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Abstract

The spatial structure of an evolving population affects the balance of natural selection
versus genetic drift. Some structures amplify selection, increasing the role that fitness
differences play in determining which mutations become fixed. Other structures
suppress selection, reducing the effect of fitness differences and increasing the role of
random chance. This phenomenon can be modeled by representing spatial structure as
a graph, with individuals occupying vertices. Births and deaths occur stochastically,
according to a specified update rule. We study death-Birth updating: An individual is
chosen to die and then its neighbors compete to reproduce into the vacant spot.
Previous numerical experiments suggested that amplifiers of selection for this process
are either rare or nonexistent. We introduce a perturbative method for this problem for
weak selection regime, meaning that mutations have small fitness effects. We show that
fixation probability under weak selection can be calculated in terms of the coalescence
times of random walks. This result leads naturally to a new definition of effective
population size. Using this and other methods, we uncover the first known examples of
transient amplifiers of selection (graphs that amplify selection for a particular range of
fitness values) for the death-Birth process. We also exhibit new families of “reducers of
fixation”, which decrease the fixation probability of all mutations, whether beneficial or
deleterious.

Author summary

Natural selection is often thought of as “survival of the fittest”, but random chance
plays a significant role in which mutations persist and which are eliminated. The
balance of selection versus randomness is affected by spatial structure—how individuals
are arranged within their habitat. Some structures amplify the effects of selection, so
that only the fittest mutations are likely to persist. Others suppress the effects of
selection, making the survival of genes primarily a matter of random chance. We study
this question using a mathematical model called the “death-Birth process”. Previous
studies have found that spatial structure rarely, if ever, amplifies selection for this
process. Here we report that spatial structure can indeed amplify selection, at least for
mutations with small fitness effects. We also identify structures that reduce the spread
of any new mutation, whether beneficial or deleterious. Our work introduces new
mathematical techniques for assessing how population structure affects natural selection.
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Introduction

Spatial population structure has a variety of effects on natural selection |[IH5]. These
effects can be studied mathematically by representing spatial structure as a graph [3].
The vertices represent individuals, and the edges indicate spatial relationships between
them. This modeling approach, known as evolutionary graph theory, has illuminated
the effects of spatial structure on the rate of genetic change 6], the balance of selection
versus neutral drift [3],7,8], and the evolution of cooperation and other social
behaviors [4l5,/9-15].

Here we focus on how spatial structure affects fixation probability—the probability
that a new mutation will spread throughout the population, depending on its effect on
fitness. Previous work [3,|7,/8,/16-27] has shown that some graphs act as amplifiers of
selection, increasing the fixation probability of beneficial mutations, while reducing that
of deleterious mutations. Other graphs act as suppressors of selection, increasing the
fixation probability of deleterious mutations and reducing that of beneficial mutations.
Over time, a population that is structured as an amplifier will more rapidly accrue
beneficial mutations, whereas one structured as a suppressor will experience greater
effects of random drift.

To be precise, the terms amplifier and suppressor cannot be ascribed solely to a
graph itself. Fixation probabilities also depend on the update rule: the scheme by which
births and deaths are determined. The majority of works on amplifiers and suppressors
use Birth-death (Bd) updating: An individual is selected to reproduce proportionally to
fitness, and its offspring replaces a uniformly-chosen neighbor. A minority of
works |181[23}[28]|29] have considered death-Birth (dB) updating: A uniformly-chosen
individual dies, and a neighbor is chosen proportionally to fitness to reproduce into the
vacancy. (Following Hindersin and Traulsen [23], we use uppercase letters for a
demographic step that is affected by fitness, and lowercase letters for a step that is
fitness-independent.) Interestingly, the choice of update rule has a marked effect on
fixation probabilities. For example, the Star graph (Fig. ) is an amplifier of selection
for Bd updating [3L|17] (so long as the initial mutant vertex is chosen uniformly at
random [21]), but a suppressor for dB updating [18].

A recent numerical investigation [23] of thousands of random graphs up to size 14
found no amplifiers of selection for death-Birth updating. This suggests that amplifiers
for dB are either nonexistent or rare, at least among small graphs. This work also
identified a graph (the cycle; Fig. ) that, for dB updating, reduces fixation
probabilities for all mutations that affect fitness, whether beneficial or deleterious. The
cycle is therefore neither an amplifier nor a suppressor; it might instead be called a
“reducer of fixation”, in that it preserves the resident wild-type regardless of fitness
effects. A follow-up work [30] identified other reducers of fixation.

Here we investigate fixation probabilities for death-Birth updating on graphs, using
a variety of analytical and numerical methods. We develop a weak-selection approach to
this question, based on coalescing random walk methods [31,/32] that were previously
used to study evolutionary games on graphs [5,/104/14]. Weak selection means that the
fitness of the mutant is close to that of the resident; i.e., the mutation is either slightly
beneficial or slightly deleterious. Unlike earlier numerical methods [23}/26}33], the
weak-selection method can be performed in polynomial time, allowing for efficient
identification of amplifiers and suppressors of weak selection. We apply this method to
several graph families and random graph models. We also compute fixation probabilities
for arbitrary mutant fitness (beyond weak selection) for these graph families.

We find, contrary to the expectation set by previous numerical experiments [23],
that amplifiers, of a sort, do exist for death-Birth updating. Specifically, we exhibit
several families of transient amplifiers, which amplify selection only for a certain range
of mutant fitness values. We also uncover new examples of reducers of fixation.
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Our weak-selection method also leads to new theoretical results. First, the form of
our expression for fixation probability suggests a new definition of effective population
size, with intriguing connections to previous definitions [16}34-40]. Second, we show
that for isothermal graphs—which have the same edge weight sum at each vertex—the
fixation probability coincides, under weak selection, with that of a well-mixed
population. This result is reminiscent of the Isothermal Theorem of Lieberman et al. [3],
which applies to Bd updating (see also Refs. [15,/28,/29]). However, whereas the original
Isothermal Theorem is valid for any strength of selection, our new result applies only to
weak selection. Third, we exhibit a recipe by which amplifiers of weak selection can be
constructed as perturbations of isothermal graphs. Finally, we show that fixation
probabilities under weak selection can be well-approximated using only the first two
moments of the degree distribution. This approximation helps explain why amplifiers of
selection (even transient ones) are rare for dB updating.

Methods

Model

We study an established model of natural selection on graphs [3}7,8}/16-29},41-43].
Spatial structure is represented as a connected, weighted, undirected graph G. Joining
each pair of vertices 7 and j is an edge of weight w;; > 0, with w;; = w;; since G is

undirected. We exclude the possibility of self-loops by setting w;; = 0 for each vertex i.

The size of the graph, which is also the population size, is denoted N.

Each vertex houses a single haploid individual. Individuals can be of mutant or
resident (wild-) type. Mutants have fitness r > 0, while the fitness of the resident type
is set to 1. Advantageous mutants have r > 1, while deleterious mutants have r < 1.
The case r = 1 describes neutral drift, for which the mutation has no fitness effect. This
model describes constant selection, in that the fitnesses of the competing types do not
vary with the current population state.

Selection proceeds according to the death-Birth (dB) update rule [4,/18[[44]. First, an
individual is selected uniformly at random for death, creating a vacant vertex. Then, a
neighbor of the vacant vertex is chosen to reproduce, with probability proportional to
(fitness) x (edge weight to the vacant vertex). The new offspring fills the vacancy,
inheriting the type of the parent.

As an initial state, we suppose that a single mutant is introduced, at a vertex chosen
uniformly at random, in a population otherwise composed of residents. We define the
mutation’s fization probability as the expected probability that a state of all mutants is
reached from this initial condition. The fixation probability of a mutation of fitness r on
a graph G is denoted pg(r).

The baseline case of a well-mixed population is represented by the complete graph
Ky of size N (Fig ) For dB updating on the complete graph K, a mutant of
fitness r has fixation probability [23,28]

N—-1 1—y71
pKN(T) = N 1_,—(N-1° (1)

We characterize the effects of graph structure on fixation probabilities using the
following definitions:

Definition. Let G be a graph of size N. Then G is

o An amplifier of selection if pg(r) < pi, (r) for 0 <r <1 and pg(r) > pK, (r) for
r> 1.
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o A suppressor of selection if pg(r) > pry (r) for 0 <r <1 and pa(r) < pk, (r) for
r> 1.

o A transient amplifier of selection if there is some r* > 1 such that pg(r) < pry ()
for 0 <r <1 and for r > r*, and pg(r) > pry (r) for 1 < r < r*.

o A reducer of fization if pg(r) < pk, (r) for all r # 1.

For example, the star graph S,, with n leaves (population size N = n + 1; Fig. ) is
a suppressor of selection for dB updating 18], with fixation probability [45]

(N=1)r+1/1 T
psu (1) = ) (N+N+2r—2)' @)

The cycle Cy is a reducer of fixation for dB updating [23|, with fixation probability [2§]

_ 2(r—1)
T 3r— 14 (N-3) — 3p—(N-2)”

POy (r) 3)
Other examples of reducers were identified by Hindersin et al. [30], who called them
“suppressors of evolution”; we prefer “reducers of fixation” to avoid confusion with
suppressors of selection.

A companion work [46] proves that there are no (non-transient) amplifiers of
selection for dB updating. Transient amplifiers of selection were previously known for
Bd updating [19] but not for dB updating. For Bd updating, there are some graphs that
do not fit any of the above definitions, but alternate between amplification and
suppression (i.e, pc(r) > pk, () on a disconnected set of r-values) [27]; such examples
have not been discovered for dB updating.

Analysis of weak selection

Fixation probabilities on graphs can be difficult to compute. Current numerical
methods [22,/231/26,33] involve solving a system of O(2"V) equations to compute fixation
probabilities on a given graph of size N. For this reason, previous analyses have focused
on graphs that are small [23}|26}/27./33,/42,/43], highly symmetric [3}(7,{17,[19H21L[24]25], or
are constrained in the types of connections between vertices [47].

One way to mitigate these difficulties is to focus on weak selection, which is the
regime r ~ 1. Weak selection can be studied as a perturbation of neutral drift (r = 1).
This approach has been fruitfully applied to population genetics [48-50] and
evolutionary game theory [4,/5,{10}/11,/14L44L/51], but so far has not been applied to
models of constant selection on graphs.

To implement weak selection for our model, we write the fitness of the mutant as
r =1+ 0, with ¢ representing the mutation’s selection coefficient. We consider the
first-order Taylor expansion of the fixation probability, ps(1 + §), at § = 0. For the
complete graph, Taylor expansion of Eq. (1)) yields

1 _N-2
pry(140) = & + 0=+ +0(5?). (4)

Coalescing random walks

For an arbitrary weighted, connected graph, we apply a method developed by Allen et
al. [5] to calculate fixation probabilities under weak selection. This method uses
coalescing random walks, which trace the co-ancestry of given individuals backwards in
time to their most recent common ancestor.

July 6, 2020

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

132

133



Each individual’s ancestry is represented as a random walk on G. These random
walks are defined by the step probabilities p;; = w;; Jw;, where w; = > jec Wij is the
weighted degree of vertex i. Importantly, p;; is also equal to the conditional probability,
under neutral drift (r = 1), that j reproduces, given that i is replaced. Random walks
on G have a stationary distribution, in which the probability of vertex i is equal to its
relative weighted degree, m; = w;/ (ZjEG wj)

To represent the co-ancestry of two individuals, we consider a pair of random
walkers. At each time-step, one of the two walkers is chosen (with equal probability) to
take a step. The point at which the two walkers meet (coalesce) represents the most
recent common ancestor. We let 7;; denote the expected time to coalescence from initial
vertices ¢ and j. These coalescence times can be determined from the following system
of equations [5,/52]:

Tij = {0 i:j (5)

1+3 > ke PikTik + DjxTie) 1 F

We also define the remeeting time 7; from vertex i as the expected time for two
random walkers from vertex i to rejoin each other. Remeeting times are related to
coalescence times by

=1+ pijTij, (6)

jeG

Zﬂ'?ﬁ =1, (7)

i€G

and obey the identity [5]

which is an instance of Kac’s return time formula [53].

Results

Fixation probability under weak selection

Applying the properties of coalescence times, we prove in that the fixation
probability on an arbitrary (weighted, undirected, connected) graph G can be expanded
under weak selection as

1 Negr — 2
pa(l+0) = — + oL~

N o\ +0(6?), (8)

where Ny is the effective population size of G, which we define as

Neff = Zﬂ'iTi. (9)

i€G

This definition of effective population size is distinct from, but closely related to,
previous definitions [16,:34-40], as we review in the Discussion.

Comparing the first-order terms in Egs. and provides a criterion for the
effects of graph structure on fixation probabilities under weak selection:

Definition. Let G be a graph of size N. We say G is
o An amplifier of weak selection if Neg > N,

o A suppressor of weak selection if Neg < N.
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An amplifier (respectively, suppressor) of weak selection is guaranteed to amplify
(respectively, suppress) selection for all r sufficiently close to 1. Formally, if G is an
amplifier of weak selection, there exist a,b with 0 < a < 1 < b < 0o such that
pa(r) < piy(r) for a <r <1 and pg(r) > pk,y(r) for 1 <r < b. Likewise, if G is a
suppressor of weak selection, there exist a,b with 0 < a < 1 < b < oo such that
pa(r) > pry(r) for a < r <1 and pa(r) < pry(r) for 1 <r <b.

As an example, solving Eq. for the star graph S,,, and applying Egs. @ and (E[),
we obtain 7 = 7, = Negg = 4n/(n + 1). Since the star graph has size N =n + 1, we
find that the star is a suppressor of weak selection for all n > 2. Substituting in Eq. ,
we obtain

1 N -2
140)=—+90 O(8* 10
which agrees with the Taylor expansion of Eq. (2).

Weak-selection Isothermal Theorem

A particularly interesting result arises in the special case of isothermal graphs. An
undirected graph G is isothermal if each vertex has the same weighted degree w;, or
equivalently, if m; = 1/N for each i € G. The Isothermal Theorem [3] states that, for Bd
updating, an isothermal graph has the same fixation probabilities as a well-mixed

population of the same size, for all values of r and all starting configurations of mutants.

However, the corresponding statement for dB updating is false [28}29]. For example, the
cycle (Fig. ) is isothermal, but its fixation probabilities, as given by Eq. , differ
from those of a well-mixed population, given by Eq. .

Here we show that a weak-selection version of the isothermal theorem holds for
death-Birth updating. For an isothermal graph G, Egs. and @ give

Neff:Z(;]> TZ':NZ(A}Q) =N mr=N. (11)

ieG e ieG
Combining with Eq. , we arrive at the following result:

Theorem (Weak-Selection Isothermal Theorem for dB Updating). Let G be a weighted,
undirected, connected isothermal graph of size N > 2 with no self-loops. Then for dB
updating, fization probabilities on G coincide with those on the complete graph Ky to
first order in the selection coefficient d:

pa(L+0) = picy (L+8) + O(8). (12)

In other words, if G is isothermal, then the plots of pg(r) and pg () are tangent at
r = 1. This implies that, for dB updating, isothermal graphs neither amplify nor
suppress weak selection. For example, the cycle Cy (Fig. ) is isothermal, and
therefore the plots of pc (r) and pk (r) are tangent at r = 1 (Fig. [[JF). However, these
fixation probabilities do not coincide beyond r = 1; instead, pc, (1) < px, (1) for all
r # 1 [33], meaning that the cycle is a reducer of fixation.

Generating amplifiers of weak selection

The Weak-Selection Isothermal Theorem also suggests a method to generate amplifiers
of weak selection via perturbations of an isothermal graph. Since Neg = N for all
isothermal graphs, any perturbation that increases Nqgr will yield an amplifier of weak
selection.
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Consider a family of weighted graphs indexed by a parameter €, such that the graph
is isothermal when € = 0. In we derive the relationship

dNese _ <Tv dm)
=0 i€G de

de

Equation suggests that we can construct amplifiers of weak selection by starting
with an isothermal graph, and perturbing so as to decrease the relative weighted degree
of vertices with large remeeting time and/or increase the relative weighted degree of
vertices with small remeeting time.

Figure [2| provides an example to illustrate this method. Starting with an unweighted
3-regular graph of size 12, we reduce the weight of a single edge that is adjacent to a
vertex of large remeeting time. This creates a family of amplifiers of weak selection for

(13)

e=0

dB. Notably, the graph remains an amplifier even when this edge is deleted completely.

Examples

We now introduce three example families of graphs, which can behave as transient
amplifiers, suppressors, or reducers, depending on the parameter values. We analyze
these graphs both for weak and nonweak selection. Our results are summarized in Table

Derivations and proofs are presented in Our analytical results are
verified by Monte Carlo simulation in [ST Fig and [S2 Figl

Fan

The Fan, F,, ,,,, (Fig. [3) has one hub and n > 2 blades. Each blade contains m > 2
vertices, for a total of N = nm + 1 vertices. Each blade vertex is joined to the hub by
an edge of weight € > 0, and is joined to each other vertex on the same blade by an edge
of weight 1. The Fan is isothermal when e = (m — 1)/(nm — 1).

Applying our weak-selection method, we find that the Fan has effective population
size

Negg = N

(m—1—e(nm —1))(m(m —1)(n — 2) + e(nm? + nm — 4m + 2) + 2¢*(nm — 1))
(m — 1+ 2¢)(m(m — 1) + e(nm +2m — 1) + e2(nm + 1)) '

_|_
(14)

From the sign of the second term, we observe that the Fan amplifies weak selection for
all 0 < e < (m—1)/(nm—1) (Fig. BB).

Taking € — 0, we obtain Neg = nm + n — 1. Although fixation is impossible when €
is exactly zero (because the population is disconnected in this case), the ¢ — 0 limit is
still well-defined in the sense that Neg can be made arbitrarily close to nm +n — 1 by
choosing € sufficiently small. In this limit, the Fan amplifies weak selection (Neg > N)
for n > 3 blades, but neither amplifies nor suppresses weak selection (Neg = N) for
n = 2. The strongest amplifier of weak selection (largest Neg/N) occurs for m = 2 and
first € — 0 and then n — oo; in this case, Negr/N — 3/2.

Moving beyond weak selection, we calculate the fixation probability for a mutation
of arbitrary fitness r > 0, in the ¢ — 0 limit:

n(m—1) (1 —r1t) (1 —r=(m+D)
(mn 1 1) (1 — D) (1 —r—e(m+Dy
In [S2 Figl we show excellent agreement between Eq. and Monte Carlo simulations
for e = 1073. We prove in [S1 Appendix] that, in the € — 0 limit, the Fan is a reducer of

fixation for n = 2 and a transient amplifier of selection for all n > 3.

PFn,m(T) = (15)
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Separated Hubs

Our next examples generalize the Fan graph in two different ways. First, we suppose

that there are multiple hub vertices, which are not connected to each other. The

resulting graph, which we call the Separated Hubs graph, SH,, m, » (Fig. , has h >'1
hub vertices, n > 2 blades, and m > 2 vertices per blade for a total population size of

N = nm + h. Vertices on the same blade are connected by edges of weight 1, and
blade vertex is connected to each hub by an edge of weight €. No other edges are
present. The Fan is the h = 1 case of Separated Hubs.

each

The weak-selection results for arbitrary e are rather cumbersome, but in the € — 0

limit they simplify to
Negg =nm +n — 1.

(16)

Interestingly, in this limit, the effective population size is independent of the number h
of hubs. Comparing Eq. to N = nm + h, we observe that the Separated Hubs

graph (in the € — 0 limit) is a suppressor of weak selection for n < h and an amplifier
of weak selection for n > h + 2. As for the Fan, the strongest amplifier of weak selection

occurs for m = 2 and first ¢ — 0 and then n — oo, leading to Neg/N — 3/2. The
strongest suppressor of weak selection (smallest Nege/N) occurs for first e — 0 and
h — 00, leading to Negt/N — 0.

then

Beyond weak selection, we compute the fixation probability for arbitrary » > 0 in

the limit € — O:

n(m—1)(1 —r71) (1 — r=m+D)
PSHypmn(T) = (mn + h) (1 — T—(m—1)) (1 — r*n(mﬂ)) .

In the limit of many blades, we obtain

. 0 0<r<1
nh—>H;c pSHn,m,h(r) =Y m—1 Q—r ) (a—r (D)
m 1_,,.—(m—1)

(17)

(18)

We prove in that the Separated Hubs graph, in the € — 0 limit, is a
suppressor for n < h, a transient amplifier for n > h + 2, and a reducer for n = h + 1.

Star of Islands

Our final example, the Star of Islands, SHy, m n (Fig. [p), is obtained by joining the

hubs

in the Separated Hubs graph. It consists of h > 2 hub vertices and n > 2 islands, with
m > 2 vertices per island, so that the total population size is again N = nm + h. Within
the hub and within each island, vertices are connected to one another with weight 1.
Additionally, each hub vertex is connected to each island vertex with weight ¢ > 0.

For weak selection, in the ¢ — 0 limit, we calculate

(m — h)ymnh(h(h — 1) + m(m — 1)(n — 2))
(h(h —1) +m(m — 1)) (h(h — 1) + m(m — 1)n)

Nege = N +

The second term on the right-hand side has the sign of m — h. It follows that the
of Islands is an amplifier of weak selection when m > h, and a suppressor of weak
selection when m < h.

We show in that the strongest amplifier of weak selection occurs
h =2, m =4, and first € — 0 and then n — oo. In this case Neg/N — 9/7. The

(19)

Star

for

strongest suppressor occurs for first € — 0, then n — oo, and then h — oo, leading to

Neff/N — 0.
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For arbitrary r > 0, in the ¢ — 0 limit, we obtain pgr (r) = num/denom with

num = r"™(1 — 77 1) (1 _ r_(h+m)>
(hrh (1 - r*(hfl)) (mn(m — 1)r™ + h(h — 1))

™ (1 - r—(m—U) (mn(m — 1) + h(h — 1)7~h)) . (20)

denom = (mn + h) (h (1 _ T—(h—l))

+mr™ (1 - r*(mfl))) (mrm (1 - r*(mfl)) (1—-2a")
+h (1 - rf(h71)> (th”" - x”)) . (21)

and B . -
oo mr (r —1)+h(r — 1). (22)
mrh(rm=1 —1) + h(rh=1 — 1)

In the limit of many islands, we obtain

0 0<r<i1
i psr,, ., (1) = (m=1)(1=r~1)(1=r= ()
hr=m (1=r=(=1)pm(1—r=(m-1))

We prove in that the Star of Islands is a reducer for m = h.

(23)

Approximating fixation probability

We have defined the effective population size Negr in terms of the expected remeeting
times of random walks. While this definition allows N.g—and, via Eq. , fixation
probabilities under weak selection—to be computed in polynomial time, it gives little
intuition for how N relates to more familiar graph statistics.

To build such intuition, we use a mean-field approximation from Fotouhi et al. [54].
We suppose that each remeeting time 7; is approximately equal to a single value, 7.
Then from Eq. we have

2
1:271'?73%7’277? = (TZZlEGwz — TH2

2T N2
i€G i€G iecwi)® N

Above, 1 = & Y icqwi and piz = % ;o w? are the first and second moments,
respectively, of the weighted degree distribution. Solving for 7 and substituting in the
definition of Negr gives the approximation

Negt & Nt/ . (24)

Substituting in Eq. gives an approximation for fixation probability under weak
selection in terms of p; and ps. Interestingly, the right-hand side of Eq. was taken
as the definition of effective population size by Antal et al. [16], who studied the same
model but arrived at this expression by different methods and assumptions.

The approximation in Eq. is reasonably accurate when compared to exact
numerical calculation of Neg/N for Erdos-Renyi and Barabési-Albert graphs (Fig. @
In particular, the approximation explains the general trend that larger, sparser, and
more heterogeneous graphs act as stronger suppressors (have smaller Nogr /N ratio). We
note, however, that since s < p? for any degree distribution, the approximated Ngg in
Eq. is at most equal to the actual population size N, with equality only for
isothermal graphs. Therefore, amplifiers of weak selection cannot be detected using this
approximation.
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Discussion

Weak-selection methodology

We have brought the method of weak selection, previously developed to analyze games
on graphs [4,/5,9-12,/141/44], to bear on the question of amplifiers and suppressors.
While our focus is on death-Birth updating, the method also applies to Birth-death
updating, using a modified version of the coalescing random walk [5[52]. Our
weak-selection method has the advantage of being computable in polynomial time (in
the size of the graph), in contrast to other numerical methods [23,26}27,/33|, which take
exponential time. Our expression for fixation probabilities in terms of coalescence times,
Eq. , also enables the proof of general results such as the Weak-Selection Isothermal
Theorem for dB. A drawback of the weak-selection approach is that it does not
distinguish between transient and non-transient amplifiers, nor can it detect complex
behavior such as multiple switchings between amplification and suppression [27].

Effective population size

Our analysis motivated a new definition of the effective population size of a graph,
Negt = D ;e miTi- This notion of effective population is particular to dB updating,
since it was derived from weak-selection fixation probabilities under this update rule.
Our definition has a number of interesting connections to other definitions previously
proposed for this concept [16L38H40].

First, as noted above, the effective population size of Antal et al. [16] appears in
Eq. as an approximation to ours. Whereas we obtain Neg ~ N M% /o using
coalescent theory and assuming uniformity of remeeting times, Antal et al. |[16] obtain
the same expression using diffusion approximation and assuming
degree-uncorrelatedness of the graph. That the same expression arises from distinct
analytical frameworks and assumptions hints at its naturality.

Second, our definition differs by a simple rescaling from the notion of “fixation
effective population size” proposed by Allen, Dieckmann, and Nowak (hereafter,
ADN) [39], and elaborated upon by Giaimo et al. [40]:

N2 dp
NGPN = ———| . 2
off N —1drlr=1 (25)

Comparing Egs. and , we find the relationship

nADN _ N(Netr — 2)
eff 2(N _ 1)

For large populations, N&DN ~ Netr/2. The factor of two appears because the ADN
definition uses the Wright-Fisher (discrete generations) model as a baseline, whereas the
baseline for our Nggr is the death-Birth process, for which generations are overlapping.
Such factors of two commonly appear in translating between discrete- and
overlapping-generations models [36}39}/55].

Third, our proposed definition is closely related to the concept of “inbreeding
effective population size”, which dates back to Wright [34] and has been elaborated on
by many others [35-38]. The inbreeding effective population size is typically defined, for
diploid populations, as the size of an idealized population that would have the same
level of autozygosity (a locus containing two alleles that are identical by
descent) [35,37]. Although autozygosity as such cannot occur in haploid populations,
the remeeting time 7; quantifies the closely-related concept of auto-coalescence—the
time for two hypothetical, independent lineages from i to coalesce. For rare mutation,
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coalescence time is proportional to the probability of non-identity by descent [56]; thus
auto-coalescence can be taken as a proxy for autozygosity in haploid populations. Our
Negr is equal to the size of a well-mixed population that would experience the same
degree of auto-coalescence, when averaged over individuals weighted by their
reproductive values m;. It is therefore reasonable to interpret our Nqg as a haploid
analogue of the inbreeding effective population size.

Transient amplifiers of selection

The most novel of our results is the discovery of the first transient amplifiers of selection
for dB updating. Previous investigations [18,23[28] had uncovered only suppressors and
reducers. Of the transient amplifiers we have found, the strongest is the 2-Fan, F,, o,
with many blades (n — oo; Fig. ) A companion work [46] proves that full
(non-transient) amplifiers cannot exist for death-Birth updating.

Transient amplifiers appear to be quite rare for death-Birth updating. None were
present within an ensemble of thousands of small graphs analyzed by Hindersin and
Traulsen [23]. Similarly, no amplifiers of weak selection for dB were found in our
ensembles of Erdés-Renyi and Barabasi-Albert random graphs.

Why should transient amplifiers be so rare? One possible clue comes from the
approximation for effective population size in Eq. (24]). The approximated Neg is
always less than or equal to the actual population size N, with equality only for
isothermal graphs. Thus any amplifier (transient or not) must be a graph for which the
approximation in Eq. is inaccurate. Another possible clue is found by combining

Eqgs. @[) and to obtain

e (1) (1) (k)

i€G i€G i€G

The right-hand side can be interpreted as the covariance of m; with m;7;, as ¢ runs over
vertices of G. It follows that GG is an amplifier of weak selection if and only if 7; and
m;T; are negatively correlated on GG. This requires a very strong negative relationship
between weighted degree and remeeting time, which seems unlikely to arise in the usual
random graph models. A third clue comes from a companion work [46|, which proves a
bound on the strength of transient amplifiers for dB. Since transient amplifiers are
limited in their possible strength, it is reasonable to suppose they are also limited in
number. Each of these clues, however, falls very short of a formal proof.

Reducers of fixation

Evolutionarily speaking, reducers of fixation maintain the status quo. They protect the
resident type from replacement by any mutation, whether beneficial or deleterious.
Reducers may have applications in bio-engineering, in situations where it is desirable to
inhibit the accumulation of all fitness-affecting mutations. Indeed, it has been argued
that the cycle-like structure of epithelial stem cells in mammals [57,[58] may have been
evolutionarily designed to limit somatic mutations [30]. The cycle was the first known
reducer [23]; others were identified by Hindersin et al. [30]. To these examples we have
added two more: the Separated Hubs graph with n = h 4 1 and the Star of Islands with
m = h.

Isothermal graphs appear to be obvious candidates for reducers of fixation. This is
because, if G is a reducer of fixation, then pg(r) and pg, (r) must coincide to first
order in r at r = 1, and this latter property holds for all isothermal graphs according to
the Weak-Selection Isothermal Theorem for dB. Indeed, all previously-known examples
of reducers [23,30] were isothermal. However, neither the Separated Hubs graph for
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n = h + 1 nor the Star of Islands for m = h are isothermal; thus reducers need not be
isothermal. The converse question—whether all isothermal graphs are
reducers—remains open. To resolve this question, one would have to either discover or
rule out other behaviors for isothermal graphs G, such as pg(r) > pk, (r) for all r
sufficiently close but not equal to 1. Another open question is whether reducers of
fixation exist for Bd updating.

Limitations

Although we have uncovered an interesting range of behaviors for dB updating on
graphs, there are limitations to our approaches. All of our analytical results involve the
limit of either weak selection or certain edge weights going to zero. Some of our results
combine these limits, meaning that they apply only in rather extreme scenarios, and the
results may depend on the limit ordering [59].

We also do not consider the issue of fixation time [33}/41-43,60-63]. Previous
work [42}[43[|60|61] has uncovered a tradeoff between fixation probability and time:
Graphs that amplify selection tend to have larger fixation times than the complete
graph, which impedes their ability to accelerate adaptation. A number of our examples
involve limits as certain edge weights go to zero. Fixation times diverge to infinity for
these examples; therefore they do not hasten the accumulation of beneficial mutations.
The search for graphs that (transiently) amplify selection without greatly increasing
fixation times is left to future work.

Conclusion

The identification of amplifiers and suppressors of selection has become a robust field of
inquiry [3L[7}(8}/16-29.|40L|42]. Most investigations of this question follow the lead of the
initial work [3] in focusing on Birth-death updating. This is an interesting contrast to
the study of games on graphs [4,/5,9-15], which typically considers death-Birth
updating—Ilikely because Birth-death updating tends not to support cooperative
behaviors [4}15].

Since the choice of update rule has such marked consequences, a full understanding
of evolutionary dynamics in structured populations requires studying a variety of
update rules. Indeed, the update rule should properly be considered an aspect of the
population structure, equal in importance to the graph itself [11}15]28}29}/52]. If the
theory of amplifiers and suppressors is to find application (for example, to microbial
populations [8]), it is critical to determine which update rules are plausible for specific
organisms. Our work shows that dB updating exhibits at least some of the interesting
phenomena that have been observed for Bd updating, and suggests there is more to be
discovered.
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Figure Legends

Fig 1. Fixation probabilities for constant selection on graphs. (A) The
complete graph represents a well-mixed population. (B) The star graph consists of one
hub vertex connected to n leaf vertices. This star is a suppressor of selection for
death-Birth updating [18|. (C) The cycle, a regular graph of degree 2, is a reducer of
fixation: the fixation probability of any mutant type of fitness r # 1 is smaller than it
would be in the well-mixed case |23]. Panels (D)—(F) plot fixation probability versus
mutant fitness for the respective graphs, with the well-mixed case (orange curve) shown
for comparison. Dashed lines show the linear approximation to fixation probability at
r = 1. These approximations are accurate for weak selection (r = 1) and can be
computed from coalescence times using Eqgs. f@.

Fig 2. Creating an amplifier of weak selection for death-Birth updating.
(A) We begin with a 3-regular graph of size 12 in which all edges have weight 1. This
graph is isothermal, and therefore has Ney = N = 12. We solve for remeeting times
according to Egs. and @, and identify the vertex with the largest remeeting time
(1: = 18.29, shown in magenta). We decrease the edge weight from this vertex to one of
its neighbors by an amount e. (B) As this edge weight decreases, the graph becomes an
amplifier of weak selection (Neg > N). For € = 1, the resulting undirected, unweighted
graph is still an amplifier of weak selection, with effective population size Ngg =~ 12.03.

Fig 3. The Fan (A) The Fan, F), ,,,, consists of one hub and n > 2 “blades”, with

m > 2 vertices per blade. Edge weights are as shown. The case n = m = 3 is pictured.
(B) The ratio of effective versus actual population size, plotted against the hub-to-blade
edge weight €, for m = 2 vertices per blade. For n = 2 blades, the Fan is an amplifier of
weak selection for 0 < € < 1/3, but becomes a reducer in the € — 0 limit. For n > 3, the
Fan is a transient amplifier for sufficiently small ¢, including the ¢ — 0 limit. (C)
Fixation probability for Fy o (blue curve), plotted against mutant fitness r, in the e — 0
limit, according to Eq. (15]). The orange curve shows the corresponding well-mixed
population result, Eq. for comparison. Dotted lines show the corresponding
weak-selection results (i.e. the linear approximation at r = 1), according to Egs. ,,
and . (D) In the n — oo limit, fixation probability is given by Eq. , and the
Fan is an amplifier for 1 < < (1 +/5)/2.
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Fig 4. Separated Hubs (A) The Separated Hubs graph consists of h > 1 hubs and
n > 1 blades, with m > 2 vertices per blade. Edge weights are as shown. (B)—(D) Blue
curves show fixation probability, Eq. , plotted against mutant fitness r, in the ¢ — 0
limit. Blue dotted lines show the weak selection result, Egs. and . The orange
curve and dotted line show the corresponding well-mixed population results, Egs.
and , for comparison. The Separated Hubs graph is (B) a suppressor for n < h, (C) a
reducer for n = h + 1, and (D) a transient amplifier for n > h + 2.

Fig 5. Star of Islands (A) The Star of Islands graph consists of a hub island of size
h > 2, and n > 1 other islands of size m > 2. Edge weights are as shown. (B)—(D)
Blue curves show fixation probability, Egs. 7, plotted against mutant fitness r,
in the € — 0 limit. Blue dotted lines show the weak selection result, Egs. and .
The orange curve and dotted line show the corresponding well-mixed population results,
Egs. and (4)), for comparison. The Star of Islands graph is (B) a suppressor for

m > h —1, (C) a reducer for m = h, and (D) a transient amplifier for m > h + 1.

Fig 6. Random graphs suppress weak selection. Plot markers show the ratio
Netr /N, averaged over 1000 trials, plotted against population size N. Effective
population size, Neg, is calculated by numerically solving Eq. for each graph and
applying Egs. @ and @D All random graphs generated have Nog < N and are
therefore suppressors of weak selection. Curves of the corresponding colors show the
approximation Negr/N = u?/po from Eq. . Overall, we find that larger, sparser, and
more heterogeneous graphs have smaller Neg/N; these trends are all reflected in the
approximation from Eq. (24). (A) Erdds-Renyi graphs were generated for specific
values of the expected degree (k) by setting the link probability to p = (k)/(N — 1).
The moments ;1 and pus were approximated by assuming that the degree of each vertex
is independently distributed as Binom(N — 1,p). This leads to

Nett/N =~ (N — 1)p/[(N —2)p+ 1]. At the minimum population size of N = (k) + 1, the
graph is complete and therefore Neg/N = 1. (B) Barabdsi-Albert preferential
attachment networks [64] were generated for linking numbers 3 < m < 6, starting from
a complete graph of size m + 2. The second moment was calculated using the expected
degree distribution for finite Barab&si-Albert networks obtained by Fotouhi and
Rabbat [65]. At the minimum population size of N = m + 2, the graph is complete and
therefore Neg/N = 1.
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Supporting Information Legends

S1 Appendix Mathematical derivations and proofs. This supplement contains
a derivation of our weak selection method, Egs. 7@, as well as analysis of our three
example graph families.

S1 Fig Monte Carlo Simulations for Weak Selection. Fixation probability
approximated from 10* Monte Carlo trials, for € = 0.1, plotted against mutant fitness, r
(blue dots). Black lines show the linear approximation to fixation probability as
calculated from our weak-selection results; i.e., p &~ 1/N + ((Nogr — 2)/2N)(r — 1) as in
Eq. (8). As expected, this approximation is accurate for r ~ 1. (A) The Fan graph,
Fy 2, with Neg given by Eq. . (B) The Separated Hubs, graph SHj 9, with Neg
given by Egs. (40)—(42) of [SI Appendix] (C) The Star of Islands graph SIs 3 3, with
Negr = 8.89 as calculated in Mathematica from Egs. , @, and @

S2 Fig Monte Carlo Simulations for Nonweak Selection with small e.
Fixation probability approximated from 10* Monte Carlo trials, for e = 1073, plotted
against mutant fitness, r (blue dots). Our analytical results for fixation probability in
the € — 0 limit (black curves) show excellent agreement with the simulation results.
(A) The Fan F, o, with € — 0 limit given by Eq. . (B) The Separated Hubs graph
SHs 92, with € = 0 limit given by Eq. , and (C) The Star of Islands graph S1s 3 3,
with € — 0 limit given by Egs. f.

Tables

Table 1. Results for example graphs

Example Case Classification
Separated Hubs | n < h Suppressor
(e > 0) n=h+1 | Reducer

n > h+ 2 | Transient amplifier

Star of Islands m < h—1 | Suppressor

(e > 0) m=h Reducer

m > h+1 | Transient amplifier”

* The Fan is the h = 1 case of separated hubs.

* Proven only for weak selection (other cases are
proven for arbitrary selection strength).
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