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Abstract
We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin
plate bending model both for the clamped and the soft simply supported cases. We
prove well-posedness of the formulation, uniformly with respect to the plate thickness
t . We also prove weak convergence of the Reissner–Mindlin solution to the solution
of the corresponding Kirchhoff–Love model when t → 0. Based on the ultraweak
formulation, we introduce a discretization of the discontinuous Petrov–Galerkin type
with optimal test functions (DPG) and prove its uniform quasi-optimal convergence.
Our theory covers the case of non-convex polygonal plates. A numerical experiment
for some smooth model solutions with fixed load confirms that our scheme is locking
free.

Mathematics Subject Classification 74S05 · 74K20 · 35J35 · 65N30 · 35J67

1 Introduction

We develop a uniformly well-posed ultraweak formulation of the Reissner–Mindlin
plate bending model and, based on this formulation, define a discontinuous Petrov–
Galerkin method with optimal test functions (DPG method) for its approximation.
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The objective of this work is to continue to develop DPG techniques for plate bending
models, without assuming unrealistic regularity of solutions. The DPG framework has
been proposed by Demkowicz and Gopalakrishnan [10] with the aim to automatically
satisfy discrete inf–sup conditions of discretizations. Without going into the details of
advantages and challenges here, we consider this framework as a means to give full
flexibility in the design and selection of a variational formulation. In other words, for
a given problem, one can select any set of variables of interest. The only challenge
is to develop a well-posed formulation that gives access to these variables. Then,
a conforming discretization will be automatically quasi-optimal. Furthermore, it is
robust (constants do not depend on singular perturbation parameters) if the formulation
is uniformly well posed. This result assumes that one uses so-called optimal test
functions, see [10], or approximated test functions of spaces for which (uniformly
bounded) Fortin operators exist, cf. [15].

In this paper we focus on the continuous setting of the Reissner–Mindlin model. In
[13] we considered clamped plates of the Kirchhoff–Love model and afterwards, in
[12], provided a fully discrete analysis. We also studied the pure deflection case [11],
that is, the bi-Laplacian, developing a thorough continuous analysis and giving initial
results for its discretization. In this paper, we extend the formulation and method for
the clamped Kirchhoff plate from [13].

It is well known that the Reissner–Mindlin model transforms in a singularly per-
turbed way into the Kirchhoff–Love model when the plate thickness t → 0. For a
plate with smooth boundary, Arnold and Falk have shown the strong convergence of
the Reissner–Mindlin deflection and rotation to the Kirchhoff–Love deflection and
gradient of the deflection when t → 0. They proved convergence for different bound-
ary conditions and a whole scale of Sobolev norms, depending on the regularity of
the solution. Babuška and Pitkäranta [2] discuss the case of convex polygonal plates.
We do not know of any strong convergence result in cases of lowest regularity and
non-smooth boundary, specifically not for non-convex polygons. In contrast, a justifi-
cation of both models for small t is a different subject, and has been studied, e.g., by
Arnold et al. [1] and Braess et al. [5], the latter paper including the case of non-convex
polygonal plates.

In [13], we presented a bending-moment formulation (unknowns are the vertical
deflection and the bending moment tensor). In order to extend this formulation we
therefore aim at a bending-moment based formulation of the Reissner–Mindlin model
(for clamped and soft simply-supported plates) that transforms into the Kirchhoff–
Love formulation when t → 0. Specifically, the ultraweak formulation should be well
posed uniformly in t and the DPG approximation should be uniformly quasi-optimal
(locking free). This is exactly what we are going to achieve at an abstract level,
including the weak convergence of the Reissner–Mindlin solution to the Kirchhoff–
Love solution. The construction of appropriate approximation spaces that guarantee
this behavior for low-regular cases (including non-convex polygonal plates) is an open
problem, as is the construction of related Fortin operators. Furthermore, it is by no
means obvious that our selection of variables (based on the objective to extend our
Kirchhoff–Love formulation) is the most convenient when it comes to constructing
approximation spaces. Considering alternative variables and formulations will be the
subject of future research.
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As in [13], our focus is to develop a formulation that requires minimum regularity,
only subject to the L2-regularity of the vertical load. This condition is owed to the dis-
continuity of test functions of DPG schemes. Ultraweak formulations are obtained by
integrating by parts as often as necessary to remove all derivatives from the unknown
functions. This automatically generates trace operations, and the involved traces have
to be considered as independent unknowns. In other words, studying ultraweak formu-
lations based on minimal regularity is equivalent to studying related trace operations
and their well-posedness subject tominimal regularity requirements. These trace oper-
ators and their jumps precisely characterize conformity of the underlying spaces of
minimum regularity and of their (conforming) approximations. Therefore, this part of
our analysis is relevant independently of the DPG scheme we propose. Here, we con-
sider domains with Lipschitz boundary (thus, including polygonal non-convex cases)
and notice that our analysis applies to two and three dimensions.

It goes without saying that the Reissner–Mindlin model is relevant in structural
mechanics until today. Correspondingly, there is vast literature both in mathematics
and engineering sciences, and we do not intend to discuss it to any length here. A key
point in the numerical analysis has been the locking effect that causes some numerical
schemes to behave badly when t becomes small. Our scheme, being well behaved
uniformly in t , is locking free (when using optimal test functions) with respect to the
variables of interest, like several other known schemes. For instance, to give some
mathematical references, Stenberg and co-authors have derived locking-free schemes,
e.g. [8], Beirão daVeiga et al. [3] present a locking-freemixed scheme that includes the
bending moment as an unknown. In [4], Bösing and Carstensen prove that a (weakly
over-penalized) discontinuousBubnov–Galerkinmethod approximating the deflection
and rotation variables is locking free. We also note that there are two contributions
on the DPG method for thin body problems. Niemi et al. [17] obtained a robust DPG
approximation for a particular Timoshenko beam problem, and Calo et al. [6] propose
and analyze a DPG scheme for the Reissner–Mindlin model, though ignoring the
dependence of estimates on t .

An overview of the remainder of this paper is as follows. In the next section we
introduce and discuss ourmodel problem, andmake an initial step towards a variational
formulation. Section 3 is devoted to the spaces, norms, and trace operations that are
needed to formulate a well-posed ultraweak formulation. Initially, the case t > 0 is
considered. The Kirchhoff–Love case t = 0 is analyzed in Sect. 3.3. There, we recall
some spaces, trace operators and results from [13]. Furthermore, we derive additional
results needed for the case of a simply supported plate, not considered in [13]. In Sect. 4
we then finish to develop the ultraweak formulation, state its uniform well-posedness
and weak convergence when t → 0 (Theorems 14 and 15 , respectively), define the
DPG scheme, and state its robust convergence (Theorem 16). Proofs of the theorems
are given in Sect. 5. Finally, in Sect. 6 we present some numerical results for the case
of some smooth solutions with fixed load and different values of t .

Throughout the paper, a � b means that a ≤ cb with a generic constant c > 0 that
is independent of the plate thickness t and the underlying mesh. Similarly, we use the
notation a � b.
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2 Model problem

Let� ⊂ R
2 be a bounded simply connected Lipschitz domainwith boundary� = ∂�.

We are considering the Reissner–Mindlin plate bending model with linearly elastic,
homogeneous and isotropic material, described by the relations

q = κGt(∇u − ψ), (1a)

M = −Dt3[νtr(ε(ψ))I + (1 − ν)ε(ψ)] (1b)

and the equilibrium equations

−div q = f , (2a)

q = divM (2b)

on �. Here, � is the mid-surface of the plate with thickness t > 0, f the transversal
bending load, u the transverse deflection,ψ the rotation vector, q the shear force vector,
M the bending moment tensor, I the identity tensor, and ε the symmetric gradient,
ε(ψ) := 1

2 (∇ψ + (∇ψ)T). Furthermore, ν ∈ (−1, 1/2] is the Poisson ratio, κ > 0
the shear correction factor, and

G = E

2(1 + ν)
, D = E

12(1 − ν2)

with the Young modulus E > 0. The operator div is the standard divergence, and
div is the row-wise divergence when writing second-order tensors as 2 × 2 matrix
functions.

Relation (1b) between M and ψ can be written like

M = −t3Cε(ψ) (3)

with positive definite tensor C that is independent of t . We will consider a formulation
depending on the two variablesM and u. It is obtained by replacing q in (2a) and (1a)
through (2b), and replacing ψ in (3) through relation (1a) after elimination of q. This
yields the system

−div divM = f , M = −t3Cε(∇u − 1

κGt
divM).

The dependence of the problem on κG is not critical, for ease of presentation we select
κG = 1. Then, rescaling f → t3 f and M → t3M we obtain

−div divM = f , M = −Cε(∇u − t2divM).

Considering a clamped plate, the boundary conditions are u = 0 and ψ = 0 on �,
the latter being transformed into ∇u − t2divM = 0 on �. We also consider a (soft)
simply supported plate, represented by u = 0 and Mn = 0 on �.
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To conclude, selecting f ∈ L2(�) and, for ease of presentation, t ∈ (0, 1], a strong
form of our model problem is

−div divM = f in �, (4a)

M + Cε(∇u − t2divM) = 0 in � (4b)

with u = 0, ∇u − t2divM = 0 on � (4c)

or u = 0, Mn = 0 on �. (4d)

Wenote that, setting t = 0, this problemwith boundary condition (4c) is theKirchhoff–
Love plate bending model in the form being studied in [13]. Our aim is to develop for
both boundary conditions uniformly well-posed ultraweak variational formulations
of (4), and uniformly quasi-optimal DPG schemes for bounded, non-negative plate
thickness including the Kirchhoff–Love case.

Now, in order to have a well-posed problem one has to select appropriate spaces.
Before starting to discuss their selection, let us introduce some notation. Let O ⊂
� be a sub-domain. L2-spaces for scalar, vector and tensor-valued functions on O
are denoted by L2(O), L2(O) and L2(O), respectively. Their L2-norms are ‖ · ‖O,
generically for the three cases. Also, we drop the index O of the norm when O =
�. The notation L

s
2(O) refers to the subspace of symmetric L2-tensors. The spaces

H1(O) and H1(O) are the standard H1-spaces of scalar and vector-valued functions
with respective subspaces H1

0 (O) and H1
0(O) of vanishing traces on ∂O. We also

need H(div,O), denoting L2(O)-elements whose divergence are elements of L2(�).
Correspondingly, H(div,O) consists of Ls

2(O)-tensors � with div� ∈ L2(O), and
H0(div,O) ⊂ H(div,O) is the subspace of tensors with zero normal trace on ∂O.
Central to the analysis of theKirchhoff–Lovemodel [12,13] is the space H(div div,O).
In those papers it is defined as the completion of Ds(Ō) (smooth symmetric tensors
with support in Ō) with respect to the norm

‖ · ‖div div,O :=
(
‖ · ‖2O + ‖div div · ‖2O

)1/2
.

We note that this space can be equivalently defined as the space of tensors� ∈ L
s
2(O)

with ‖div div�‖O < ∞. Then, the density of Ds(Ō) follows as in the standard
H(div,O)-case, cf. [14, Theorem 2.4]. For the Kirchhoff–Love case we also need
the standard spaces of scalar functions H2(O) and H2

0 (O) with norm ‖ · ‖2,O :=(‖ · ‖2O + ‖ε(∇·)‖2O
)1/2

. As before, we drop the index O when O = �.
Now, returning to the discussion of (4), by (4a) it holds M ∈ H(div div,�). The

deflection variable u will be taken in H1
0 (�), and the eliminated rotation variable sug-

gests ψ = ∇u− t2divM ∈ H1
0(�) (for the clamped plate) or ∇u− t2divM ∈ H1(�)

(for the simple support). It turns out that the regularity u ∈ H1(�) has to be added as a
constraint to (4), it does not follow from the natural L2-graph norm setting of the prob-
lem. To derive our ultraweak variational formulation, we incorporate this constraint
into the PDE system. We do this by introducing the additional variable θ := ∇u.
Furthermore, since, in particular, div (θ − ∇u) = 0, we can incorporate this relation
into Eq. (4a) to obtain a skew self-adjoint problem, in the following sense. Ultraweak
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formulations give rise to independent trace variables and, redundantly incorporating
the relation div (θ − ∇u) = 0 in (4a), the corresponding trace operator is defined by
a skew symmetric bilinear form. This will simplify our notation and analysis.

Our reformulated strong form of the model problem is

−div (divM + t(θ − ∇u)) = f in �, (5a)

M + Cε(∇u − t2divM) = 0 in �, (5b)

t(θ − ∇u) = 0 in �, (5c)

u = 0, ∇u − t2divM = 0 on � or (5d)

u = 0, Mn = 0 on �. (5e)

The t-factor in (5a) and (5c) gives the correct weighting needed for the analysis. Note
that, setting t = 0, (5a)–(5d) turns into theKirchhoff–Love plate bendingmodelwhose
ultraweak setting was proposed and analyzed in [13], without θ = ∇u as independent
variable.

We now start to develop an ultraweak formulation of (5). The physically rele-
vant case is � being a two-dimensional domain. But we note that our analysis and
techniques apply to three space dimensions as well. In order to use a DPG discretiza-
tion we invoke product test spaces. These product spaces are induced by a (family
of) mesh(es) T consisting of general non-intersecting Lipschitz elements {T } so that
�̄ = ∪{T̄ ; T ∈ T }.We also formally denote themesh skeleton byS = {∂T ; T ∈ T }.
Considering test functions z ∈ L2(�), � ∈ L

s
2(�) (symmetric L2-tensors), and

τ ∈ L2(�) (L2-vector functions), which are sufficiently smooth on every T ∈ T , and
testing (5a) by −z, (5b) by C−1�, (5c) by τ , and integrating by parts, we obtain the
relation

(u , div (div�+t(τ − ∇z)))T +(M , C−1�+ε(∇z − t2div�))T +t(θ , τ − ∇z)T

−
∑
T∈T

〈u ,n · (div� + t(τ − ∇z))〉∂T +
∑
T∈T

〈n · (divM + t(θ − ∇u)) , z〉∂T

−
∑
T∈T

〈Mn ,∇z − t2div�〉∂T +
∑
T∈T

〈∇u − t2divM ,�n〉∂T = −( f , z). (6)

Here, (· , ·) denotes the L2-inner product on � (generically for scalar, vector-, and
tensor-valued functions) and the index T means that differential operators are taken
piecewise with respect to T . In the following we will use the index notation also to
indicate piecewise differential operators, e.g., (∇T u , τ ) := (∇u , τ )T . Furthermore,
n generically denotes the unit normal vector on ∂T (for T ∈ T ) and �, pointing
outside T and �, respectively. The notation 〈· , ·〉ω, and later 〈· , ·〉� , indicate dualities
on ω ⊂ ∂T and �, respectively, with L2-pivot space.

At this point, the skeleton terms in (6) are well defined only for sufficiently smooth
solution and test functions. Before formulating our final variational formulation we
need to define these terms for appropriate spaces and analyze their behavior. This will
be done in the following section, before returning to the model problem in Sect. 4.
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3 Trace spaces and norms

Initially we consider the case of positive plate thickness, for convenience t ∈ (0, 1].
At the end of this section, in §3.3, we will address the Kirchhoff–Love case t = 0.

We start by defining local and global test and trace spaces. For any T ∈ T we
consider the space V (T , t) ⊂ H1(T ) × L

s
2(T ) × L2(T ) which is the completion of

D(T̄ ) × D
s(T̄ ) × D(T̄ ) with respect to the norm

‖(z,�, τ )‖V (T ,t) :=
(
‖z‖2T + t‖∇z‖2T + ‖�‖2T + t‖τ‖2T
+ ‖ε(∇z − t2div�)‖2T + ‖div (div� + t(τ − ∇z))‖2T

)1/2

(7)

with corresponding inner product 〈〈·, ·〉〉V (T ,t). Here, D(T̄ ), D(T̄ ) and D
s(T̄ ) refer to

the spaces of smooth scalar, vector and symmetric tensor functions on T̄ , respectively.
In this case, we stick to the definition by density. It is needed in the proof of Theorem15
below. In contrast, switching to the definition by finite norm, a proof of this density
seem to require explicit constructions since the technique from [14, Theorem 2.4]
does not apply here. The construction of D(T̄ ) × D

s(T̄ ) × D(T̄ )-approximations to
V (T , t)-elements is an open problem.

The spaces V (T , t) induce a product space V (T , t)with respective norm and inner
product denoted by ‖ · ‖V (T ,t) and 〈〈·, ·〉〉V (T ,t). Introducing the norm

‖(z,�, τ )‖U (t) :=
(
‖z‖2 + t‖∇z‖2 + ‖�‖2 + t‖τ‖2 + ‖ε(∇z − t2div�)‖2

+ ‖div (div� + t(τ − ∇z))‖2
)1/2

,

we define the global space U (t) as the completion of D(�̄) × D
s(�̄) × D(�̄) with

respect to ‖ · ‖U (t), and Uc(t) (clamped plate) and Us(t) (simple support) as the
subspaces of functions (z,�, τ ) ∈ U (t) such that, respectively,

z = 0, ∇z − t2div� = 0 on � (8)

and

z = 0, �n = 0 on �. (9)

Specifying these boundary conditions makes sense due to the inherent regularities,
as we will see in Lemma 1 below. Of course, ‖(z,�, τ )‖U (t) = ‖(z,�, τ )‖V (T ,t)
for (z,�, τ ) ∈ U (t). (We prefer the notation U (t) instead of V (t) since this space
also characterizes the solution of our problem where we generally use the letter U in
variational formulations.)
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Lemma 1 Let t > 0. If (z,�, τ ) ∈ V (T , t) then

z ∈ H1(T ), � ∈ H(div, T ), ∇T z − t2divT � ∈ H1(T ),

divT � + t(τ − ∇T z) ∈ H(div, T )

and, if (z,�, τ ) ∈ U (t), then

z ∈ H1(�), � ∈ H(div,�), ∇z − t2div� ∈ H1(�),

div� + t(τ − ∇z) ∈ H(div,�).

Proof The stated regularities are straightforward to deduce using the following fact. A
vector distribution ψ with ε(ψ) ∈ L

s
2 on a Lipschitz domain is an L2-element there.

This statement can be proved as [18, Theorem XV], just replacing the fundamental
solution of the Laplacian used there by the fundamental solution of the Lamé operator
divε(·), cf. [16]. For instance, in the case (z,�, τ ) ∈ V (T , t), ε((∇z−t2div�)|T ) ∈
L
s
2(T ) (T ∈ T ) implies that (∇z − t2div�)|T ∈ L2(T ) so that (∇z − t2div�)|T ∈

H1(T ) by Korn’s inequality. Since ∇z|T ∈ L2(T ), one also concludes that div�|T ∈
L2(T ) so that � ∈ H(div, T ). Knowing that (div�+ t(τ −∇z))|T ∈ L2(T ) the last
term of the norm implies that (div� + t(τ − ∇z))|T ∈ H(div, T ). �


3.1 Traces

For T ∈ T , we introduce a linear operator trRMT ,t : V (T , t) → (V (T , t))′ by

〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉∂T ,t

:= (z , div (div δ� + t(δτ − ∇δz)))T − (div (div� + t(τ − ∇z)) , δz)T
+ (� , ε(∇δz − t2div δ�))T − (ε(∇z − t2div�) , δ�)T

− t(τ ,∇δz)T + t(∇z , δτ )T (10)

(note the additional parameter t in the duality notation 〈· , ·〉∂T ,t ). The range of this
operator is denoted by

HRM(∂T , t) := trRMT ,t (V (T , t)), T ∈ T .

It is easy to see that this trace operator is supported on the boundary of T . Specifically,
we have the following result.

Lemma 2 Let t > 0. For T ∈ T the trace operator trRMT ,t satisfies the relations

〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉∂T ,t = −〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉∂T ,t (11)

and

〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉∂T ,t
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= 〈z ,n · (divδ� + t(δτ − ∇δz))〉∂T − 〈n · (div� + t(τ − ∇z)) , δz〉∂T
+ 〈�n ,∇δz − t2divδ�〉∂T − 〈∇z − t2div� , δ�n〉∂T (12)

for any (z,�, τ ), (δz, δ�, δτ ) ∈ V (T , t).

Proof The skew symmetry (11) is clear by definition (10). Relation (12) follows by
integration by parts subject to the required regularity of the individual components.
Let us check the regularities of the left terms of each of the pairs appearing in (12).
By the same arguments the corresponding right terms have the required regularities.
Using the regularity provided by Lemma 1, and T ∈ T :

1. The trace of z on ∂T is well defined as an element of H1/2(∂T ), the trace space of
H1(T ). The normal component of div δ� + t(δτ − ∇δz) on ∂T is an element of
the dual space of H1/2(∂T ) since div δ�+ t(δτ −∇δz) ∈ H(div, T ) by Lemma 1.

2. The trace of ∇δz − t2div δ� on ∂T is an element of H1/2(∂T ), the standard trace
spaceofH1(T ), since∇δz−t2div δ� ∈ H1(T )byLemma1.Since� ∈ H(div, T ),
also by Lemma 1, the normal component(s) �n on ∂T is an element of the dual
space of H1/2(∂T ). �

We also introduce the corresponding collective (global) trace operator,

trRMT ,t :
{

U (t) → V (T , t)′,
(z,�, τ ) �→ trRMT ,t (z,�, τ ) := (trRMT ,t (z,�, τ ))T∈T

with duality

〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉S,t :=
∑
T∈T

〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉∂T ,t (13)

and rangeHRM(S, t) := trRMT ,t (U (t)). Here, and in the following, considering dualities
〈· , ·〉∂T and 〈· , ·〉∂T ,t on the whole of ∂T , possibly involved traces onto ∂T are always
taken from T without further notice and we tacitly restrict arguments to elements T
where needed.

To consider the different boundary conditions we specify the following subspaces,

HRM
c (S, t) := trRMT ,t (Uc(t)) and HRM

s (S, t) := trRMT ,t (Us(t)).

Recalling representation (12) of the local trace operator we note that a corresponding
relation holds for the global trace operator acting on U (t).

Lemma 3 Let t > 0. The trace operator trRMT ,t satisfies the relation

〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉S,t

= 〈z ,n · (divδ� + t(δτ − ∇δz))〉� − 〈n · (div� + t(τ − ∇z)) , δz〉�
+ 〈�n ,∇δz − t2divδ�〉� − 〈∇z − t2div� , δ�n〉�

for any (z,�, τ ), (δz, δ�, δτ ) ∈ U (t).
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Proof The proof of this statement is analogous to that of the local variant (12). �

The local and global traces are measured in the minimum energy extension norms,

‖̂q‖RM,∂T ,t := inf
{
‖(z,�, τ )‖V (T ,t); (z,�, τ ) ∈ V (T , t), trRMT ,t (z,�, τ ) = q̂

}
,

‖̂q‖RM,S,t := inf
{
‖(z,�, τ )‖U (t); (z,�, τ ) ∈ U(t), trRMT ,t (z,�, τ ) = q̂

}
. (14)

For given q̂ ∈ HRM(∂T , t) and (δz, δ�, δτ ) ∈ V (T , t), we define their duality pairing
by

〈̂q , (δz, δ�, δτ )〉∂T ,t := 〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉∂T ,t

where (z,�, τ ) ∈ V (T , t) is such that trRMT ,t (z,�, τ ) = q̂, and

〈̂q , (δz, δ�, δτ )〉S,t :=
∑
T∈T

〈̂qT , (δz, δ�, δτ )〉∂T ,t (15)

for q̂ = (̂qT )T∈T ∈ HRM(S, t) and (δz, δ�, δτ ) ∈ V (T , t). Using these dualities we
define alternative norms in the trace spaces by

‖̂q‖V (T ,t)′ := sup
0 �=(z,�,τ )∈V (T ,t)

〈̂q , (z,�, τ )〉∂T ,t

‖(z,�, τ )‖V (T ,t)
, q̂ ∈ HRM(∂T , t), T ∈ T ,

‖̂q‖V (T ,t)′ := sup
0 �=(z,�,τ )∈V (T ,t)

〈̂q , (z,�, τ )〉S,t

‖(z,�, τ )‖V (T ,t)
, q̂ ∈ HRM(S, t).

Lemma 4 Let t > 0. It holds the identity

‖̂q‖V (T ,t)′ = ‖̂q‖RM,∂T ,t ∀̂q ∈ HRM(∂T , t), T ∈ T ,

so that

trRMT ,t : V (T , t) → HRM(∂T , t)

has unit norm and HRM(∂T , t) is closed.

Proof Let T ∈ T be arbitrary and fixed. By definition (10) of the trace operator trRMT ,t
and definition (7) of the norm ‖ · ‖V (T ,t) we can bound

〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉∂T ,t ≤ ‖(z,�, τ )‖V (T ,t)‖(δz, δ�, δτ )‖V (T ,t)

for any (z,�, τ ), (δz, δ�, δτ ) ∈ V (T , t). This proves that ‖̂q‖V (T ,t)′ ≤ ‖̂q‖RM,∂T ,t .
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Now let q̂ ∈ HRM(∂T , t) be given. We define (z,�, τ ) ∈ V (T , t) as the solution
to the problem

〈〈(z,�, τ ), (δz, δ�, δτ )〉〉V (T ,t) = 〈̂q , (δz, δ�, δτ )〉∂T ,t ∀(δz, δ�, δτ ) ∈ V (T , t).
(16)

We continue to define (u,M, θ) ∈ V (T , t) as the solution to

〈〈(u,M, θ), (δz, δ�, δτ )〉〉V (T ,t)

= 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉∂T ,t ∀(δz, δ�, δτ ) ∈ V (T , t). (17)

Selecting (δz, δ�, δτ ) = (z,�, τ ) in (16) shows that 〈̂q , (z,�, τ )〉∂T ,t =
‖(z,�, τ )‖2V (T ,t). Now, if (u,M, θ) has the trace q̂, trRMT ,t (u,M, θ) = q̂, then (17)

yields 〈̂q , (z,�, τ )〉∂T ,t = ‖(u,M, θ)‖2V (T ,t) so that

‖̂q‖V (T ,t)′ ≥ 〈̂q , (z,�, τ )〉∂T ,t

‖(z,�, τ )‖V (T ,t)
= ‖(u,M, θ)‖V (T ,t) ≥ ‖̂q‖RM,∂T ,t ,

which finally proves the stated norm identity. Then we also conclude thatHRM(∂T , t)
is closed since it is the image of a bounded below operator.

It remains to verify that trRMT ,t (u,M, θ) = q̂. We first show that

u = div (div� + t(τ − ∇z)), M = ε(∇z − t2div�), θ = −∇z. (18)

To this end we define (ũ, M̃, θ̃) ∈ L2(T ) × L
s
2(T ) × L2(T ) by

ũ := div (div� + t(τ − ∇z)), M̃ := ε(∇z − t2div�), θ̃ := −∇z

and show that it solves (17). By uniqueness we then conclude that (ũ, M̃, θ̃) =
(u,M, θ) so that (18) holds. Now, selecting in (16) smooth test functions with com-
pact support in T so that, respectively, only δz, δ�, or δτ are non-zero, we deduce the
following relations in distributional sense,

z + div
(
divε(∇z − t2div�) − t∇ [z + div {div� + t(τ − ∇z)}]

)
= 0, (19)

� + ε
(
∇div {div� + t(τ − ∇z)} − t2divε(∇z − t2div�)

)
= 0, (20)

τ − ∇div {div� + t(τ − ∇z)} = 0. (21)

By the regularity (z,�, τ ) ∈ V (T , t) we conclude that

ũ = div (div� + t(τ − ∇z)) ∈ H1(T ) (from (21)),

ε
(
∇ũ − t2divM̃

)
= −� ∈ L

s
2(T ) (from (20)), (22)

div
(
divM̃ + t(θ̃ − ∇ũ)

)
= −z ∈ L2(T ) (from (19)), (23)
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that is, (ũ, M̃, θ̃) ∈ V (T , t). Furthermore, by definition of (ũ, M̃, θ̃), since∇ũ = τ

by (21), and using (22) and (23),

〈〈(ũ, M̃, θ̃), (δz, δ�, δτ )〉〉V (T ,t)

= (ũ , δz)T + t(∇ũ ,∇δz)T + (M̃ , δ�)T + t(θ̃ , δτ )T

+ (ε(∇ũ − t2divM̃) , ε(∇δz − t2div δ�))T

+ (div (divM̃ + t(θ̃ − ∇ũ)) , div (div δ� + t(δτ − ∇δz)))T
= (div (div� + t(τ − ∇z)) , δz)T + t(τ ,∇δz)T

+ (ε(∇z − t2div�) , δ�)T − t(∇z , δτ )T

− (� , ε(∇δz − t2div δ�))T − (z , div (div δ� + t(δτ − ∇δz)))T

= −〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉∂T ,t = 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉∂T ,t .

The last two relations hold by definition (10) of the trace operator and its skew sym-
metry (11). Recalling (17) we conclude that (ũ, M̃, θ̃) = (u,M, θ) so that (18) holds.
Now, using (18), relations (22), (23) with (ũ, M̃, θ̃) replaced by (u,M, θ), and again
the relation ∇u = ∇ũ = τ , we find that

〈trRMT ,t (u,M, θ) , (δz, δ�, δτ )〉∂T ,t

= (u , div (div δ� + t(δτ − ∇δz)))T − (div (divM + t(θ − ∇u)) , δz)T

+ (M , ε(∇δz − t2div δ�))T − (ε(∇u − t2divM) , δ�)T − t(θ ,∇δz)T
+ t(∇u , δτ )T

= (div (div� + t(τ − ∇z)) , div (div δ� + t(δτ − ∇δz)))T + (z , δz)T

+ (ε(∇z − t2div�) , ε(∇δz − t2div δ�))T + (� , δ�)T

+ t(∇z ,∇δz)T + t(τ , δτ )T

= 〈〈(z,�, θ), (δz, δ�, δτ )〉〉V (T ,t).

Recalling (16) we conclude that

〈trRMT ,t (u,M, θ) , (δz, δ�, δτ )〉∂T ,t = 〈̂q , (δz, δ�, δτ )〉∂T ,t ∀(δz, δ�, δτ ) ∈ V (T , t),

that is, trRMT ,t (u,M, θ) = q̂. This finishes the proof. �


3.2 Norm identities in the trace space

Proposition 5 Let t > 0. For (z,�, τ ) ∈ V (T , t) and a ∈ {c, s} it holds

(z,�, τ ) ∈ Ua(t) ⇔ 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉S,t = 0 ∀(δz, δ�, δτ ) ∈ Ua(t).

Proof The direction “⇒” follows from Lemma 3 by noting that, for (z,�, τ ),

(δz, δ�, δτ ) ∈ Uc(t), the traces of z, δz, ∇δz − t2div δ�, and ∇z − t2div� on �
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vanish by definition ofUc(t). In the case of Us(t) we use that the traces of z, δz, δ�n,
and �n vanish on �.

We prove the direction “⇐”. For brevity we denote Ucs(t) := Uc(t) ∩ Us(t). Let
T ∈ T and (z,�, τ ) ∈ V (T , t) be given.

1. Selecting δz = 0, δ� = 0, and an arbitrary δτ ∈ H(div,�)we have (δz, δ�, δτ ) ∈
Ucs(t) and the relation

0 = 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉S,t = −t(div δτ , z) − t(δτ ,∇z)T .

This implies that z ∈ H1
0 (�).

2. Selecting δz = 0, δτ = 0, and an arbitrary tensor δ� ∈ D
s(�) it follows that

(δz, δ�, δτ ) ∈ Ucs(t) and, in the distributional sense,

ε(∇z − t2div�)(δ�) = (div div δ� , z) − t2(ε(div δ�) ,�)

= (δ� , ε(∇z − t2div�))T .

Here, in the last step, we used the relation 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉S,t = 0. It

follows that ε(∇z − t2div�) ∈ L
s
2(�), that is, ∇z − t2div� ∈ H1(�).

3. Selecting δ� = 0, δτ = 0, and an arbitrary element δz ∈ D(�), it holds
(δz, δ�, δτ ) ∈ Ucs(t) and we find, in the distributional sense, that

div (div� + t(τ − ∇z))(δz) = (ε(∇δz) ,�) − t(∇δz , τ ) − t(	δz , z)

= (δz , div (div� + t(τ − ∇z)))T .

In the last stepwe againmade use of the relation 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉S,t =
0. We conclude that div (div� + t(τ − ∇z)) ∈ L2(�).

4. It remains to show that the trace of ∇z − t2div� ∈ H1(�) on � vanishes (if
a = c) and that the normal-normal trace of � on � vanishes (if a = s).

(a) Case a = c. For a given g ∈ H−1/2(�) (the space of normal traces ofH(div,�)

on �) we select ρ ∈ H1
0(�) such that (ρ , r) + 〈g , r〉� = 0 for any rigid body

(plate) motion r ∈ ker ε, and define ψ ∈ H1(�)/(ker ε) as the solution to

−divε(ψ) = ρ in �, ε(ψ)n = g on �.

We then select (δz, δ�, δτ ) := (0, ε(ψ), 0) and note that (δz, δ�, δτ ) ∈ Uc(t).
Indeed, ∇δz − t2div δ� = −t2divε(ψ) = t2ρ ∈ H1

0(�) and div (div δ� +
t(δτ − ∇δz)) = −div ρ ∈ L2(�). Using Lemma 3 and the fact that z, δz,
∇δz − t2div δ� have zero trace on � we deduce that

0 = 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉S,t = 〈trRMT ,t (0, ε(ψ), 0) , (z,�, τ )〉S,t

= 〈g ,∇z − t2div
〉�.

Since g ∈ H−1/2(�) was arbitrary we conclude that ∇z − t2div
 ∈ H1
0(�).
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(b) Case a = s. For a given g ∈ H1/2(�) (the trace space of H1(�)) we
use an extension ρ ∈ H1(�) with (ρ , r) = 0 ∀r ∈ ker ε, and define
ψ ∈ H1(�)/(ker ε) as the solution to

−divε(ψ) = ρ in �, ε(ψ)n = 0 on �.

We then select (δz, δ�, δτ ) := (0, ε(ψ), 0) and note that (δz, δ�, δτ ) ∈ Us(t)
and div δ� = −g on �. Using Lemma 3 and the fact that z, δz, δ�n have zero
trace on � we deduce that

0 = 〈trRMT ,t (δz, δ�, δτ ) , (z,�, τ )〉S,t = 〈trRMT ,t (0, ε(ψ), 0) , (z,�, τ )〉S,t

= −t2〈g ,�n〉�.

Since g ∈ H1/2(�) was arbitrary we conclude that � ∈ H0(div,�).

This finishes the proof. �

We continue to show that the minimum energy extension norm ‖ · ‖RM,S,t cf. (14),

is a product norm.

Lemma 6 Let t > 0 and a ∈ {c, s}. The identity

‖̂q‖2RM,S,t =
∑
T∈T

‖̂q‖2RM,∂T ,t ∀̂q ∈ HRM
a (S, t)

holds true.

Proof We use standard techniques, see, e.g., [7,13].
The inequality

∑
T∈T ‖̂q‖2RM,∂T ,t ≤ ‖̂q‖2RM,S,t is immediate by definition of the

norms. Now, let q̂ = (̂qT )T∈T ∈ HRM
a (S, t) be given. There exists (z,�, τ ) ∈ Ua(t)

such that trRMT ,t (z,�, τ ) = q̂ and, for T ∈ T , let (z̃T , �̃T , τ̃ T ) ∈ V (T , t) be such that

trRMT ,t (z̃T , �̃T , τ̃ T ) = q̂T and

‖̂qT ‖RM,∂T ,t = ‖(z̃T , �̃T , τ̃ T )‖V (T ,t).

We find that (z̃, �̃, τ̃ ) ∈ V (T , t) defined by (z̃, �̃, τ̃ )|T := (z̃T , �̃T , τ̃ T ) (T ∈ T )
satisfies

〈trRMT ,t (δz, δ�, δτ ) , (z̃, �̃, τ̃ )〉S,t

=
∑
T∈T

〈trRMT ,t (δz, δ�, δτ ) , (z̃T , �̃T , τ̃ T )〉∂T ,t

= −
∑
T∈T

〈trRMT ,t (z̃T , �̃T , τ̃ T ) , (δz, δ�, δτ )〉∂T ,t = −〈̂q , (δz, δ�, δτ )〉S,t

= −〈trRMT ,t (z,�, τ ) , (δz, δ�, δτ )〉S,t = 0 ∀(δz, δ�, δτ ) ∈ Ua(t)

123



An ultraweak formulation of the Reissner–Mindlin plate... 327

by Proposition 5, so that (z̃, �̃, τ̃ ) ∈ Ua(t) also by Proposition 5. We conclude that

∑
T∈T

‖̂q‖2RM,∂T ,t =
∑
T∈T

‖(z̃T , �̃T , τ̃ T ‖2V (T ,t) = ‖(z̃, �̃, τ̃ )‖2V (T ,t) ≥ ‖̂q‖2RM,S,t

where the last bound is due to the definition of the norm ‖ · ‖RM,S,t . This finishes the
proof. �


Finally we show that the norms ‖·‖V (T ,t)′ and ‖·‖RM,S,t are identical inHRM
a (S, t)

(a ∈ {c, s}). This is the product variant of Lemma 4.

Proposition 7 Let t > 0 and a ∈ {c, s}. It holds the identity

‖̂q‖V (T ,t)′ = ‖̂q‖RM,S,t ∀̂q ∈ HRM
a (S, t).

In particular,

trRMT ,t : Ua(t) → HRM
a (S, t)

has unit norm and HRM
a (S, t) is closed.

Proof With the preparations at hand the proof follows standard product arguments,
cf., e.g., [7, Theorem 2.3], [13, Proposition 3.5]. For convenience of the reader let us
recall the arguments.

Let q̂ = (̂qT )T∈T ∈ HRM
a (S, t) be given. Using Lemmas 6 and 4 we calculate

‖̂q‖2V (T ,t)′ =
(

sup
0 �=(z,�,τ )∈V (T ,t)

∑
T∈T 〈̂qT , (z,�, τ )〉∂T ,t

‖(z,�, τ )‖V (T ,t)

)2

=
∑
T∈T

sup
0 �=(z,�,τ )∈V (T ,t)

〈̂qT , (z,�, τ )〉2∂T ,t

‖(z,�, τ )‖2V (T ,t)

=
∑
T∈T

‖̂qT ‖2V (T ,t)′ =
∑
T∈T

‖̂qT ‖2RM,∂T ,t = ‖̂q‖2RM,S,t .

Since HRM
a (S, t) is the image of a bounded below operator, it is closed. �


3.3 The Kirchhoff–Love case (t = 0)

In the following we collect the definitions and properties of spaces, norms and traces
from this section in the limit t = 0, which is the Kirchhoff–Love case. For the clamped
plate, the corresponding results are taken from [13], whereas for the simply supported
plate we have to introduce spaces that reflect this boundary condition.

Let us start collecting spaces and norms (the defined terms are those from [13] in
the notation introduced there). For any T ∈ T we have the space
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H2(T ) × H(div div, T ) :={(z,�); (z,�, 0) ∈ V (T , 0)} with norm

‖z‖22,T + ‖�‖2div div,T :=‖z‖2T + ‖ε(∇z)‖2T + ‖�‖2T + ‖div div�‖2T
=‖(z,�, 0)‖2V (T ,0). (24)

That is, V (T , 0) = H2(T ) × H(div div, T ) is the quotient space with respect to the
third component. Correspondingly, there is the product space

H2(T ) × H(div div, T ) := {(z,�); (z,�, 0) ∈ V (T , 0)}

with squared norm ‖z‖22,T + ‖�‖2div div,T , and the global quotient space U(0) with

squared norm ‖z‖22+‖�‖2div div. In the following, we simply drop the third component
and refer to the quotient spaces as

V (T , 0) = H2(T ) × H(div div, T ), U(0) = H2(�) × H(div div,�).

Note that, when t = 0, the boundary conditions (8) and (9) become z = 0,n · ∇z = 0
(a = c) and z = 0,n · �n = 0 (a = s) on �, respectively. Therefore, we define
Uc(0) := H2

0 (�)× H(div div,�) needed in the case that a = c but, in order to define
the spaceUs(�) corresponding to a = s, we have to give n · �n = 0 on � a meaning
when � ∈ H(div div,�).

Remark 8 Lemma 1 does not apply in the case t = 0. Indeed, as shown in [13] by a
counterexample, (z,�) ∈ U(0) does not imply � ∈ H(div,�). Though, (z,�, τ ) ∈
Uc(0) does mean that z ∈ H2

0 (�) and � ∈ H(div div,�), and (z,�, τ ) ∈ V (T , 0)
iff z ∈ H2(T ) and � ∈ H(div div, T ).

To consider the setting for t = 0 we recall the following trace operators from [13],

trGgrad :
{
H2(�) → H(div div, T )′,
z �→ 〈trGgrad(z) , δ�〉S := (z , div div δ�)T − (ε(∇z) , δ�),

(25)

and

trdDiv :
{
H(div div,�) → H2(T )′,

z �→ 〈trdDiv(�) , δz〉S := (div div� , δz) − (� , ε(∇δz))T .

(26)

The latter operator corresponds towhat is called effective shear force in the engineering
community, cf. [19]. For brevity we define H2

s (�) := H2(�)∩H1
0 (�), and introduce

the space

H0(div div,�) := {� ∈ H(div div,�); 〈trdDiv(�) , δz〉S = 0 ∀δz ∈ H2
s (�)}.

(27)
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Note that, for � ∈ H(div,�) ∩ H(div div,�), 〈trdDiv(�) , δz〉S = −〈�n ,∇δz〉� for
any δz ∈ H2

s (�) where the latter duality is the standard pairing between H−1/2(�)

and H1/2(�). Then, taking into account that δz ∈ H2
s (�) has zero trace on �,

〈�n ,∇δz〉� = 0 for any δz ∈ H2
s (�), this means that n · �n = 0 on � for a

sufficiently smooth function �. For a detailed discussion of the components of trdDiv

we refer to [13].
We are ready to define the trace spaces needed for the Kirchhoff–Love problems.

For the clamped plate we introduce

H3/2,1/2
00 (S) := trGgrad(H2

0 (�)), H−3/2,−1/2(S) := trdDiv(H(div div,�))

whereas, for the simply supported plate, we need the spaces

H3/2,1/2
0 (S) := trGgrad(H2

s (�)), H−3/2,−1/2
0 (S) := trdDiv(H0(div div,�)).

These trace spaces are provided with canonical trace norms,

‖̂v‖Ggrad,S := inf{‖v‖2; v ∈ H2(�), trGgrad(v) = v̂} (̂v ∈ H3/2,1/2
0 (S)),

‖̂q‖dDiv,S := inf
{
‖�‖div div; � ∈ H(div div,�), trdDiv(�)̂q

}
(̂q ∈ H−3/2,−1/2(S))

(note thatH3/2,1/2
00 (S) ⊂ H3/2,1/2

0 (S) andH−3/2,−1/2
0 (S) ⊂ H−3/2,−1/2(S) are closed

subspaces furnishedwith the same respective norm). Now, setting t = 0, the Reissner–
Mindlin trace operator reveals two components,

〈trRMT ,0(z,�, τ ) , (δz, δ�, δτ )〉S,0

= (z , div div δ�)T − (div div� , δz) + (� , ε(∇δz))T − (ε(∇z) , δ�)

= 〈trGgrad(z) , δ�〉S − 〈trdDiv(�) , δz〉S (28)

for (z,�, τ ) ∈ U(0) and (δz, δ�, δτ ) ∈ V (T , 0). In the following we again drop the
third argument and write trRMT ,0(z,�) instead of trRMT ,0(z,�, τ ). Thus, we have a trace
operator with two independent components,

trRMT ,0 :
{

U(0) → V (T , 0)′,
(z,�) �→ 〈trRMT ,0(z,�) , (δz, δ�)〉S = 〈trGgrad(z) , δ�〉S − 〈trdDiv(�) , δz〉S .

Then, defining

Uc(0) := H2
0 (�) × H(div div,�) and Us(0) := H2

s (�) × H0(div div,�) (29)

(Uc(0) had been defined previously) our trace spaces are

HRM
c (S, 0) := trRMT ,0(Uc(0)) = H3/2,1/2

00 (S) × H−3/2,−1/2(S) (clamped) (30)
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and

HRM
s (S, 0) := trRMT ,0(Us(0)) =: H3/2,1/2

0 (S) × H−3/2,−1/2
0 (S) (simple support)

(31)

with the canonical trace norm

‖(̂v, q̂)‖RM,S,0 =
(
‖̂v‖2Ggrad,S + ‖̂q‖2dDiv,S

)1/2
. (32)

The dualities betweenHRM
a (S, 0) (a ∈ {c, s}) and V (T , 0) are given by the respective

component dualities,

〈(̂v,̂q) , (δz, δ�)〉S,0=〈̂v , δ�〉S−〈̂q , δz〉S := 〈trGgrad(z) , δ�〉S−〈trdDiv(�) , δz〉S
(33)

for (̂v, q̂) ∈ HRM
a (S, 0), (δz, δ�) ∈ V (T , 0) and any (z,�) ∈ Ua(0) with

trRMT ,0(z,�) = (̂v, q̂), cf. (28). They give rise to the duality norms

‖(̂v, q̂)‖V (T ,0)′ = sup
0 �=(δz,δ�)∈V (T ,0)

〈(̂v, q̂) , (δz, δ�)〉S,0

‖(δz, δ�)‖V (T ,0)

∀(̂v, q̂) ∈ HRM
a (S, 0) (a ∈ {c, s}).

In the following we collect some technical results.

Lemma 9 The trace operator trRMT ,0 satisfies the relation

〈trRMT ,0(z,�) , (δz, δ�)〉S,0 = −〈trRMT ,0(δz, δ�) , (z,�)〉S,0

for any (z,�), (δz, δ�) ∈ U (0).

Proof The stated relation follows from (28) by noting that

〈trGgrad(z) ,�〉S = 〈trdDiv(�) , z〉S ∀z ∈ H2(�),� ∈ H(div div,�) (34)

by definitions (25),(26), see also [13, (3.14)]. �

Remark 10 Whereas the relation of Lemma 9 corresponds to relation (11) of Lemma 2,
the decomposition (12) and Lemma 3 do not apply in the case t = 0. This is due to
the lacking regularity of � for (z,�) ∈ V (T , 0) or (z,�) ∈ U(0), cf. Remark 8.

The following result is Proposition 5 in the case t = 0.

Proposition 11 For a ∈ {c, s} and (z,�) ∈ V (T , 0) it holds

(z,�) ∈ Ua(0) ⇔ 〈trRMT ,0(δz, δ�) , (z,�)〉S,0 = 0 ∀(δz, δ�) ∈ Ua(0).
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Proof We consider the case a = c. Let (z,�) ∈ V (T , 0) be given. By [13, Propo-
sition 3.4(i)], � ∈ H(div div,�) if and only if 〈trGgrad(δz) ,�〉S = 0 for any
δz ∈ H2

0 (�). Also, by [13, Proposition 3.8(i)], z ∈ H2
0 (�) iff 〈trdDiv(δ�) , z〉S = 0

for any δ� ∈ H(div div,�). Since Uc(0) = H2
0 (�) × H(div div,�), (28) gives the

statement (interchanging (z,�) and (δz, δ�) there).
Now we consider the case a = s. For (z,�), (δz, δ�) ∈ Us(0) we obtain

〈trRMT ,0(δz, δ�) , (z,�)〉S,0
def= (δz , div div�)T − (div div δ� , z)

+ (δ� , ε(∇z))T − (ε(∇δz) ,�)

= (δz , div div�) − (div div δ� , z)

+ (δ� , ε(∇z)) − (ε(∇δz) ,�)

= 〈trdDiv(�) , δz〉S − 〈trdDiv(δ�) , z〉S = 0,

cf. (27). On the other hand, if

〈trRMT ,0(δz, δ�) , (z,�)〉S,0 = 0 ∀(δz, δ�) ∈ Us(0) ∩Uc(0),

one deduces that (z,�) ∈ U (0) as in the case a = c. Then,

〈trRMT ,0(δz, 0) , (z,�)〉S,0 = 〈trdDiv(�) , δz〉� = 0 ∀δz ∈ H2
s (�)

reveals that � ∈ H0(div div,�) by definition (27), and

〈trRMT ,0(0, δ�) , (z,�)〉S,0 = −〈trdDiv(δ�) , z〉S
= −〈trGgrad(z) , δ�〉� = 0 ∀δ� ∈ H0(div div,�)

shows that z = 0 on � by density since 〈trGgrad(z) , δ�〉� = 〈n · div δ� , z〉� for
smooth tensors δ� ∈ H0(div div,�). For details we refer to the proof of [13, Propo-
sition 3.8(i)].

Together, we have shown that (z,�) ∈ Us(0). �

Corollary 12 Let z ∈ H2(�). Then, z ∈ H2

s (�) if and only if

〈trGgrad(z) , δ�〉� = 0 ∀δ� ∈ H0(div div,�).

Proof This is the statement of Proposition 11 when selecting a = s and test functions
(δz, δ�) = (0, δ�) ∈ Us(0) = H2

s (�) × H0(div div,�). One only has to note the
splitting (28) of the trace operator trRMT ,0. �


Next we formulate Proposition 7 in the case t = 0.

Proposition 13 It holds the identity

‖(̂v, q̂)‖RM,S,0 = ‖(̂v, q̂)‖V (T ,0)′ ∀(̂v, q̂) ∈ HRM
a (S, 0), a ∈ {c, s}.
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In particular,

trRMT ,0 : Ua(0) → HRM
a (S, 0) (a ∈ {c, s})

have unit norm and HRM
a (S, 0) (a ∈ {c, s}) are closed.

Proof Using the product property V (T , 0) = H2(T ) × H(div div, T ) and duality
(33), the relation

‖(̂v, q̂)‖2V (T ,0)′ = sup
0 �=δ�∈H(div div,T )

〈̂v , δ�〉2S
‖δ�‖2div div,T

+ sup
0 �=δz∈H2(T )

〈̂q , δz〉2S
‖δz‖22,T

=: ‖̂v‖2(div div,T )′ + ‖̂q‖2(2,T )′ ∀(̂v, q̂) ∈ HRM
c (S, 0) ∪ HRM

s (S, 0)

holds. Then, the statement is a combination of relation (32) with the identities

‖̂q‖(2,T )′ = ‖̂q‖dDiv,S (̂q ∈ H−3/2,−1/2(S)), (35)

‖̂v‖(div div,T )′ = ‖̂v‖Ggrad,S (̂v ∈ H3/2,1/2
00 (S)) (36)

when a = c, and

‖̂q‖(2,T )′ = ‖̂q‖dDiv,S (̂q ∈ H−3/2,−1/2
0 (S)), (37)

‖̂v‖(div div,T )′ = ‖̂v‖Ggrad,S (̂v ∈ H3/2,1/2
0 (S)) (38)

when a = s. The former identities are true by Propositions 3.5 and 3.9, respectively,
from [13]. Furthermore, (35) implies (37) since H−3/2,−1/2

0 (S) ⊂ H−3/2,−1/2(S),
and inspection reveals that the proof of (36) by [13, Proposition 3.9] also applies to
(38). (We remark that in [13] our norm ‖ · ‖Ggrad,S is referred to as ‖ · ‖Ggrad,0,S in

H3/2,1/2
00 (S).) �


4 Variational formulation and DPGmethod

Having all the necessary spaces andnorm relations at handwe return to the construction
of an ultraweak formulation of the Reissner–Mindlin problem. Recall the preliminary
formulation (6). From Lemma 2 it is now clear that the interface terms in (6) can be
represented as

∑
T∈T

〈u ,n · (div� + t(τ − ∇z))〉∂T −
∑
T∈T

〈n · (divM + t(θ − ∇u)) , z〉∂T

+
∑
T∈T

〈Mn ,∇z − t2div�〉∂T −
∑
T∈T

〈∇u − t2divM ,�n〉∂T

=
∑
T∈T

〈trRMT ,t (u,M, θ) , (z,�, τ )〉∂T ,t = 〈trRMT ,t (u,M, θ) , (z,�, τ )〉S,t .

123



An ultraweak formulation of the Reissner–Mindlin plate... 333

We introduce the independent trace variable q̂ := trRMT ,t (u,M, θ) and define the spaces

Ua(T , t) := L2(�) × L
s
2(�) × L2(�) × HRM

a (S, t) (t > 0, a ∈ {c, s}),
Ua(T , 0) := L2(�) × L

s
2(�) × {0} × HRM

a (S, 0) (a ∈ {c, s}).

Here, Ua(T , 0) is understood as being the corresponding quotient space with respect
to the third componentL2(�), and we recall (30), (31) for the definition ofHRM

a (S, 0).
We consider the norm

‖(u,M, θ , q̂)‖U (T ,t) :=
(
‖u‖2 + ‖M‖2 + t‖θ‖2 + ‖̂q‖2V (T ,t)′

)1/2
(t ≥ 0). (39)

With the preparations in Sect. 3.3, we are able to consider the thickness parameter t
including the case t = 0, which represents the Kirchhoff–Love model.

Our ultraweak variational formulation of (5) with boundary condition (5d) (a = c,
clamped) or (5e) (a = s, simple support) is: For given f ∈ L2(�) and t ∈ [0, 1], find
(u,M, θ , q̂) ∈ Ua(T , t) such that

bt (u,M, θ , q̂; z,�, τ ) = L(z,�, τ ) ∀(z,�, τ ) ∈ V (T , t). (40)

Here,

bt (u,M, θ , q̂; z,�, τ ) := (u , div (div� + t(τ − ∇z)))T

+ (M , C−1� + ε(∇z − t2div�))T
+ t(θ , τ − ∇z)T − 〈̂q , (z,�, τ )〉S,t (41)

and

L(z,�, τ ) := −( f , z).

In the case t = 0, the bilinear form reduces to

b0(u,M, θ , q̂; z,�, τ ) = (u , div div�)T + (M , C−1� + ε(∇z))T − 〈̂q , (z,�)〉S,0

with q̂ ∈ HRM
a (S, 0), a quotient space. Recall that the skeleton duality in (41) is

defined by (15) (t > 0) and (33) (t = 0). Furthermore, we recall the definition of
V (T , t) as a product space through completion with respect to the component norm
(7). This applies to t ∈ [0, 1], see also (24) for the case t = 0.

One of our main results is the following theorem.

Theorem 14 Let a ∈ {c, s}. For any function f ∈ L2(�) and any t ∈ [0, 1], there
exists a unique solution (u,M, θ , q̂) ∈ Ua(T , t) to (40). It is uniformly bounded,

‖(u,M, θ , q̂)‖U (T ,t) � ‖ f ‖
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with a hidden constant that is independent of f , T , and t ∈ [0, 1]. Furthermore,
(u,M, θ) ∈ Ua(t) solves (5) and q̂ = trRMT ,t (u,M, θ).

A proof of this theorem is given in Sect. 5.1. A consequence of Theorem 14 is that
the solution of (40) converges weakly to the solution of the corresponding Kirchhoff–
Love formulation when t → 0.

Theorem 15 Let a ∈ {c, s}, and let ft ∈ L2(�) for t ∈ [0, 1] with ft → f0 in
L2(�) when t → 0. Furthermore, for t ∈ [0, 1], let (ut ,Mt , θ t , q̂t ) ∈ Ua(T , t) be
the solution of (40). It holds

(ut ,Mt )⇀(u0,M0) in L2(�) × L
s
2(�) (t → 0),

div divMt → div divM0 in L2(�),

and

〈̂qt , (z,�, τ )〉S,t → 〈̂q0 , (z,�)〉S,0 (t → 0)

for any (z,�, τ ) ∈ V (T , 1) ∩ V (T , 0).

We prove this statement in Sect. 5.2.
Now, to invoke the DPG method, we consider a (family of) discrete subspace(s)

Ua,h(T , t) ⊂ Ua(T , t) (a = c or a = s, depending on the boundary condition), and
define the trial-to-test operator Tt : Ua(T , t) → V (T , t) by

〈〈Tt (u), v〉〉V (T ,t) = bt (u, v) ∀v ∈ V (T , t). (42)

Then, the DPG method with optimal test functions for problem (5) (and based on the
variational formulation (40)) is: Find uh ∈ Ua,h(T , t) such that

bt (uh,Ttδu) = L(Ttδu) ∀δu ∈ Ua,h(T , t). (43)

This discretization scheme is a minimum residual method. Defining the operator Bt :
Ua(T , t) → V (T , t)′ by Bt (u)(v) := bt (u, v), the DPG scheme delivers the best
approximation with respect to the so-called energy norm ‖·‖E(T ,t) := ‖Bt (·)‖V (T ,t)′ ,
cf., e.g., [9].

Our second main result is the uniform quasi-optimal convergence of the DPG
scheme (43) in the U (T , t)-norm.

Theorem 16 Let a ∈ {c, s}, f ∈ L2(�) and t ∈ [0, 1] be given. For any finite-
dimensional subspace Ua,h(T , t) ⊂ Ua(T , t) there exists a unique solution uh ∈
Ua,h(T , t) to (43). It satisfies the quasi-optimal error estimate

‖u − uh‖U (T ,t) � ‖u − w‖U (T ,t) ∀w ∈ Ua,h(T , t)

with a hidden constant that is independent of f , T , t ∈ [0, 1], and Ua,h(T , t).

A proof of this theorem is given in Sect. 5.1.
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5 Inf-sup conditions and proofs of Theorems 14, 15, 16

The proof of Theorem 14 follows standard techniques for mixed formulations. In the
context of product (or “broken”) test spaces, the literature offers three variants. Initially
the whole adjoint problem was analyzed by subdividing it into one without jumps and
a homogeneous one with jump data. Showing stability of the latter one requires to
construct a Helmholtz decomposition, cf., e.g., [9]. Another technique is to analyze
the adjoint problem as a whole in the form of a mixed problem but without Lagrangian
multiplier, cf. [13]. Here, we follow the strategy from Carstensen et al. [7] where the
first approach of splitting the adjoint problem has been analyzed in an abstract way,
thus avoiding the construction of a Helmholtz decomposition. Still, one of the main
ingredients is to prove stability of the adjoint problem without jumps. In our case,
taking the t-weighting in theU (T , t)-norm into account (cf. (39)), it reads as follows.
Find (z,�, τ ) ∈ Ua(t) such that

div (div� + t(τ − ∇z)) = g ∈ L2(�), (44a)

C−1� + ε(∇z − t2div�) = H ∈ L
s
2(�), (44b)

t1/2(τ − ∇z) = ξ ∈ L2(�). (44c)

We show that this problem is well posed.

Lemma 17 Let a ∈ {c, s}. Assuming the compatibility ξ = 0 if t = 0, problem (44) is
uniformly well posed for t ∈ [0, 1]. Its solution is bounded like

‖(z,�, τ )‖U (t) � ‖g‖ + ‖H‖ + ‖ξ‖

with a constant that is independent of t ∈ [0, 1]. In the case t = 0, this means that its
solution is unique in the quotient space Ua(0) with bound

‖(z,�)‖U (0) � ‖g‖ + ‖H‖.

Proof Let t ∈ (0, 1]. Recall that (z,�, τ ) ∈ Ua(t) implies that � ∈ H(div,�),
∇z − t2div� ∈ H1

0(�) if a = c, and � ∈ H0(div,�), ∇z − t2div� ∈ H1(�) if
a = s, cf. Lemma 1.

Therefore, testing (44a) by δz ∈ H1
0 (�) (a ∈ {c, s}), (44b) by δ� ∈ H(div,�)

(a = c) or δ� ∈ H0(div,�) (a = s), and replacing t(τ −∇z) = t1/2ξ , integration by
parts yields the following variational formulation of (44). Find (z,�) ∈ H1

0 (�) ×
H(div,�) such that

(C−1� , δ�) + t2(div� ,div δ�) − (∇z ,div δ�) − (div� ,∇δz)

= (g , δz) + (H , δ�) + t1/2(ξ ,∇δz) (45)

for any (δz, δ�) ∈ H1
0 (�) × H(div,�) if a = c, and the same except for replacing

H(div,�) by H0(div,�) if a = s.
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Let us show that this formulation is well posed and that its solution gives rise to the
solution of (44). Since C induces a self-adjoint isomorphism L

s
2(�) → L

s
2(�), the

term (C−1� , δ�)+ t2(div� ,div δ�) gives rise to a uniformly bounded and coercive
bilinear form in H(div,�) × H(div,�) with norm

(‖ · ‖2 + t2‖div · ‖2)1/2. Now,

div : H(div,�) → L2(�) and div : L2(�) → (H1
0 (�))′

are surjective operators and so is their composition. The surjectivity of div div :
H(div,�) → (H1

0 (�))′ is equivalent to an inf–sup condition

sup
0 �=�∈H(div,�)

(div� ,∇δz)(‖�‖2 + ‖div�‖2)1/2
� ‖∇δz‖ ∀δz ∈ H1

0 (�).

Therefore, also the weaker estimate

sup
0 �=�∈H(div,�)

(div� ,∇δz)(‖�‖2 + t2‖div�‖2)1/2
� ‖∇δz‖ ∀δz ∈ H1

0 (�)

holds, with an implicit constant that is independent of t ∈ (0, 1]. Using the theory of
mixed formulations we conclude that problem (45) is well posed and that its solution
is bounded like

‖�‖2 + t2‖div�‖2 + ‖z‖2 + t‖∇z‖2 � ‖g‖2 + ‖H‖2 + ‖ξ‖2, (46)

uniformly for t ∈ (0, 1].
Now, defining τ := ∇z + t−1/2ξ , (z,�, τ ) is the unique solution of (44). Indeed,

(44c) is satisfied by selection of τ , and (44a) holds as can be seen by choosing δ� = 0
in (45) and replacing ξ = t1/2(τ −∇z). Finally, setting δz = 0 in (45) shows that (44b)
holds and, in particular, ∇z − t2div� ∈ H1

0(�) if a = c and ∇z − t2div� ∈ H1(�)

if a = s. It follows that (z,�, τ ) ∈ Ua(t).
We bound the remaining terms,

t1/2‖τ‖ ≤ t1/2‖∇z‖ + ‖ξ‖ (by (44c)),

‖ε(∇z − t2div�)‖ � ‖H‖ + ‖�‖ (by(44b)),

‖div (div� + t(τ − ∇z))‖ = ‖g‖ (by (44a)).

This proves the statement for positive t . In the case that t = 0 and ξ = 0, (44)
reads

div div� = g, C−1� + ε(∇z) = H.

Eliminating �, it becomes div divCε(∇z) = div divCH − g, in weak form

z ∈ H2
m(�) : (Cε(∇z) , ε(∇δz)) = (CH , ε(∇δz)) − (g , δz) ∀δz ∈ H2

m(�) (47)

123



An ultraweak formulation of the Reissner–Mindlin plate... 337

with m = 0 if a = c and m = s if a = s (recall that H2
s (�) = H2(�) ∩ H1

0 (�)).
Note that in the case a = s, this formulation includes the natural boundary condition
n · C(ε(∇z) − H)n = 0 on �, that is, C(ε(∇z) − H) ∈ H0(div div,�).

Problem (47) has a unique solution since the bilinear form is coercive both on
H2
0 (�) and H2

s (�), cf. [2, Lemma 3.3]. It holds the bound ‖z‖2 � ‖H‖ + ‖g‖. The
formulation also shows that � = C(H − ε(∇z)) ∈ H(div div,�) (H0(div div,�) if
a = s) with div div� = g. Recalling relation (29) for Ua(0), we therefore obtain a
unique solution (z,�) ∈ Ua(0) of (44) for t = 0 with

‖(z,�)‖U (0) =
(
‖z‖22 + ‖�‖2div div

)1/2
� ‖g‖ + ‖H‖.

This finishes the proof. �

Corollary 18 Let t > 0. The bound

t‖div�‖ � ‖(z,�, τ )‖U (t) ∀(z,�, τ ) ∈ Ua(t) (a ∈ {c, s})

holds with a constant that is independent of t ∈ (0, 1].
Proof This has been shown in the proof of Lemma 17. We just need to apply the
triangle inequality on the right-hand side of (46), giving

t2‖div�‖2 � ‖div (div� + t(τ − ∇z)‖2
+ ‖ε(∇z − t2div�)‖2 + ‖�‖2 + t‖τ‖2 + t‖∇z‖2

≤ ‖(z,�, τ )‖2U (t).

�

Another ingredient to show well-posedness of (40) is the injectivity of the adjoint

operator B∗
t . This is shown next.

Lemma 19 Let a ∈ {c, s}. For t ∈ [0, 1], the adjoint operator B∗
t : V (T , t) →

Ua(T , t)′ is injective.

Proof Let (z,�, τ ) ∈ V (T , t) be such that bt (δz, δ�, δτ , δ̂q; z,�, τ ) = 0 for any
(δz, δ�, δτ , δ̂q) ∈ Ua(T , t). Selecting δz = 0, δ� = 0, δτ = 0 and δ̂q ∈ HRM

a (S, t),
Proposition 5 (if t > 0) and Proposition 11 (if t = 0) show that (z,�, τ ) ∈ Ua(t). It
follows that (z,�, τ ) solves

div (div� + t(τ − ∇z)) = 0,

C−1� + ε(∇z − t2div�) = 0,

t1/2(τ − ∇z) = 0 in �.

This is problem (44) with homogeneous data. By Lemma 17, (z,�, τ ) = 0 (where
(0, 0, τ ) = 0 is the null element of the quotient space Ua(0) when t = 0). �
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5.1 Proofs of Theorems 14, 16

We are ready to prove our main results. We start with Theorem 14. To show the unique
and stable solvability of (40) it is enough to check the standard properties.

1. Boundedness of the functional. This is immediate since, for f ∈ L2(�), it
holds L(z) ≤ ‖ f ‖ ‖z‖ ≤ ‖ f ‖ ‖(z,�, τ )‖V (T ,t) for any (z,�, τ ) ∈ V (T , t) and
t ∈ [0, 1].

2. Boundedness of the bilinear form. The bound b(u, v) � ‖u‖U (T ,t)‖v‖V (T ,t)
for all u ∈ Ua(T , t) and v ∈ V (T , t) is uniform for T and t ∈ [0, 1] due to the
selection of norms in both spaces.

3. Injectivity. In Lemma 19 we have seen that the adjoint operator of B∗
t :

V (T , t) → Ua(T , t)′ is injective for any t ∈ [0, 1].
4. Inf-sup condition. We have to show that

sup
0 �=(z,�,τ )∈V (T ,t)

bt (u,M, θ , q̂; z,�, τ )

‖z,�, τ‖V (T ,t)
� ‖(u,M, θ , q̂)‖U (T ,t)

∀(u,M, θ , q̂) ∈ Ua(T , t) (48)

holds uniformly for t ∈ [0, 1]. As mentioned before, we use the framework from
[7]. For ease of reading let us relate our notation to the one used there:

X = Ua(T , t), X0 = L2(�) × L
s
2(�) × L2(�), X̂ = HRM

a (T , t),

Y = V (T , t), Y0 = Ua(t), b(·, ·) = bt (·, ·),
b0(x, y) = bt (u,M, θ , 0; z,�, τ ) with x=(u,M, θ), y=(z,�, τ ),

b̂(x̂, y)=bt (0, 0, 0,̂q; z,�, τ )=−〈̂q , (z,�, τ )〉S,t with x̂=q̂, y=(z,�, τ ).

Now, by [7, Theorem 3.3], (48) follows from the two inf–sup properties

[7,Ass.3.1] : sup
0 �=(z,�,τ )∈Ua(t)

bt (u,M, θ , 0; z,�, τ )

‖(z,�, τ )‖V (T ,t)
� ‖u‖ + ‖M‖ + t1/2‖θ‖

(49)

∀(u,M, θ) ∈ L2(�) × L
s
2(�) × L2(�),

[7, (18)] : sup
0 �=(z,�,τ )∈V (T ,t)

〈̂q , (z,�, τ )〉S,t

‖(z,�, τ )‖V (T ,t)
� ‖̂q‖RM,S,t ∀̂q ∈ HRM

a (S, t),

(50)

and relation

Ua(t) = {(z,�, τ ) ∈ V (T , t); 〈̂q , (z,�, τ )〉S,t = 0 ∀̂q ∈ HRM
a (T , t)}.

This last relation is the statement of Proposition 5 (if t > 0) and Proposition 11 (if
t = 0). Inf-sup property (49) is satisfied due to Lemma 17, uniformly for t ∈ [0, 1]
and subject to the compatibility condition that ξ = 0 when t = 0. In fact, given
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(u,M, θ) ∈ L2(�)×L
s
2(�)×L2(�), choose (z∗,�∗, τ ∗) ∈ Ua(t) as the solution

of (44) with compatible data g = u, H = M and ξ = t1/2θ . Then

sup
0 �=(z,�,τ )∈Ua(t)

bt (u,M, θ , 0; z,�, τ )

‖(z,�, τ )‖V (T ,t)
≥ ‖u‖2 + ‖M‖2 + t‖θ‖2

‖(z∗,�∗, τ ∗)‖U (t)

� ‖u‖2 + ‖M‖2 + t‖θ‖2
‖u‖ + ‖M‖ + t1/2‖θ‖ ,

that is, (49) holds. Finally, (50) holds by Proposition 7 (with equality and
constant 1).

That (u,M, θ) satisfies (5) and q̂ = trRMT ,t (u,M, θ) follows by standard arguments.
This also shows the stated regularity. We have therefore proved Theorem 14.

Recalling that the DPG method delivers the best approximation in the energy norm
‖ · ‖E(t) = ‖ · ‖V (T ,t)′ ,

‖u − uh‖E(t) = min{‖u − w‖E(t); w ∈ Ua,h(T , t)},

to prove Theorem 16, it is enough to show the uniform equivalence of the energy
norm and the norm ‖ ·‖U (T ,t). By definition of the energy norm, ‖u‖E(t) � ‖u‖U (T ,t)
is equivalent to the boundedness of bt (·, ·), which we have just checked. The other
estimate, ‖u‖U (T ,t) � ‖u‖E(t), is the inf–sup property (48) which also holds. Both
estimates hold uniformly for t ∈ [0, 1].

5.2 Proof of Theorem 15

By Theorem 14 there exists for any t ∈ [0, 1] a unique solution (ut ,Mt , θ t , q̂t ) ∈
Ua(T , t) of (40). Obviously, div divMt → div divM0 in L2(�) (t → 0) by (5a)
since ft → f0 by assumption and since θ t = ∇ut due to (5c).

Now consider a null sequence of positive numbers (tn). By the bound given by
Theorem 14 and the L2-convergence ftn → f0 we have

‖utn‖2 + ‖Mtn‖2 + tn‖θ tn‖2 ≤ ‖(utn ,Mtn , θ tn , q̂tn )‖2U (T ,tn)
� ‖ ftn‖2 � 1 + ‖ f0‖2

(51)

for n sufficiently large. Therefore, there is a subsequence of (tn), again denoted by (tn),
such that (utn ,Mtn ) converges weakly to a limit (u,M) ∈ L2(�) × L

s
2(�). Note that

the symmetry ofM follows from the symmetry ofMtn by testing with skew symmetric
tensors in the weak limit. Now, selecting z ∈ D(�), � ∈ D

s(�) and τ ∈ D(�), it
holds (z,�, τ ) ∈ Uc(t) ∩Us(t) for any t ∈ [0, 1] so that 〈̂qtn , (z,�, τ )〉S,tn = 0 by
Proposition 5. Thus, formulation (40) and the convergence

max{tn‖utn‖, t2n‖Mtn‖, tn‖θ tn‖} → 0 (n → ∞) (52)

123



340 T. Führer et al.

by (51) show that

−( ftn , z) = btn (utn ,Mtn , θ tn , q̂tn ; z,�, τ )

= (utn , div (div� + tn(τ − ∇z)) + (Mtn , C−1� + ε(∇z − t2ndiv�))

+ tn(θ tn , τ − ∇z)

→ (u , div div�) + (M , C−1� + ε(∇z)) (n → ∞). (53)

Since ( ftn , z) → ( f0 , z) (n → ∞), it follows that M ∈ H(div div,�), u ∈ H2(�)

with −div divM = f0 and M + Cε(∇u) = 0.
Now, to establish the convergence of 〈̂qtn , (z,�, τ )〉S,tn , we select

z ∈ D(T ) := {z : � → R; z|T ∈ D(T̄ ) ∀T ∈ T },

� ∈ D
s(T ), τ ∈ D(T ) (with analogous definitions). Since q̂tn = trRMS,tn

(utn ,Mtn , θ tn )

by Theorem 14, definitions (10), (13) and the relation θ tn = ∇utn show that

〈̂qtn , (z,�, τ )〉S,tn = (utn , div (div� + tn(τ − ∇z))T − (div divMtn , z)

+ (Mtn , ε(∇z − t2ndiv�))T − (ε(∇utn − t2ndivMtn ) ,�)

+ tn(θ tn , τ − ∇z)T .

As (utn ,Mtn , θ tn ) solves (5), is holds div divMtn = − ftn and ε(∇utn − t2ndivMtn ) =
C−1Mtn . Therefore, the convergence (utn ,Mtn )⇀(u,M) in L2(�)×L

s
2(�) and ftn →

f0 in L2(�) together with (52) induces the limit

〈̂qtn , (z,�, τ )〉S,tn → (u , div div�)T

+( f0 , z) + (M , ε(∇z))T − (C−1M ,�) (n → ∞).

Since f0 = −div divM and C−1M = ε(∇u), using definitions (25), (26) and relation
(28), this reveals that

〈̂qtn , (z,�, τ )〉S,tn → 〈trGgrad(u) ,�〉S − 〈trdDiv(M) , z〉S
= 〈trRMT ,0(u,M) , (z,�)〉S,0 (54)

when n → ∞ so that, arguing as in (53),

−( f0 , z) ← −( ftn , z) = btn (utn ,Mtn , θ tn , q̂tn ; z,�, τ )

→ b0(u,M, q̂; z,�) (n → ∞)

for any (z,�, τ ) ∈ D(T )×D
s(T )×D(T )with q̂ = trRMT ,0(u,M) by (54). If, for a = c,

u ∈ H2(�) satisfies the homogeneous boundary conditions, i.e., u ∈ H2
0 (�), then

this means that the limit (u,M, q̂) ∈ Uc(T , 0) solves the Kirchhoff–Love problem of
the clamped plate, (40) with t = 0 and a = c, so that (u0,M0, q̂0) = (u,M, q̂). On
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the other hand, if, for a = s, u and M satisfy the homogeneous boundary conditions
u ∈ H2

s (�) and M ∈ H0(div div,�), then the limit (u,M, q̂) ∈ Us(T , 0) solves the
Kirchhoff–Love problem (40) with t = 0 and a = s.

It therefore remains to show the corresponding homogeneous boundary conditions.
Case a = c. Selecting z = 0, τ = 0 and � ∈ D

s(�̄), the boundary conditions
utn = 0, ∇utn − t2ndivMtn = 0 on �, cf. (5d), Lemma 3 and the weak convergence
(54) show that

〈̂qtn , (z,�, τ )〉S,tn = −t2n 〈Mtnn ,div�〉� → 〈trGgrad(u) ,�〉S (n → ∞).

On the other hand,

t2n 〈Mtnn ,div�〉� = t2n (divMtn ,div
) + t2n (Mtn , ε(div�)) → 0 (n → ∞)

since ‖Mtn‖ � 1+ ‖ f0‖ (used in (52)) and tn‖divMtn‖ � 1+ ‖ f0‖ for n sufficiently
large, so that 〈trGgrad(u) ,�〉S = 0. Indeed, by Corollary 18,

t2n‖divMtn‖2 ≤ ‖(utn ,Mtn , θ tn )‖2U (t)

= ‖utn‖2 + 2t‖θ tn‖2 + ‖Mtn‖2 + ‖ε(∇utn − t2ndivMtn )‖2
+ ‖ ftn‖2 � ‖ ftn‖2 � 1 + ‖ f0‖2.

Here, we used relations (5a), (5b), (5c) and bound (51). Using Lemma 9, specifically
relation (34), we conclude that 〈trGgrad(u) ,�〉S = 〈trdDiv(�) , u〉S = 0 for any
� ∈ D

s(�̄) so that u ∈ H2
0 (�) by [13, Proposition 3.8(i)].

Case a = s. First we show that u ∈ H2
s (�). We select z = 0, τ = 0 and

� ∈ H(div,�) ∩ H0(div div,�). Then, similarly as before, we conclude that

〈̂qtn , (z,�, τ )〉S,tn=〈utn ,n · div�〉�−t2n 〈Mtnn ,div�〉�=0 → 〈trGgrad(u) ,�〉S

when n → ∞ since utn = 0 and Mtnn = 0 on �. In other words, u ∈ H2
s (�), by

Corollary 12 and the density of H(div,�) ∩ H0(div div,�) in H0(div div,�).
Now, to show that M ∈ H0(div div,�), we select z ∈ H2

s (�) and τ = 0, � = 0,
and use that utn = 0, Mtnn = 0 on �, cf. (5e), and θ tn = ∇utn . Then Lemma 3 and
the weak convergence (54) imply that

〈̂qtn , (z,�, τ )〉S,tn = −〈n · divMtn , z〉� = 0 → −〈trdDiv(M) , z〉S (n → ∞).

It follows that M ∈ H0(div div,�), cf. (27).
Finally, since the sequence (tn) was arbitrary, we have established the weak con-

vergence of the Reissner–Mindlin solution to the Kirchhoff–Love solution, for the
boundary conditions of the clamped plate and the simply supported plate.
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6 Numerical experiment

In this section we study a simple model problem with smooth solutions (depending on
t). As mentioned before, a fully discrete analysis (taking an approximation of optimal
test functions into account) is an open subject. Also the construction of low-regular
basis functions for the discretization of trace spaces is ongoing research. Here, we are
only interested to investigate robustness of our scheme with respect to the parameter
t > 0.

Our constructed model problem is as follows. We consider a plate with mid-surface
� = (0, 1)2 and select C as the identity. Given the (rescaled) rotation vector

ψ(x, y) =
(
y3(1 − y)3x2(1 − x)2(2x − 1)
x3(1 − x)3y2(1 − y)2(2y − 1)

)

we set M := −ε(ψ) and select the (rescaled) bending load f := −div divM. The
deflection u ∈ H2(�) ∩ H1

0 (�) = H2
s (�) can then be obtained from relation ∇u =

ψ + t2divM.Note that f andM are independent of the thickness parameter t whereas
the deflection u depends on this parameter. Furthermore, one verifies that the solution
u of this problem satisfies the clamped plate boundary conditions (5d) as well as the
boundary conditions (5e) of the simply supported plate. In the example presented here
we only consider the latter pair of boundary conditions, (5e), that is, a = s in the
setting of our spaces.

Recall from Sect. 4 the ansatz space

Us(T , t) := L2(�) × L
s
2(�) × L2(�) × HRM

s (S, t).

We replace the spaces for the L2(�) field variables u,M, θ by spaces of element-wise
constant functions, i.e., L2(�) × L

s
2(�) × L2(�) is replaced by

P0(T ) × P0(T )2×2 ∩ L
s
2(�) × P0(T )2,

where P p(T ) denotes the space of element-wise polynomials of degree ≤ p. Here,
we use a triangulation T of the computational domain where the initial mesh contains
four elements. For the choice of an appropriate approximation space of the traces
we utilize the fact that the exact solution u and M are regular, u ∈ H2(�) and
M ∈ H2(�)2×2 ∩ L

s
2(�). Let Uh ⊂ H2

s (�) denote the space of reduced HCT-
elements. We note that traces of this space have also been used in our previous works
to discretize the ultraweak formulation of the Kirchhoff–Love model problem, see
[13] and [12]. We then define the space

HRM
s,h (S, t) := {trRMT ,t (uh,Mh, θh); uh ∈ Uh, Mh ∈ U 2×2

h ∩ L
s
2(�), θh = ∇uh}.

Elements of this space satisfy the boundary conditions (5e) of the simply supported
plate, that is, HRM

s,h (S, t) ⊂ HRM
s (S, t).
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Fig. 1 Errors of the field variables in the L2(�)-norm and estimator η versus the number of degrees of
freedom for t = 10− j , j ∈ {2, 4, 6, 8}

Instead of using optimal test functions in the space V (T , t), we consider the finite
dimensional space

Vh(T , t) = P3(T ) × P3(T )2×2 × P3(T )2

and use an approximated trial-to-test operator by replacing V (T , t) in (42) with
Vh(T , t).

We perform numerical experiments with a sequence of uniformly refined meshes,
and for different values of t (t = 10− j , j ∈ {2, 4, 6, 8}). Figure 1 shows the errors of
the field variables ‖u − uh‖, ‖M−Mh‖, ‖θ − θh‖ (uh = (uh,Mh, θh, q̂h) being the
DPG approximation of u = (u,M, θ , q̂)) along with the DPG estimator

η = sup
0 �=vh=(vh ,�h ,τ h)∈Vh(T ,t)

bt (uh; vh) − ( f , vh)

‖vh‖V (T ,t)
.

This estimator is an approximation to the error of the residual ‖Btuh − L‖V (T ,t)′ ,
cf. (43) and the discussion there. We observe that η is an upper bound for the total
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error in the field variables, as expected. Furthermore, the error curves are almost
independent of t , thus confirming our error estimates which are uniform in t . We
also observe that the error of θh seems to be controlled in a stronger norm (without
t-weighting).
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