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A natural medium for wave propagation comprises a coupled bounded heterogeneous re-
gion and an unbounded homogeneous free-space. Frequency-domain wave propagation 
models in the medium, such as the variable coefficient Helmholtz equation, include a 
faraway decay radiation condition (RC). It is desirable to develop algorithms that incor-
porate the full physics of the heterogeneous and unbounded medium wave propagation 
model, and avoid an approximation of the RC. In this work we first present and analyze an 
overlapping decomposition framework that is equivalent to the full-space heterogeneous-
homogenous continuous model, governed by the Helmholtz equation with a spatially de-
pendent refractive index and the RC. Our novel overlapping framework allows the user to 
choose two free boundaries, and gain the advantage of applying established high-order fi-
nite and boundary element methods (FEM and BEM) to simulate an equivalent coupled 
model.
The coupled model comprises auxiliary interior bounded heterogeneous and exterior un-
bounded homogeneous Helmholtz problems. A smooth boundary can be chosen for simu-
lating the exterior problem using a spectrally accurate BEM, and a simple boundary can be 
used to develop a high-order FEM for the interior problem. Thanks to the spectral accu-
racy of the exterior computational model, the resulting coupled system in the overlapping 
region is relatively very small. Using the decomposed equivalent framework, we develop a 
novel overlapping FEM-BEM algorithm for simulating the acoustic or electromagnetic wave 
propagation in two dimensions. Our FEM-BEM algorithm for the full-space model incorpo-
rates the RC exactly. Numerical experiments demonstrate the efficiency of the FEM-BEM 
approach for simulating smooth and non-smooth wave fields, with the latter induced by a 
complex heterogeneous medium and a discontinuous refractive index.
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1. Introduction

Wave propagation simulations, governed by the Helmholtz equation, in bounded heterogeneous and unbounded homoge-
nous media are fundamental for numerous applications [13,33,39].

Finite element methods (FEM) are efficient for simulating the Helmholtz equation in a bounded heterogeneous medium, 
say, �0 ⊂Rm (m = 2, 3). The standard (non-coercive) variational formulation of the variable coefficient Helmholtz equation 
in H1(�0) [33] has been widely used for developing and analyzing the sign-indefinite FEM, see for example [3,7,12,27,
29,40]. The open problem of developing a coercive variational formulation for the heterogeneous Helmholtz model was 
solved recently in [28], and an associated preconditioned sign-definite high-order FEM was also established using direct and 
domain decomposition methods in [28].

For a large class of applications the wave propagation occurs in the bounded heterogeneous medium and also in its com-
plement, Rm \ �0, the exterior unbounded homogeneous medium. Using the fundamental solution, the constant coefficient 
Helmholtz equation exterior to �0 can be reformulated as an integral equation (IE) on the boundary of �0. Algorithms for 
simulating the boundary IE (BIE) are known as boundary element methods (BEM). Several coercive and non-coercive BIE 
reformulations [13,39] of the exterior Helmholtz model have been used to develop algorithms for the exterior homogeneous 
Helmholtz models, see for example the acoustic BEM survey articles [11,34], respectively, by mathematical and engineering 
researchers, each with over 400 references.

The exterior wave propagation BEM models lead to dense complex algebraic systems, and the standard variational formu-
lation based interior wave FEM models lead to sparse complex systems with their eigenvalues in the left half of the complex 
plane [26,38]. Developing efficient preconditioned iterative solvers for such systems has also dominated research activities 
over the last two decades [19], in conjunction with efficient implementations using multigrid and domain decomposition 
techniques, see [25,27] and references therein.

For applications that require solving both the interior heterogenous and exterior homogeneous problems, various cou-
plings of the FEM and BEM algorithms with appropriate conditions on polygonal interfaces have also been investigated in 
the literature [5,6,32]. The review article [43] describes some theoretical validations of the coupling approaches considered 
in the earlier literature and delicate choices of the coupling interface. The coupling methods in [5,6,31,32,43] lead to very 
large algebraic systems with both dense and sparse structures. For wave propagation models, given the complexity involved 
in even separately solving the FEM and BEM algebraic systems, it is efficient to avoid large combined dense and sparse 
structured systems arising from the coupling methods in [5,6,31,32,43].

Such complicated-structured coupled large-scale systems can be avoided, for the Helmholtz PDE interior and exterior 
problems, using the approach proposed in [35] and recently further explored in [24] using high-order elements for a class 
of applications with complex heterogeneous structures. The FEM-BEM algorithms in [24,35] are based on the idea of using 
a non-overlapping smooth interface to couple the interior and exterior solutions. As described in [24, Section 6], there are 
several open mathematical analysis problems remain to be solved in the coupling and FEM-BEM framework of [24,35].

The choice of smooth interface in the FEM-BEM algorithms of [24,35] is crucial because the methods require solving 
several interior and exterior wave problems to compute the interface condition. In particular, the number of FEM and 
BEM problems to be solved is twice the number of degrees of freedom required to approximate the unknown interface 
function. The interface function can be approximated by a few degrees of freedom only on smooth interfaces. Efficient 
spectrally accurate BEM algorithms have been developed for simulating scattered waves exterior to smooth boundaries 
in two and three dimensional domains [8,9,13,20]. However for standard interior FEM algorithms, it is desirable to have 
simple polygonal/polyhedral boundaries, and in particular those with right angles, which facilitate the development and 
implementation of high-order FEM algorithms.

To this end, we develop an equivalent framework for the heterogeneous and unbounded region wave propagation model 
with two artificial interfaces. In particular, our novel FEM-BEM framework is based on an interior smooth interface � for 
simulating scattered exterior waves using a spectrally accurate Nyström BEM, and an exterior simple polygonal/polyhedral 
interface � for the efficient high-order FEM simulation of the absorbed interior waves. In Fig. 1, we sketch the resulting 
overlapped decomposition of a heterogeneous and unbounded medium in which the absorbed and scattered waves are 
induced by an input incident wave uinc.

The decomposition facilitates the application of efficient high-order FEM algorithms in the interior polygonal/polyhedral 
domain �2, that contains the heterogeneous region �0 ⊂ �1. The unbounded exterior region Rm \ �1 does not include the 
heterogeneity and has a smooth boundary �. It therefore supports spectrally accurate BEM algorithms to simulate exterior 
scattered waves, and also exactly preserves the radiation condition (RC), even in the computational model.

In addition, the decomposition framework provides an analytical integral representation of the far-field using the scat-
tered field, and hence our high-order FEM-BEM model provides relatively accurate approximations of the far-field arising 
from the heterogeneous model. For inverse wave models, accurate modeling of the far-field plays a crucial role in the 
identification of unknown wave propagation configuration properties from far-field measurements [2,13,23].

Our approach in this article is related to some ideas presented in [10,15,16]. The choice of two artificial boundaries leads 
to two bounded domains �0 ⊂ �1 ⊂ �2 and an overlapping region between �c

1 = Rm \ �1 and �2. We prove that, under 
appropriate restrictions of the scattered and absorbed fields in the overlapping region �12(:= �c

1 ∩ �2), our decomposed 
model is equivalent to the original Helmholtz model in the full space Rm . The unknowns in our decomposed framework, 
which exactly incorporates the RC, are: (a) the trace of the scattered wave on � that will yield the solution in the unbounded 
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Fig. 1. A model configuration with an input incident wave uinc impinging on a heterogeneous medium �0. The artificial boundaries in our decomposition 
framework for the auxiliary bounded (FEM) and unbounded (BEM) models are � and �, respectively. The bounded domain for the FEM is �2 (with 
boundary �), and the unbounded region for the BEM is Rm \ �1 (exterior to the smooth interface �). The domain �1 (with boundary �) is chosen so that 
�0 ⊂ �1 ⊂ �2, and the overlapping region in the framework, to match the FEM and BEM solutions, is (Rm \ �1) ∩ �2.

domain �c
1, through a boundary layer potential ansatz of the scattered field; (b) the trace of the total wave in the boundary 

� of �2, that will provide the Dirichlet data to determine the total absorbed wave in the bounded domain �2. These 
properties will play a crucial role in designing and implementing our high-order FEM-BEM algorithm.

The FEM-BEM numerical algorithm can be discerned at this point: It comprises approximating the absorbed wave field 
in a finite dimensional space using an FEM spline ansatz in the bounded domain �2, and by a BEM ansatz for the scattered 
field in the unbounded region, exterior to �, and these fields are constrained to (numerically) coincide on the overlap-
ping domain �12, and hence on the interface boundaries. Since these artificial boundaries can be freely chosen, we can 
ensure a bounded simple polygonal/polyhedral domain, more suitable for high-order FEM, and an unbounded region with a 
smooth boundary for spectrally accurate BEM. In particular, the framework brings the best of the two numerical (FEM and 
BEM) worlds to compute the fields accurately for the full heterogeneous model problem, without the need to truncate the 
unbounded wave propagation region and approximate the RC.

The algorithmic construction and solving of the interface linear system, which determines key unknowns of the model 
on the interface boundaries (that is, the ansatz coefficients of the trace of the FEM and BEM solutions), is challenging. 
However, important properties of the continuous problem, such as a compact perturbation of the identity, are inherited by 
the numerical scheme. Consequently, the system of linear equations for the interface unknowns is very well conditioned. 
Such properties, in conjunction with a cheaper matrix-vector multiplication for the underlying matrix, support the use of 
iterative solvers such as GMRES [41,42] to compute the ansatz coefficients. Major computational aspects of our high-order 
FEM and BEM discretizations in the framework are independent and hence the underlying linear systems can be solved, 
a priori, by iterative Krylov methods. We show that the number of GMRES iterations, to solve the interface system, is 
independent of various levels of discretization for a chosen frequency of the model. For increasing frequencies, we also 
demonstrate that the growth of the number of GMRES iterations is lower than the frequency growth.

Instead of using an iterative scheme for the interface system arising in our algorithm, one may also consider the con-
struction and storage of the matrix and a direct solver for the system. The advantage of the latter is that the interface 
problem matrix can be reused for numerous incident input waves that occur in many practical applications, for example, 
to compute the monostatic cross sections, and also for developing appropriate reduced order model (ROM) [21] versions of 
our algorithm. The matrix arising in our interface system is relatively small because of the spectral accuracy of the BEM 
algorithm, and because the system involves only unknowns on the artificial interface boundaries. Hence post-processing of 
the computed fields, such as for the evaluation of the far-field, can be done quickly and efficiently. The far-field output also 
plays a crucial role in developing stable ROMs for wave propagation models [21,22].

The paper is organized as follows. In Section 2 we present the decomposition framework and prove that, under very weak 
assumptions, the decomposition is well-posed and is equivalent to the full heterogeneous and unbounded medium wave 
propagation model. In Section 3 we present a numerical discretization for the two dimensional case, combining high-order 
finite elements with spectrally accurate convergent boundary elements [36] and describe the algebraic and implementation 
details. In Section 4 we demonstrate the efficiency of the FEM-BEM algorithm for simulating wave propagation in two 
distinct classes of (smooth and non-smooth) heterogenous media.

2. Decomposition framework and well-posedness analysis

Let �0 ⊂Rm , m = 2, 3, be a bounded domain. The ratio of the speed of wave propagation inside the heterogeneous (and 
not necessarily connected) region �0 and on its free-space exterior �c

0 := Rm \ �0 is described through a refractive index 
function n that we assume in this article to be piecewise smooth with 1 − n having compact support in �0 (i.e., n|�c

0
≡ 1).

The main focus of this article is to study the wave propagation in Rm , induced by the impinging of an incident wave 
uinc, say, a plane wave with wavenumber k > 0. More precisely, the continuous wave propagation model is to find the total 
field u(:= us + uinc) ∈ H1 (Rm) that satisfies the Helmholtz equation and the Sommerfeld RC:
loc
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∣∣∣∣∣ �u + k2n2 u = 0, in Rm,

∂rus − ikus = o(|r|m+1
2 ), as |r| → ∞.

(2.1)

It is well known that (2.1) is uniquely solvable [36]. (Later in this section, we introduce the classical Sobolev spaces H s , for 
s ≥ 0, with appropriate norms.)

2.1. A decomposition framework

The heterogeneous-homogeneous model problem (2.1) is decomposed by introducing two artificial curves/surfaces � and 
� with interior �1 and �2 respectively satisfying �0 ⊂ �1 ⊂ �1 ⊂ �2. We assume from now on that � is smooth and �
is a polygonal/polyhedral boundary. A sketch of the different domains is displayed in Fig. 1. Henceforth, �c

i :=Rm \ �i, i =
0, 1, 2.

We introduce the following decomposed heterogeneous and homogeneous media auxiliary models:

• For a given function f inp
� ∈ H1/2(�), we seek a propagating wave field w so that w and its trace γ� w on the boundary 

� satisfy∣∣∣∣ �w + k2n2 w = 0, in �2,

γ�w = f inp
� .

(2.2)

Throughout the article, we assume that this interior problem is uniquely solvable. We introduce the following operator 
notation for the heterogeneous auxiliary model: For any Lipschitz m- or (m − 1)-dimensional (domain or manifold) 
D ⊂ �2, we define the solution operator KD� associated with the auxiliary model (2.2) as

KD� f inp
� := w|D . (2.3)

Two cases will be of particular interest for us: K�2� f inp
� , which is nothing but w satisfying (2.2), and K�� f inp

� = γ�w , 
the trace of the solution w of (2.2) on �⊂ �2.

• In the exterior unbounded homogeneous medium �c
1 :=Rm \�1, for a given function f inp

� ∈ H1/2(�) we seek a scattered 
field ω̃ satisfying∣∣∣∣∣∣

�ω̃ + k2ω̃ = 0, in �c
1,

γ�ω̃ = f inp
� ,

∂rω̃ − ikω̃ = o(|r|(m−1)/2).

(2.4)

Unlike problem (2.2), (2.4) is always uniquely solvable [36]. We define the associated solution operator KD� as

KD� f inp
� := ω̃|D , (2.5)

with special attention to K�c
1� f inp

� and K�� f inp
� , namely the scattered field ω̃ satisfying (2.4) and its trace γ�ω̃.

The decomposition framework that we propose for the continuous problem is the following:

1. Solve the interface boundary integral system to find ( f�, f�), using data (γ�uinc, γ�uinc):∣∣∣∣∣∣∣
( f�, f�) ∈ H1/2(�) × H1/2(�)

f� − K�� f� = γ�uinc

−K�� f� + f� = −γ�uinc

(2.6a)

2. Construct the total field for the model problem (2.1) using the solution ( f�, f�) of (2.6a), by solving the auxiliary 
models (2.2) and (2.4):

u :=
{

K�2� f�, in �2,

K�c
1� f� + uinc, in �c

1.
(2.6b)

We claim that, provided (2.6a) is solvable, the decomposed framework-based field u defined in (2.6b) is the solution of 
(2.1). Notice that we are implicitly assuming in (2.6b) that

K�12� f� = uinc|�12 + K�12� f�, (2.7)

where we recall the notation �12 = �c
1 ∩�2. Indeed, in view of (2.6a), both functions in (2.7) agree on � ∪� (the boundary 

of �12). Assuming, as we will do from now on, that the only solution to the homogeneous system
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∣∣∣∣ �v + k2 v = 0, in �12,

γ�v = 0, γ�v = 0
(2.8)

is the trivial one and noticing that n|�12 ≡ 1 which implies that K�12� f� and K�12� f� are solutions of the Helmholtz 
equation in �12, we can conclude that (2.7) holds. Since u defined in (2.6b) belongs to H1

loc(R
m), it is simple to check that 

this function is the solution of (2.1).
We remark that the hypothesis we have taken on the artificial boundaries/domains, i.e. the well-posedness of problems 

(2.2) and (2.8), are not very restrictive in practice: � or � can be modified if needed. Alternatively, one can consider 
different boundary conditions on � and � (such as Robin conditions), redefining KD� and KD� accordingly, which will lead 
to a variant of the framework that we analyze in this article. In a future work we shall explore other boundary conditions 
on the interfaces and analysis of the resulting variant models.

2.2. Well-posedness of the decomposed continuous problem

The aim of this subsection is to prove that the system of equations (2.6a), under the above stated hypothesis, has a 
unique solution. Consequently, we can conclude that the decomposition for the exact solution presented in (2.6b) exists and 
is unique. To this end, we first derive some regularity results related to the operators KD� and KD� in Sobolev spaces. For 
the topic of Sobolev spaces, we refer the reader to [1,37].

2.2.1. Functional spaces
Let D ⊂Rm be a Lipschitz domain. For any non-negative integer s, we denote

‖ f ‖2
Hs(D) :=

∑
|α|≤s

∫
D

|∂α f |2

the Sobolev norm, where the summation uses the standard multi-index notation in Rm . For s = s0 + β with s0 a non-
negative integer and β ∈ (0, 1), we set

‖ f ‖2
Hs(D) := ‖ f ‖2

Hs0 (D)
+

∑
|α|≤s0

∫
D

∫
D

|∂α f (x) − ∂α f (y)|2
|x − y|m+2β

dx dy.

The Sobolev space Hs(�) (s ≥ 0) can be defined as,

Hs(D) := { f ∈ L2(D) : ‖ f ‖Hs(D) < ∞},
endowed with the above natural norm.

If ∂ D denotes the boundary of D , we can introduce H s(∂ D) with a similar construction using local charts: Let 
{∂ D j, μ j, x j} J

j=1 be an atlas of ∂ D , that is, {∂ D} j is an open covering of ∂ D , {μ j} a subordinated Lipschitz partition of 
unity on ∂ D , and x j :Rm−1 → ∂ D being Lipschitz and injective with ∂ D j ⊂ Im x j , then we define

‖ϕ‖2
Hs(∂ D) :=

J∑
j=1

‖(μ jϕ) ◦ x j‖2
Hs(Rm−1)

.

We note that (μ jϕ) ◦ x j can be extended by zero outside of the image of x j . We then set

Hs(∂ D) := {ϕ ∈ L2(∂ D) : ‖ϕ‖Hs(∂ D) < ∞}.
The space Hs(∂ D) is well defined for s ∈ [0, 1]: Any choice of {∂ D j, μ j, x j} gives rise to an equivalent norm (and inner 
product). If ∂ D is a Cm-boundary, such as � in Fig. 1, this construction can be set up for s ∈ [0, m] by taking {x j, ω j} to be 
in Cm as well. In particular, if ∂ D is smooth we can define H s(∂ D) for any s ≥ 0. Further, the space H−s(∂ D) can be defined 
as the realization of the dual space of H s(∂ D) when the integral product is taken as a representation of the duality pairing.

It is a classical result that the trace operator γ∂ D u := u|∂ D defines a continuous onto mapping from H s+1/2(D) into 
Hs(∂ D) for any s ∈ (0, 1). Actually, if ∂ D is smooth then s ∈ (0, ∞). In these cases, we can alternatively define

Hs(∂ D) := {γ∂ D u : u ∈ Hs+1/2(D)}
endowed with the image norm:

‖ϕ‖Hs(∂ D) := inf
0 �=u∈Hs+1/2(D)

γ�u=ϕ

‖u‖Hs+1/2(D). (2.9)

We will use this definition to extend H s(∂ D) for s > 1 in the Lipschitz case. Notice that with this definition, the trace 
operator from Hs+1/2(D) into Hs(∂ D) is continuous for any s > 0.
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2.2.2. Boundary potentials and integral operators
Let �k be the fundamental solution for the two- or three-dimensional constant coefficient Helmholtz operator (� + k2 I) 

equation, defined for x, y ∈Rm with r := |x − y| as

�k(x,y) :=

⎧⎪⎨⎪⎩
i

4
H (1)

0 (kr), x,y ∈R2,

1

4πr
exp(ikr), x,y ∈R3,

(2.10)

where H (1)
n denotes the first kind Hankel function of order n. For a smooth curve/surface �, with outward unit normal ν

and normal derivative at y ∈ � denoted by ∂ν(y) , let

(SLkϕ)(x) :=
∫
�

�k(x − y)ϕ(y)dσy, (DLk g)(x) :=
∫
�

∂ν(y)�k(x − y)g(y)dσy, x ∈Rm \ �,

denote the single- and double-layer potentials, with density functions ϕ and g , respectively.
The single- and double-layer boundary integral operators are then given, via the well-known jump relations [13] for the 

boundary layer potentials, by

Vkϕ := (γ�SLk)ϕ =
∫
�

�k( · − y)ϕ(y)dσy, (2.11)

Kk g := ± 1
2 g + (γ ∓

� DLk)g =
∫
�

∂ν(y)�k( · − y)g(y)dσy, (2.12)

where γ −
� and γ +

� are trace operators on �, respectively, from the interior �1 and exterior �c
1. Given a real non-vanishing 

smooth function σ : � →R, and Vk,σ φ := Vk(σφ) for any φ ∈ Hs(�), we consider the combined field acoustic layer operator

1
2 I + Kk − ikVk,σ : Hs(�) → Hs(�). (2.13)

Throughout this article, I denotes the identity operator. The standard combined field operator used in the literature [13] is 
based on the choice σ ≡ 1. In this article, we do not restrict ourselves to the usual choice for reasons which will be fully 
explained later. Since � is smooth and that Kk, Vk,σ : Hs(�) → Hs+1(�) are continuous, the operator in (2.13) is invertible 
as a consequence of the Fredholm alternative and the injectivity of (2.13), which follows from a very simple modification of 
the classical argument in [13, Th. 3.33]).

Thus the inverse of the combined field integral operator

Lk,σ :=
(

1
2 I + Kk − ik Vk,σ

)−1: Hs(�) → Hs(�) (2.14)

is well defined. Further, using (2.11)-(2.12) and with SLk,σ φ := SLk(σφ) for any φ ∈ Hs(�), we can write the solution operator 
occurring in the construction (2.6b) as

K�c
1� = (DLk − ik SLk,σ )Lk,σ . (2.15)

The above solution operator, a variant of the Brakhage-Werner formulation (BWF) [4,13], will be used in this article for both 
theoretical and computational purposes. The choice σ ≡ 1 reduces to the standard BWF [4,13].

2.2.3. Well-posedness analysis of the interface model
In this subsection, we first develop two key results before proving well-posedness of the boundary integral system (2.6a).

Lemma 2.1. The operator

K�c
1� : Hs(�) → Hs+1/2

loc (�c
1) (2.16)

is continuous for any s ∈ [0, ∞). Further, for any bounded Lipschitz domain/manifold D ⊂ �c
1 with D ∩ � = ∅, the solution operator 

KD� in (2.5), for the homogeneous media problem (2.4), satisfies the following mapping property for any s, r ≥ 0

KD� : Hs(�) → Hr(D). (2.17)

In particular,

K�� : Hs(�) → Hr(�) (2.18)

is continuous and compact, for s, r ∈R.
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Proof. The first desired property follows from the identities (2.15), (2.14) and the well known mapping properties

DLk : Hs(�) → Hs+1/2
loc (�c

1), SLk : Hs−1(�) → Hs+1/2
loc (�c

1), (2.19)

see for instance [37, Th. 6.12]. If D ∩ � = ∅, the kernels in the boundary potentials in DLk and SLk are smooth functions in 
D × � and hence the properties (2.17) and (2.18) hold. �

Next we consider the heterogeneous media model solution operator K�2� , as defined in (2.2)-(2.3). We recall the well 
known classical estimate [33]

‖K�2� f inp
� ‖H1(�2) ≤ C‖ f inp

� ‖H1/2(�),

with C > 0 being a constant independent of f inp
� . Below, we generalize this to obtain a higher regularity, using boundary 

layer potentials and boundary integral operators, defined in this case on barely Lipschitz curves/surfaces to improve the 
estimate for domains D with D ⊂ �2 \ �1.

Lemma 2.2. There exists a constant C = C(k, n, �2) so that for any s ∈ [0, 1] and f inp
� ∈ Hs(�),

‖K�2� f inp
� ‖Hs+1/2(�2) ≤ C‖ f inp

� ‖Hs(�). (2.20)

Furthermore, if D ⊂ D ⊂ �2 \ �1 the following solution operator mapping property holds for any r ∈R

KD� : H0(�) → Hr(D). (2.21)

Consequently,

K�� : H0(�) → Hr(�) (2.22)

is continuous and compact, for any r ∈R.

Proof. Throughout this proof we let s ∈ [0, 1] and, for notational convenience, we denote v := K�2� f inp
� . Since, by definition,

�v + k2 v = k2(1 − n2)v, γ�v = f inp
� .

By the third Green identity (see for instance [37, Th. 6.10]) we have the representation

v = k2
∫
�0

�k(· − y)gv
n (y)dy + SLk,�λv

� − DLk,� f inp
� , (2.23)

with supp gv
n ⊂ �0, where we have used the notation

λv
� := ∂ν v, gv

n := (1 − n2)v.

In the expression above SLk,� and DLk,� denote respectively the single- and double-layer potential from the corresponding 
densities, defined on �, associated with the constant coefficient Helmholtz operator � + k2I. Next we prove that

‖λv
�‖Hs−1(�) = ‖∂ν v‖Hs−1(�) ≤ C‖ f inp

� ‖Hs(�).

To this end, we start from the decomposition v = v1 + v2, where the harmonic v1 and the interior wave-field v2 are 
solutions of∣∣∣∣ �v1 = 0, in �2,

γ�v1 = f inp
� ,

and

∣∣∣∣ �v2 + k2n2 v2 = −k2n2 v1, in �2,

γ�v2 = 0.

Classical potential theory results, see [37, Th. 6.12] and the discussion which follows it (see also references therein), show 
that there exists C > 0 so that

‖v1‖Hs+1/2(�2) ≤ C‖ f inp
� ‖Hs(�), ‖∂ν v1‖Hs−1(�) ≤ C ′‖ f inp

� ‖Hs(�), (2.24)

for any f inp
� ∈ Hs(�). On the other hand, following [30, Ch. 4] or [14] there exists ε > 0 and Cε > 0 such that

‖v2‖H3/2+ε(�2) ≤ Cε‖v1‖H0(�) ≤ Cε‖ f inp
� ‖H0(�). (2.25)

By the trace theorem (applied to ∇v2),
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‖∂ν v2‖H0(�) ≤ C‖∇v2‖H1/2+ε(�2) ≤ C ′‖v2‖H3/2+ε(�2) ≤ C ′′‖ f inp
� ‖H0(�).

Combining these estimates with (2.23) we conclude that

‖v‖Hs+1/2(�2) ≤ Cs
(‖gv

n ‖L2(�0) + ‖λv
�‖Hs−1(�) + ‖ f inp

� ‖Hs(�)

) ≤ C ′
s

(‖v‖L2(�0) + ‖ f inp
� ‖Hs(�)

)
≤ C ′′

s ‖ f inp
� ‖Hs(�).

Notice also that if D ⊂ D ⊂ �2 \ �1, because the kernels of the potentials operators and the Newton potential are smooth 
in the corresponding variables, we gain from the extra smoothing properties of the underlying operators in (2.23) to derive

‖v‖Hr(D) ≤ C
(‖gv‖L2(�0) + ‖λv

�‖H−1(�) + ‖ f inp
� ‖H0(�)

) ≤ C ′‖ f inp
� ‖H0(�),

where the constants C and C ′ are independent of f inp
� . �

For deriving the main desired result of this section, it is convenient to define the following off-diagonal operator matrix

K :=
[

K��

K��

]
.

Then (2.6a) can be written in operator form

(I −K)

[
f�
f�

]
=

[
γ�uinc

−γ�uinc

]
, (2.26)

where I denotes the 2 × 2 block identity operator. A simple consequence of Lemmas 2.1 and 2.2 is that

I −K : Hs(�) × Hs(�) → Hs(�) × Hs(�)

is continuous for any s ≥ 0. Next we prove that this operator is indeed an isomorphism:

Theorem 2.3. For any s ≥ 0,

I −K : Hs(�) × Hs(�) → Hs(�) × Hs(�),

is an invertible compact perturbation of the identity operator.

Proof. The continuity of K : H0(�) × H0(�) → Hs(�) × Hs(�) for any s ≥ 0 has already been established in the two 
preceding lemmas. In particular, K is compact. Moreover, the null space I − K consists of smooth functions. For any 
(g�, g�) ∈ N(I −K), we construct

v := K�2�g�, ϑ := K�c
1�g�.

Note that w := (v − ϑ) defined, in principle, in �12 = �2 ∩ �c
1 satisfies

�w + k2 w = 0, in �12, γ�w = γ�w = 0.

By the well-posedness of problem (2.8), we have w = 0 in �12. We define u on Rm as

u(x) =
{

v(x), if x ∈ �2,

ϑ(x), if x ∈ �c
1.

Note that u is well defined in �12, and it is a solution of (2.1) with incident wave uinc = 0. Therefore, u = 0 which implies 
that ϑ = 0 in �c

2. The principle of analytic continuation yields that ϑ = 0 also in �c
1 and therefore g� = γ�ϑ = 0. Finally,

g� = γ�u = γ�ϑ = 0,

and hence the desired result follows. �
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3. A FEM-BEM algorithm for the decomposed model

In this section we consider the numerical discretizations on the proven equivalent decomposed system (2.6). In this 
article, we restrict to the two-dimensional (2-D) case. [The 3-D algorithms and analysis for (2.6) will be different to the 
2-D case, and in a future work we shall investigate a 3-D FEM-BEM computational model.] Briefly, the approach consists 
of replacing the continuous operators K�2� and KD� with suitable high-order FEM and BEM procedures-based discrete 
operators. The stability of such a discretization depends on the numerical methods chosen in each case.

For discretization of the differential operator K�2� based on the heterogeneous domain model, we could consider a 
standard FEM with triangular, quadrilateral or even more complex elements. We will choose the first case, for the sake of 
simplicity, and we expect the algorithm developed in this case could cover these other types of elements, with appropriate 
minor modifications.

The BEM procedure, for discretizing the exterior homogeneous medium associated KD� through boundary integral opera-
tors, is more open since an extensive range of methods is available in the literature. We will restrict ourselves to the spectral 
Nyström method [36] (see also [17]). This scheme provides a discretization of the four integral operators of the associated 
Calderon calculus, and has exponential rate of convergence. In this article, we will make use of high-order discretizations of 
the single- and double-layer operators that are easy to implement.

A key restriction of the standard Nyström method to achieve spectrally accurate convergence is the requirement of a 
smooth diffeomorphic parameterization of the boundary. This is because the method starts from appropriate decompositions 
and factorizations of the kernels of the operators to split these into regular and singular parts. This is not a severe restriction 
in our case since � is an auxiliary user-chosen smooth curve and can therefore be easily constructed as detailed as required.

Next we briefly consider these two known numerical procedures and hence describe our combined FEM-BEM algorithm 
and implementation details.

3.1. The FEM procedure

Let {Th}h be a sequence of regular triangular meshes where h is the discrete mesh parameter, the diameter of the largest 
element of the grid. Hence we write h → 0 to mean that the maximum of the diameters of the elements tends to 0. Using 
Th , we construct the finite dimensional spline approximation space

Ph,d := {vh ∈ C0(�2) : vh|T ∈ Pd, ∀T ∈ Th},
where Pd is the space of bivariate polynomials of degree d. We define the FEM approximation Kh

�2� to K�2� as follows: 
The FEM operator

Kh
�2� : γ�Ph,d → Ph,d,

for f inp
�,h ∈ γ�Ph,d , is constructed as uh := Kh

�2� f inp
�,h , where uh ∈Ph,d is the solution of the discrete FEM equations:∣∣∣∣∣ bk,n(uh, vh) = 0, ∀vh ∈ Ph,d ∩ H1

0(�2)

γ�uh = f inp
�,h,

bk,n(u, v) =
∫
�2

∇u · ∇v − k2
∫
�2

n2 uv. (3.1)

The discrete FEM operator Kh
�2� is well defined for sufficiently small h.

3.2. The BEM procedure

Let

x : R → �, x(t) := (x1(t), x2(t)), t ∈R (3.2)

be a smooth 2π−periodic regular parameterization of �. We denote by the same symbol SLk , DLk , Vk and Kk the parame-
terized layer potentials and boundary layer operators:

(SLkϕ)(z) =
2π∫
0

�k(z − x(t))ϕ(t)dt

(DLk g)(z) =
2π∫
0

(∇y�k(z − y)
)∣∣∣

y=x(t)
· μ(t) g(t)dt

where μ(t) := (x′
2(t), −x′

1(t)) = |x′(t)| ν ◦ x(t). Observe that |x′(t)| is incorporated into the density in SLk and to the kernel 
in DLk . We follow the same convention for the single- and double-layer weakly singular boundary integral operators. For 
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high-order approximations, it is important to efficiently take care of the singularities. In particular, for the spectrally accu-
rate Nyström BEM solver, we use the following representations of the layer operators with smooth 2π bi-periodic kernels 
A, B, C, D [13]:

(Vkϕ)(s) =
2π∫
0

A(s, t) log sin2 s−t
2 ϕ(t) dt +

2π∫
0

B(s, t)ϕ(t) dt,

(Kk g)(s) =
2π∫
0

C(s, t) log sin2 s−t
2 g(t) dt +

2π∫
0

D(s, t)g(t) dt.

The Nyström method, based on a discrete positive integer parameter N , starts with setting up a uniform grid

t j := π j
N , j = −N + 1, . . . , N, (3.3)

and the space of trigonometric polynomials of degree at most N

TN := span〈exp(i�t) : � ∈ ZN〉, (3.4)

with ZN := {−N + 1, −N + 2, . . . , N}. We next introduce the interpolation operator QN

TN � QNϕ s.t. (QNϕ)(t j) = ϕ(t j), j = −N + 1, . . . , N, (3.5)

to define discretizations of the single and double layer operators:

(VN
k ϕ)(s) :=

2π∫
0

QN(A(s, ·)ϕ)(t) log sin2 s−t
2 dt +

2π∫
0

QN(B(s, ·)ϕ)(t) dt,

(KN
k g)(s) :=

2π∫
0

QN(C(s, ·)g
)
(t) log sin2 s−t

2 dt +
2π∫
0

QN(D(s, ·)g
)
(t) dt.

We stress that the above integrals can be computed exactly using the identities:

− 1

2π

2π∫
0

log sin2 t
2 exp(i�t) dt = − 1

2π

2π∫
0

log sin2 t
2 cos(�t) dt =

{
log 4, � = 0,
1
|�| , � �= 0,

and for gN ∈TN ,

2π∫
0

gN(t) dt = π

N

2N−1∑
j=0

gN(t j), (3.6)

which are based on properties of the trapezoidal/rectangular rule for 2π−periodic functions.
The high-order approximation evaluation of the potentials is achieved in a similar way:

(
SLN

k ϕ
)
(z) :=

2π∫
0

QN(�k(z − x(·))ϕ)(t)dt,

(
DLN

k g
)
(z) :=

2π∫
0

QN
((∇y�k(z − y)

)∣∣
y=x(·) · ν(·) g

)
(t)dt,

(3.7)

leading to the rectangular rule approximation as in (3.6)
Now we are ready to describe the discrete operator KN

�c
1�

that is a high-order approximation to the exterior homogeneous 
model continuous operator K�c

1� . First, we introduce the parameterized counterpart of the continuous operator in (2.13),

Lk g := ( 1
2 I + Kk − ikVk)

−1 g, (3.8)

(which corresponds to σ ◦ x = 1 ). Then we define
|x|
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KN
�c

1�
g := (DLN

k − ikSLN
k )LN

k g, with LN
k := ( 1

2 I + KN
k − ikVN

k )−1. (3.9)

We remark that the definition of KN
�c

1�
requires only evaluation of input functions at the grid points. In particular, it is 

well defined on continuous functions. Indeed, we have

ϕ = LN
k g ⇒ QNϕ = QNLN

k QN g,

and since the discrete boundary layer operators only use pointwise values of the density at the grid points (i.e., QNϕ), 
evaluation of KN

�c
1�

g requires only values of g at the grid points. So we can replace, when necessary,

KN
�c

1�
g = KN

�c
1�

QN g. (3.10)

The discrete operator KN
��g is defined accordingly by taking the trace of KN

�c
1�

g on �. Thus our algorithm is based on the 
idea of taking the trace of FEM and BEM solutions on � and � respectively.

3.3. The FEM-BEM computational model

In addition to the discrete operators defined above, we need one last discrete operator to describe the FEM-BEM algo-
rithm. Let

Qh
� : C0(�) → γ�Ph,d, (3.11)

denote the usual Lagrange interpolation operator on γ�Ph,d , the inherited finite element space on �. Our full FEM-BEM 
algorithm is:

• Step 1: Solve the finite dimensional system(
I −

[
Qh

�KN
��

QN Kh
��

])[
f h
�

f N
�

]
=

[
Qh

�γ�uinc

−QNγ�uinc

]
. (3.12a)

• Step 2: Construct the FEM-BEM solution

uh := Kh
�2� f h

�, ωN := KN
�c

1�
f N
� , uh,N :=

{
uh, in �2,

ωN + uinc, in �c
1.

(3.12b)

Remark 3.1. We have committed a slight abuse of notation in the right-hand-side of (3.12a) by writing

QNγ�uinc

instead of the correct, but more complex, QN
(
(γ�uinc) ◦ x

)
. Similarly,

QN
(
(Kh

�� · ) ◦ x
)

should be read in the lower extra-diagonal block of the matrix in (3.12a). Indeed, this is equivalent to replacing a space 
on � with that obtained via the parameterization (3.2). Since both spaces are isomorphic, being strict in the notation for 
description of these operators is not absolutely necessary. In particular, we avoid complicated notation and use a compact 
way to describe the algorithm and associated theoretical results.

Remark 3.2. Complete numerical analysis of the FEM-BEM algorithm is beyond the scope of this article. In a future work, 
we shall carry out a detailed numerical analysis of the FEM-BEM algorithm. Below we give the main results. In summary, 
the analysis is based on the following assumption on the mesh-grid:

Assumption 1. There exists ε0 > 0 such that the sequence of grids {Th}h satisfies

h1/2h−ε0
D → 0 (3.13)

where D ⊂ �2 \ �0 is an open neighborhood of �, and hD , the maximum of the diameters of the elements of the grid Th
with non-empty intersection with D .

We note that this assumption allows locally refined grids, but introduces a very weak restriction on the ratio between 
the largest element in �2 and the smallest element in D . However, since the exact solution is smooth on D , the partial 
differential equation in this domain is just the homogeneous Helmholtz equation, and it is reasonable to expect that small 
elements are not going to be used in this subdomain.
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Using Assumption 1, in a future work we shall prove the well-posedness of the discrete system (3.12) and optimal 
order of convergence of the FEM-BEM solution. In particular, after deriving convergence of the individual FEM and BEM 
approximations, we shall prove the following convergence result: For any region �R ⊂ �c

1 = R2 \ �1, 0 < ε ≤ ε0, r ≥ 0, 
t ≥ d + 3/2,

‖u − uh‖H1(�2) + ‖ω − ωN‖Hr(�R )

≤ C
(
hd−ε

D N−ε + hd+1/2
� + N−t + hd

D

)‖uinc‖Ht+1(�2) + C inf
vh∈Ph,d

‖u − vh‖H1(�2), (3.14)

where hD is as in (3.13) and h� is the maximum distance between any two consecutive Dirichlet/constrained nodes in 
Th; (u, ω) = (K�2� f�, K�c

1� f�) is the exact solution of (2.6); and (uh, ωN ) is the unique solution of the numerical method 
(3.12).

Next we describe algebraic details required for implementation of the algorithm, followed by numerical experiments in 
Section 4 to demonstrate the efficiency of the FEM-BEM algorithm to simulate wave propagation in the heterogeneous and 
unbounded medium.

3.4. FEM-BEM algebraic systems and evaluation of wave fields

Simulation of approximate interior and exterior wave fields uh,N using the solution of (3.12a) and the representation 
in (3.12b) requires: (i) computing the interior solution uh by once solving the finite element system (3.1) using the Dirichlet 
data f h

�; and (ii) the exterior solution ωN in �c
1 by evaluating the layer potential value (DLN

k − iSLN
k )LN

k f N
� , using the 

representation in (3.7).
Since LN

k f N
� ∈TN and that the dimension of TN is 2N , using (3.4)–(3.7), the degrees of freedom (DoF) required to com-

pute the exterior solution ωN is equal to the number of interpolatory uniform grid points t j, j = −N +1, . . . , N in (3.3) that 
determine the interpolatory operator QN in (3.5). The linear algebraic system corresponding to the Dirichlet problem (3.1)
for uh ∈Ph,d is obtained by using an ansatz that is a linear combination of the basis functions spanning Ph,d . Coefficients in 
the uh ansatz are values of uh at the nodes that determine {Th}h . The nodes include constrained/boundary Dirichlet nodes 
on � and free/interior non-Dirichlet nodes in �2.

Henceforth, for a chosen mesh for the bounded domain �2, we use the notation M and L to denote the number of 
Dirichlet- and free-nodes nodes in the mesh, respectively. The FEM system (3.1) to compute the solution uh leads to an 
L-dimensional linear system for the unknown vector uL (that are values of uh at the interior nodes). The system is governed 
by a real symmetric sparse matrix, say, AL . The matrix AL is obtained by eliminating the row and column vectors associated 
at the boundary nodes. Let DL,M be the L × M matrix that is used to move the Dirichlet condition to the right-hand-side of 
the system. Thus for a given Dirichlet data vector ̂fM , we may theoretically write uL = A−1

L DL,M̂ fM . Let T2N,L be the 2N × L

sparse matrix so that T2N,LuL(= T2N,LA−1
L DL,M̂ fM) is the trace of the finite element solution wh of (3.1) at the 2N interior 

points x(t j) ∈ �, j = −N + 1, . . . , N that are the BEM grid points.
For describing the full FEM-BEM system, using the above representation, it is convenient to define the 2N × M matrix

K̃2N,M := T2N,LA−1
L DL,M . (3.15)

The matrix A−1
L in (3.15), in general, should not be computed in practice. We may consider instead a LLDLL�

L factoriza-
tion [18] (for example, implemented in the Matlab command ldl), where DL is a block diagonal matrix with 1 × 1 or 2 × 2
blocks and LL is a block (compatible) unit lower triangular matrix. Hence, each multiplication by A−1

L is reduced to solving 
two (block) triangular and one 2 × 2 block diagonal system which can be efficiently done, leading to evaluation of K̃2N,M on 
M-dimensional vectors. Of course the LLDLL�

L factorization is a relatively expensive process, but worthwhile in our method 
to simulate the complex heterogeneous and unbounded region model. (We further quantify this process using numerical 
experiments in Section 4.)

The ansatz for the unknown density f N
� ∈ TN is a linear combination of 2N known basis functions exp(i�t), � =

−N + 1, . . . , N in (3.4) that span TN . The 2N-dimensional BEM system for the unknown vector ̃ f2N (that are values of 
the unknown density at the Nyström node points t j, j = −N + 1, . . . , N) is governed by a complex dense matrix and an 
input 2N-dimensional vector ̃f2N determined by the Dirichlet data on � in the exterior homogeneous model (2.4) evaluated 
at t j, j = −N + 1, . . . , N . We may write

B2Nϕ2N = f̃2N , (3.16)

where B2N is the 2N ×2N Nyström matrix corresponding to the discrete boundary integral operator in (3.9). Similar to T2N,L , 
let PM,2N be the matrix representation of the (discrete) combined potential generated by a density at the M Dirichlet nodes 
of Th . That is, PM,2Nϕ2N is the vector form of Q�

h γ�(DLN
k − ikSLN

k )ϕ , following the BEM representation (3.9) for evaluation 
of the exterior field at the M Dirichlet nodes on �. Similar to the interior problem based matrix in (3.15), corresponding to 
the exterior field it is convenient to introduce the M × 2N matrix
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K̂M,2N := PM,2N B−1
2N . (3.17)

Obviously, M << L (since M ∼ L1/2 in the 2D case for quasi-uniform grids) and, thanks to the choice of the smooth 
boundary �, the standard Nyström BEM is spectrally accurate, which further implies that 2N << M . (We will quantify 
this substantially smaller “<<” claim using numerical experiments in Section 4.) Thus the cost of setting up an LU decom-
position of the dense matrix B2N is negligible and consequently the matrix K̂M,2N product with any 2N-dimensional vector 
can be efficiently evaluated.

The implementation procedure described above to compute the interior and exterior fields using (3.12b) requires the 
M-dimensional vector ̂fM with the values of the unknown at the Dirichlet nodes on � and the 2N-dimensional ̃f2N at the 
2N uniform grid points x(t j), j = −N + 1, . . . , N on �. Since � and � are artificial boundaries for the decomposition of the 
original model, the vectors ̂fM , ̃f2N are unknown. The interface system (3.12a), that uses the data uinc in the original model, 
completes the process to compute ̂fM , ̃f2N . In particular, for the matrix-vector form description of (3.12a), we obtain input 
data vectors, say ûinc

M and ũinc
2N , using the vector form representations of Qh

�γ�uinc and QNγ�uinc, respectively.
More precisely, using (3.15)–(3.17), the matrix-vector algebraic system corresponding to (3.12a) takes the form⎡⎣ IM −K̂M,2N

−K̃2N,M I2N

⎤⎦⎡⎣ f̂M

f̃2N

⎤⎦ =
⎡⎣ ûinc

M

−ũinc
2N

⎤⎦ (3.18)

where IM , I2N are, respectively, the M × M and 2N × 2N identity matrices.
In our implementation, instead of solving the full linear system in (3.18) we work with the Schur complement

(I2N − K̃2N,M K̂M,2N︸ ︷︷ ︸
=:ASch

)̃f2N = −ũinc
2N + K̃2N,M ûinc

M , (3.19a)

f̂M = ûinc
M + K̂M,2Ñ f2N . (3.19b)

After solving for ̃f2N in (3.19a), the main computational cost for finding ̂fM involves only the matrix-vector multiplication 
K̂M,2Ñ f2N . The latter requires solving a BEM system, which can be carried out using a direct solve because 2N is relatively 
small.

4. Numerical experiments

In this section we consider two sets of numerical experiments to demonstrate the overlapping decomposition framework 
based FEM-BEM algorithm. In the first set of experiments, the heterogeneous domain �0 has non-trivial curved boundaries 
and the refractive index function n is smooth; and in the second set of experiments �0 is a complex non-smooth structure 
and n is a discontinuous function. For these two sets of experiments, we consider the Pd Lagrange finite elements with 
d = 2, 3, 4 for the interior FEM model with mesh values h, and several values of the Nyström method parameter N to 
achieve spectral accuracy and to make the BEM errors less than those in the FEM discretizations. The reported CPU times 
in the section are based on serial a implementation of the algorithm in Matlab (2017b) on a desktop with a 10-core Xeon 
E5-2630 processor and 128GB RAM.

In our numerical experiments to compute ̃f2N in (3.19a), we solve the linear system using: (i) the iterative GMRES method 
with the (relative) residual set to 10−8 in all the cases; and (ii) the direct Gaussian elimination solve which requires the 
full matrix ASch in (3.19a). Both approaches are compared for the numerical experiments in Section 4.3. As an error indi-
cator of our full FEM-BEM algorithm, we analyze the widely used quantity of interest (QoI) in numerous wave propagation 
applications: the far-field arising from both the interior and exterior fields induced by the incident field impinging from a 
particular direction. For a large class of inverse wave models [13], the far-field measured at several directions is fundamental 
to infer various properties of the wave propagation medium.

To computationally verify the quality of our FEM-BEM algorithm in Section 4, we analyze the numerical far-field error at 
thousands of direction unit vectors z. Using (3.16), we define a spectrally accurate approximation to the QoI as

(
FNϕ2N

)
(z) :=

√
k

8π
exp

(− 1
4π i

)π
N

N∑
j=−N+1

exp(−ik(z · x(t j)))
[
z · (x′

2(t j),−x′
1(t j)) + 1

] [
ϕ2N

]
j . (4.1)

The exact representation of the QoI is [13]

(Fϕ) (z) :=
√

k

8π
exp

(− 1
4π i

) 2π∫
0

exp(−ik(z · x(t)))
[
z · (x′

2(t),−x′
1(t)) + 1

]
ϕ(t)dt. (4.2)

Using the angular representation of the direction vectors z, we compute approximate far-fields at 1, 000 uniformly dis-
tributed angles. We report the QoI errors for various grid parameter sets (h, N), and demonstrate high-order convergence 
of our FEM-BEM algorithm. The maximum of the estimated errors in the approximate QoI, using the values at the 1, 000
uniform directions, are used below to validate the efficiency and high-order accuracy of the FEM-BEM algorithm.
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Fig. 2. Heterogeneous medium and artificial boundaries for Experiment 1.

4.1. Star-shaped domain with five-star-pointed refractive index

In Experiment 1 set, we choose �0 to be the star-shaped region sketched in the interior of the disk �1 in Fig. 2, and the 
refractive index function is defined using polar coordinates as

n2(r, θ) := 1 + 16χ
( 1

0.975

[ r

2 + 0.75 sin(5θ)
− 0.025

])
,

with

χ(x) := 1

2
(χ̃ (x) + 1 − χ̃ (1 − x)), χ̃ (x) :=

⎧⎪⎨⎪⎩
1, if x ≤ 0,

exp
( 1

e−e1/x

)
, if x ∈ (0,1),

0, if x > 1.

Notice that χ̃ (x) is a smooth cut-off function with suppχ = (−∞, 1]. Therefore, the function χ is smooth and also symmet-
ric around 1/2: χ(1 − x) = 1 − χ(x) for any x.

For this example, �2 is the rectangle [−6, 6] × [−8, 8] with boundary �, so that the diameter of the interior domain 
is 20. Thus, for a chosen wavenumber k, the interior heterogeneous model is of wavelength 10k/π . For our numerical 
experiments we choose three wavenumbers k = π/4, π, 4π , to simulate the problems with acoustic characteristic size of 
2.5, 10, 40 wavelengths, respectively. The smooth boundary � for this example is a circle centered at zero and radius 3.5

For the interior FEM model, the initial coarse grid consists of 2, 654 triangles, which is refined up to four times, in the 
usual way. We show the simulated far-field error results in Tables 1 and 2 using P3 and P4 elements, respectively. In these 
tables estimates of the (relative) maximum errors in computing the QoI far-fields are presented as well as the number 
(given within parentheses) of GMRES iterations needed to achieve convergence with the residual tolerance 10−8. Next we 
discuss some key aspects of the computed results in Tables 1-2.

To compute the errors for a set of discretization parameters, as exact/truth solutions we used the FEM-BEM algorithm 
solutions obtained with N = 640 and the next level of FEM mesh refinement to these in the tables. The fast spectrally 
accurate convergence of the Nyström BEM, after achieving a couple of digits of accuracy, can be observed by following the 
far-field maximum errors in the last columns in Tables 1-2. In particular the last columns results, for the FEM spline degree 
d = 3, 4 cases, demonstrate that relatively small DoF 2N is required for the Nyström BEM solutions accuracy to match that of 
the FEM solutions, especially compared to the FEM DoF L. The last rows in Tables 1-2 clearly demonstrate that higher values 
of N are not useful because of the stagnation of the errors due to limited accuracy of the FEM discretizations. Further, a 
closer analysis of the results in Tables 1-2 shows that the computed far-fields exhibit superconvergence, with O(h2d) errors. 
In addition, in Fig. 7 we demonstrate the faster convergence of the (Experiment 1) smooth total field solutions in the 
H1-norm, and compare with the rate of convergence for a non-smooth solution (Experiment 2) case.

In the Experiment 1 set, with a smooth heterogeneous region �0 and a smooth refractive index function n, it can be 
shown that the exact near-field solution for the model problem is smooth. However, this fact alone is not sufficient to 
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Table 1
Experiment 1: P3 Finite element space and k = π/4, π, 4π (top, middle, bottom tables). In the first row and the first column, L and 2N are the number 
of degrees of freedom used to compute the FEM and BEM solutions, respectively. The number of GMRES iterations required for solving the system, with a 
residual tolerance of 10−8, is given within the parenthesis. Estimated (relative) uniform errors in the far-field are given in columns two to five.

N/L 7,999 31,657 125,953 502,465 2,007,169

010 3.1e-03 (012) 6.6e-05 (012) 2.2e-06 (012) 1.2e-06 (012) 1.2e-06 (012)
020 3.1e-03 (012) 6.5e-05 (012) 2.0e-06 (012) 2.5e-10 (012) 4.7e-11 (012)
040 3.1e-03 (012) 6.5e-05 (012) 2.0e-06 (012) 1.8e-10 (012) 1.4e-11 (012)
080 3.1e-03 (012) 6.4e-05 (012) 2.0e-06 (012) 1.5e-10 (012) 9.0e-12 (012)

N/L 7,999 31,657 125,953 502,465 2,007,169

010 4.3e-01 (020) 1.8e-01 (020) 1.8e-01 (020) 1.8e-01 (020) 1.8e-01 (020)
020 3.5e-01 (031) 1.6e-02 (031) 3.3e-04 (031) 7.3e-06 (031) 5.2e-06 (031)
040 3.5e-01 (031) 1.6e-02 (031) 3.2e-04 (031) 6.0e-06 (031) 3.5e-07 (031)
080 3.5e-01 (031) 1.6e-02 (031) 3.3e-04 (031) 6.0e-06 (031) 1.4e-07 (031)

N/L 7,999 31,657 125,953 502,465 2,007,169

020 2.8e+00 (040) 1.4e+00 (040) 1.1e+00 (040) 1.4e+01 (040) 4.0e+00 (040)
040 1.8e+00 (060) 5.2e-01 (080) 6.0e-01 (080) 9.1e-02 (080) 8.6e-02 (080)
080 2.3e+00 (063) 5.9e+00 (100) 6.3e-01 (100) 4.7e-02 (102) 8.3e-04 (102)
160 2.2e+00 (063) 5.0e+00 (100) 6.3e-01 (100) 4.7e-02 (102) 8.3e-04 (102)

Table 2
Experiment 1: P4 Finite element space and k = π/4, π, 4π (top, middle, bottom tables). In the first row and the first column, L and 2N are the number 
of degrees of freedom used to compute the FEM and BEM solutions, respectively. The number of GMRES iterations required for solving the system, with a 
residual tolerance of 10−8, is given within the parenthesis. Estimated (relative) uniform errors in the far-field are given in columns two to five.

N/L 14,145 56,129 223,617 892,673 3,567,105

010 3.9e-04 (012) 9.4e-06 (012) 1.4e-06 (012) 1.2e-06 (012) 1.2e-06 (012)
020 3.9e-04 (012) 8.9e-06 (012) 2.5e-07 (012) 6.9e-10 (012) 8.4e-11 (012)
040 3.9e-04 (012) 8.9e-06 (012) 2.5e-07 (012) 7.0e-10 (012) 1.0e-10 (012)
080 3.9e-04 (012) 8.9e-06 (012) 2.5e-07 (012) 7.0e-10 (012) 9.9e-11 (012)

N/L 14,145 56,129 223,617 892,673 3,567,105

010 2.0e-01 (020) 1.8e-01 (020) 1.8e-01 (020) 1.8e-01 (020) 1.8e-01 (020)
020 6.9e-02 (031) 7.1e-04 (031) 6.9e-06 (031) 5.4e-06 (031) 5.4e-06 (031)
040 6.9e-02 (031) 7.1e-04 (031) 3.9e-06 (031) 3.2e-08 (031) 4.7e-10 (031)
080 6.9e-02 (031) 7.1e-04 (031) 4.0e-06 (031) 2.4e-08 (031) 4.0e-10 (031)

N/L 14,145 56,129 223,617 892,673 3,567,105

020 5.0e+00 (040) 9.3e+00 (040) 3.1e+00 (040) 4.1e+00 (040) 3.9e+00 (040)
040 3.7e+00 (080) 4.9e-01 (080) 2.4e-01 (080) 8.5e-02 (080) 8.6e-02 (080)
080 9.1e+00 (098) 4.6e-01 (100) 2.6e-01 (102) 2.0e-03 (102) 8.8e-06 (102)
160 9.8e+00 (098) 4.6e-01 (100) 2.6e-01 (102) 2.0e-03 (102) 8.8e-06 (102)

explain in detail the superconvergence of the computed far-fields. We may conjecture that some faster convergence is oc-
curring in the background for the near-field in some weak norms, and that the calculation of the far-fields is benefiting from 
this to achieve the superconvergence. In a future work, we shall explore the numerical analysis our FEM-BEM algorithm.

In Fig. 3, we illustrate the convergence of the GMRES iterations and show that as the frequency is increased four-fold, 
the number of required iterations for the solutions to converge with the 10−8 residual tolerance increases at (a slightly) 
slower rate.

Next we consider how the size of the overlapped FEM-BEM region �12 affects the speed of convergence of the GMRES 
iterations. To this end, we have run a set of additional experiments for the star-shaped (Experiment 1) problem with k = π , 
using several choices of �, to obtain larger to smaller diameter overlapped regions �12. In particular, we chose several BEM 
smooth boundaries � to be circles centered at the origin with radii spanning from 2.625 (closer to the heterogeneity) to 
5.856 (closer to the FEM boundary �), yielding several �12, respectively, with larger to smaller sizes. For all these simulation 
cases, we fixed the BEM DoF to be 2N = 160, and the fixed P3 elements were obtained using 445, 440 triangles with the 
number of free-nodes (FEM DoF) to be L = 1, 106, 385. We present the corresponding results in Fig. 4.

In the left panel of Fig. 4, we can see a sample of the curves � used for the set of experiments with varying size �12, 
and correspondingly in the right panel of Fig. 4, we present the number of GMRES iterations required to converge with, 
again, the residual tolerance 10−8. Results in Fig. 4 clearly demonstrate that the number of GMRES iterations increases as 
the size of the overlapped region �12 decreases. This can be explained as follows: At the continuous level, the interacting 
operators K�� and K�� tend to lose the compactness property, as the overlapped region becomes thinner. (We shall explore 
this observation theoretically in a future work.). On the other hand, it is interesting to note from these experiments that the 
choice of � being very close to the heterogeneity does not affect the convergence of the GMRES iterations. We could 
conjecture that this might happen for the considered set of experiments because the exact solution for Experiment 1 
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Fig. 3. Number of GMRES iterations and residual errors for Experiment 1 simulations with k = π/4, k = π and k = 4π using the P3 finite element space 
on a grid with the FEM DoF L = 502, 465 and the BEM DoF 2N = 160.

Fig. 4. Dependence of the number of GMRES iterations on the size of the overlapping region: On the left, various choices of the smooth (circular) interface �. 
On the right, radii of the circles � vs. number of GMRES iterations required for convergence with a residual tolerance of 10−8.

problem is smooth. However, we have noticed a similar behavior for the next Experiment 2 problem, with a complex 
non-smooth heterogeneous region, for which regularity of the total wave field is limited.

4.2. Pikachu-shaped domain with piecewise smooth refractive index

In Experiment 2 set of experiments, we consider a more complicated non-smooth heterogeneous region shown in the 
interior of the curved domain �1 in Fig. 5. The region �0 is set to be a polygonal Pikachu-shaped domain with the discon-
tinuous refractive index function

n2(x, y) :=
{

5 + 4χ
(

1
0.9

[
r

2−0.75 cos(4θ)
− 0.025

])
, (x, y) ∈ �0,

1, (x, y) /∈ �0,

where r = √
(x + 0.18)2 + (y + 0.6)2, θ = arctan2((y + 0.6), (x + 0.18)). The grids used in our computation, are adapted 

to the region �0, in such a way that any triangle τ ∈ Th is either contained or has empty intersection with �0. As the 
boundary of �1 and for the smooth curve � for the exterior model, we choose

x(t) = 7
√

2

4

(
(1 + cos2 t) cos t + (1 + sin2 t) sin t, (1 + sin2 t) sin t − (1 + cos2 t) cos t

)
For the interior FEM model, we choose �2 to be a polygonal domain as in Fig. 5 with boundary �. We then proceed as in 
the previous experiment, using an initial coarse grid with 8, 634 triangles which is refined up to four times. The solution u
of the model is not smooth in �0 and �c

0, because of the non-smoothness of the region �0 and the jump in the refractive 
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Fig. 5. Pikachu heterogeneous domain and artificial boundaries � and � for Experiment 2.

Table 3
Experiment 2: P3 Finite element space and k = π/4, π, 4π (top, middle, bottom tables). In the first row and the first column, L and 2N are the number 
of degrees of freedom used to compute the FEM and BEM solutions, respectively. The number of GMRES iterations required for solving the system, with 
residual tolerance of 10−8, is given within the parenthesis. Estimated (relative) uniform errors in the far-field are given in columns two to five.

N/L 39,085 69,381 622,573 2,488,441

010 2.8e-03 (015) 2.8e-03 (015) 2.8e-03 (015) 2.8e-03 (015)
020 5.8e-05 (015) 8.4e-07 (015) 8.4e-07 (015) 8.4e-07 (015)
040 5.3e-05 (015) 1.0e-07 (015) 6.1e-09 (015) 6.9e-10 (015)
080 5.8e-05 (015) 7.4e-08 (015) 6.5e-09 (015) 4.4e-10 (015)

N/L 39,085 69,381 622,573 2,488,441

020 2.5e+00 (040) 2.5e+00 (040) 2.5e+00 (040) 2.5e+00 (040)
040 3.8e-03 (042) 2.5e-04 (042) 7.1e-05 (042) 5.2e-05 (042)
080 3.1e-03 (042) 1.7e-04 (042) 7.1e-06 (042) 2.7e-07 (042)
160 3.4e-03 (042) 1.4e-04 (042) 7.9e-06 (042) 2.6e-07 (042)

N/L 39,085 69,381 622,573 2,488,441

040 6.8e+00 (080) 3.2e+00 (080) 3.7e+00 (080) 3.6e+00 (080)
080 9.2e+00 (130) 7.4e-01 (140) 2.1e-00 (139) 2.3e+00 (139)
160 6.7e+00 (140) 4.6e-01 (148) 1.3e-02 (149) 4.1e-04 (149)
320 6.8e+00 (140) 4.4e-01 (148) 1.1e-02 (149) 2.8e-04 (149)

index function. One may consider the use of a graded mesh around the boundary of �0 to obtain faster convergence. Based 
on the size of �2, the choices k = π/4, π, 4π lead to approximately 2.5, 10, and 40 wavelengths interior FEM model, 
respectively, for simulations in Experiment 2.

We observe from the integer numbers (within in parentheses) in Tables 3-4 that the number of GMRES iterations grow, 
slower than the quadruple growth of the three frequencies considered in Experiment 2. The estimated (relative) maximum 
far-field errors for the non-smooth Experiment 2 model are given in Tables 3-4, demonstrating high-order accuracy of our 
FEM-BEM model as the finite element space degree, grid size, and the BEM DoF are increased. In Fig. 7, for d = 2, 3, 4, 
we compare convergence of the total field in the H1-norm for the smooth (Experiment 1) and non-smooth (Experiment 2) 
simulations.

In Fig. 6 we depict the simulated wave field solution for k = π , with P4 finite elements on a grid with 138, 144 triangles 
and L = 1, 106, 385 free-nodes for the FEM solution, and 2N = 320 for the BEM solution. Specifically, we plot the simulated 
absorbed and scattered field numerical solution uh,N inside �2 in Fig. 6.

4.3. Direct solver implementation and comparison with iterative solver

In this subsection we discuss the direct solver implementation of our method and compare its performance with the it-
erative approach we have used for simulating results described earlier in the section. When computing the matrix in (3.19a), 
the main issue is concerned with the matrix K̃2N,M , which comprises the calculation of finite element solution followed by 
its evaluation at the nodes of the BEM. Because of the spectral accuracy of the Nyström BEM approximation, the DoF 2N is 
expected to be smaller, in practice, even compared to the number M of FEM boundary Dirichlet (constrained) nodes (that 
is, M > 2N). Accordingly, in our implementation we use instead the representation

K̃� = (T2N,LA−1DL,M)� = D� L−1D−1L−�T� ,
2N,M L L,M L L L 2N,L
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Table 4
Experiment 2: P4 Finite element space and k = π/4, π, 4π (top, middle, bottom tables). In the first row and the first column, L and 2N are the number 
of degrees of freedom used to compute the FEM and BEM solutions, respectively. The number of GMRES iterations required for solving the system, with 
residual tolerance of 10−8, is given within the parenthesis. Estimated (relative) uniform errors in the far-field are given in columns two to five.

N/L 69,381 276,905 1,106,385 4,423,073

010 2.8e-03 (015) 2.8e-03 (015) 2.8e-03 (015) 2.8e-03 (015)
020 1.3e-06 (015) 8.4e-07 (015) 8.4e-07 (015) 8.4e-07 (015)
040 1.3e-06 (015) 1.6e-07 (015) 6.8e-10 (015) 6.8e-10 (015)
080 1.3e-06 (015) 1.6e-07 (015) 6.9e-10 (015) 6.8e-10 (015)

N/L 69,381 276,905 1,106,385 4,423,073

020 2.5e+00 (040) 2.5e+00 (040) 2.5e+00 (040) 2.5e+00 (040)
040 2.8e-04 (042) 4.7e-05 (042) 5.3e-07 (042) 5.2e-05 (042)
080 1.9e-04 (042) 2.2e-06 (042) 1.8e-07 (042) 6.9e-09 (042)
160 1.6e-04 (042) 1.1e-06 (042) 6.3e-08 (042) 3.3e-09 (042)

N/L 69,381 276,905 1,106,385 4,423,073

040 1.7e+00 (080) 3.8e+00 (080) 3.6e+00 (080) 3.6e+00 (080)
080 8.8e-01 (139) 1.8e+00 (140) 2.2e+00 (139) 2.3e+00 (139)
160 5.4e-01 (147) 3.9e-02 (149) 4.8e-04 (149) 6.9e-05 (149)
320 5.4e-01 (147) 3.6e-02 (149) 2.9e-04 (149) 8.4e-06 (149)

Fig. 6. Real part of the total field FEM solution uh in �2 for k = π .

where we recall that AL = LLDLL�
L is symmetric. This representation requires solving 2N (independent) finite element prob-

lems, one for each column of K̃�
2N,M , and a (sparse) matrix-vector multiplication. The first process, consumes the bulk of 

computation time (but is a naturally parallel task w.r.t. N) and can be carried out with wall-clock time similar to solving 
one FEM problem [24, Section 5.1.5].

The common CPU time for the direct and iterative solver amounts to the assembly of the finite element matrices AL
and DL,M , the LDL� factorization of the former, the boundary element matrix B2N and the auxiliary matrices T2N,L and 
PM,2N . Consequently the major difference in computation between the two approaches is: (i) the construction and storage 
of the matrix in (3.19a), followed by exactly solving the linear system for the direct method; versus (ii) the setting up of 
the system (3.19a) for matrix-vector multiplication and approximately solving the linear system with the GMRES iterations. 
The former approach is faster especially if the number of GMRES iterations is not very low (in single-digits) because of 
modern fast multi-threaded implementation of the direct solver. However, the latter approach is memory efficient and 
needed especially for large scale 3-D models.

Using a desktop machine, with a 10-core processor and 128GB RAM, we were able to apply the direct solver to simulate 
the example 2-D models in Experiment 1 and 2, even with millions of FEM (sparse) DoF within our FEM-BEM framework.
For one of the largest cases reported in Table 2, with P4 elements for the wavenumber k = 4π (40 wavelengths case), with

N = 80, L = 3,567,105 (with 445,440 triangles), and M = 7,168
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Fig. 7. Comparisons of convergence of the FEM-BEM algorithm for the total field in the H1(�2)-norm for Experiment 1 and 2 using P2, P3 and P4 elements 
with N = 80 and k = π/4. The bottom part of the figure shows the expected order of convergence, as given in (3.14), for smooth solutions.

the GMRES approach system setup CPU time was 172 seconds; and the direct approach setup CPU time was 332 seconds. 
Because of requiring 102 GMRES iterations, the solve time to compute a converged iterative solution was 586 seconds. 
However, because of the very efficient multi-threaded direct solvers (in Matlab) the direct solve time to compute the exact 
solution was only 0.014 seconds.

The size of the interface linear system for the experiment is only 160 × 160 and hence our algorithm can be very effi-
ciently used for a large number of incident waves uinc , that occur only in the small interface system. Thus we conclude that 
our FEM-BEM framework provides options to apply direct or iterative approaches to efficiently simulate wave propagation in 
heterogeneous and unbounded media. For 2-D low and medium frequency models with sufficient RAM, it seems to be effi-
cient even to use the direct solver, and for higher frequency cases iterative solvers are efficient because of the demonstrated 
well-conditioned property of the system.

5. Conclusions

In this article we developed a novel continuous and discrete computational framework for an equivalent reformulation 
and efficient simulation of an absorbed and scattered wave propagation model, respectively, in a bounded heterogeneous 
medium and an unbounded homogeneous free-space. The model is governed by the Helmholtz equation and a decay radia-
tion condition at infinity. The decomposed framework incorporates the radiation condition exactly and is based on creating 
two overlapping regions, without truncating the full space unbounded propagation medium. The overlapping framework 
has the advantage of choosing a smooth artificial boundary for the unbounded region of the reformulation, and a simple 
polygonal/polyhedral boundary for the bounded part of the two regions. The advantage facilitates the application of a spec-
trally accurate BEM for approximating the scattered wave, and setting up a high-order FEM for simulating the absorbed 
wave. We prove the equivalence of the decomposed overlapping continuous framework and the given model. The efficiency 
of our two-dimensional FEM-BEM computational framework was demonstrated in this work using two sets of numerical 
experiments, one comprising a smooth and the other a non-smooth heterogeneous medium.
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