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Sequential Anomaly Detection under a Nonlinear
System Cost

Andrey Gurevich, Kobi Cohen, Qing Zhao

Abstract— We consider the problem of anomaly detection
among K heterogeneous processes. At each given time, one
process is probed, and the random observations follow two
different distributions, depending on whether the process is
normal or abnormal. Each anomalous process incurs a cost
until its anomaly is identified and fixed, and the cost is a
nonlinear (specifically, polynomial with degree d) function of the
duration of the anomalous state. The objective is a sequential
search strategy that minimizes the total expected cost incurred
by all the processes during the detection process under reliability
constraints. We propose a search algorithm that consists of explo-
ration, exploitation, and sequential testing phases. We establish
its asymptotic optimality, and analyze the approximation ratio
and the regret under computational constraints.

Index Terms— Anomaly detection, sequential hypothesis
testing, Sequential Probability Ratio Test (SPRT).

I. INTRODUCTION

Consider a system consisting of K processes. Each process
(say k) may be abnormal with an a-priori probability πk
independent of other processes. The processes can represent
components (such as routers and paths) in a cyber system,
channels in a communication network, potential locations of
targets, or sensors monitoring certain events. Each abnormal
process incurs a cost until the anomaly is identified and
fixed, and the cost is polynomial ck(t) =

∑d
i=1 ak,it

i of
degree d with the time that the process stays anomalous. At
each given time, one process is probed, and the observation
follows distributions f (0)

k or f (1)
k depending on whether the

process is normal or anomalous, respectively. The objective
is a sequential search strategy that dynamically determines
which process to probe at each time and when to terminate
the search so that the total expected cost incurred to the
system during the entire detection process is minimized under
reliability constraints.

A. Main Results

The above anomaly detection problem has a clear connec-
tion with the classic sequential hypothesis testing problem
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pioneered by Wald [2]. The presence of multiple processes
and the objective of minimizing the total cost (rather than the
detection delay), however, give the problem another dimen-
sion. In addition to quickly declaring the state of a process by
fully utilizing past observations, the probing order is crucial in
minimizing the total cost. It is intuitive that processes with a
higher probability of being abnormal and a higher cost when
abnormal should be probed first. At the same time, it may
be desirable to probe processes that require more samples to
detect their states (determined by the distance between f

(0)
k

and f
(1)
k ) toward the end of the detection process to avoid

long delays in catching other potentially abnormal processes.

There are several studies on sequential detection under
linear cost functions, including a fixed cost per sample [3]–
[5], and a fixed cost due to undetected anomalies per unit time
[6], [7]. Unlike these studies, in this paper we tackle a general
nonlinear cost setting (for a detailed comparison with related
work see Section I-C). We develop an effective algorithm,
referred to as Exploration, Exploitation, and Sequential Testing
(EEST), and analyze its performance in terms of regret,
approximation ratio, and asymptotic optimality. Specifically,
since the system cost depends on the unknown system state,
the EEST algorithm aims at learning the set of abnormal
processes while at the same time probing the processes in
a desired order so as to minimize the estimated system cost.
To ensure the accuracy of the learning process, a logarithmic
order of time is used to explore the state of all processes. In
the remaining majority of time instants, the EEST algorithm
exploits the information gathered up to this point to select the
processes in a desired order based on the estimated states.
The algorithm implements two exploitation phases, which are
referred to as the index selection phase, and the constrained
combinatorial search phase. Roughly speaking, the index
selection phase performs low-complexity probing (only linear
with K) with a bounded approximation ratio of the cost.
The constrained combinatorial search phase minimizes the
cost function directly (e.g., by performing branch and bound)
but only over a small set of processes (determined by the
required computational constraint). Then, in the sequential
testing phase, the algorithm applies a sequential test using the
collected observations to determine the state of the probed
process subject to constraints on type I and type II errors.

We analyze the algorithm performance theoretically, and
show that the EEST algorithm is asymptptically optimal
in terms of minimizing the cost as the error probability
constraints approach zero. Since that achieving asymptotic
optimality requires to perform a combinatorial search over
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the estimate abnormal set, we also establish performance
guarantees when computational constraints apply. Specifically,
we analyze the approximation ratio ρ, defined as the ratio
between the cost under the EEST algorithm and the optimal
cost, and the regret, defined as the performance loss of EEST
algorithm against a benchmark, in which the optimal probing
strategy with knowledge of the set of anomalous processes is
employed. We show that the approximation ratio is bounded
and the regret order is O(td−1 log t) with time t for d ≥ 1. We
note that asymptotic optimality of the EEST algorithm (i.e.,
ρ = 1) for d = 1 (i.e., linear cost function) is obtained even
when computational constraints apply.

B. Applications

The anomaly detection problem considered in this paper
finds applications in systems where the loss incurred by
abnormal processes can be modeled by a polynomial cost with
time. In the following we give two specific examples.

Consider a cyber network consisting of K components
(which can be routers, servers, domains, etc.). Due to resource
constraints, only a subset of the components can be probed
at a time. An intrusion detection system (IDS) monitors the
traffic over the components to detect Denial of Service (DoS)
attacks (such attacks aim to overwhelm the component with
useless traffic to make it unavailable for its intended use until
it is detected and fixed). An objective of minimizing the total
loss in data rate during the DoS attacks translates to a cost
ck(t) given by the expected data rate (or expected number of
packets) per unit time. This setting results in minimizing a
linear cost function with time. An alternative, and often more
relevant objective is to minimize the total loss in Quality of
Experience (QoE) of users during the DoS attacks, which is
commonly modeled by a polynomial function of time [8].
In this case, the cost ck(t) is given by the QoE for using
component k. This setting results in minimizing a polynomial
cost function.

A similar example arises in spectrum sensing in cognitive
radio systems, where a cognitive user aims at finding idle
channels for transmission. Due to narrowband sensing, only
a subset of the channels can be probed at a time. Similar to
the previous example, the objective of minimizing the total
loss in QoE during the sensing process leads to minimizing a
polynomial cost function.

C. Related Work

Sequential hypothesis testing was pioneered by Wald [2],
where he established the Sequential Probability Ratio Test
(SPRT) for binary hypothesis testing. For simple hypothesis
testing where the observation distributions are known, SPRT is
optimal in terms of minimizing the expected sample size under
given type I and type II error probability constraints. Various
extensions to M-ary hypothesis testing and testing composite
hypotheses have been studied in [9]–[13] for a single process.
In these cases, asymptotically optimal performance can be
obtained in terms of minimizing the expected sample size as
the error probability approaches zero. In this paper, we focus
on asymptotically optimal strategies with low computational

complexity for sequential anomaly detection over multiple
processes with a limited probing capacity. Different models
have considered the case of searching for anomalies (or
targets) without constraints on the probing capacity, where all
processes are probed at each given time (i.e., K = M , which
is a special case of the setting considered in this paper) [12],
[14]–[16].

There are several studies on sequential detection under
linear cost functions, including a fixed cost per sample [3]–
[5], and a fixed cost due to undetected anomalies per unit
time [6], [7]. Unlike these studies, in this paper we tackle
a general nonlinear cost setting. It should be noted that
there are fundamental differences between this paper and our
previous work [7] as detailed next. First, in terms of the
exploitation phase, in contrast to the linear cost case [7],
the index selection phase alone cannot achieve asymptotic
optimality under nonlinear costs (which can be shown by
counterexamples). Thus, a combinatorial search is needed,
and is a key feature to ensure asymptotic optimality. This,
however, brings a new challenge: an efficient tradeoff between
performance and computational complexity. Our approach to
this challenge is to carry out the computationally expensive
phase of the combinatorial search only when it has the
potential of bringing the most information. More specifically,
the combinatorial search is carried out only when the belief
about the abnormal set is sufficiently high (i.e., the posterior
probabilities of all processes are above the upper threshold or
below the lower threshold), and the thresholds represent the
tuning knob for trading off performance with computational
complexity. These design principles constitute fundamental
differences in terms of algorithm design as compared to
CL − πcN algorithm [7]. The theoretical analysis is thus
fundamentally different in this respect. Specifically, proving
asymptotic optimality and the approximation ratio requires
analysis of two different regimes. One is the asymptotic
optimality obtained by the combinatorial search phase (which
is absent in [7]). The second is the approximation ratio of the
index selection phase when computational constraints apply,
which is not asymptotically optimal in the polynomial cost
case in contrast to the linear case in [7]. Second, in terms of
the exploration phase, in [7], we only showed that it is possible
to achieve asymptotic optimality by exploring processes at rate
ωk log(t), but the value of the leading constant ωk remained
unknown, which results in difficulties when implementing the
algorithm. This issue is solved in this paper by establishing
explicit sufficient conditions for the design of the exploration
phase for general polynomial functions, which has significant
implications in both practical implementation and theoretical
study. Finally, regret analysis was not shown in previous works
even for the linear cost case.

There are a number of recent studies on sequential detection
involving multiple independent processes for various applica-
tions (see for example, [17]–[26] and the references therein).
Unlike this work, these studies have focused on minimizing the
total detection delay, which does not translate into minimizing
the total cost in the problem considered here. Other related
works have considered dynamic search and outlier detection,
as studied in [14], [27]–[35] (and the references therein)
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under a sequential setting and in [36]–[39] (and the references
therein) under a fixed sample size setting, where the objective
was to locate a single target among multiple processes quickly
and reliably.

The anomaly detection problem studied in this paper can be
considered as a variation of the sequential design of experi-
ments problem first studied by Chernoff [40]. In this problem,
a decision maker aims to infer the state of an underlying
phenomenon by sequentially choosing the experiment (thus
the observation model) to be conducted at each time among a
set of available experiments. Classic and more recent studies
of this problem can be found in [4], [29], [41]–[43]. In [29],
[40]–[43], the objective of minimizing the total detection delay
was considered. In [4], the problem was extended to the case
where taking an observation under a specific experiment is
associated with a deterministic known cost, and the objective is
to minimize the total cost during the test. However, the setting
of a random and unknown cost (depending on the system state)
at each given time makes the problem considered in this paper
fundamentally different from the problem considered in [4].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system consisting of K processes, where each
process may be in an abnormal state (denoted by H1) with
probability πk, or a normal state (denoted by H0) with
probability 1−πk, independent of other processes. Let ck(t) =∑d
i=1 ak,it

i, where 0 ≤ ak,d < ∞ for k = 1, ...,K,
be a polynomial cost function of degree d, monotonically
increasing with t ≥ 0. Each abnormal process k incurs a
polynomial cost ck(t) until it is tested and identified. Processes
in a normal state do not incur cost. At each given time, a single
observation (or a fixed batch of observations) is collected
from a chosen process, and a measurement (say process k
observed at time n) yk(n) is drawn independently. If process
k is in a normal state, yk(n) follows density f (0)

k ; if process
k is abnormal, yk(n) follows density f (1)

k . In Section III, we
examine the case where the densities f (0)

k , f
(1)
k are known.

In Section IV, we extend the results to the case where the
densities have unknown parameters.

Let φ(n) ∈ {1, 2, ...,K} be a selection rule, indicating
which process is chosen to be tested at time n. Let y(n) ={
φ(t), yφ(t)(t)

}n
t=1

be the set of all the observations and
actions taken by time n. The selection rule φ(n) is a mapping
from y(n− 1) to {1, 2, ...,K}. We also define the time series
vector of selection rules by φ = (φ(1), φ(2), ...). Let τk be a
stopping time, which is the time (counted from the beginning
of the entire detection process) when the decision maker stops
collecting observations from process k and declares its state.
We also define the stopping time vector for the K processes by
τ = (τ1, ..., τK). Let Nk be the random sample size collected
from process k until declaring its state. Let δk ∈ {0, 1}
be a decision rule for process k at time τk. δk = 0 if the
decision maker declares that process k is in a normal state,
and δk = 1 if the decision maker declares that process k is in
an abnormal state. We define the vector of decision rules for
the K processes by δ = (δ1, ..., δK). An admissible strategy

s for the anomaly detection problem is given by the tuple
s = (τ , δ,φ).

Let

H0 , {k : 1 ≤ k ≤ K , process k is normal} ,

H1 , {k : 1 ≤ k ≤ K , process k is abnormal} ,

be the sets of the normal and abnormal processes, respectively.
The objective is to find a strategy s that minimizes the total
expected cost incurred by all the processes subject to type I
(false-alarm) and type II (miss-detection) error constraints for
each process:

inf
s

E

{∑
k∈H1

ck (τk)

}

s.t. PFAk ≤ αk ∀k = 1, ...,K,

PMD
k ≤ βk ∀k = 1, ...,K ,

(1)

where PFAk , PMD
k denote the false-alarm and miss-detect

error probabilities for process k, respectively.

III. THE EXPLORATION, EXPLOITATION, AND
SEQUENTIAL TESTING (EEST) ALGORITHM

Sequential detection problems involving multiple processes
are partially-observed Markov decision processes (POMDP)
[37] which have exponential complexity in general. For
tractability, a commonly adopted performance measure is
asymptotic optimality in terms of minimizing the objective
function as the error probability approaches zero (see, for
example, classic and recent results in [4], [9], [10], [15], [16],
[29], [30], [40]–[42]). Hence, we are interested in developing a
low-complexity algorithm that achieves asymptotically optimal
performance in terms of minimizing (1) as the error constraints
approach zero.

We first provide notations and definitions that will be used
to describe the EEST algorithm. Let 1k(n) be the probing
indicator function, where 1k(n) = 1 if process k is probed at
time n and 1k(n) = 0 otherwise. Let

`k(n) , log
f

(1)
k (yk(n))

f
(0)
k (yk(n))

, (2)

and

Sk(n) ,
n∑
t=1

`k(t)1k(t) (3)

be the log-likelihood ratio (LLR) and the observed sum LLRs
at time n of process k, respectively. Let K(n) be the set of
processes whose states have not been declared up to time n.
Let πk(n) denote the posterior probability of process k being
abnormal at time n. Let E(n)(Nk) be the expected sample
size required for declaring the state of process k observed by
time n (which dynamically changes due to the changes in the
belief πk(n)), where Nk is the random sample size required
to declare its state. Define

γk(n) ,
πk(n)ak,d
E(n)(Nk)

, (4)
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where ak,d is the dth-degree coefficient of the polynomial
function ck(t) as defined in Section II. Let Lk, Uk be thresh-
olds of process k, where 0 < Lk < Uk < 1 (the setting of
Lk, Uk is discussed later). Let H1(n) be the set of processes
in K(n) that satisfy πk(n) > Uk at time n with cardinality
|H1(n)| = NH1

(n). The set H1(n) can be viewed as the
estimate of the set H1 at time n. Let E(Nk|H1) be the
expected sample size required to declare the state of process k
under hypothesis H1 (note that E(Nk|H1) is fixed over time).
The expected sample size E(Nk|H1) is determined by the
SPRT described later so that the error constraints are satisfied.
Finally, let NC ∈ {1, ..., N} be a computational constraint
value.

A. The Algorithm

Next, we describe the EEST algorithm with respect to
the time index n. The algorithm parameters are described in
Section III-B. Since processes whose states have been declared
are no longer tested, we refer only to processes k ∈ K(n):

1) (Exploration phase:) If the number of observations that
have been collected from some process k ∈ K(n)
satisfies:

Nk(n) < ωk log n,
then φ(n) = k and go to Step 1 again. Otherwise, go to
Step 2.

2) If NH1(n) > NC or NH1(n) = 0 or there exists a process
k ∈ K(n) that satisfies Lk ≤ πk(n) ≤ Uk, then go to
Step 3. Otherwise, go to Step 4.

3) (Index selection phase:) Probe the process with the high-
est index:

φ(n) = arg max
k∈K(n)

γk(n),

and go to Step 5.

4) (Constrained combinatorial search phase:) Let
σ(n) = (σ1(n), ..., σNH1

(n)(n))

be a permutation of H1(n). Probe the next process φ(n)
according to the permutation order that minimizes:

NH1
(n)∑

i=1

cσi(n)

 σi(n)∑
j=σ1(n)

E(Nj |H1)

.

Go to Step 5.

5) Update Sφ(n)(n) based on the last observation. Following
Wald’s SPRT [2], Sφ(n)(n) is compared to boundary
values Aφ(n), Bφ(n) as follows: If

Sφ(n)(n) ∈
(
Aφ(n), Bφ(n)

)
,

then φ(n) ∈ K(n+ 1). Otherwise, if
Sφ(n)(n) ≥ Bφ(n),

then stop taking observations from process φ(n) and
declare it as abnormal (i.e., τφ(n) = n, δφ(n) = 1 and
φ(n)6∈K(n′) for all n′ > n). Otherwise, if

Sφ(n)(n) ≤ Aφ(n),
then stop taking observations from process φ(n) and
declare it as normal (i.e., τφ(n) = n, δφ(n) = 0 and
φ(n)6∈K(n′) for all n′ > n). Go to step 1.

The EEST algorithm can be intuitively explained as follows.
During the index selection phase, the index γk(n) gives a
closed-form expression of how three key parameters—the cost
coefficient ak,d of the dth degree term of the polynomial
function that dominates the asymptotic cost, the posterior
probability, and the difficulty in distinguishing the normal
distribution f

(0)
k from the abnormal distribution f

(1)
k —are

traded off when choosing the observed process at each given
time n. Sorting the indices can be done in O(K logK)
time with a sorting algorithm. The algorithm moves to the
constrained combinatorial search phase when the abnormal set
H1 has been estimated with sufficient reliability, and NH1(n)
is sufficiently small (but not zero). This phase applies an ex-
haustive search over NC processes at most, and more efficient
algorithms such as branch and bound can be applied for small
d. As a result, NC applies a constraint on the combinatorial
search used to guarantee the desired computational complexity.
When the a priori probabilities for processes of being abnormal
are small (so that |H1| << K as in many anomaly detec-
tion applications), the constrained combinatorial search phase
ensures an approximation ratio close to 1. The thresholds
Lk, Uk are tuning parameters that trade off computational
complexity with detection performance in the finite-sample
regime. Typically, we set Lk, Uk close to 0, 1, respectively.
Note that setting Lk, Uk too close to 0 and 1 results in a
longer index selection phase, which reduces complexity but
also deteriorates performance in the finite-sample regime. On
the other hand, setting Lk, Uk far from 0 and 1 results in
a longer constrained combinatorial search, which improves
performance, but increases the computational complexity in
the finite-sample regime. We point out that switching between
the index selection phase and constrained combinatorial search
used to trade-off between performance and complexity, is not
needed in the case of linear cost. The combinatorial search
phase is used to guarantee asymptotically optimal perfor-
mance, since the index selection phase is not asymptotically
optimal in the case of nonlinear cost. The conditions Nk(n) ≥
ωk log n for all k ensure that a logarithmic order of time is used
to collect observations from all the processes (i.e., exploration
phase). Setting ωk judiciously (as detailed in Section III-C)
guarantees a sufficiently accurate estimate of the abnormal set
H1 used for achieving the theoretical performance. The setting
of ωk (see (11)) depends on the degree d of the polynomial
cost function. The higher d the higher the required exploration
rate.

B. Implementation

Implementing the EEST algorithm requires computing the
posterior probability πk(n), the boundary values Ak, Bk,
and the expected detection time E(Nk|Hi). The posterior
probability πk(n) is updated according to Bayes’ rule which
is given by

πk(n+ 1) = (1− 1k(n))πk(n)

+
1k(n)πk(n)f

(1)
k (yk(n))

πk(n)f
(1)
k (yk(n)) + (1− πk(n)) f

(0)
k (yk(n))

.
(5)
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The boundary values Ak and Bk are set such that the
error constraints are satisfied. In general, computing the exact
boundary values is very laborious under the finite sample
regime. Nevertheless, Wald’s approximation can be applied
to simplify the computation [2]:

Ak ≈ log

(
βk

1− αk

)
,

Bk ≈ log

(
1− βk
αk

)
.

(6)

Wald’s approximation performs well for small αk, βk and
is asymptotically optimal as the error probability approaches
zero. Since type I and type II errors are typically required to
be small, Wald’s approximation is widely used in practice [2].

The expected sample size E(n)(Nk) at time n depends on
the current belief:

E(n)(Nk) = πk(n)E(Nk|H1) + (1− πk(n))E(Nk|H0) ,
(7)

where E(Nk|Hi) is the expected sample size for process k
conditioned on its state Hi. In general, it is difficult to obtain
a closed-form expression for E(n)(Nk|Hi) under the finite
sample regime. However, Wald’s approximation can be applied
to simplify the computation [2]:

Ê(Nk|H0) ,
− (1− αk)Ak − αkBk

D(f
(0)
k ||f

(1)
k )

,

Ê(Nk|H1) ,
(1− βk)Bk + βkAk

D(f
(1)
k ||f

(0)
k )

,

(8)

where D(f
(i)
k ||f

(j)
k ) = Ei

(
log

f
(i)
k (yk(1))

f
(j)
k (yk(1))

)
denotes the

Kullback-Leibler (KL) divergence between the hypotheses Hi

and Hj , where the expectation is with respect to f
(i)
k . This

approximation approaches the exact expected sample size for
small αk, βk. As a result, the approximation to the expected
sample size is computed by:

Ê(n)(Nk) = πk(n)Ê(Nk|H1) + (1− πk(n))Ê(Nk|H0) .
(9)

C. Performance Analysis

Next, we establish the asymptotic approximation ratio of
the EEST algorithm. Let PC = Pr (|H1| > NC), and let

Pmaxe , max (α1, β1, ..., αK , βK) . (10)

Set
ωk >

d+ 1

min
{
Ik|H0

, Ik|H1

} ∀k, (11)

where
Ik|H0

, sup
s>0

[
− log E∼f(0)

k

(
es`k

)]
,

Ik|H1
, sup

s>0

[
− log E∼f(1)

k

(
e−s`k

)] (12)

are the Legendre-Fenchel transformation of `k at the origin
with respect to distributions f (0)

k and f (1)
k , respectively. In the

analysis we show that setting the exploration rates according to

(11) guarantees a sufficiently accurate estimate of the abnormal
set (see the proof of Lemma 2 in the appendix). The following
theorem establishes the asymptotic approximation ratio of the
EEST algorithm.

Theorem 1. Let E(CEEST ) be the expected cost under the
EEST algorithm, and infs E(C(s)) be the infimum expected
cost over all algorithms that satisfy the error constraints. Then,

a) (Asymptotic optimality of the EEST algorithm:) Set NC =
K (i.e., computational constraints do not apply). Then1,

E(CEEST ) ∼ inf
s

E(C(s)) as Pmaxe → 0. (13)

b) (Approximation ratio of the EEST algorithm under compu-
tational constraints:) Let

ρ ,
E(CEEST )

infs E(C(s))
(14)

be the approximation ratio between the expected cost under
the EEST algorithm, E(CEEST ), and the infimum expected
cost, infs E(C(s)), over all algorithms that satisfy the error
constraints. Then,

ρ ≤ (1− PC) + PCM(d) as Pmaxe → 0 , (15)

where

M(d) , max
0≤s≤1

(d+ 1)s+ (1− s)d+1

1 + dsd+1
. (16)

A detailed proof and regularity conditions are given in
Appendix VII-A.

Remark 1. The function M(d) equals 1 at d = 1 and in-
creases with d. For instance, M(1) = 1,M(2) ≈ 1.3,M(3) ≈
1.8,M(4) ≈ 2.3,M(5) ≈ 3. As a result, for the case of a
linear cost with time (i.e., d = 1) the algorithm is asymptoti-
cally optimal, and good theoretical performance is guaranteed
for small d. Simulation results demonstrate good performance
for large d as well. Furthermore, when the probabilities of
processes being abnormal are small or when the computational
constraint is loose, then ρ is close to 1 since PC is close to
zero.

Next, we investigate how fast non-dominant terms vanish
with time. Thus, we define the regret as the difference between
the cost under the EEST algorithm and the cost obtained
by a genie that has an accurate estimate of the abnormal
set H1(n) = H1 for all n. Thus, the genie’s beliefs are
set to πi(n) = 0 for all i ∈ H0, and πj(n) = 1 for all
j ∈ H1. Note that although the genie knows the abnormal set
H1 accurately, it still performs the detection process so that
we can measure how fast our algorithm learns the unknown
side information that the genie has. Therefore, Steps 1, 2 are
replaced by the following step when applying the genie’s
strategy: Set H1(n) = H1. If NH1(n) > NC , go to Step
3. Otherwise, go to Step 4. Note that we can set NC = N as
a special case when comparing the algorithm with an optimal
probing without computational constraints. Let C∗ be the cost

1The notation f ∼ g as Pmax
e → 0 refers to lim

Pmaxe →0
f/g = 1.
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obtained under the genie’s strategy, and CEEST be the cost
under the EEST algorithm.

Theorem 2. Let

R , E
[
CEEST − C∗

]
(17)

be the regret of the EEST algorithm with respect to the genie’s
strategy, such that the error constraints are satisfied. Let n =
max(τ1, ..., τK) be the random termination time of the genie’s
strategy (which is a stopping time). Then,

R = O
(
E[nd−1 log n

]
) as Pmaxe → 0 . (18)

The proof is given in Appendix VII-B.

Remark 2. Theorem 2 implies that the additional cost ob-
tained under the EEST algorithm as compared to the genie’s
strategy is of order O

(
E[nd−1 log n]

)
. Since the cost under

the genie’s strategy is of order O
(
E[nd]

)
, the additional cost

under the EEST algorithm vanishes with time. When d = 1,
a logarithmic regret is obtained.

IV. ANOMALY DETECTION UNDER UNKNOWN
OBSERVATION MODELS

In this section we consider the case where the observation
distributions are governed by unknown parameters. Specifi-
cally, let θk be the unknown parameter (vector) of process
k. The observation yk(n) follows density fk(y|θk), θk ∈ Θk,
where Θk is the parameter space of process k. If process k is in
a normal state, then θk ∈ Θ

(0)
k ; if process k is in an abnormal

state, then θk ∈ (Θk\Θ(0)
k ). Let Θ

(0)
k , Θ

(1)
k be disjoint subsets

of Θk, where Rk = Θk\(Θ(0)
k ∪Θ

(1)
k ) 6= ∅ is an indifference

region2. When θk ∈ Rk, the detector is indifferent to the state
of process k. As a result, there are no constraints on the error
probabilities for all θk ∈ Rk. The essence of the sequential
testing step for process k is thus testing θk ∈ Θ

(0)
k against

θk ∈ Θ
(1)
k . Reducing Rk increases the sample size.

Although the SPRT algorithm used in the sequential test-
ing step in the previous section under completely known
distributions is optimal in terms of minimizing the required
sample size of each process, it is highly sub-optimal when
the distributions have unknown parameters. Therefore, our
approach in this section is to incorporate an asymptotically
optimal test (in terms of minimizing the sample size as the
error probability approaches zero) in the sequential testing
step. There are a number of asymptotically optimal sequential
tests for a single process, where the basic idea is to use
the maximum likelihood estimate (MLE) of the unknown
parameters to perform a one-sided sequential test to reject H0

and a one-sided sequential test to reject H1. One way is to use
the Adaptive Likelihood Ratio (ALR) statistics, which were
first introduced by Robbins and Siegmund in [44]. Specifically,
For i, j ∈ {0, 1} and i 6= j, let

S
(i)
k (n) =

n∑
r=1

log
fk(yk(r)|θ̂k(r − 1))

fk(yk(r)|θ̂(j)
k (n))

(19)

2We adopted the assumption of an indifference region as commonly used
in the theory of sequential hypothesis testing for establishing asymptotic
optimality. Nevertheless, in some cases this assumption can be relaxed as
analyzed in [10].

be the ALR statistics used to declare hypothesis Hi at stage
n, where θ̂k(t) = arg maxθk∈Θk fk (yk(t)|θk) and θ̂

(j)
k (t) =

arg max
θk∈Θ

(j)
k

fk (yk(t)|θk) are the maximum likelihood
(ML) estimates of the parameters over the parameter spaces
Θk and Θ

(j)
k at stage t, respectively. Let

N
(i)
k = inf

{
n : S

(i)
k (n) ≥ B(i)

k

}
(20)

be the stopping rule for declaring Hi, where B
(i)
k is the

boundary value. For each process k, the decision maker stops
the sampling when Nk = min

{
N

(0)
k , N

(1)
k

}
. If Nk = N

(0)
k ,

process k is declared as normal. If Nk = N
(1)
k , process k is

declared as abnormal. We point out that another way is to use
the Generalized Likelihood Ratio (GLR) statistics [10], which
is able to improve performance by updating the estimate in
the numerator for all n. Nevertheless, here we adopt the ALR
statistics, since setting

B
(0)
k = log

1

αk
,

B
(1)
k = log

1

βk
,

(21)

satisfies the error probability constraints in (1), while such
a simple setting cannot be applied when using the GLR
statistics.

A. The algorithm

We modify the EEST algorithm so that it can apply to the
case of the unknown observation model considered in this
section. We replace the belief πk(n+ 1), and the index γk(n)
by their estimates π̂k(n+ 1), and γ̂k(n), respectively (see the
explicit expressions in Section IV-B). We define Ĥ1(n) as the
set of processes in K(n) that satisfy π̂k(n) > Uk at time n with
cardinality |Ĥ1(n)| = N̂Ĥ1

(n). The set Ĥ1(n) can be viewed
as the estimate of the set H1 at time n. Since processes whose
states have been declared are no longer tested, we refer only
to processes k ∈ K(n):

1) (Exploration phase:) If the number of observations that
have been collected from some process k ∈ K(n)
satisfies:

Nk(n) < ωk log n,
then φ(n) = k and go to Step 1 again. Otherwise, go to
Step 2.

2) If N̂Ĥ1
(n) > NC or N̂Ĥ1

(n) = 0 or there exists a process
k ∈ K(n) that satisfies Lk ≤ π̂k(n) ≤ Uk, then go to
Step 3. Otherwise, go to Step 4.

3) (Index selection phase:) Probe the process with the high-
est index:

φ(n) = arg max
k∈K(n)

γ̂k(n),

and go to Step 5.

4) (Constrained combinatorial search phase:) Let
σ(n) = (σ1(n), ..., σN̂Ĥ1

(n)(n))

be a permutation of N̂H1
(n). Probe the next process φ(n)

according to the permutation order that minimizes:
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N̂Ĥ1
(n)∑

i=1

cσi(n)

 σi(n)∑
j=σ1(n)

Ê(Nj)

.

Go to Step 5.

5) Update S
(i)
φ(n)(n) for i = 0, 1 based on the last obser-

vation. Then, S(i)
φ(n)(n) is compared to boundary values

B
(0)
φ(n), B

(1)
φ(n) as follows:

If
S

(0)
k (n) < B

(0)
k and S

(1)
k (n) < B

(1)
k ,

then φ(n) ∈ K(n+ 1). Otherwise, if

S
(1)
k (n) ≥ B(1)

k ,

stop taking observations from process k and declare it as
abnormal (i.e., τφ(n) = n, δφ(n) = 1 and φ(n)6∈K(n′) for
all n′ > n). Otherwise, if

S
(0)
k (n) ≥ B(0)

k ,

stop taking observations from process k and declare it as
normal (i.e., τφ(n) = n, δφ(n) = 0 and φ(n)6∈K(n′) for
all n′ > n). Go to step 1.

B. Implementation

We now detail the parameters used to implement the mod-
ified EEST algorithm. The modified belief is given by:

π̂k(n+ 1) = (1− 1k(n)) π̂k(n)

+
1k(n)π̂k(n)f̂

(1)
k (yk(n))

π̂k(n)f̂
(1)
k (yk(n)) + (1− π̂k(n)) f̂

(0)
k (yk(n))

,
(22)

where π̂k(1) = πk(1) and f̂
(1)
k (yk(r)) , fk(yk(r)|θ̂(1)

k (n)),
f̂

(0)
k (yk(r)) , fk(yk(r)|θ̂(0)

k (n)) for all 1 ≤ r ≤ n.
The modified index γ̂k(n) is given by:

γ̂k(n) ,
π̂k(n)ak,d

Ê(n)(Nk)
. (23)

In general, it is difficult to obtain a closed-form expression
for Ê(n)(Nk) under the finite sample regime. However, we
can use the asymptotic property of the sequential tests to
obtain a closed-form approximation for Ê(n)(Nk) based on
the ML estimate of the parameter, which approaches the exact
expected sample size as the error probability approaches zero.
Let Dk(θ̂k(n)||θ) , Eθ̂k(n)

(
log fk(yk(n)|θ̂k(n))

fk(yk(n)|θ)

)
be the KL

divergence between fk(yk(n)|θ̂k(n)) and fk(yk(n)|θ), where
the expectation is taken with respect to fk(yk(n)|θ̂k(n)),
and let Dk(θ̂k(n)||Θ(i)

k ) = inf
θ∈Θ

(i)
k

Dk(θ̂k(n)||θ). Then, the
estimated expected sample size required to make a decision
regarding the state of process k is given by:

Ê(n)(Nk) =



B
(0)
k

Dk

(
θ̂k(n)||Θ(1)

k

) , if θ̂k(n)) ∈ Θ
(0)
k ,

B
(1)
k

Dk

(
θ̂k(n)||Θ(0)

k

) , if θ̂k(n)) ∈ Θ
(1)
k ,

(24)

which is guaranteed to be the asymptotic sample size under
various families of distributions with unknown parameters
(e.g., exponential, multivariate distributions, and general
distributions with unknown parameters that take a finite
number of values) as the error probabilities approach
zero [10]–[12], [40].

C. Performance Analysis

We next establish the approximation ratio and the regret
under the case where Θk is discrete for all k = 1, ...,K. Set

ωk >
d+ 1

min
{
Ĩk,0, Ĩk,1

} ∀k, (25)

where

Ĩk,0 ,

inf
θ(0) 6=θ(1),
θ(0),θ(1)∈Θk

sup
s>0

[
− log E∼fk(y|θ(0))

(
es`k(θ(0),θ(1))

)]
,

Ĩk,1 ,

inf
θ(0) 6=θ(1),
θ(0),θ(1)∈Θk

sup
s>0

[
− log E∼fk(y|θ(1))

(
e−s`k(θ(0),θ(1))

)]
,

(26)
are the Legendre-Fenchel transformations of

`k(θ(0), θ(1)) , log
fk(y|θ(1))

fk(y|θ(0))

at the origin with respect to distributions fk(y|θ(0)) and
fk(y|θ(1)), respectively. In the analysis we show that setting
the exploration rates according to (26) guarantees a sufficiently
accurate estimate of the abnormal set (see the proof of Lemma
3 in the appendix). The following theorem establishes the
asymptotic approximation ratio of the EEST algorithm for the
unknown observation model.

Theorem 3. Consider the unknown observation model as
detailed in this section. Let E(CEEST ) be the expected
cost under the EEST algorithm, and infs E(C(s)) be the
infimum expected cost over all algorithms that satisfy the error
constraints. Then,

a) (Asymptotic optimality of the EEST algorithm:) Set NC =
K (i.e., computational constraints do not apply). Then,

E(CEEST ) ∼ inf
s

E(C(s)) as Pmaxe → 0. (27)

b) (Approximation ratio of the EEST algorithm under compu-
tational constraints:) Let

ρ ,
E(CEEST )

infs E(C(s))
(28)

be the approximation ratio between the expected cost under
the modified EEST algorithm E(CEEST ), described in Section
IV-A, and the infimum expected cost infs E(C(s)) over all
algorithms that satisfy the error constraints. Then,

ρ ≤ (1− PC) + PCM(d) as Pmaxe → 0 , (29)



8

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

Fig. 1. The cost ratio between the EEST algorithm and the open loop SPRT
as a function of the number of processes. The case of processes that follow
a Poisson distribution.

where M(d) = max
0≤s≤1

(d+ 1)s+ (1− s)d+1

1 + dsd+1
.

A detailed proof and regularity conditions are given in
Appendix VII-C.

Next, we investigate how fast non-dominant terms vanish
with time. Thus, we define the regret as the difference between
the cost under the EEST algorithm and the cost obtained by
a genie that has an accurate estimate of the abnormal set
H1(n) = H1 for all n, and the true parameter θ. Thus, genie’s
beliefs are set to πi(n) = 0 for all i ∈ H0, and πj(n) = 1
for all j ∈ H1, and the estimate of θ is set to the true value.
Note that although genie knows the abnormal set H1 and the
parameter θ accurately, it still performs the same sequential
testing step so that we can measure how fast our algorithm
learns the unknown side information that genie has. Let C∗

be the cost obtained under genie’s strategy, and CEEST be
the cost under the modified EEST algorithm in this setting.

Theorem 4. Consider the unknown observation model as
detailed in this section. Let

R , E
[
CEEST − C∗

]
(30)

be the regret of the modified EEST algorithm, described in
Section IV-A, with respect to genie’s strategy, such that the
error constraints are satisfied. Let n = max(τ1, ..., τK) be the
termination time of genie’s strategy (which is a stopping time).
Then,

R = O
(
E[nd−1 log n

]
) as Pmaxe → 0 . (31)

The proof is given in Appendix VII-D.

V. SIMULATION RESULTS

In this section we present simulation results to demonstrate
the effectiveness of the proposed EEST algorithm. We start
by demonstrating the significance of using the closed-loop
selection rule of the proposed EEST algorithm. We compare
the EEST algorithm to an algorithm that does not use memory
(i.e., open loop) when selecting the next process (e.g., as in

0 5 10 15 20 25 30 35 40 45

0
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4

6

8

10

12

14

Fig. 2. The cost ratio between the EEST algorithm and the open loop SPRT
as a function of the number of processes. The case of processes that follow
an exponential distribution.

[14], [19]–[23]). Specifically, we simulated the algorithm in
[19], which performs the SPRT algorithm in a predetermined
order, which was designed to the case of independent anoma-
lies among processes as considered in this paper, and was
shown to be optimal in terms of minimizing the detection
delay. We refer to this algorithm as the open-loop SPRT. It
is well-known that there is often a gap between the sufficient
conditions required by the theoretical asymptotic analysis
(often due to union bounding events in analysis) and practical
conditions used for efficient sequential statistical inference.
Thus, for a practical implementation we set the exploration
rate so that the total exploration time was approximately 5% of
the total expected detection time. We first simulated a system
with K processes, each (say k) of which follows a Poisson
distribution yk(n) ∼Pois(θ(i)

k ). For the normal processes we
set θ(0)

k = 1 for all k, and for the abnormal processes we set
θ

(1)
k to be equally spaced in the interval [1.2, 1.4]. The cost

for each abnormal process was set to ck(t) = ak(t3 + t). The
coefficients ak were equally spaced in the interval [1, 4]. The
error probability constraints were set to αk = βk = 10−8

for each process k ∈ K. Fig. 1 presents the tremendous
gain observed for the EEST algorithm compared to the open-
loop SPRT in terms of the system cost. We next changed the
observation distributions so that processes (say k) followed
an exponential distribution yk(n) ∼ Exp(θ

(i)
k ). The cost for

each abnormal process was set to ck(t) = ak(t4 + 3t2).
All other parameters remained the same. Fig. 2 once again
presents the tremendous gain observed for the EEST algorithm
compared to the open-loop SPRT in terms of the system
cost. These results demonstrate the importance of using the
closed-loop policy of the EEST algorithm when minimizing
the system cost, since the open-loop strategy, though optimal
in terms of minimizing the delay, is highly sub-optimal in
terms of minimizing the system cost. Next, we examined
the regret of the EEST algorithm with respect to the genie’s
policy, as described in Section III-C. The (normalized) regret
is presented in Fig. 3 and supports the theoretical analysis in
Theorem 2.
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Fig. 3. The normalized regret R/E[n2 log(n)] with respect to the genie’s
policy
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Fig. 4. The effect of Nc and ωk on the total cost under the EEST algorithm.
The vertical line represents the ωk which is set according to the theoretical
sufficient conditions in (11). The numbers along each point represent the
number of times the combinatorial search was performed.

Finally, we examined the effect of the exploration rate ωk
and the computational constraint Nc on the algorithm’s perfor-
mance. Clearly, increasing Nc results in a higher probability
to perform the combinatorial search phase. As a result, the
algorithm performance is expected to be improved. Indeed,
Figure 4 supports this insight. It can be seen that the system
cost decreases as Nc increases with the price of a higher
computational complexity. Next, we discuss the effect of ωk
on the algorithm performance. Setting ωk too small implies
that the algorithm is not able to infer the process states with
a sufficiently high accuracy, which results in a high system
cost. On the other hand, setting ωk too high implies that
the algorithm spends a long time on exploring the states of
all processes instead of exploiting the gathered information
for sampling the processes in the desired order. This insights
are supported by Fig. 4. Furthermore, it can be shown that
the sufficient conditions on the setting of ωk given by the
theoretical analysis are close to the ωk that minimizes the
system cost in this setting.

VI. CONCLUSION

We considered the problem of detecting independent anoma-
lous processes among K processes quickly and reliably. The
observations from each chosen process follow two different
distributions, depending on whether the process is normal
or abnormal. Each anomalous process incurs a polynomial
cost with time until its anomaly is identified and fixed. The
goal is to minimize the total expected cost incurred by all
the processes during the entire detection process under error
constraints. A search algorithm that consists of exploration,
exploitation, and sequential testing phases was proposed and
analyzed. For both known and unknown observation models
the asymptotic approximation ratio and regret analysis were
established.

It should be noted that the algorithm design and the analysis
rely on the fact that the cost function is polynomial with degree
d. An interesting future direction is to generalize the results for
non-polynomial cost functions (e.g., exponential with time).

VII. APPENDIX

We start by establishing the lower bound on the asymptotic
cost. We will then use it to prove the asymptotic optimality
of the EEST algorithm.

We note that the analysis of the exploration rate in Lemma
2 is determined by ωk which depends on the degree d of
the polynomial function. Second, the proofs throughout the
appendix are based on the fact that the cost function is
polynomial for extracting the dominant terms in the asymptotic
regime. Third, to analyze the approximation ratio in the proof
of Theorem VII-A, the index γn depends explicitly on the
coefficient ak,d of the dth degree term of the polynomial
function. The coefficients ak,1, ..., ak,d−1 of terms with lower
degree do not affect the asymptotic analysis.

Lemma 1. Let J be the set of all possible permutations j =
(j1, j2, ..., j|H1|)

of {1, 2, ..., |H1|}. Let E(C(s)) be the total
expected cost under policy s that satisfies the error constraints
in (1). Then,

inf
s

E(C(s))

≥ min
j∈J

|H1|∑
k=1

ajk,d

k∑
i=1

(
Bji

D(f
(1)
ji
||f (0)
ji

)

)d
(1− o(1)) ,

(32)
where o(1)→ 0 as Pmaxe → 0.

Proof: Fix ε > 0, and let Eε(s) be the event where
the sample size of each observation vector taken from pro-
cess k under strategy s satisfies Nk > (1−ε)Bk

D(f
(1)
k ||f

(0)
k )

for all

k = 1, ...,K. The complementary event is defined by Ecε (s).
Therefore, the expected cost can be lower bounded by:

Pr(Eε(s)) · E(C(s)|Eε(s))

≤ Pr(Eε(s)) · E(C(s)|Eε(s))

+ (1− Pr(Eε(s))) · E(C(s)|Ecε (s)) = E(C(s)).

Therefore, it suffices to lower bound the term Pr(Eε(s)) ·
E(C(s)|Eε(s)). For this, we define a genie that declares the
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state of each process k with detection probability 1 after taking
only (1−ε)Bk

D(f
(1)
k ||f

(0)
k )

samples. Since normal processes do not
incur cost, we further assume that genie declares the states of
the abnormal processes first. Clearly, the cost obtained under
genie’s optimal strategy lower bounds infs E(C(s)|Eε(s)).
Next, we show that the optimal strategy for genie is to
collect the samples consecutively one by one until declarations
without switching between processes during the detection
of each process. Assume by contradiction that the optimal
sampling strategy for genie switches between processes during
the detection of a process. Denote its cost and declaration order
by CS and j = (j1, j2, ..., j|H1|), respectively. As a result, the
achievable cost is given by:

CS =

|H1|∑
k=1

cjk
(
τSjk
)
,

where τSjk is the last time where a sample from process jk
was taken. Next, let CNS be the cost obtained by a strategy
which does not switch between processes during the detection
of each process and declares the processes at the same order
j = (j1, j2, ..., j|H1|). As a result,

CNS =

|H1|∑
k=1

cjk
(
τNSjk

)
,

and τNSjk
=
∑k
i=1 tji , where tji is the number of samples

needed to detect process ji. Since CNS is obtained by the
same declaration order as CS , but without switching during
the detection of each process, we get τSk ≥ τNSk for all k ∈
{1, 2, ..., |H1|}. Finally, we use the fact that ck is a monotonic
increasing function resulting in cjk(τSk ) ≥ cjk(τNSk ). Thus,
CNS ≤ CS which contradicts the assumption. As a result,
we next develop the optimal cost for genie by considering
strategies that take samples consecutively from each process
without switching during the detection of each process. Let
j̃ = (j̃1, j̃2, ..., j̃|H1|)

be a permutation of {1, 2, ..., |H1|} that
determines the probing order (without switching during the
detection of each process), and minimizes genie’s cost. As a
result, we have:

inf
s

E(C(s)|Eε(s))

≥
|H1|∑
k=1

d∑
n=1

aj̃k,n

 k∑
i=1

(1− ε)Bj̃i
D(f

(1)

j̃i
||f (0)

j̃i
)

n

.
(33)

Therefore, in the asymptotic regime we have:

inf
s

E(C(s)|Eε(s))

≥
|H1|∑
k=1

aj̃k,d

k∑
i=1

 (1− ε)Bj̃i
D(f

(1)

j̃i
||f (0)

j̃i
)

d

as Pmaxe → 0 .

(34)

Finally, since that Pr (Eε(s)) approaches 1 as Pmaxe ap-
proaches 0 [45, Lemma 2.1], and (34) holds for every ε > 0,
(32) follows.

Next, we present Lemma 2 that was used for proving the
theorems in this paper. We start by defining T1(ε) below.

Definition 1. Let T1(ε) be the smallest integer such that for
all n ≥ T1 the following events hold:

πk(n) > 1− ε ∀k ∈ H1,

πk(n) < ε ∀k ∈ H0.

To simplify the presentation of the proofs, we often write T1

without directly referring to ε.

T1 can be viewed as the earliest time at which all the pro-
cesses are categorized into two groups: one group belonging
to the estimated normal set, and the second belonging to the
estimated abnormal set. It should be noted that T1 is not a
stopping time. The decision maker does not know whether T1

has occurred or not during the detection process.

Lemma 2. Set the exploration rates as follows:

ωk >
d+ 1

min
{
Ik|H0

, Ik|H1

} ∀k. (35)

Then, the dth moment of T1 is finite,

E[T d1 ] = O(1). (36)

Proof: We start by bounding the dth moment of T1 as
follows:

E[T d1 ] =

∞∑
n=0

Pr(T d1 > n) ≤
∞∑
n=0

Pr(T1 >
⌊
n1/d

⌋
). (37)

Using the definition of T1 we have:

Pr
(
T1 >

⌊
n1/d

⌋)
= Pr

(
∃ k ∈ H1 s.t. πk(t) ≤ 1− ε for some t >

⌊
n1/d

⌋
or ∃ k ∈ H0 s.t. πk(t) ≥ ε for some t >

⌊
n1/dc

)
.

(38)
Define dk

4
= 1−πk(1)

πk(1) and

M
(1)
k

4
= − log

(
ε

dk(1− ε)

)
,

M
(0)
k

4
= − log

(
dkε

(1− ε)

)
.

By rewriting the update equation of πk(n), it can be shown
that:

πk(n) =
(
dke
−Sk(n) + 1

)−1

. (39)

As a result, πk(n) ≥ 1 − ε iff Sk(n) ≥ M
(1)
k and πk(n) ≤ ε

iff Sk(n) ≤ −M (0)
k . Substituting these two identities into (38)
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yields:

Pr
(
T1 >

⌊
n1/d

⌋)
= Pr

(
∃ k ∈ H1 s.t. Sk(t) ≤M (1)

k for some t >
⌊
n1/d

⌋)
+Pr

(
∃ k ∈ H0 s.t. Sk(t) ≥M (0)

k for some t >
⌊
n1/d

⌋)
≤
∑
k∈H1

Pr
(
Sk(t) ≤M (1)

k for some t >
⌊
n1/d

⌋)
+
∑
k∈H0

Pr
(
Sk(t) ≥M (0)

k for some t >
⌊
n1/d

⌋)
.

(40)
Summing over all possible values of t yields:

Pr
(
T1 >

⌊
n1/d

⌋)
≤
∑
k∈H1

∞∑
t=bn1/dc

Pr
(
Sk(t) ≤M (1)

k )
)

+
∑
k∈H0

∞∑
t=bn1/dc

Pr
(
Sk(t) ≥M (0)

k

)
.

(41)

Next, we bound each term in the summations. Let Nk(t) be
the number of samples taken from process k up to time t. Let˜̀
k(i)

4
= −`k(i) +

M
(1)
k

Nk(t) be a modified log likelihood ratio.
Applying the Chernoff bound and using the i.i.d. property
yields:

Pr(Sk(t) ≤M (1)
k ) ≤ min

s>0

[
E
[
es
˜̀
k(i)
]]Nk(t)

=

= min
s>0

[
e
−Nk(t)

[
− log E

[
es
˜̀
k(i)

]]]
= e
−Nk(t)

(
sups>0

[
− log E

[
es
˜̀
k(i)

]])
.

Since ˜̀k(i)→ −`k(i) as Nk(t)→∞, we have:

sup
s>0
− logE

[
es
˜̀
k(i)
]
−→

Nk(t)→∞
sup
s>0
− logE

[
e−s`k(i)

]
4
= I∗k ,

where I∗k is the Legendre-Fenchel transformation of −`k(i).
Thus, we can choose I∗k,εI

4
= I∗k − εI for any εI > 0 such that

Pr(Sk(t) ≤M (1)
k ) ≤ C(εI)e

−Nk(t)I∗k,εI ,

where C(εI) is a finite constant independent of the sample
size. Since Nk(t) > ωk log(t) by the construction of the
algorithm, for all t we have:

∞∑
t=bn1/dc

Pr(Sk(t) ≤M (1)
k ) ≤

∞∑
t=bn1/dc

C(εI)t
−ωkI∗k,εI

≤
∞∫

t=bn1/dc−1

C(εI)t
−ωkI∗k,εI dt

≤ C̃(εI)(
⌊
n1/d

⌋
− 1)1−ωkI∗k,εI

≤ C̃(εI)n
1−ωkI

∗
k,εI

d ,

where C̃(εI) is a finite constant independent of n. Us-
ing the same method, we can derive the bound for∑∞
t=bn1/dc Pr(Sk(t) ≥ M

(0)
k ) where I∗k,εI can be determined

with respect to H0 instead of H1. Substituting these bounds
into (37) yields:

E[T d1 ] =
∞∑
n=0

Pr(T d1 > n) ≤

≤
∑
k∈H1

∞∑
n=0

C̃(εI)n
1−ωkI

∗
k,εI

d

+
∑
k∈H0

∞∑
n=0

C̃(εI)n
1−ωkI

∗
k,εI

d . (42)

Since we want (42) to be bounded, we require that:

−
1− ωkI∗k,εI

d
> 1 ∀k.

Since εI > 0 can be arbitrarily small, it is sufficient to require:

ωk >
d+ 1

I∗k
∀k.

However, since the process states are unknown, sufficient
conditions can be derived by requiring:

ωk >
d+ 1

min{Ik|H1
, Ik|H0

}
∀k,

where Ik|H0
= sups>0

[
− logE∼f(0)

k

(
es`k

)]
, Ik|H1

=

sups>0

[
− logE∼f(1)

k

(
e−s`k

)]
are the Legendre-Fenchel

transformation of `k, and −`k, at the origin with respect
to distributions f (0)

k and f
(1)
k , respectively, which proves the

lemma.

A. Proof of Theorem 1

Define by

ρ1 ,
E(CEEST ||H1| > Nc)

infs E(C(s))
, (43)

and

ρ2 ,
E(CEEST ||H1| ≤ Nc)

infs E(C(s))
, (44)

the approximation ratios between the expected cost under the
EEST algorithm given that |H1| > Nc and |H1| ≤ Nc,
respectively, and the infimum expected cost, infs E(C(s)),
over all algorithms that satisfy the error constraints.

In order to prove theorem 1.a we show that

ρ2 = 1 as Pmaxe → 0. (45)

For theorem 1.b we first rewrite the approximation ratio as
follows:

ρ = Pcρ1 + (1− Pc)ρ2, (46)

where Pc = P (|H1| > Nc). For the proof of theorem 1.b we
show that (46) is equal to (15).

We start by evaluating ρ1. Without loss of generality, we
assume that the EEST algorithm has declared the process states
in the following order: 1, 2, 3, ...,K. Thus, τi

4
=
∑i
k=1Nk is
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defined as the detection time of process i. Since τk increases
as Pmaxe decreases, the cost that process k incurs is asymp-
totically equal to3 ck(τk) ∼ ak,dτdk .

Let Ñk be the remaining sample size required to declare
the state of process k after T1 has elapsed. Let NEX

k be the
sample size taken during the exploration phase. Using these
definitions, we can bound the stopping time of process i by:

τi ≤ T1 +
K∑
k=1

NEX
k +

i∑
k=1

Ñk.

Hence,

CEEST ∼
K∑
i=1

ai,dτ
d
i ≤

≤
K∑
i=1

ai,d

[
T1 +

K∑
k=1

NEX
k +

i∑
k=1

Ñk

]d
≤

≤
K∑
i=1

ai,d

[
T d1 +

(
K∑
k=1

NEX
k

)d
+

(
i∑

k=1

Ñk

)d

+ f(T1,
K∑
k=1

NEX
k ,

i∑
k=1

Ñk)

]
, (47)

where f(T1,
∑K
k=1N

EX
k ,
∑i
k=1 Ñk) is a function that contains

all the cross products between {T1,
∑K
k=1N

EX
k ,
∑i
k=1 Ñk} up

to an order (d − 1). Next, we upper bound each term in the
summation on the RHS of (47). From [46, Theorem 4.1], we
know that the dth moment of the sample size of the sequential
test is asymptotically equal to:

E[Nd
k ] ∼

(
Bk

D(f
(1)
k ||f

(0)
k )

)d
. (48)

Let n , τK be the total detection time. Since
∑K
k=1N

EX
k <

c log(n) for some constant c > 0 by the construction of the
algorithm, we have:(

K∑
k=1

NEX
k

)d
= O(logd(n)). (49)

Next, since that n ∼ T1 +
∑K
k=1 Ñk, taking expectation, and

applying Lemma 2 yields:

E

( K∑
k=1

Ñk

)d = O(E[nd]).

Similarly, since f(T1,
∑K
k=1N

EX
k ,
∑i
k=1 Ñk) contains cross

products of all the terms up to order d− 1, its expectation is
of order o(E[n]d).

Finally, fixing H1, taking expectation (with respect to the
randomness of the observations) on both sides of (47), and

3The notation f(x) ∼ g(x) refers to limx→∞
f(x)
g(x)

= 1.

using the fact that normal processes do not incur costs yields:

E
[
CEEST

]
≤ (1 + o(1))

|H1|∑
i=1

ai,d

(
i∑

k=1

Bk

D(f
(1)
k ||f

(0)
k )

)d
.

(50)
Finally, since the sample size of each process is asymp-

totically equal to (48), it is sufficient to evaluate the ratio

between
∑|H1|
i=1 ai,dE

[(∑i
k=1

Bk
D(f

(1)
k ||f

(0)
k )

)d]
, and the in-

fimum cost obtained over all possible orders of processes

1, ..., |H1| with sample sizes
{

Bk
D(f

(1)
k ||f

(0)
k )

}|H1|

k=1

, which are

deterministic values. Since |H1| > NC when evaluating ρ1,
we can choose ε > 0 sufficiently small in Definition 1 so that

a1,d

B1/D(f
(1)
1 ||f

(0)
1 )
≥ a2,d

B2/D(f
(1)
2 ||f

(0)
2 )
≥ · · · ≥ aH1,d

BH1
/D(f

(1)
H1
||f(0)
H1

)
.

Finally, we can apply the bound in [47, Corollary 3.9] for de-
terministic sequences to upper bound the target approximation
ratio by:

max
0≤s≤1

(d+ 1)s+ (1− s)d+1

1 + dsd+1
, (51)

for any d ≥ 1. As a result, ρ1 is upper bounded by:

ρ1 ≤M(d) = max
0≤s≤1

(d+ 1)s+ (1− s)d+1

1 + dsd+1
as Pmaxe → 0.

(52)
Next, we evaluate ρ2. Since ε > 0 in Definition 1 can be

arbitrarily small, let

ε < min{L1, L2, ..., LK , 1− U1, 1− U2, ..., 1− UK}.

As a result, for all t > T1, we have: πk(t) > Uk for all
k ∈ H1, and πk(t) < Lk for all k ∈ H0. Next, we use
similar steps as in the evaluation of ρ1. Since the expected
cost up to time T1 is finite independent of t by Lemma 2, and
the algorithm performs a combinatorial search to test all the
abnormal processes in the optimal order for all t > T1, we
have:

ρ2 = 1 as Pmaxe → 0. (53)

Note that this is the condition of theorem 1.a as given in (45).
Substituting (52) and (53) into (46) completes the proof of
part b of the theorem.

B. Proof of Theorem 2
Without loss of generality, we assume that the order in

which the processes are declared under the genie’s policy is
1, 2, 3, ...,K. Recall that under the genie’s policy the beliefs
are set as follows:

πk(n) =

{
1, k ∈ H1,

0, k ∈ H0,

for all n. As a result, the genie performs the sequential testing
step for all processes following the order given by the index
selection phase if |H1| > NC or the combinatorial search
phase if |H1| ≤ NC . As a result, the cost under the genie’s
strategy is given by:

C∗ =
K∑
i=1

ai,d

(
i∑

k=1

Nk

)d
+O(nd−1).
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Using the same sample path, the cost under the EEST algo-
rithm is given by

CEEST =
K∑
i=1

ai,dτ
d
i +O(nd−1) +O(T d1 ), (54)

where the last term is due to a wrong detection order by time
n ≤ T1. The declaration time of process i under the EEST
algorithm can be written as

τi =
i∑

k=1

Nk +O(log n),

where O(log n) is due to the exploration phase. Thus,

τdi =

(
i∑

k=1

Nk

)d
+O(nd−1 log n).

Therefore, the cost under the EEST algorithm in (54) can be
rewritten as

CEEST =
K∑
i=1

ai,d

(
i∑

k=1

Nk

)d
+O(nd−1 log n) +O(T d1 ).

As a result, we have:

CEEST − C∗ = O(nd−1 log n) +O(T d1 ). (55)

Finally, taking the expectation and applying Lemma 2 yields:

R = O(E[nd−1 log n]), (56)

as required.

C. Proof of Theorem 3

In this section we show that asymptotic optimality and the
approximation ratio given in (29) hold under the composite
hypothesis case. We consider the composite hypothesis setting
in [40], in which the unknown parameter θk takes a value from
a finite set Θk. The true value of the unknown parameter for
process k is denoted by θk. The lower bound on the asymptotic
cost satisfies (32) with the corresponding parametric distri-
butions using similar arguments as in Lemma 1, where the
KL divergence is measured between the true parameter value
and the closest alternative as in standard composite hypothesis
testing.

We first develop the exploration rate required for achieving
the desired estimation consistency.

Definition 2. TML is defined as the smallest integer such that
θ̂k(n) = θk for all n > TML for all k.

In the following lemma we introduce a sufficient condition
on the exploration rate ωk such that the dth moment of TML

is finite.

Lemma 3. Set the exploration rates as defined in (25). Then,
the dth moment of TML is finite:

E
[
T dML

]
= O(1).

Proof: Let Nk(t) be the number of samples taken from
process k, and 1k(t) be the probing indicator function of

process k, where 1k(t) = 1 if process k was probed at time
t, and 1k(t) = 0 otherwise. We also define:

Sk(θk, θ, n) ,
n∑
t=1

1k(t)`k(θk, θ, t),

as the sum of LLRs with respect to the parameters θk and θ,
where `k(θk, θ, t) , log fk(yk(t)|θk)

fk(yk(t)|θ) .
By the definition of the MLE, when θ̂k = θk, we have:

Sk(θk, θ, n) > 0 for all θ 6= θk. Hence, we can write

Pr(T dML > n) ≤ Pr
(
TML >

⌊
n1/d

⌋)
= Pr

(
∃ t >

⌊
n1/d

⌋
, k, θ 6= θk s.t. Sk(θk, θ, t) < 0

)
≤

∞∑
t=bn1/dc+1

K∑
k=1

∑
θ∈Θk\θk

Pr (Sk(θk, θ, t) < 0)

≤
∞∑

t=bn1/dc+1

K∑
k=1

∑
θ∈Θk\θk

[
E
[
es`k(θk, θ, t)

]]Nk(t)

,

where the last inequality follows by applying the Chernoff
bound. Since the state of process k is unknown, we choose
the minimum rate function over the whole parameter set when
deriving conditions on ωk, and similar to the steps in Lemma
2 we have:

ωk >
d+ 1

min
{
Ĩk,0, Ĩk,1

} ∀k, (57)

where

Ĩk,0 ,

inf θ(0) 6=θ(1),
θ(0),θ(1)∈Θk

sups>0

[
− log E∼fk(y|θ(0))

(
es`k(θ(0),θ(1))

)]
,

Ĩk,1 ,

inf θ(0) 6=θ(1),
θ(0),θ(1)∈Θk

sups>0

[
− log E∼fk(y|θ(1))

(
e−s`k(θ(0),θ(1))

)]
(58)

are the Legendre-Fenchel transformation of

`k(θ(0), θ(1)) , log
fk(y|θ(1))

fk(y|θ(0))

at the origin with respect to distributions fk(y|θ(0)) and
fk(y|θ(1)), respectively.

We next modify Definition 1 and Lemma 2 to prove the
theorem under unknown parameters.

Definition 3. Let T1(ε) be the smallest integer such that for
all n ≥ T1 the following events hold:

π̂k(n) > 1− ε ∀k ∈ H1,

π̂k(n) < ε ∀k ∈ H0.

To simplify the presentation of the proofs, we often write T1

without directly referring to ε.

Lemma 4. Set the exploration rates as in (25). Then, the dth

moment of T1 is finite,

E[T d1 ] = O(1). (59)
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Proof: Note that:

E[T d1 ] =
∞∑
n=0

Pr(T d1 > n). (60)

Thus, it suffices to show that Pr(T d1 > n) decreases polyno-
mially with time. Note that

Pr(T d1 > n) = Pr(T d1 > n, T dML ≤ n)

+ Pr(T d1 > n, T dML > n)

≤ Pr(T d1 > n, T dML ≤ n) + Pr(T dML > n). (61)

The first term on the RHS decreases polynomially with n
following similar steps as in Lemma 2, and the fact that
θ̂k(n) = θk for all n ≥ TML for all k. The second term
decreases polynomially by applying Lemma 3.

To complete the proof of Theorem 3, note that the cost is
given by:

CEEST ≤
K∑
i=1

ai,d

[
TML + T1 +

K∑
k=1

NEX
k +

i∑
k=1

Ñk

]d
,

(62)

since that

τi ≤ TML + T1 +
K∑
k=1

NEX
k +

i∑
k=1

Ñk.

Applying Lemmas 3, 4 yields E[T dML] = O(1) and E[T d1 ] =
O(1). Therefore, the rest of the proof follows by similar steps
as in Theorem 1.

D. Proof of Theorem 4

Following the same arguments as in the proof of Theorem
2, the cost under the genie’s policy is given by:

C∗ =
K∑
i=1

ai,d

(
i∑

k=1

Nk

)d
+O(nd−1). (63)

The cost under the EEST algorithm is given by:

CEEST =
K∑
i=1

ai,dτ
d
i +O(nd−1) +O(T d1 ) +O(T dML).

(64)

By applying Lemma 3, the dth moment of TML is finite. Thus,
The rest of the proof is similar to the proof of Theorem 2.
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