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Abstract

The consequences of environmental disturbance and management are difficult to quantify for

spatially structured populations, because changes in one location carry through to other areas

due to species movement. We develop a metric, G, for measuring the contribution of a habitat

or pathway to network-wide population growth rate in the face of environmental change. This

metric is different than other contribution metrics as it quantifies effects of modifying vital rates

for habitats and pathways in perturbation experiments. Perturbation treatments may range from

small degradation or enhancement to complete habitat or pathway removal. We demonstrate the

metric using a simple metapopulation example and a case study of eastern monarch butterflies.

For the monarch case study, the magnitude of environmental change influences ordering of node

contribution. We find that habitats within which all individuals reside during one season are

the most important to short-term network growth under complete-removal scenarios. Whereas

the central breeding region contributes most to population growth over all but the strongest dis-

turbances. The metric G provides for more efficient management interventions that proactively

mitigate impacts of expected disturbances to spatially structured populations.
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Introduction

Changes in the environment are altering ecosystems and landscapes (Barnosky et al. 2011; Kraus-

mann et al. 2013) and affecting the size, distribution, and viability of wildlife populations (Kol-

bert 2014; Ripple et al. 2016). Migratory species present particular conservation and management

challenges in changing environments (López-Hoffman et al. 2017). Because of their geograph-

ically distinct life cycles, abundance in one location may depend on environmental changes in

far-removed areas. Many populations of migratory species are declining (Harris et al. 2009;

Wilcove and Wikelski 2008), which diminishes the flow of ecosystem services they provide (Estes

et al. 2011; López-Hoffman et al. 2017). Restoring these populations requires conservation actions

for recovery and long-term persistence (Tucker et al. 2018; Visser et al. 2009; Wilcove and Wikel-

ski 2008). Conversely, increasing populations can generate conflicts between stakeholders, for

example from crop damages caused by herbivores (Buij et al. 2017; Skonhoft and Olaussen 2005;

Zimmerman et al. 2019). All of these challenges arise at least in part from difficult-to-predict

responses of migratory populations to environmental change and management actions.

A crucial need in developing effective management and conservation efforts for migratory

species is assessing the relative importance of the habitats they occupy and move among over the

course of their full annual cycle (Erickson et al. 2018; Hostetler et al. 2015; Wiederholt et al. 2018).

In ecological modeling, multiple habitats (nodes) connected by migratory pathways (edges) make

up a migratory network. Understanding how the levels of importance among habitats and path-

ways change under differing environmental conditions can aid decisions about where and when

to allocate limited funds for habitat management. For example, if a manager has a fixed level of

funding, are they better off enhancing the habitat in an overwinter location, breeding location, or

one of the many possible migratory pathways?

Substantial theory exists for describing the importance of nodes and edges within networks

(Barrat et al. 2004; Freeman 1978; Freeman et al. 1991; Opsahl et al. 2010). Although useful

for static networks, these measures cannot accommodate seasonal variation in dynamics nor
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capture the effects of environmental change. Regarding dynamic environments, the per-capita

contribution metric Cr quantifies the demographic contribution from a single individual at a node

(i.e., through survival and reproduction) to an entire metapopulation (Runge et al. 2006). This

metric is calculated over a fixed time interval and quantifies node importance to the dynamics of

a population network during this timeframe. For predicting how a metapopulation will change

due to a localized environmental pressure or management action, perturbation experiments have

been used to quantify the effect of perturbing one, or more, of the habitats or pathways (Greene

and Beechie 2004; Heppell et al. 2000; Ozgul et al. 2009). Change in metapopulation capacity

was used to evaluate the impact of both small and large perturbations to patch size, including

cases where habitats were completely removed or added (Ovaskainen and Hanski 2001, 2003).

Other prospective analyses, such as sensitivity and elasticity, can be used to understand how

demographic indices, such as population growth rate, respond to (small) changes in vital rates

(Caswell 2001; Caswell and Shyu 2012; Hunter and Caswell 2005). In a metapopulation with two

habitats of differing quality and undergoing environmental changes, elasticity of metapopulation

growth rate depends on the distribution of individuals between habitats (Strasser et al. 2012).

These findings have revealed consequences of localized environmental change for the viability of

an entire metapopulation, where patches become habitable or uninhabitable over time.

In contrast with individuals in metapopulations, migratory animals exhibit seasonal, directed

movements between nodes. These movements evolved as an adaptation to maximize fitness un-

der seasonal fluctuations in habitat quality (Alerstam et al. 2003). Perturbation experiments are

important for understanding how changes in size, quality, and existence of particular habitats

affect population dynamics for migratory species. Earlier experiments ranged from theoreti-

cal models with very few parameters to complex individual-based models with many parame-

ters. Building on work by Fretwell (1972), Sutherland (1996) used a 2-parameter model includ-

ing density-dependent mortality and breeding output to predict effects of percentage losses of

breeding and wintering habitat on the population size of a migratory species. Based on a single-

parameter extension of this simple model, carry-over effects were found to exacerbate the effects
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of habitat loss (Norris 2005). More recently, studies have used diverse modeling approaches to

quantify effects of habitat perturbations on changes in migratory population size. In increasing

order of complexity, these include migratory network models (Taylor and Norris 2010; Wieder-

holt et al. 2013), deterministic population models (Mattsson et al. 2012; Robinson et al. 2016),

stochastic projection matrices (Brown et al. 2017), migratory-flow-networks (Iwamura et al. 2013;

Taylor et al. 2016), and integrated population models (Morrison et al. 2016; Oberhauser et al.

2017).

Although significant modeling advances have been made, still unknown is how the severity

and type of perturbation can affect the ranking of importance among habitats. For example,

Pettifor et al. (2000) showed removal of entire nodes vs removing the same amount of total area

across a set of nodes had differing effects on population dynamics. We suspect habitat ranking

may be highly sensitive to perturbation size for many species and network structures, but this re-

sult has yet to be investigated. When a focal habitat undergoes a mild perturbation, for instance,

that habitat may be ranked as most important. By contrast, under severe perturbations (or habi-

tat removal), the habitat ranking might change. Thus, a modeling framework and corresponding

metrics are needed for comprehensive understanding of how changing localized environmental

conditions will affect population dynamics for migratory species.

This paper develops a framework for assessing the consequences of environmental change in

spatially structured populations. Specifically, we develop a metric to quantify the demographic

contribution to network-wide population growth. The metric, G, is general and applicable to

migratory and non-migratory species while allowing for populations with age or class struc-

tures. G assesses network sensitivity to localized environmental disturbance based on change in

growth rate attributed to varying levels of enhancement or degradation of a given focal habitat

or pathway. We define this contribution to network growth as the difference between the baseline

network growth rate and the networks growth rate after a perturbation to a node or edge. In

theory, network growth rate can be calculated over any length of time. However, since the model

parameters will not be updated in response to the perturbation, we will measure the change in
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network growth rate in the short-term (over one annual cycle). A perturbation can be negative

(degradation) or positive (enhancement). We allow for any magnitude of perturbation including

complete removal. Importantly, we provide the framework and code for applying this metric to

any spatially structured population.

We first develop the mathematical model for G and then illustrate its application with two

case studies. Our first application uses the original source-sink model (Pulliam 1988) to illustrate

the meaning and evaluate the usefulness of G in a straightforward example. Using the Pulliam

model as a basis, we provide the mathematical construction of G and illustrate that the metric

can be applied to a rather simple non-migratory spatially structured population. We then apply

our model to the eastern migratory population of the monarch butterfly (Danaus plexippus). This

case study demonstrates the metric for a stepping-stone migration and reveals the utility of G in

identifying network connectivity issues. We show that the ranked importance among habitats or

pathways can change with the magnitude of perturbation.

Generalized Model Development and Parameterization

To define G for a wide range of networks, we must first define a general representation for a

spatially structured network. Symbols used throughout this paper are given in table 1. We

consider a network in which habitats are nodes and movement pathways are edges (Sample et al.

2018; Taylor and Norris 2010). We consider a population of c classes (or life stages) in a network

of n nodes and s seasons. Individuals are classified by both their class and location. Utilizing

age- and size-structured matrix population models (Caswell 2001; Hunter and Caswell 2005;

Pascarella and Horvitz 1998; Rogers 1966), we construct an nc × nc time-dependent projection

matrix, At, that contains both demographic (fecundity, class transition, and survival rates) and

movement information (migration and survival probabilities). Matrix At projects the population,

for all classes and nodes, from one time step to the next (from t to t + 1), which represents one

season in the annual cycle. Seasons may vary in length. One year, from t to t + s, is represented
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by s time steps. Details on how to construct At are found in Sample et al. (2019). The change in

population projected over an entire annual cycle, beginning at any time t, is given by the seasonal

product matrix,

Ât =

(
t+s−1

∏
τ=t

AT
τ

)T

=
(

AT
t AT

t+1 · · ·AT
t+s−1

)T
= At+s−1 · · ·At+1At. (1)

This matrix, and modifications to it, are used to calculate the contribution to network growth.

It is important to note that At is formulated to apply demographic updates first followed by

the dispersal of individuals in the network. Switching this order would modify At (Hunter and

Caswell 2005) and consequently the matrices used to define the contribution metric.

The framework presented here can accommodate population models with density-dependent

reproduction, survival, and movement probabilities. For example, if the demographic rates of

the model are seasonal and density-dependent, then At might be modeled as a deterministic

function of t and population sizes at time t, namely At ≡ A
(

N⃗t, t
)

where N⃗t is an nc × 1 block

vector whose c × 1 subvectors N⃗i,t give the class distribution within each node i at time t. Class-

specific population sizes at each node can be iterated over time using the projection matrix, At:

N⃗t+1 = AtN⃗t, (2)

Since At varies from one season to the next and Ât varies from one annual cycle to the next, the

contribution to network growth also has seasonal and annual variation. We call the season in

which Ât is calculated, the anniversary season.

Contribution to Network Growth

Habitat Metric

First, we define population proportion at time t as w⃗t = N⃗T
t /Ntot

t , where Ntot
t is the network

population size (summed across all nodes and classes at time t). The annual growth rate of the
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network at time t is then calculated using the projection matrix of eq. (1),

λt =
Ntot

t+s

Ntot
t

= w⃗tÂT
t 1⃗nc = w⃗t

(
t+s−1

∏
τ=t

AT
τ

)
1⃗nc, (3)

where 1⃗nc is a nc × 1 vector of ones. At equilibrium, λt = 1.

Next, we perturb the focal node r at time t by a fixed amount δ ≥ −1 during each season

in the annual cycle and calculate the new annual network growth rate in the presence of this

perturbation. We define the new network growth rate as γr,t(δ),

γr,t(δ) = w⃗t

(
t+s−1

∏
τ=t

Dr(δ)AT
τ

)
1⃗nc. (4)

The purpose of the matrix Dr(δ) = Inc + δ
rc

∑
x=rc−c+1

Enc,xx is to alter the values of At that corre-

spond to node r for every season in the annual cycle. Here, Inc is the identity matrix of size

nc × nc and Enc,xx is an nc × nc zero matrix with a 1 at position xx. Complete node removal

is represented by δ = −1, hence Dr(−1) will zero out all entries corresponding to node r. In

this paper, we use ∗ to indicate compete removal of a node or pathway. Thus, we define matrix

D∗
r ≡ Dr(−1) and the annual network growth rate in the absence of node r as γ∗

r,t ≡ γr,t(−1). We

note that in our formulation, individuals do not adapt to the habitat perturbation, because tran-

sition probabilities and demographic rates outside of the focal node are not changed in response

to the perturbation. See Online Supplement S1 for a conceptual diagram of how the γ-metric is

calculated.

Finally, we define the contribution to network growth of node r at time t as the absolute

difference between the observed network growth rate (eq. (3)) and the network growth rate when

the node is under the perturbation (eq. (4)):

Gr,t(δ) = |λt − γr,t(δ)| . (5)

This metric represents the change in the network growth rate that is attributed to changes at node

r. For the case of complete node removal, δ = −1, we define the change in the network growth

rate when node r is removed from the network as G∗
r,t ≡ Gr,t(−1). Values of G∗

r,t range from 0 to
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λt. If G∗
r,t = λt, every individual must pass through node r at least once during its annual cycle

and the population would go extinct (assuming no other behavioral changes) if that node is no

longer in the network. If G∗
r,t = 0, then the node is unoccupied throughout the annual cycle and

the population does not at all depend on the presence of node r. At equilibrium, values of G∗
r,t

range from 0 to 1. When the quality of the node is degraded, −1 < δ < 0, we expect Gr,t(δ) to

be between 0 and λt. If δ = 0, the system is not perturbed and Gr,t(0) = 0. If δ > 0, the quality

of the node is enhanced by the perturbation and it is possible for Gr,t(δ) to be larger than λt. It

is also possible to augment δ to be time-dependent so that a change in node quality occurs only

once (i.e., in one season) over the course of the annual cycle.

Even with a fixed δ, G takes on different values depending on the selected anniversary season.

To calculate a single metric for each node in the network across one full annual cycle, we use a

seasonal population weighted average,

Gr(δ) =

t+s−1
∑

τ=t
Ntot

τ Gr,τ(δ)

t+s−1
∑

τ=t
Ntot

τ

.

Seasons with larger population abundance at the focal node are weighted more.

To understand the meaning of δ, consider an example perturbation of δ = −0.2. This rep-

resents a 20% reduction to the focal node’s quality throughout the annual cycle. Here, quality

broadly means the combined demographic properties of all sex and age/stage classes at the

node. So, a perturbation of δ = −0.2 means that there is a 20% reduction in the growth rate of

the node. That is, the population at the node will decrease by 20% after individuals reproduce

and survive but before they migrate (or remain residents). This reduction is applied at every

time step of the annual cycle and to all classes. If there are no individuals at the node then the

nodal growth rate remains zero. δ takes advantage of the mathematical equivalency between

growth rate and population change over a unit time period. On the other hand, a one-to-one

correspondence between growth rates and vital rates is not necessarily true. For instance, if the

growth rate is defined as fecundity times survival, then the product (not the fecundity and sur-
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vival rates independently) will decrease by 20%. As another example, δ = 0.1 represents a 10%

improvement to the quality of the focal node, which increases the population growth rate of the

node by 10% during every season of the annual cycle. Although in theory δ can be as large as

desired, such large perturbations may not be realistic. A large δ in a non-breeding habitat is akin

to setting survival rates greater than 1. It is advised to verify that 1 + δ amounts to a reasonable

increase in demographic rates. Since G depends on the degradation/enhancement amount, node

ranking under complete node removal, δ = −1, may be different than the ranking under small

perturbations, |δ| ≪ 1.

Pathway Metric

We develop an analogous metric for quantifying the contribution of an edge (pathway). This

metric gives the absolute change in network growth rate when the focal edge is perturbed by the

amount δ ≥ −1. We define γrd,t(δ) as the network growth rate of the population when directed

edge rd (origin node r and destination node d) is removed, degraded or enhanced for one full

annual cycle beginning at time t,

γrd,t(δ) = w⃗t

(
t+s−1

∏
τ=t

AT
τ ◦ (Brd(δ)⊗ 1c)

)
1⃗nc, (6)

where ◦ indicates the Hadamard product, ⊗ is the Kronecker product, 1c is a c × c matrix of

ones, Brd(δ) = 1n + δEn,rd, and En,rd is an n × n zero matrix with a 1 at position rd. The purpose

of the Brd(δ) matrix is to augment the values of At that correspond to edge rd by an amount δ.

The contribution of edge rd to network growth at time t is defined as

Grd,t(δ) = |λt − γrd,t(δ)| , (7)

which measures the total amount of growth lost (or gained) when we degrade (or enhance) the

direct migratory route between habitats, where node r is the origin and node d is the destina-

tion for any season. When pathway rd is completely removed from the network, the values of

G∗
rd,t ≡ Grd,t(−1) range from 0 to λt. G values for focal nodes and edges both represent the abso-
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lute change in the annual network growth rate under a perturbation, and are therefore directly

comparable.

Note that a self-loop in the network represents individuals who forgo movement and remain

at a node in a given time step. It is therefore important to apply caution when comparing the

contributions of “true” pathways to the contribution of a self-loop, which is not a pathway in an

ecological sense. For instance, G∗
rr,t is the change in network growth rate when the self-loop rr is

removed. Any individual who stays at node r for at least one time step would die, whereas any

individual who migrates to or from node r would not be affected by the perturbation. In contrast,

G∗
rd,t is the change in network growth rate when the pathway rd is removed, which means that

any individual who travels along edge rd for at least one time step would die.

Case Studies

In this section, we show how G is calculated for populations with contrasting life histories, move-

ment patterns, and carrying capacities. In particular, we apply our model to a metapopulation

and a stepping-stone migratory network. Here we present results for the habitat metric; pathway

metric results are provided in Online Supplement S1. Code developed in R to calculate these

metrics are available in an online repository (Bieri et al., 2019).

Pulliam Source-Sink Model

Pulliam (1988) developed a simple, theoretical, annual cycle model in a two-node network (figure

1A). He argued that a large, stable population in a sink node can be maintained by emigration

from a smaller source node and cautioned that management decisions based on abundance could

lead to unintended results.

In the spatially structured population of the Pulliam model, there is a small source node with

high reproductive success but with a limited number of breeding sites. As the population grows

toward equilibrium, the number of individuals in the node exceeds the number of breeding sites
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available, making the reproductive success density-dependent. Individuals who do not find a

breeding site migrate to a lower quality node. This second node is a sink that hosts a large

population with low reproductive success and large (unlimited) breeding area, meaning that all

individuals are able to breed and do not migrate back to the source node. The annual cycle

is modeled in a single time step, combining the breeding season, when there is no mortality,

and the non-breeding season, when juveniles and adults survive with distinct probabilities. The

two nodes do not differ in survival probabilities. Furthermore, population size is calculated by

summing the number of adults and juveniles at the end of the annual cycle and therefore assumes

that juveniles transition to adults at the end of every winter. This means that the population can

be modeled with one class.

Here we translate Pulliam’s model into our model notation. There are two nodes (n = 2),

one season (s = 1), and one class (c = 1). Let N1,t and N2,t represent the number of individuals

in the source, node 1, and the sink, node 2, at the beginning of year t’s breeding season. Node

1 individuals who find a breeding site will remain residents with density-dependent probability

p11,t. Remaining individuals will move to node 2 with probability p12,t = 1 − p11,t. We define the

per-capita growth contribution in year t of the source and sink as λ1,t and λ2,t, respectively. By

definition, a source has λ1,t > 1 and a sink has λ2,t < 1. System dynamics are governed by the

following set of equations in which demographic updates at the nodes are applied first (summer

reproduction then winter survival) followed by movement or residency in the spring (henceforth,

movement update):

N1,t+1 = p11,tλ1,tN1,t,

N2,t+1 = p12,tλ1,tN1,t + λ2,tN2,t.

This system of equations, which projects the population to the next year, can be written in the

form of eq. (2), where the population at time t is N⃗t = [N1,t, N2,t]
T and the population projection
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matrix of eq. (1) is

Ât =

⎡⎢⎣p11,tλ1,t 0

p12,tλ1,t λ2,t

⎤⎥⎦ . (8)

The growth rate of the network (eq. (3)) is

λt = w⃗t

(
t

∏
τ=t

AT
τ

)
1⃗2 =

[
w1,t w2,t

] ⎡⎢⎣p11,tλ1,t p12,tλ1,t

0 λ2,t

⎤⎥⎦
⎡⎢⎣1

1

⎤⎥⎦ = λ1,tw1,t + λ2,tw2,t (9)

where p11,t + p12,t = 1 and wi,t = Ni,t/(N1,t + N2,t) is the proportion of the entire population in

node i during year t.

Moving beyond Pulliam’s analysis, we quantify the contribution of the source and sink nodes

to network growth. We do so by enhancing/degrading the quality of the focal habitat and

calculating the annual network growth rate in the presence of such a perturbation. This gives γr,t

of eq. (4) for node 1,

γ1,t(δ) = w⃗t

(
t

∏
τ=t

D1(δ)AT
τ

)
1⃗2

=

[
w1,t w2,t

] ⎡⎢⎣1 + δ 0

0 1

⎤⎥⎦
⎡⎢⎣p11,tλ1,t p12,tλ1,t

0 λ2,t

⎤⎥⎦
⎡⎢⎣1

1

⎤⎥⎦
= (1 + δ)p11,tλ1,tw1,t + (1 + δ)p12,tλ1,tw1,t + λ2,tw2,t

= (1 + δ)λ1,tw1,t + λ2,tw2,t, (10)

and for node 2,

γ2,t(δ) = w⃗t

(
t

∏
τ=t

D2(δ)AT
τ

)
1⃗2

=

[
w1,t w2,t

] ⎡⎢⎣1 0

0 1 + δ

⎤⎥⎦
⎡⎢⎣p11,tλ1,t p12,tλ1,t

0 λ2,t

⎤⎥⎦
⎡⎢⎣1

1

⎤⎥⎦
= p11,tλ1,tw1,t + p12,tλ1,tw1,t + (1 + δ)λ2,tw2,t

= λ1,tw1,t + (1 + δ)λ2,tw2,t. (11)
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Since the annual cycle is comprised of one season, only individuals beginning at the focal node

will be “hit” by the perturbation. Any individual who begins at focal node 1, regardless if they

choose to stay or move to node 2, will be affected by the perturbation, which explains the (1 + δ)

factor in eq. (10). If node 2 is the focal node, only individuals who begin at this node will be

affected, hence the (1 + δ) factor in the last term of eq. (11).

We now calculate the growth contributions (eq. (5)) of the source and sink nodes from eqs. (9)

- (11),

G1,t(δ) = |δ| λ1,tw1,t,

G2,t(δ) = |δ| λ2,tw2,t.

The growth contributions are plotted as a function of the perturbation amount δ in figure 1B,

henceforth referred to as fountain graphs, for a chosen set of parameter values (λ1 = 1.05,

λ2 = 0.8, w1 = 0.4, w2 = 0.6, and p11 = 0.9524). Under these conditions, we assume the source

has reached the breeding site capacity, but the overall population is in decline because of poor

conditions at the sink (λ = 0.9). The growth contribution of the sink (G2 = 0.48|δ|) is larger

than the source (G1 = 0.42|δ|) for all values of δ since node 2 contributes a larger proportion of

the population than node 1 (λ2w2 > λ1w1). This result implies that, for any given magnitude

of δ, percent changes in the growth rate of the lower quality node would have a larger short-

term impact on network growth rate than do equivalent changes to the higher quality node. It

is possible under a different set of parameter values (λ2w2 < λ1w1) for percent changes in the

growth rate of the higher quality node to have a larger short-term impact on network growth

rate than equivalent changes to the lower quality node. Thus, it is possible for a node that hosts a

minority of the population, provided its growth rate is large enough, to be ranked higher than a

node with a larger proportion of the population. This supports Pulliam’s conclusion that caution

should be taken when making decisions based on abundance. Note that G quantifies the growth

contribution over one annual cycle; more work is needed to quantify the contribution of habitats

to long-term population viability.
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Monarch Butterfly

For a more realistic case study, we consider the eastern migratory population of monarch butter-

flies in eastern North America. Monarch butterflies complete a multi-generation migration over

the course of the annual cycle. Individuals hatched in the northern U.S. and southern Canada

migrate several thousand kilometers to wintering areas in the high-elevation oyamel fir (Abies

religiosa) forests of central Mexico. Surviving individuals then, at the conclusion of winter, mi-

grate into the southern U.S. to reproduce. Those hatched there migrate northward, following the

advancement of spring and the availability of their breeding host plant, milkweed (Asclepia spp.).

In the central and northern portions of the population’s range, the species undergoes 2 - 3 more

generations of reproduction, with the last generation making its return back to Mexico to begin

the cycle anew.

Spatially explicit demographic models exist for the monarch butterfly (Flockhart et al. (2015);

Oberhauser et al. (2017)). We converted the model developed by Flockhart et al. (2015) to a

network-based model using the framework presented in Sample et al. (2018), comprising one sex

and age class (adult females). An annual cycle consists of seven time steps or seasons: Winter,

April, May, June, July, August, and September. The network contains four nodes representing

regions of eastern North America: Mexico (M), South (S), Central (C), and North (N), and are

enumerated 1 through 4, respectively. Mexico is considered a wintering node. The other three are

breeding nodes, allowing for breeding each month. The seasonal-dependent network structure is

shown in figure 2. The population is assumed to be at equilibrium. Edge transition and survival

probabilities vary among seasons and are constant each year. Parameter values can be found in

an online repository (Bieri et al., 2019).

The stepping-stone migration of monarchs indicates that the existence of Node 1 (Mexico)

and Node 2 (South) are critical to the survival of the species, as removal of these nodes “breaks”

the migratory network. The criticality of these nodes is apparent with G∗ (table 2). Both nodes

1 and 2 have a growth contribution of G∗ = λ = 1, which means that the absence of either node
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would eliminate the population. Node 3 (Central) is ranked as the third-most-important habitat

in the network, and removal of this node reduces the average annual growth rate to nearly zero:

γ∗
3 = λ − G∗

3 = 0.0371. Node 4 (North) contributes the least to network growth, and its removal

reduces the average annual network growth rate to γ∗
4 = λ − G∗

4 = 0.3551.

The amount of perturbation strongly impacts the ranking of nodes (figure 3). For −0.8 < δ ≤

−0.3, node rankings are consistent; Node 3 (Central) and Node 2 (South) contribute the most

to the short-term network growth rate, followed by Node 1 (Mexico) and Node 4 (North). As

degradation becomes large and approaches complete node removal (δ → −1), Node 1 (Mexico),

the only wintering node, becomes increasingly critical to the network growth rate. For a smaller

degradation and any magnitude of reasonable enhancement (−0.3 < δ ≤ 0.5), Node 1 (Mexico)

contributes the least to annual network growth rate. As an example, Node 3 (Central) would

only need to be enhanced by δ ≈ 0.07 to increase network growth rate by 20% in the short-term

(G3(0.07) ≈ 0.2λ = 0.2). By contrast, Node 1 would require an enhancement of δ = 0.2 to

achieve the same effect (G1(0.2) = 0.2). We can also compare the effect of similar perturbation

magnitudes on G. A 10% enhancement in the North results in about a 12% increase in short-term

network growth rate (G4(0.1) ≈ 0.12), whereas a 10% degradation in the South results in about a

19% decrease in short-term network growth rate (G2(−0.1) ≈ 0.19).

Discussion

There are few places in the world unaffected by humans. Conservation of species in this human-

altered environment, one which continues to change at a rapid pace, is difficult because the value

of habitats to population dynamics is in constant flux. A habitat that little affects the dynamics of

a species at present may become critical at some point in the future. We provide a metric, G, and

associated computer code for predicting which habitats in a spatially structured population are

most critical for short-term population viability. Further, we demonstrate how the approach is

capable of revealing non-linear and unexpected changes in network growth rates under varying
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levels of environmental change and among discrete habitats and movement pathways.

A strength of G is that it can be calculated outside of equilibrium and measures the contribu-

tion of a habitat, or pathway, to the network growth rate in the short-term. In comparison, many

other metrics require an equilibrium assumption. For example, Ui, for calculating the contribu-

tion of a patch to metapopulation size (Ovaskainen and Hanski 2003), is calculated at population

equilibrium. Furthermore, G allows for both small and large perturbations. For large perturba-

tion, Ui is the difference between the metapopulation size at equilibrium and the metapopulation

size when patch i is removed, whereas Gi is the absolute change in the network growth rate when

habitat i is removed or perturbed. Considering impacts of perturbations on network growth rate

(instead of metapopulation size) allows for more refined comparisons among populations and

environmental contexts.

While important information about migrating species can be gained from full perturbation

experiments, these approaches are specific to the system to which they are applied and have

important constraints on their application to new settings. In comparison, G is general and can

be applied to any spatially structured population.

G clarifies important dynamics in realistic networks. For instance, nearly all levels of per-

turbation indicate that the Central breeding region for monarch butterflies contributes most to

population growth. This finding is concordant with recent declines in this population, which

dropped by 80% between 1993 and 2014 (Vidal and Rendon-Salinas 2014) due in part to the

loss of milkweed in agricultural habitat of the midwestern U.S. (Pleasants and Oberhauser 2012,

Flockhart et al. 2015, Thogmartin et al. 2017). However, if the overwintering area in Mexico were

to undergo a similar degree of degradation, its importance to population growth would approach

that of the Central breeding region, validating concerns about loss of overwintering habitat for

this species (Oberhauser and Peterson 2003, Ramirez et al. 2015, Flores-Martı́nez et al. 2019).

Lemoine (2015) suggested that, under both moderate and severe emission scenarios and asso-

ciated atmospheric warming, much of the South and Central regions will become less suited to

monarchs, whereas the North is expected to expand in suitability. We find differential response
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to these perturbations when comparing degradation occurring in the South and enhancements in

the North. Under the same magnitude of perturbation, the enhancement in the North results in

an improvement that is smaller in magnitude than the decline experienced as a result of an equiv-

alent degradation in the South. This could indicate that climate-induced changes that degrade

the South might require a proportionally larger effort in the North to stabilize the population.

However, it should be noted that G measures the effect of an isolated perturbation, one node at a

time, and thus a true measure of the effect of mixed strategies would require a multi-perturbation

approach. For example, with a northward range shift, southern migration success may decline,

requiring mixed perturbations to both breeding nodes and the southern migration edges.

Calculating the contribution to network growth is useful for comparing sensitivity of popu-

lation dynamics to consistent changes in conditions among habitats and pathways in a network.

Habitats with a large proportion of the population may rank higher because they contribute more

growth. In cases of habitat removal, unsurprisingly, we found that habitats through which all

migrants flow are the most important to the network growth in the short-term. However, com-

plete node removal is often not realistic in assessing the potential consequences of environmental

change on population dynamics. Our formulation, therefore, allows for refined experiments that

consider diverse perturbations including minor to severe degradation or enhancement. With this

metric we can see how the ranking of nodes may depend on whether a habitat undergoes a small

localized environmental change, a moderate shift in habitat quality, or complete removal of that

habitat.

G gives information about a node that other metrics cannot. For example, Mexico provides the

sole wintering habitat for the eastern population of monarchs. This single wintering node, where

no reproduction occurs, would be considered a sink habitat in classic source-sink theory. It would

also be deemed not as important when using the Sample et al. (2019) per-capita contribution

metric Cr, which accounts for annual demographics and, like Gr, can compare breeding areas

with non-breeding areas. In contrast, Gr clearly indicates overwintering sites in the high-elevation

forests of central Mexico are vital to the short-term persistence of the population even if the
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reproductive value of the node is less than the other nodes. If this wintering node abruptly

disappeared, the network growth rate would go to 0 resulting in the entire eastern population

going extinct. On the other end, we found that habitat enhancement in the wintering areas

in Mexico has the least ability to improve population growth in the short-term. Furthermore,

habitats showed consistent rankings in their contributions to network growth under enhancement

scenarios. Perturbation experiments on diverse network configurations are needed to evaluate

whether this finding can be expected in other populations as well. At the same time, more work

is needed to disentangle the mechanisms driving differential rankings among habitats under

increasing degradation levels. To identify and mitigate the mechanisms inducing the decline of

most migratory species, it is imperative to consider whether given the spatial structure, is the

switch in importance between dominant breeding and nonbreeding nodes for large disturbances

in migratory networks a general phenomenon?

The generalized formulation of G leads to a broad range of future directions for this work.

An important area of research would be to investigate how habitat rankings change for popula-

tions far from equilibrium. For example, populations in decline may result in time-dependent

reordering of habitat importance. The study of these types of transient dynamics could lead

to important insights about the management of species undergoing large changes in popula-

tion abundance. Additionally, the networks studied here were relatively small, whereas many

species have a greater number of nodes and pathways to consider. Not only could parameteriza-

tion of a very large network become cumbersome, but interpreting the results in a management

context becomes complicated. This leads to an area of future research: investigating the true

interpretation of metrics like G in the management context. What does habitat enhancement,

a positive perturbation, mean in the management setting and what is its effectiveness for the

preservation of species? Another avenue for future work is to extend the formulation of G to

allow for simultaneous perturbations of nodes and pathways, which will allow for analysis of

mixed strategies. If one habitat is degraded, what magnitude of enhancement at another habitat

is required to stabilize network growth? What happens if a habitat and pathway are perturbed
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simultaneously?

More broadly, Gr needs to be compared to other approaches that rank the importance of

habitats, such as the annual per-capita contribution metric Cr and full perturbation or agent-

based approaches, to better understand the advantages and limitations of each approach. This

comparison could include testing the sensitivity of these approaches to assumptions in the mod-

eling process, understanding when similar approaches give equivalent or differing rankings, and

investigating the utility of the metrics in deciding between viable management actions.

Understanding and predicting how populations change in the face of disturbance is a crucial

step in mitigating negative consequences. As species adapt to changes in their environment,

we can expect that new habitats may be colonized. To accommodate potential colonization,

currently unoccupied habitats could be included in a network, providing no value at present and

only becoming important to network growth as habitats are occupied. Allowing for the evolution

of species behavior in response to habitat degradation is more complicated. An interesting area

of future work would be expanding the formulation of G to allow network perturbations to affect

movement and demographic rates.
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Table 1: Mathematical symbols used in the paper.

Mathematical Symbols

Symbol Definition

⊗ Kronecker matrix product

◦ Hadamard (entrywise) matrix product

∗ indication that the metric or matrix is evaluated at δ = −1 (complete node or edge removal)

c number of classes (life stages)

n number of nodes (habitats) in the network

s number of seasons in the annual cycle

t time variable

Ntot
t total network population size at time t

N⃗t nc × 1 block vector of population sizes of each node and class at time t

w⃗t 1 × nc vector of population proportion, w⃗t = N⃗T
t /Ntot

t

λt annual growth rate of the network at time t, λt = w⃗tÂT
t 1⃗nc

δ perturbation amount for degradation −1 ≤ δ < 0 or enhancement δ > 0

γr,t(δ) annual growth rate at time t when node r is perturbed by a factor of δ

γrd,t(δ) annual growth rate at time t when edge rd is perturbed by a factor of δ

Gr,t(δ) network growth contribution of node r at time t with perturbation δ, Gr,t(δ) = |λt − γr,t(δ)|

Ḡr(δ) seasonal population weighted average of contribution to network growth for node r

Grd,t(δ) network growth contribution of edge rd at time t with perturbation δ, Grd,t(δ) = |λt − γrd,t(δ)|

At nc × nc projection matrix that contains demographic and movement rates at time t

Ât nc× nc matrix that projects the population over an entire annual cycle, Ât = At+s−1 · · ·At+1At

Brd(δ) n × n matrix, Brd(δ) = 1n + δEn,rd

Dr(δ) nc × nc matrix, Dr(δ) = Inc + δ ∑rc
x=rc−c+1 Enc,xx

En,rd n × n matrix of zeros with a 1 at position rd

Inc nc × nc identity matrix

1n n × n matrix of ones

1⃗nc nc × 1 vector of ones
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Table 2: Habitat contribution to network growth under complete removal.

Monarch Model

Metric Winter Apr May Jun Jul Aug Sep Seasonal

Average

Node 1 (M) G∗
1,t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Node 2 (S) G∗
2,t 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Node 3 (C) G∗
3,t 0.9579 0.9579 0.9579 0.9567 0.9676 0.9733 0.9595 0.9629

Node 4 (N) G∗
4,t 0.5938 0.5938 0.5938 0.5938 0.7225 0.7281 0.5936 0.6449

NOTE: Each column indicates the anniversary season for which the metrics were calculated. Metrics are for the case

of complete habitat removal.
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Figure legends

Figure 1: A, Two-node network diagram for the Pulliam (1988) metapopulation model. In this

simple, one-season, one-class model, a portion of individuals in the source node move to the

sink node. B, Fountain graph of the contribution to network growth, Gr(δ), as a function of

perturbation amount, δ, for the Pulliam model. Here, λ1 = 1.05, λ2 = 0.8, w1 = 0.4, w2 = 0.6,

and p11 = 0.9524. The network is in decline (λ = 0.9) and the growth contributions for the

source and sink nodes are G1(δ) = 0.42|δ| and G2(δ) = 0.48|δ|, respectively. Note that the sink’s

contribution is larger than that of the source.

Figure 2: Network model for the monarch butterfly. Nodes that are occupied at the start of the

focal season are colored.

Figure 3: Fountain graph for the seasonal-weighted average contribution to network growth,

Gr(δ) as a function of perturbation amount δ for monarchs. Legends identify the season in

which nodes are occupied.
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