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� 
Abstract—With the development and wide deployment of 

measurement equipment, data can be automatically measured 
and visualized for situation awareness in power systems. However, 
the cyber security of power systems is also threated by data 
spoofing attacks. This letter proposed a measurement data source 
authentication (MDSA) algorithm based on feature extraction 
techniques including ensemble empirical mode decomposition 
(EEMD) and fast Fourier transform (FFT), and machine learning 
for real-time measurement data classification. Compared with 
previous work, the proposed algorithm can achieve higher 
accuracy of MDSA using a shorter window of data from closely 
located synchrophasor measurement sensors.  
 

Index Terms—cyber security, data authentication, ensemble 
empirical mode decomposition (EEMD), fast Fourier transform 
(FFT), back propagation (BP) network. 

I. INTRODUCTION 

odern power systems are typical highly-dynamic 
real-time cyber-physical systems (CPS) with complex 
interdependencies and interactions between power 

components and information infrastructure, and the security 
and authentication of measurement data are attracting more and 
more attention from power system operators and reliability 
regulators. Frequency measurement is very useful for power 
system data authentication since the frequency is a system-wide 
attribute and its intrinsic real-time characteristic automatically 
verifies its authenticity in the time domain. This feature of 
frequency data has been applied in some applications such as 
audio authentication [1]. However, it is extremely challenging 
to authenticate it in the spatial domain. Recently, a type of data 
spoofing attack called data source ID mix attack was 
discovered, and some algorithms to authenticate the data source 
and detect this attack have been proposed. In [2]-[4], algorithms 
based on principal component analysis (PCA), support vector 
machine (SVM), state estimation and Kalman filter (KF) are 
studied respectively to detect false data injection. As all these 
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algorithms need detailed and accurate electrical parameters of 
the whole power system, this requirement places a strict 
prerequisite in the practical and online application. In [5], 
wavelet transform and feed-forward artificial neural network 
(F-ANN) are utilized to perform location identification for 
electric network frequency (ENF), and this algorithm achieves 
high accuracy of measurement data source authentication 
(MDSA) for the frequency disturbance recorders (FDRs) 
located far away from each other. In [6] and [7], mathematical 
morphology (MM) and advanced multi-grained cascade forest 
(gcForest) technique are combined to detect source ID mix 
using a long-time period of FDR data, and the results show that 
the algorithm can obtain a high accuracy of MDSA for FDRs 
located nearly. However, the aforementioned algorithms have 
obvious limitations. For the algorithm proposed in [5], the 
average source identification accuracy for FDRs located in the 
same city is lower than 50%. For the algorithms presented in [6] 
and [7], quite a long time window (e.g. 10min) of data is 
required to authenticate the data source. 

This work proposes a practical data spoofing detection 
solution based on ensemble empirical mode decomposition 
(EEMD), fast Fourier transform (FFT) and 2-hidden-layers 
back propagation (BP) neural network. The high-reporting-rate 
synchrophasor data from universal grid analyzers (UGAs) are 
used for the first time. Contributions of this work include: 

i) An algorithm based on EEMD, FFT and BP network is 
proposed to perform MDSA. Compared with previous work, 
this data-driven algorithm has three advantages: it does not 
need detailed electrical parameters of power systems; achieves 
a higher accuracy (e.g. >80%) of MDSA; and significantly 
shortens the time window required for data authentication.  

ii) The sensitivity of the accuracy of MDSA on the data 
reporting rate, time window length, and the number of layers in 
BP network are studied in details to provide a guideline on 
parameter settings for MDSA to achieve higher accuracy with 
shorter time period in practical application 

II. PRACTICAL MDSA USING HIGH-SPEED UGAS 
FNET/GridEye is a wide-area monitoring system deployed 

worldwide to improve situational awareness in power systems. 
In this study, the latest version of FDRs (i.e., UGAs) [8] with a 
high data reporting rate (up to 1.44kHz) is used to measure 
frequency in power systems. To authenticate the UGA 
frequency measurements at different locations, EEMD is 
employed to first extract the intrinsic mode functions (IMFs) of 
each data source. An IMF is a mutually independent oscillatory 
function with time-varying frequencies that contain the local 
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characteristics of non-stationary signals at different time scales. 
It is defined as a function that satisfies the requirements: i) the 
numbers of extremums and zero-crossing points must either be 
equal or differ at most by one; ii) At any point, the mean value 
of the envelope defined by the local maximum and the envelope 
defined by the local minimum is zero [9], [10]. In summary, 
IMF represents an oscillatory mode as a simple harmonic 
function, which can be any function with symmetric envelopes 
for zero and the same number of extremums and zero-crossing 
points. Then, the FFT is utilized to analyze the frequency 
spectrum of IMFs and extract features of each data source. 
Afterward, a 2-layer BP neural network is trained and applied 
to authenticate the source of real-time measurement data. 
Assume an observation of the ith data source is represented as 
 T

,1 ,2 ,[ , ,..., ]i i i i Nf f f f   (1) 
where N is the number of data points in a given window length 
L. The value of N is determined by the window length L and the 
data reporting rate R (i.e. N=L×R). The motivation of EEMD is 
to decompose the frequency data into several IMFs. Compared 
with the traditional empirical mode decomposition (EMD), it 
can avoid the mode mixing problem [11]. The sifting procedure 
of EEMD for the ith data source are as follows. 
1) Set loop variables j=1 and k=1. 
2) Add the kth type of Gaussian white noise k]  into the original 

frequency data as k k
i i �f = f ] . 

3) Find out all the local maxima and minima of k
if  and connect 

them to obtain the upper and lower envelope curves ,Uk
if  

and ,Lk
if . 

4) Determine the jth IMF of k
if as ,U ,L

, ( ) / 2k k k k
i j i i i� �= f f fM ; 

and ,
k k

i i jf = M , j=j+1; 

5) Repeat steps 3)-4) if k
if  is not monotonic; otherwise, let 

residual k
ir = k

if , k=k+1. 
6) Repeat steps 2)-5) with different k]  until k>K, where K is 

the number of types of Gaussian white noise utilized in 
EEMD. 

7) The final IMFs ,i jM  and residual ir  of the ith data source are 
decomposed from fi as  
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N  is the number 

of IMFs for the ith data source. 
It is worth to mention two points of the above processes that: 

i) Adding Gaussian noise for k
if  is one of the most important 

processes of EEMD. EEMD improves the traditional EMD by 
avoiding the mode mixing problem [11]. The signal extremums 
affect IMF, and mode mixing problem occurs if their 
distributions are uneven. To remedy this deficit, Gaussian noise, 
whose spectrum is evenly distributed, is involved into the 
signal to be analyzed so that the signal could have a smaller 
signal-to-noise ratio, and it will provide a uniform reference 
scale distribution to extract IMFs. Hence, adding Gaussian 
noise would not affect EMD but enhances it by avoiding the 

mode mixing actually [12]. ii) It is proved in [13] that the 
monotonic function in Step 5) can always be found after several 
iterations with trigonometric interpolation. In other words, the 
convergence of the sifting procedure of EEMD can be 
guaranteed. 

After the EEMD, the characteristics of measurement data in 
various time scales are extracted and represented by IMFs, and 
FFT is further employed to extract the characteristics in the 
frequency domain as 

 ( 1)( 1)
, ,

1
( ) ( )( )

Q
p q

i j i j n
q

Y p q wM � �

 

 ¦   (3) 

where 2πi /=e n
nw �  and , ( )i j qM  is the qth element of the sequence 

,i jM . , ( )i jY p  is the pth element of the frequency domain 
representation Yi,j. Yi,j is a sequence of P complex numbers 
whose amplitudes are the spectrums of measured data. In this 
work, MDSA is a classification problem and BP neural network 
can solve this problem using its strong nonlinear mapping 
capability.  

Hence, the 2-hidden-layers BP neural network can be built as 
shown in Fig. 1. The spectrums of measured data extracted by 
EEMD and FFT are used as the input features to train a 
classifier of BP neural network and the effectiveness of the 
proposed algorithm compared with other algorithms is given in 
Section III. 
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Fig. 1. Architecture and input features of the proposed BP neural network 

 
It should be mentioned that for UGAs with such a 

high-reporting rate, not only the local characteristics of power 
systems but also the measurement noises from sensing devices 
will be recorded and it is difficult to separate them thoroughly 
in practice. However, the mix of local characteristics and 
measurement noises would not influence the results of MSDA 
because both of them reflect the unique characteristics of the 
data and help to authenticate the data. In other words, the local 
characteristics are spatial signatures, while the measurement 
noises are device signatures, and both are used to authenticate 
the data. 

III. CASE STUDIES AND COMPARISONS  
To demonstrate the effectiveness of the proposed algorithm, 

the data of three UGAs deployed closely in Knoxville, TN, 
USA, are employed for MDSA. These three UGAs are 
deployed several kilometers away from each other and the 
physical locations of these three high-speed UGAs are shown in 
Fig. 2. The measured data are from 2019/07/17 00:00:00 to 
2019/07/18 23:59:59 with a 1.44kHz reporting rate. In this 
work, window length L=20s and a reporting rate R=60Hz are 
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used, respectively, which is a typical parameter of 
synchrophasor measurement. 

 

 
Fig. 2. Locations of UGAs 
 

Thus, EEMD is employed to decompose the original data 
into several IMFs and the residual. The first three IMFs and the 
residual are plotted in Fig. 3. It can be seen that IMF1 has the 
fastest variations and the residual is monotonic. Hence, the 
characteristics of original data in different time scales are 
extracted. FFT is further employed to obtain the characteristics 
in the frequency domain, which are utilized as the input data of 
BP neural network. 

 

0 5 10 15 20
Time (s)

60.002
60.004
60.006
60.008
60.010
60.012

0.001

0.000

-0.002

-0.001

0.0005

0.0000

-0.0010

-0.0005

0.0005

0.0000

-0.0005

60.0066

60.0065

60.0064

IM
F 1

O
rig

in
al

IM
F 2

R
es

id
ua

l
IM

F 3

A
m

pl
itu

de
s

 
Fig. 3. Results of EEMD for original frequency data with the first three IMFs 
and residuals. 
 

To verify the algorithm, 70%, 15% and 15% of the whole 
data are used as the training set, validation set and testing set, 
respectively. In the testing set, the data sources are mixed, and 
the verification results are clarified by confusion matrices as 
shown in Fig. 4. For each confusion matrix, the element in (i, i) 
denotes the number of times that the ith UGA is correctly 
authenticated as in the ith location; while the element in (i, j) 
denotes the number of times that the jth UGA is incorrectly 
authenticated as in the ith location (i, j=1, 2, 3; i≠j). In other 
words, the larger the values of the diagonal elements and the 
smaller the values of the non-diagonal elements, the more 
accurate the algorithm is. It can be seen that the identification 
accuracies on training, validation and testing sets are 88.5%, 
79.9% and 80.9%, respectively; and the overall accuracy of 
MDSA on data set is 86.0%. The accuracy of MDSA on the test 
set is the most meaningful since its value represents the 
accuracy of MDSA in practical application. The accuracies and 
training times on the testing set obtained by four other 
algorithms are also given in Table I for comparisons. It is noted 

that this case is performed on the Windows 10 platform with 
Intel Core i5-8250U processor and 8GB RAM. It can be seen 
that: i) The proposed algorithm earns the highest accuracy of 
MDSA. ii) The required time window length of the proposed 
algorithm is much shorter than that of MM-RFC algorithm (i.e., 
L=10min) reported in [7]. iii) The long short-term memory 
(LSTM)-based algorithm obtains the second highest accuracy, 
while its training time is longest due to the more complex 
network structure. It is also worth mentioning that many 
parameters in LSTM network need to be tuned to optimize its 
performance, which makes it less convenient compared with 
the proposed method for MDSA. 

 

 
Fig. 4. Confusion matrices of the proposed EEMD-BP algorithm. 

 
TABLE I 

ACCURACY AND TRAINING TIME OF DIFFERENT ALGORITHMS  
Algorithm Accuracy Training Time 

DWT-BP [5] 76.5% 6.94s 
MM-gcForest [6] 63.7% 4.65s 

MM-RFC [7] 66.1% 5.63s 
LSTM 77.8% 10.25s 

Proposed Algorithm 80.9% 6.64s 
 

In fact, UGAs are not deployed widely in current stage. 
Therefore, there was no recorded spoofing attack at the time of 
collecting data and only three UGAs are employed in this work 
for verification. To demonstrate the effectiveness in large-scale 
systems with a substantial number of measurements and the 
real-time application, the data from 54 FDRs in the U.S. 
Eastern Interconnection grid are utilized. It is assumed that 
FDRs #10 and #45 are attacked with their data sources swapped 
intentionally between 22:00:00 to 22:30:00. The real-time 
monitoring graph is shown in Fig. 6 (for clarity, only the results 
associated with FDRs #10 and #45 are plotted). The total 
training time is 13.26s, which indicates that the training time 
will not increase significantly with the increase of the number 
of synchrophasors. It can be seen that the locations of FDRs 
#10 and #45 can be correctly identified when no attack arises at 
most time. Furthermore, the identified locations of swapped 
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FDRs after the attack are also exchanged, which indicates an 
attack that aims to swap the data sources of FDRs #10 and #45 
is in progress. Therefore, the attack is detected and identified 
successfully. It can be seen from this example that the proposed 
algorithm works well for the system with numerous FDRs. 
Hence, the proposed algorithm will achieve at least the same 
performance when it is applied for UGAs, which are with a 
much higher reporting rate than FDRs. 

 
Fig. 6. Real-time application for FDRs in the U.S. Eastern Interconnection grid. 

IV. PARAMETER SENSITIVITY STUDY 
It is noted that different window lengths, reporting rates and 

numbers of layers in neural network would result in different 
identification accuracies. Results of MDSA with different 
reporting rates and window lengths in 1 and 2-hidden-layer BP 
networks are given in Table II. It can be seen that: i) For the 
10Hz reporting rate, it fails to catch enough features in 
measurement data for accurate identification; for the 1,440Hz 
one, some useless features may be included and influence the 
accuracy of MDSA. ii) 60Hz and 144Hz reporting rate data 
produce better results than the 10Hz and 1,440Hz data, while 
the highest accuracy of MDSA is obtained by 144Hz reporting 
rate. iii) For the 1s and 5s window lengths, their accuracy is 
relatively low due to insufficient local information in data. 
Besides, the accuracy of MDSA based on the 60s window 
length is also low since some features extracted by the proposed 
algorithm may be averaged. iv) The accuracies obtained by 20s 
window length are higher than the 1s, 5s and 10s ones. Besides, 
results obtained by 20s and 40s window lengths are close. v) 
The results obtained by the 2-hidden layer BP network are 
generally better than the ones obtained by the 1-hidden layer 
BP network. Further tests show that 3 or more hidden-layers BP 
network would bring little improvement but much more 
computation burden and potentially lead to the overfitting 
problem. Therefore, the 20s window length with 60Hz 
reporting rate in the 2-hidden layers BP network is suitable for 
the proposed algorithm in this test data. As these results provide 
some guidelines on tuning the algorithm parameter settings, 
actual settings in practice will fine be tuned based on system 
characteristics and the electrical distance between sensors. 

 
TABLE II 

RESULTS OF MDSA WITH DIFFERENT REPORTING RATES AND WINDOW 
LENGTHS IN 1 AND 2-HIDDEN-LAYER BP NETWORKS 

Network Rates 1s 5s 10s 20s 40s 60s 

1-hidden 
layer 

10Hz 36.9% 51.1% 56.0% 50.9% 33.3% 38.0% 
60Hz 50.3% 66.7% 74.7% 77.6% 75.3% 64.8% 
144Hz 58.4% 66.1% 65.7% 64.2% 77.8% 70.4% 

1,440Hz 41.1% 40.8% 26.6% 40.4% 71.0% 63.3% 

2-hidden 
layers 

10Hz 43.3% 49.9% 57.7% 65.0% 35.8% 39.8% 
60Hz 52.2% 61.6% 76.2% 80.9% 75.9% 73.1% 
144Hz 59.8% 64.3% 72.3% 75.5% 81.5% 72.2% 

1,440Hz 42.3% 49.2% 53.0% 70.7% 61.1% 63.0% 

V. CONCLUSIONS 
This work presented a model-free approach for MDSA based 

on EEMD, FFT and BP neural network. The sensitivity of its 
accuracy on window length and reporting rates is studied. 
Compared with previous approaches, more accurate data 
authentication can be achieved while using data in a much 
shorter time window, improving the speed and accuracy of 
detecting data spoofing cyber-attacks. 
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