=o1(n)
Go to Step 5.

5) Update Sy (,)(n) based on the last observation. Following
Wald’s SPRT [2], S¢(n)(n) is compared to boundary
values Ay, By(n) as follows: If

So(m) (1) € (Ag(n)s Bom)):

then ¢(n) € K(n + 1). Otherwise, if

Sy (1) 2 By(n)s
then stop taking observations from process ¢(n) a
declare it as abnormal (i.., T4(n) = 7, 6¢(n 1a d
o(n)¢K(n’) for all n’ > n). Otherwise, if

Sy (n) < Agn),
then stop taking observations from process ¢(n
declare it as normal (i.e., To(n) = M, 5¢(n) =
d(n)¢K(n') for all n’ > n). Go to step 1.

) and
0 and

The EEST algorithm can be intuitively explained as follows.
During the index selection phase, the index ~x(n) gives a
closed-form expression of how three key parameters—the cost
coefficient ay q of the dth degree term of the polynomial
function that dominates the asymptotic cost, the posterior
probability, and the difficulty in distinguishing the normal
distribution f,go) from the abnormal distribution f,il)—are
traded off when choosing the observed process at each given
time n. Sorting the indices can be done in O(K logK)
time with a sorting algorithm. The algorithm moves to the
constrained combinatorial search phase when the abnormal set
H1 has been estimated with sufficient reliability, and Ny, (n)
is sufficiently small (but not zero). This phase applies an ex-
haustive search over N¢ processes at most, and more efficient
algorithms such as branch and bound can be applied for small
d. As a result, No applies a constraint on the combinatorial
search used to guarantee the desired computational complexity.
When the a priori probabilities for processes of being abnormal
are small (so that |H;| << K as in many anomaly detec-
tion applications), the constrained combinatorial search phase
ensures an approximation ratio close to 1. The thresholds
Ly, Uy are tuning parameters that trade off computational
complexity with detection performance in the finite-sample
regime. Typically, we set Ly, Uy close to 0,1, respectively.
Note that setting Ly, Uy too close to 0 and 1 results in a
longer index selection phase, which reduces complexity but
also deteriorates performance in the finite-sample regime. On
the other hand, setting L, Uy far from O and 1 results in
a longer constrained combinatorial search, which improves
performance, but increases the computational complexity in
the finite-sample regime. We point out that switching between
the index selection phase and constrained combinatorial search
used to trade-off between performance and complexity, is not
needed in the case of linear cost. The combinatorial search
phase is used to guarantee asymptotically optimal perfor-
mance, since the index selection phase is not asymptotically
optimal in the case of nonlinear cost. The conditions Ny (n) >
wy, log n for all k ensure that a logarithmic order of time is used
to collect observations from all the processes (i.e., exploration
phase). Setting wy, judiciously (as detailed in Section III-C)
guarantees a sufficiently accurate estimate of the abnormal set
H1 used for achieving the theoretical performance. The setting
of wy (see (11)) depends on the degree d of the polynomial
cost function. The higher d the higher the required exploration
rate.

B. Implementation

Implementing the EEST algorithm requires computing the
posterior probability 7 (n), the boundary values Ay, By,
and the expected detection time E(Ng|H;). The posterior
probability 7 (n) is updated according to Bayes’ rule which
is given by

mh(n+1) = (1= 1k(n)) 7

1y (n)mi (n) £
me(n) £ (g () + (1= me(n)) £y

K(n )
D (ye(n)) )
k(n)

+




The boundary values Ay and By are set such that the
error constraints are satisfied. In general, computing the exact
boundary values is very laborious under the finite sample
regime. Nevertheless, Wald’s approximation can be applied
to simplify the computation [2]:

Br >
1—oay )’

Bkzlog<16k> .

Ak

Ay ~ log (
(6)

Wald’s approximation performs well for small «y, 5, and
is asymptotically optimal as the error probability approaches
zero. Since type I and type I errors are typically required to
be small, Wald’s approximation is widely used in practice [2].

The expected sample size E(™)(N,) at time n depends on
the current belief:

E(™ (Ny) = mp(n)E(Ng|Hy) 4+ (1 — m(n))E(Ng |Ho)
(N
where E(N|H;) is the expected sample size for process k
conditioned on its state H;. In general, it is difficult to obtain
a closed-form expression for E(™) (N, |H;) under the finite
sample regime. However, Wald’s approximation can be applied
to simplify the computation [2]:

— (1 — ak) Ak — akBk
DOAIEY)
a (1 — Br) B + BrAx

DI

@) ) £ (i (1))
where D(f.”||f.”) E; <logm
Kullback-Leibler (KL) divergence between the hypotheses H;
and H;, where the expectation is with respect to f,iz). This
approximation approaches the exact expected sample size for
small ay, Bx. As a result, the approximation to the expected
sample size is computed by:

E(Ny|Ho) £

)

®)

E(Ni|H)

denotes the

EM (Ny) = 7 (n)B(Ng[Hi1) + (1 — m3,(n)) E(Ny | Ho) -
&)

C. Performance Analysis

Next, we establish the asymptotic approximation ratio of
the EEST algorithm. Let Pc = Pr (|H1| > N¢), and let

P & max (g, B, -y 0k, BK) - (10)
Set
Wi > — d+1 vk, (11
min {Ik|HmIlc\H1}
where
Tty = sup [f logE_ (esz’“)] ,
s>0 k (12)

I, = st;;g [— IOgENflil) (e‘sek)}
S

are the Legendre-Fenchel transformation of ¢j, at the origin
with respect to distributions f,go) and f (1), respectively. In the
analysis we show that setting the exploration rates according to

(11) guarantees a sufficiently accurate estimate of the abnormal
set (see the proof of Lemma 2 in the appendix). The following
theorem establishes the asymptotic approximation ratio of the
EEST algorithm.

Theorem 1. Let E(CFP5T) be the expected cost under the
EEST algorithm, and infs E(C(s)) be the infimum expected
cost over all algorithms that satisfy the error constraints. Then,

a) (Asymptotic optimality of the EEST algorithm:) Set No =
K (i.e., computational constraints do not apply). Then',

E(CFEST)  inf E(C(s))

s

as PI"* — 0.

13)

b) (Approximation ratio of the EEST algorithm under compu-
tational constraints:) Let

N E(CFEST)

~infs E(C(s))
be the approximation ratio between the expected cost under
the EEST algorithm, E(CFEST), and the infimum expected

cost, infg E(C(s)), over all algorithms that satisfy the error
constraints. Then,

p (14)

p<(1—PFPc)+FPcM(d) as P =0, (15)
where ( )d+1
a (d+1Ds+(1—s
M(d) = o??éﬁ 1+ dsd+1 (16)

A detailed proof and regularity conditions are given in
Appendix VII-A.

Remark 1. The function M (d) equals 1 at d = 1 and in-
creases with d. For instance, M (1) =1, M (2) ~ 1.3, M(3) ~
1.8, M(4) =~ 2.3, M(5) ~ 3. As a result, for the case of a
linear cost with time (i.e., d = 1) the algorithm is asymptoti-
cally optimal, and good theoretical performance is guaranteed
for small d. Simulation results demonstrate good performance
for large d as well. Furthermore, when the probabilities of
processes being abnormal are small or when the computational
constraint is loose, then p is close to 1 since P¢ is close to
ZEero.

Next, we investigate how fast non-dominant terms vanish
with time. Thus, we define the regret as the difference between
the cost under the EEST algorithm and the cost obtained
by a genie that has an accurate estimate of the abnormal
set Hi(n) = H; for all n. Thus, the genie’s beliefs are
set to mi(n) = 0 for all ¢ € Hop, and 7;(n) = 1 for all
j € Hi. Note that although the genie knows the abnormal set
H1 accurately, it still performs the detection process so that
we can measure how fast our algorithm learns the unknown
side information that the genie has. Therefore, Steps 1,2 are
replaced by the following step when applying the genie’s
strategy: Set Hi(n) = Hi. If Ny, (n) > N¢, go to Step
3. Otherwise, go to Step 4. Note that we can set No = N as
a special case when comparing the algorithm with an optimal
probing without computational constraints. Let C* be the cost

IThe notation f ~ g as prar — (O refers to lim ppaw o f/9 = 1.
g



obtained under the genie’s strategy, and CFF5T be the cost
under the EEST algorithm.

Theorem 2. Let
R é E [C«EEST _ C*}

be the regret of the EEST algorithm with respect to the genie’s
strategy, such that the error constraints are satisfied. Let n =
max(7y, ..., T ) be the random termination time of the genie’s
strategy (which is a stopping time). Then,

R =0 (E[n'logn])

a7

as P" — 0. (18)

The proof is given in Appendix VII-B.

Remark 2. Theorem 2 implies that the additional cost ob-
tained under the EEST algorithm as compared to the genie’s
strategy is of order O (E[n?~!logn]). Since the cost under
the genie’s strategy is of order O (E[nd]), the additional cost
under the EEST algorithm vanishes with time. When d = 1,
a logarithmic regret is obtained.

IV. ANOMALY DETECTION UNDER UNKNOWN
OBSERVATION MODELS

In this section we consider the case where the observation
distributions are governed by unknown parameters. Specifi-
cally, let 6 be the unknown parameter (vector) of process
k. The observation yx(n) follows density fi(y|0k), Ox € O,
where ©y, is the parameter space of process k. If process k is in
a normal state, then 6;, € @,(CO); if process k is in an abnormal
state, then 6, € (@;@\(9560)). Let @,(CO), @,(Cl) be disjoint subsets
of O, where Ry, = @k\(@g)) U @,(61)) # () is an indifference
regionz. When 0;, € Ry, the detector is indifferent to the state
of process k. As a result, there are no constraints on the error
probabilities for all 8, € Rj. The essence of the sequential
testing step for process k is thus testing 0y, € @,(CO) against
0 € @g). Reducing Ry, increases the sample size.

Although the SPRT algorithm used in the sequential test-
ing step in the previous section under completely known
distributions is optimal in terms of minimizing the required
sample size of each process, it is highly sub-optimal when
the distributions have unknown parameters. Therefore, our
approach in this section is to incorporate an asymptotically
optimal test (in terms of minimizing the sample size as the
error probability approaches zero) in the sequential testing
step. There are a number of asymptotically optimal sequential
tests for a single process, where the basic idea is to use
the maximum likelihood estimate (MLE) of the unknown
parameters to perform a one-sided sequential test to reject Hy
and a one-sided sequential test to reject H1. One way is to use
the Adaptive Likelihood Ratio (ALR) statistics, which were
first introduced by Robbins and Siegmund in [44]. Specifically,
For 4,5 € {0,1} and i # j, let

SO () = S log LeWEIO(r = 1))
=2 e i)

2We adopted the assumption of an indifference region as commonly used
in the theory of sequential hypothesis testing for establishing asymptotic
optimality. Nevertheless, in some cases this assumption can be relaxed as
analyzed in [10].

19)

be the ALR statistics used to declare hypothesis H; at stage
n, where 0, (t) = argmaxg, co, fr (y(t)|0x) and 6 (t) =
Arg Maxy o) i (yk(t)|0x) are the maximum likelihood
(ML) estimates of the parameters over the parameter spaces
Oy and @gj ) at stage t, respectively. Let

N =int {0 s 50 (m) > B} (20)
be the stopping rule for declaring H;, where B,(:) is the
boundary value. For each process k, the decision maker stops

the sampling when Ny, = min { N\, N} 1 Ny = N7,

process k is declared as normal. If Ny = IV, ,51), process k is
declared as abnormal. We point out that another way is to use
the Generalized Likelihood Ratio (GLR) statistics [10], which
is able to improve performance by updating the estimate in
the numerator for all n. Nevertheless, here we adopt the ALR
statistics, since setting

1
B,go) = log —,
Qg
1 2D
(1)
B,/ =log —,
F 8 Br

satisfies the error probability constraints in (1), while such
a simple setting cannot be applied when using the GLR
statistics.

A. The algorithm

We modify the EEST algorithm so that it can apply to the
case of the unknown observation model considered in this
section. We replace the belief 7;(n + 1), and the index ~x(n)
by their estimates 7 (n + 1), and 4 (n), respectively (see the
explicit expressions in Section IV-B). We define 7:11(71) as the
set of processes in KC(n) that satisfy 75 (n) > Uy, at time n with
cardinality [H;(n)| = th (n). The set H1(n) can be viewed
as the estimate of the set 7 at time n. Since processes whose
states have been declared are no longer tested, we refer only
to processes k € IC(n):

1) (Exploration phase:) If the number of observations that
have been collected from some process & € K(n)
satisfies:

Ni(n) < wg logn,
then ¢(n) = k and go to Step 1 again. Otherwise, go to
Step 2.

2) If NHl (n) > N¢ or Z\Afﬁl (n) = 0 or there exists a process
k € K(n) that satisfies Ly < 7x(n) < Uy, then go to
Step 3. Otherwise, go to Step 4.

3) (Index selection phase:) Probe the process with the high-
est index:

¢(n) = arg Jnax

A (n),
and go to Step 5.
4) (Constrained combinatorial search phase:) Let
o(n) = (o1(n), TRy () (n))

be a permutation of Ny, (n). Probe the next process ¢(n)
according to the permutation order that minimizes:



Ny, (n)

Z Co; (n)

i=1
Go to Step 5.

5) Update Sd(f()n) (n) for ¢+ = 0,1 based on the last obser-
vation. Then, Sg()n)(n) is compared to boundary values

Bg&) , Bél(il) as follows:
If

o;(n)

> EW)

Jj=o1(n)

59Mn) < B and 5" (n) < B",
then ¢(n) € K(n + 1). Otherwise, if
¢ (n) > B,

stop taking observations from process k and declare it as
abnormal (i.e., Tg(n) = 1, Oy(n) = 1 and ¢(n)ZK(n') for
all n’ > n). Otherwise, if

sy (n) = B,

stop taking observations from process k and declare it as
normal (i.e., Ty(n) = N, Gg(n) = 0 and ¢(n)¢K(n’) for
all n’ > n). Go to step 1.

B. Implementation

We now detail the parameters used to implement the mod-
ified EEST algorithm. The modified belief is given by:

fr(n+1) = (1 — 1x(n)) 7x(n)
1. (n)75(n) £2 (i (n)
T - 70) )
() £ (e (n)) + (1 — w(n)) £ (ya(n))
where (1) = m,(1) and £V (yr(r)) 2 fulyn(r)|0 (n)),

A () £ fiulyn(r)]8” (n) for all 1 <7 < m.
The modified index 4j(n) is given by:

(22)

. s Tr(n)ag.q
n) & e
'Yk( ) E(")(Nk)

In general, it is difficult to obtain a closed-form expression
for EE(")(N},) under the finite sample regime. However, we
can use the asymptotic property of the sequential tests to
obtain a closed-form approximation for E(")(Nk) based on
the ML estimate of the parameter, which approaches the exact
expected sample size as the error probability approaches zero.

Let Dy(6i(n)[|6) £ By, (1og %) be the KL

divergence between fi,(yx(n)|0x(n)) and fi(yx(n)|0), where
the expectation is taken with respect to Fre(yr(n)]0x(n)),
and let Dy, (0;(n)[|0)) = inf .o Di(6x(n)]|6). Then, the
estimated expected sample size required to make a decision
regarding the state of process k is given by:

(23)

5O )
—E s i u(n) € 6,7,
Dy (0x(n)]|©y
EM™(Ny) = B
k

. if By(n)) € 6

(24)

which is guaranteed to be the asymptotic sample size under
various families of distributions with unknown parameters
(e.g., exponential, multivariate distributions, and general
distributions with unknown parameters that take a finite
number of values) as the error probabilities approach
zero [10]-[12], [40].

C. Performance Analysis

We next establish the approximation ratio and the regret
under the case where Oy, is discrete for all £k =1, ..., K. Set

d+1

wg > ——F———~ Vk, (25)
min{lm,lk,l}
where
fk,o £

. . ¢ (9(0)79(1)
9(0)1;1£<1>, igg{ g E 1 (yio©) (es ' )]
8 oM eco,

Ini &
(0) g(1)

o, b ()
oOg o LB lewlo®) (€ 7
0@ oM e,

(26)

are the Legendre-Fenchel transformations of

Fr(ylo™)
Fe(yl6©)

at the origin with respect to distributions fy(y|6(*)) and
fr(y]0™)), respectively. In the analysis we show that setting
the exploration rates according to (26) guarantees a sufficiently
accurate estimate of the abnormal set (see the proof of Lemma
3 in the appendix). The following theorem establishes the
asymptotic approximation ratio of the EEST algorithm for the
unknown observation model.

00,01 £ log

Theorem 3. Consider the unknown observation model as
detailed in this section. Let E(CFFST) be the expected
cost under the EEST algorithm, and infs E(C(s)) be the
infimum expected cost over all algorithms that satisfy the error
constraints. Then,

a) (Asymptotic optimality of the EEST algorithm:) Set N¢o =
K (i.e., computational constraints do not apply). Then,

E(CPEST) ~inf E(C(s)) as P™® 0. (27)

b) (Approximation ratio of the EEST algorithm under compu-
tational constraints:) Let

,a E(CEEST)
infs E(C(s))
be the approximation ratio between the expected cost under
the modified EEST algorithm E(CFP5T), described in Section

IV-A, and the infimum expected cost infs E(C(s)) over all
algorithms that satisfy the error constraints. Then,

p<(1—Pc)+ PcM(d) as P —0,

(28)

(29)



Fig. 1. The cost ratio between the EEST algorithm and the open loop SPRT
as a function of the number of processes. The case of processes that follow
a Poisson distribution.

(d+1)s+(1— s)d"‘l.

where M (d) = max L dsdtt

0<s<1

A detailed proof and regularity conditions are given in
Appendix VII-C.

Next, we investigate how fast non-dominant terms vanish
with time. Thus, we define the regret as the difference between
the cost under the EEST algorithm and the cost obtained by
a genie that has an accurate estimate of the abnormal set
Hi(n) = H; for all n, and the true parameter 0. Thus, genie’s
beliefs are set to 7;(n) = 0 for all i € Ho, and 7j(n) =1
for all j € Hq, and the estimate of 6 is set to the true value.
Note that although genie knows the abnormal set H; and the
parameter 6 accurately, it still performs the same sequential
testing step so that we can measure how fast our algorithm
learns the unknown side information that genie has. Let C*
be the cost obtained under genie’s strategy, and CFFST be
the cost under the modified EEST algorithm in this setting.

Theorem 4. Consider the unknown observation model as
detailed in this section. Let

R2E|[CFFST — 7] (30)

be the regret of the modified EEST algorithm, described in
Section IV-A, with respect to genie’s strategy, such that the
error constraints are satisfied. Let n = max(7y, ..., Tic) be the
termination time of genie’s strategy (which is a stopping time).
Then,

as P — 0.

R:O(E[nd_llogn}) ! (31)

The proof is given in Appendix VII-D.

V. SIMULATION RESULTS

In this section we present simulation results to demonstrate
the effectiveness of the proposed EEST algorithm. We start
by demonstrating the significance of using the closed-loop
selection rule of the proposed EEST algorithm. We compare
the EEST algorithm to an algorithm that does not use memory
(i.e., open loop) when selecting the next process (e.g., as in

Fig. 2. The cost ratio between the EEST algorithm and the open loop SPRT
as a function of the number of processes. The case of processes that follow
an exponential distribution.

[14], [19]-[23]). Specifically, we simulated the algorithm in
[19], which performs the SPRT algorithm in a predetermined
order, which was designed to the case of independent anoma-
lies among processes as considered in this paper, and was
shown to be optimal in terms of minimizing the detection
delay. We refer to this algorithm as the open-loop SPRT. It
is well-known that there is often a gap between the sufficient
conditions required by the theoretical asymptotic analysis
(often due to union bounding events in analysis) and practical
conditions used for efficient sequential statistical inference.
Thus, for a practical implementation we set the exploration
rate so that the total exploration time was approximately 5% of
the total expected detection time. We first simulated a system
with K processes, each (say k) of which follows a Poisson
distribution yy(n) NPois(G,(;)). For the normal processes we
set 9,(60) =1 for all k, and for the abnormal processes we set

0,21) to be equally spaced in the interval [1.2,1.4]. The cost
for each abnormal process was set to c(t) = ax(t> +1t). The
coefficients aj were equally spaced in the interval [1,4]. The
error probability constraints were set to oy = B = 1078
for each process kK € K. Fig. 1 presents the tremendous
gain observed for the EEST algorithm compared to the open-
loop SPRT in terms of the system cost. We next changed the
observation distributions so that processes (say k) followed
an exponential distribution yg(n) ~ Exp(&,(;)). The cost for
each abnormal process was set to ck(t) = ap(t* + 3t2).
All other parameters remained the same. Fig. 2 once again
presents the tremendous gain observed for the EEST algorithm
compared to the open-loop SPRT in terms of the system
cost. These results demonstrate the importance of using the
closed-loop policy of the EEST algorithm when minimizing
the system cost, since the open-loop strategy, though optimal
in terms of minimizing the delay, is highly sub-optimal in
terms of minimizing the system cost. Next, we examined
the regret of the EEST algorithm with respect to the genie’s
policy, as described in Section III-C. The (normalized) regret
is presented in Fig. 3 and supports the theoretical analysis in
Theorem 2.
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Finally, we examined the effect of the exploration rate wy
and the computational constraint N, on the algorithm’s perfor-
mance. Clearly, increasing N, results in a higher probability
to perform the combinatorial search phase. As a result, the
algorithm performance is expected to be improved. Indeed,
Figure 4 supports this insight. It can be seen that the system
cost decreases as N, increases with the price of a higher
computational complexity. Next, we discuss the effect of wy
on the algorithm performance. Setting wj, too small implies
that the algorithm is not able to infer the process states with
a sufficiently high accuracy, which results in a high system
cost. On the other hand, setting wj too high implies that
the algorithm spends a long time on exploring the states of
all processes instead of exploiting the gathered information
for sampling the processes in the desired order. This insights
are supported by Fig. 4. Furthermore, it can be shown that
the sufficient conditions on the setting of wj given by the
theoretical analysis are close to the wj that minimizes the
system cost in this setting.

VI. CONCLUSION

We considered the problem of detecting independent anoma-
lous processes among K processes quickly and reliably. The
observations from each chosen process follow two different
distributions, depending on whether the process is normal
or abnormal. Each anomalous process incurs a polynomial
cost with time until its anomaly is identified and fixed. The
goal is to minimize the total expected cost incurred by all
the processes during the entire detection process under error
constraints. A search algorithm that consists of exploration,
exploitation, and sequential testing phases was proposed and
analyzed. For both known and unknown observation models
the asymptotic approximation ratio and regret analysis were
established.

It should be noted that the algorithm design and the analysis
rely on the fact that the cost function is polynomial with degree
d. An interesting future direction is to generalize the results for
non-polynomial cost functions (e.g., exponential with time).

VII. APPENDIX

We start by establishing the lower bound on the asymptotic
cost. We will then use it to prove the asymptotic optimality
of the EEST algorithm.

We note that the analysis of the exploration rate in Lemma
2 is determined by wj which depends on the degree d of
the polynomial function. Second, the proofs throughout the
appendix are based on the fact that the cost function is
polynomial for extracting the dominant terms in the asymptotic
regime. Third, to analyze the approximation ratio in the proof
of Theorem VII-A, the index <, depends explicitly on the
coefficient ay q of the dth degree term of the polynomial
function. The coefficients a1, ..., ax,q—1 of terms with lower
degree do not affect the asymptotic analysis.

Lemma 1. Let J be the set of all possible permutations j =
(J1sJ25 s G, ) Of {1,2,...,|H1|}. Let E(C(s)) be the total
expected cost under policy s that satisfies the error constraints
in (1). Then,

irsle(C(s))
|H| d
> mgzdz “>||f ) o,

(32)
where o(1) — 0 as P™** — (.

Proof: Fix € > 0, and let E.(s) be the event where
the sample size of each observation vector taken from pro-

cess k under strategy s satisfies Ni > % for all
k =1,...,K. The complementary event is defined’ by E<(s).

Therefore, the expected cost can be lower bounded by:
Pr(Ec(s)) - E(C(s)|Ec(s))
< Pr(Ec(s)) - E(C(s)|Ec(s))
+ (1 = Pr(Ec(s))) - E(C(s)|EE(s)) = E(C(s)).

Therefore, it suffices to lower bound the term Pr(E.(s)) -
E(C(s)|Ec(s)). For this, we define a genie that declares the



state of each process k with detection probability 1 after taking
only % samples. Since normal processes do not
incur costlj we further assume that genie declares the states of
the abnormal processes first. Clearly, the cost obtained under
genie’s optimal strategy lower bounds infs E(C(s)|Ec(s)).
Next, we show that the optimal strategy for genie is to
collect the samples consecutively one by one until declarations
without switching between processes during the detection
of each process. Assume by contradiction that the optimal
sampling strategy for genie switches between processes during
the detection of a process. Denote its cost and declaration order
by C° and j = (j1, jo, -y J|H,|)» Tespectively. As a result, the
achievable cost is given by:

|H: |

Zcﬂk Jk )
S

where 77 is the last time where a sample from process ji
was taken. Next, let C™V5 be the cost obtained by a strategy
which does not switch between processes during the detection
of each process and declares the processes at the same order

J=(J1,J2; - Jm,|)- As a result,
|H1|
Z CJ’C Jk ’
and T = Zlf 1 tj;» where t;, is the number of samples

needed to detect process j;. Since CV is obtained by the
same declaration order as C, but W1th0ut switching during
the detection of each process, we get Tk > TN S for all k €
{1,2,...,|H1]|}. Finally, we use the fact that ¢, is a monotonic
increasing function resulting in c¢;, (75) > ¢;, (V). Thus,
CNS < C° which contradicts the assumption. As a result,
we next develop the optimal cost for genie by considering
strategies that take samples consecutively from each process
without switching during the detection of each process. Let
i= (1,2, ++J 3, ) be & permutation of {1,2,...,|H1]|} that
determines the probing order (without sw1tch1ng during the
detection of each process), and minimizes genie’s cost. As a
result, we have:

inf E(C(s)|Ee(s))

n

|H1] d k (1 _ G)B"- (33)
> Ji
kzl Z o ; DUFIAY)

Therefore, in the asymptotic regime we have:
inf E(C(s)|Ec(s))
| H1] )

= Z Jk,dz f(l H )

i=1
as P — 0.

d
(34)

Finally, since that Pr(FE.(s)) approaches 1 as P™*® ap-
proaches 0 [45, Lemma 2.1], and (34) holds for every € > 0,
(32) follows. O]

Next, we present Lemma 2 that was used for proving the
theorems in this paper. We start by defining T} (¢) below.

Definition 1. Let 77 (€) be the smallest integer such that for
all n > T} the following events hold:

Wk(ﬂ) >1—€ Vke Hy,
mr(n) <e Vk € Hp.

To simplify the presentation of the proofs, we often write T}
without directly referring to e.

T, can be viewed as the earliest time at which all the pro-
cesses are categorized into two groups: one group belonging
to the estimated normal set, and the second belonging to the
estimated abnormal set. It should be noted that 7} is not a
stopping time. The decision maker does not know whether T}
has occurred or not during the detection process.

Lemma 2. Set the exploration rates as follows:

d+1

wg > — Vk. 35)
min {Ik|Hn7Ik|H1}
Then, the d** moment of T} is finite,
E[T{] = O(1). (36)

Proof: We start by bounding the d** moment of T} as
follows:

(37

— iPr(Tf >n) < ipr(Tl > {nl/dJ)-
n=0 n=0

Using the definition of 7} we have:

Pr (T, > |n'/])
=Pr(3k € Hy s.t. mp(t) <1—e for some ¢ > Lnl/dJ

or 3k € Ho s.t. m(t) > € for some ¢t > |n'/]).
(38)

Define dk = k(1()1) and

(1 A& €
M)’ =—1 _—
k Og(dku—e))’

© 2 4 die
°g<<1—e>)'

My,
By rewriting the update equation of 7 (n), it can be shown
that:

e(n) = (dke*SM”) + 1) B (39)

As a result, m(n) > 1 — € iff Sp(n) > M,E Jand me(n) < e
iff Si(n) < —M, 0 . Substituting these two identities into (38)



yields:
Pr (Tl >

[n/])
=Pr (EI ke Hy st Sp(t) < M,gl) for some ¢t > Lnl/dJ)
+Pr (EI k€ Ho st Sip(t) > M,EO) for some t > Lnl/dD

< Z Pr (Sk(t) < Mél) for some > {nl/dJ>

keH,
+ Z Pr (Sk(t) > M for some ¢ > {nl/dJ) .
keHo
(40)
Summing over all possible values of ¢ yields:
Pr (Ty > |nV/4))
<Y X m(sm=m?)

ket = |_n1/dJ 41

+Z Z Pr(Sk >M(O)

k€Ho ¢— L l/dJ

Next, we bound each term in the summations. Let Ny (t) be
the number of samples taken from process k up to time ¢. Let

0n(3) 2 —0(i) + %= be a modified log likelihood ratio.
Applying the Chernoff bound and using the i.i.d. property
yields:

Pr(Sy(t) < M( )) < EEBI [E [esé;c(i):HNk(t) _
= min

I:e_Nk(t) [— log E [esif‘kmﬂ }
5>0

— e Ne® (sups>0 [f log E[esmi)] } ) .

Since €1, (i) — —£3, (i) as Nj(t) — oo, we have:

[efsék(i)} 2

>

—logE {e‘q[’“(i)} — sup—IlogE

sup
Ni(t)—00 s>0

s>0

where I} is the Legendre-Fenchel transformation of —¢j (7).

Thus, we can choose I,j’el = I;; — ¢ for any €7 > 0 such that
Pr(Sk(t) < M,gl)) < C(el)e—Nk(t)I;,eI’

where C(e;) is a finite constant independent of the sample
size. Since Ni(t) > wylog(t) by the construction of the
algorithm, for all ¢ we have:

D0 RSt < M) < 3T Clent i
t= |_n1/d t= nl/dj
o0
t:Lnl/del
< Clen)([ntV?] —ptertis
~ Lwplf o,
SC(G])TL d )

where C/(e;) is a finite constant independent of n. Us-
ing the same method, we can derive the bound for
Z:i["l/dj Pr(Si(t) > M,go)) where I} can be determined
with respect to Hj instead of H;. Substituting these bounds
into (37) yields:

oo
=Y Pr(T} >n) <
n=0

*
L—wply o

< 33 Gt

keH; n=0

17wk1;;61

+ Z Zé’(q)nf

k€ Ho n=0

(42)

Since we want (42) to be bounded, we require that:
_ 1-— W I ;; er
d
Since €; > 0 can be arbitrarily small, it is sufficient to require:
d+1
Iy
However, since the process states are unknown,
conditions can be derived by requiring:
d+1

> —
min{Zy m,, Iy m, }

>1 Vk.

Wy > Vk.

sufficient

vk,

where Iy p, = supgsg [*IOgENfIE‘)) (esek)}, Ty,

Sup,~g —logENf:‘l) (e’sek)} the Legendre-Fenchel
transformation of ¢;, and —/, at the origin with respect
to distributions f,go) and f (1), respectively, which proves the
lemma. O

are

A. Proof of Theorem 1

Define by
E(CFPEST||H,| > N,
pr 2 HC_ TN > Ne) (43)
infs E(C(s))
o E(CPEST [ < No)
p2 2 S (44)

infg E(C(s)) ’
the approximation ratios between the expected cost under the
EEST algorithm given that [H;| > N, and |Hi| < N,
respectively, and the infimum expected cost, infs E(C(s)),
over all algorithms that satisfy the error constraints.

In order to prove theorem 1.a we show that

p2 =1 as P*%* — 0. 45)

For theorem 1.b we first rewrite the approximation ratio as
follows:
p=Pep1+ (11— F)po, (46)

where P, = P(|Hy| > N,). For the proof of theorem 1.b we
show that (46) is equal to (15).

We start by evaluating p;. Without loss of generality, we
assume that the EEST algorithm has declared the process states

in the following order: 1,2,3, ..., K. Thus, 7; = 22:1 Ny, is



defined as the detection time of process i. Since 73 increases
as P"%" decreases, the cost that process k incurs is asymp-
totically equal to® c(73) ~ akydT,‘f.

Let N;, be the remaining sample size required to declare
the state of process k after 77 has elapsed. Let NFX be the
sample size taken during the exploration phase. Using these

definitions, we can bound the stopping time of process 7 by:

K 4
n<Ti+ ) NX+Y N
k=1

Hence,

CEBEST Zaz ard <

(47)

where f (17, Zszl NEX S~ | Ny) is a function that contains
all the cross products between {Ty, Y1 NEX S0 | Ny} up
to an order (d — 1). Next, we upper bound each term in the
summation on the RHS of (47). From [46, Theorem 4.1], we
know that the d*” moment of the sample size of the sequential
test is asymptotically equal to:

d
E[NZ] ~ Bk) .
e ( D)9

Let n £ T be the total detection time. Since Z,i(:l NEX <
clog(n) for some constant ¢ > 0 by the construction of the
algorithm, we have:

<ZN )d O(log?(n)).

Next, since that n ~ 17 + Zszl N, &, taking expectation, and
applying Lemma 2 yields:

% d
(Z Nk) = O(E[n7).

Similarly, since f(Tl,Zszl NEX S | Nj) contains cross
products of all the terms up to order d — 1, its expectation is
of order o(E[n]?).

Finally, fixing H;, taking expectation (with respect to the
randomness of the observations) on both sides of (47), and

(48)

(49)

3The notation f(z) ~ g(x) refers to limg—co

using the fact that normal processes do not incur costs yields:
|H1| i B d

B[0°] < (1ol Yo (3 5t )
= S IR

(50)

Finally, since the sample size of each process is asymp-
totically equal to (48), it is sufficient to evaluate the ratio

d
between Zzi‘ a; B [(Zk 15 f(1)f(0))) 1, and the in-

fimum cost obtained over all possible orders of processes
[H1]

By
RIS
deterministic values. Since |H1| > N¢ when evaluating p1,

we can choose ¢ > 0 sufficiently small in Definition 1 so that
ai,d az.d aq,d

BDUATIAT) = Ba/DUIIA™) — 7 By /DU
Finally, we can apply the bound in [47, Corollary 3.9] 'for &e—
terministic sequences to upper bound the target approximation
ratio by:

., |H1| with sample sizes { , which are

(d+1)s+ (1 —s)dt!
14 dsd+1 ’

for any d > 1. As a result, p; is upper bounded by:

(d+1)s+ (1 —s)4H!
1+ dsd+1

(D

0<s<1

p1 < M(d) =

0<s<1

as P"*" — 0.

(52)
Next, we evaluate ps. Since € > 0 in Definition 1 can be
arbitrarily small, let

€< min{Ll,Lg,...,LK,l —-U;,1-Us,...,1 — UK}

As a result, for all ¢ > Tj, we have: m(t) > Uy for all
k € Hi, and mi(t) < Ly for all & € Hp. Next, we use
similar steps as in the evaluation of p;. Since the expected
cost up to time 77 is finite independent of £ by Lemma 2, and
the algorithm performs a combinatorial search to test all the
abnormal processes in the optimal order for all ¢ > Ti, we
have:

Pt — 0.

p2=1 as P! (53)

Note that this is the condition of theorem 1.a as given in (45).
Substituting (52) and (53) into (46) completes the proof of
part b of the theorem. [

B. Proof of Theorem 2

Without loss of generality, we assume that the order in
which the processes are declared under the genie’s policy is
1,2,3, ..., K. Recall that under the genie’s policy the beliefs
are set as follows:

m(n) 0, ke€Ho,
for all n. As a result, the genie performs the sequential testing
step for all processes following the order given by the index
selection phase if |H;| > N¢ or the combinatorial search
phase if |H1] < N¢. As a result, the cost under the genie’s
strategy is given by:

Zazd<ZNk> +0(n ).

{1, ke H,



Using the same sample path, the cost under the EEST algo-
rithm is given by

CEEST — Za,,ﬂ' +O0(n - 1)+O(T1)

=1

(54)

where the last term is due to a wrong detection order by time
n < Ti. The declaration time of process ¢ under the EEST
algorithm can be written as

T, = ZN’“ + O(logn),
k=1

where O(logn) is due to the exploration phase. Thus,

f —<2Nk> +O0(n% logn).

Therefore, the cost under the EEST algorithm in (54) can be
rewritten as

CEPST — Zald<ZN;€> + 0 logn) + O(T?).

As a result, we have:

CEEST —C*

= 0(n% logn) + O(TY). (55)

Finally, taking the expectation and applying Lemma 2 yields:
R = O(E[n?'logn]), (56)

as required. O

C. Proof of Theorem 3

In this section we show that asymptotic optimality and the
approximation ratio given in (29) hold under the composite
hypothesis case. We consider the composite hypothesis setting
in [40], in which the unknown parameter 6, takes a value from
a finite set ©y. The true value of the unknown parameter for
process k is denoted by 6. The lower bound on the asymptotic
cost satisfies (32) with the corresponding parametric distri-
butions using similar arguments as in Lemma 1, where the
KL divergence is measured between the true parameter value
and the closest alternative as in standard composite hypothesis
testing.

We first develop the exploration rate required for achieving
the desired estimation consistency.

I)eﬁnition 2. Ty is defined as the smallest integer such that
0r(n) = 0y for all n > Ty, for all k.

In the following lemma we introduce a sufficient condition
on the exploration rate wy, such that the d** moment of Ty,
is finite.

Lemma 3. Set the exploration rates as defined in (25). Then,
the d*™ moment of Ty, is finite:

E [TJ%[L] =0(1).

Proof: Let Ni(t) be the number of samples taken from
process k, and 1j(t) be the probing indicator function of

process k, where 1;(t) = 1 if process k was probed at time
t, and 14(t) = 0 otherwise. We also define:

S Z 1k(t)€k(6‘ka eat)7

t=1

Sk(ek, 9, n)

as the sum of LLRs with respect to the parameters 6, and 6,

where £y, (0, 0,1t) £ log %

By the definition of the MLE, when ék = 0, we have:
Sk(0k,0,m) > 0 for all § # ;. Hence, we can write

Pr(T§;, >n) <Pr (TML > {nl/dJ)

— Pr (a t> Lnl/dJ k.0 % 0y, 5.t S0, 0,1) < o)

%) K
< > Y Y Pr(Sk(0k,0,1) <0)

t— Lnl/dJ 41 k=160€0,\0,

SR LI [

t=|n1/d]+1 k=10€Ox\0y

where the last inequality follows by applying the Chernoff
bound. Since the state of process k is unknown, we choose
the minimum rate function over the whole parameter set when
deriving conditions on wyg, and similar to the steps in Lemma
2 we have:

d+1
o> — g, 57)
min {Ik7071k,1}
where
Iio =
. 50, (60 (V)
inf PIOBPICN SUPg~( |:— logEka(y‘g(o)) (6‘ NGNS )):| ,
0 M eco,
I =
inf 9 21 SUDg5g {— logEka(y‘gu)) (e—sek(6(0>79(1)))}
0@ oMeco,
(58)
are the Legendre-Fenchel transformation of
Filyl6™)
0,00 9y £ 1pg TTE__2
O 07) =108, (yl60)
at the origin with respect to distributions f(y[6(*)) and
T (y]0™M), respectively. O

We next modify Definition 1 and Lemma 2 to prove the
theorem under unknown parameters.

Definition 3. Let T} (¢) be the smallest integer such that for
all n > T} the following events hold:

frk(n) >

ﬁk(n) <€

1—€¢ Vke Hy,
Vk € Hy.

To simplify the presentation of the proofs, we often write T}
without directly referring to e.

Lemma 4. Set the exploration rates as in (25). Then, the dth
moment of 77 is finite,

E[T{] = O(1). (59)



Proof: Note that:

E[T{] =Y Pr(T{ > n). (60)
n=0

Thus, it suffices to show that Pr(7{ > n) decreases polyno-
mially with time. Note that

Pr(T{ > n) = Pr(T{ > n, T{;, <n)
+Pr(T8 > n, T > n)
<Pr(T{ > n, T, <n) +Pr(T§ >n). (61)
The first term on the RHS decreases polynomially with n
following similar steps as in Lemma 2, and the fact that
Or(n) = Oy for all n > Ty for all k. The second term
decreases polynomially by applying Lemma 3. O
To complete the proof of Theorem 3, note that the cost is
given by:
K K i1
CPEST <N "aiq |Tur + Th + > NEX+ > Ni|
i=1 k=1 k=1
(62)

since that

K i
7 < Ty +Th +ZNEX+Z]\7k.
k=1 k=1
Applying Lemmas 3, 4 yields E[T¢,;] = O(1) and E[T{] =
O(1). Therefore, the rest of the proof follows by similar steps
as in Theorem 1. O

D. Proof of Theorem 4

Following the same arguments as in the proof of Theorem
2, the cost under the genie’s policy is given by:
d

K i
C* =) aia| Y _Ne| +0(*M).
i=1 k=1

The cost under the EEST algorithm is given by:

(63)

K
CFEST _ Z ai gt + 01 + O(TH) + O(T, ).
=1
(64)

By applying Lemma 3, the d*™ moment of Ty, is finite. Thus,
The rest of the proof is similar to the proof of Theorem 2. [J
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