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Abstract

The spatial structure of an evolving population affects the balance of natural selection
versus genetic drift. Some structures amplify selection, increasing the role that fitness
differences play in determining which mutations become fixed. Other structures
suppress selection, reducing the effect of fitness differences and increasing the role of
random chance. This phenomenon can be modeled by representing spatial structure as
a graph, with individuals occupying vertices. Births and deaths occur stochastically,
according to a specified update rule. We study death-Birth updating: An individual is
chosen to die and then its neighbors compete to reproduce into the vacant spot.
Previous numerical experiments suggested that amplifiers of selection for this process
are either rare or nonexistent. We introduce a perturbative method for this problem for
weak selection regime, meaning that mutations have small fitness effects. We show that
fixation probability under weak selection can be calculated in terms of the coalescence
times of random walks. This result leads naturally to a new definition of effective
population size. Using this and other methods, we uncover the first known examples of
transient amplifiers of selection (graphs that amplify selection for a particular range of
fitness values) for the death-Birth process. We also exhibit new families of “reducers of
fixation”, which decrease the fixation probability of all mutations, whether beneficial or
deleterious.

Author summary

Natural selection is often thought of as “survival of the fittest”, but random chance
plays a significant role in which mutations persist and which are eliminated. The
balance of selection versus randomness is affected by spatial structure—how individuals
are arranged within their habitat. Some structures amplify the effects of selection, so
that only the fittest mutations are likely to persist. Others suppress the effects of
selection, making the survival of genes primarily a matter of random chance. We study
this question using a mathematical model called the “death-Birth process”. Previous
studies have found that spatial structure rarely, if ever, amplifies selection for this
process. Here we report that spatial structure can indeed amplify selection, at least for
mutations with small fitness effects. We also identify structures that reduce the spread
of any new mutation, whether beneficial or deleterious. Our work introduces new
mathematical techniques for assessing how population structure affects natural selection.
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Introduction 1

Spatial population structure has a variety of effects on natural selection [1–5]. These 2

effects can be studied mathematically by representing spatial structure as a graph [3]. 3

The vertices represent individuals, and the edges indicate spatial relationships between 4

them. This modeling approach, known as evolutionary graph theory, has illuminated 5

the effects of spatial structure on the rate of genetic change [6], the balance of selection 6

versus neutral drift [3, 7, 8], and the evolution of cooperation and other social 7

behaviors [4, 5, 9–15]. 8

Here we focus on how spatial structure affects fixation probability—the probability 9

that a new mutation will spread throughout the population, depending on its effect on 10

fitness. Previous work [3, 7, 8, 16–27] has shown that some graphs act as amplifiers of 11

selection, increasing the fixation probability of beneficial mutations, while reducing that 12

of deleterious mutations. Other graphs act as suppressors of selection, increasing the 13

fixation probability of deleterious mutations and reducing that of beneficial mutations. 14

Over time, a population that is structured as an amplifier will more rapidly accrue 15

beneficial mutations, whereas one structured as a suppressor will experience greater 16

effects of random drift. 17

To be precise, the terms amplifier and suppressor cannot be ascribed solely to a 18

graph itself. Fixation probabilities also depend on the update rule: the scheme by which 19

births and deaths are determined. The majority of works on amplifiers and suppressors 20

use Birth-death (Bd) updating: An individual is selected to reproduce proportionally to 21

fitness, and its offspring replaces a uniformly-chosen neighbor. A minority of 22

works [18,23,28,29] have considered death-Birth (dB) updating: A uniformly-chosen 23

individual dies, and a neighbor is chosen proportionally to fitness to reproduce into the 24

vacancy. (Following Hindersin and Traulsen [23], we use uppercase letters for a 25

demographic step that is affected by fitness, and lowercase letters for a step that is 26

fitness-independent.) Interestingly, the choice of update rule has a marked effect on 27

fixation probabilities. For example, the Star graph (Fig. 1B) is an amplifier of selection 28

for Bd updating [3, 17] (so long as the initial mutant vertex is chosen uniformly at 29

random [21]), but a suppressor for dB updating [18]. 30

A recent numerical investigation [23] of thousands of random graphs up to size 14 31

found no amplifiers of selection for death-Birth updating. This suggests that amplifiers 32

for dB are either nonexistent or rare, at least among small graphs. This work also 33

identified a graph (the cycle; Fig. 1C) that, for dB updating, reduces fixation 34

probabilities for all mutations that affect fitness, whether beneficial or deleterious. The 35

cycle is therefore neither an amplifier nor a suppressor; it might instead be called a 36

“reducer of fixation”, in that it preserves the resident wild-type regardless of fitness 37

effects. A follow-up work [30] identified other reducers of fixation. 38

Here we investigate fixation probabilities for death-Birth updating on graphs, using 39

a variety of analytical and numerical methods. We develop a weak-selection approach to 40

this question, based on coalescing random walk methods [31,32] that were previously 41

used to study evolutionary games on graphs [5, 10,14]. Weak selection means that the 42

fitness of the mutant is close to that of the resident; i.e., the mutation is either slightly 43

beneficial or slightly deleterious. Unlike earlier numerical methods [23,26,33], the 44

weak-selection method can be performed in polynomial time, allowing for efficient 45

identification of amplifiers and suppressors of weak selection. We apply this method to 46

several graph families and random graph models. We also compute fixation probabilities 47

for arbitrary mutant fitness (beyond weak selection) for these graph families. 48

We find, contrary to the expectation set by previous numerical experiments [23], 49

that amplifiers, of a sort, do exist for death-Birth updating. Specifically, we exhibit 50

several families of transient amplifiers, which amplify selection only for a certain range 51

of mutant fitness values. We also uncover new examples of reducers of fixation. 52
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Our weak-selection method also leads to new theoretical results. First, the form of 53

our expression for fixation probability suggests a new definition of effective population 54

size, with intriguing connections to previous definitions [16,34–40]. Second, we show 55

that for isothermal graphs—which have the same edge weight sum at each vertex—the 56

fixation probability coincides, under weak selection, with that of a well-mixed 57

population. This result is reminiscent of the Isothermal Theorem of Lieberman et al. [3], 58

which applies to Bd updating (see also Refs. [15, 28, 29]). However, whereas the original 59

Isothermal Theorem is valid for any strength of selection, our new result applies only to 60

weak selection. Third, we exhibit a recipe by which amplifiers of weak selection can be 61

constructed as perturbations of isothermal graphs. Finally, we show that fixation 62

probabilities under weak selection can be well-approximated using only the first two 63

moments of the degree distribution. This approximation helps explain why amplifiers of 64

selection (even transient ones) are rare for dB updating. 65

Methods 66

Model 67

We study an established model of natural selection on graphs [3, 7, 8, 16–29,41–43]. 68

Spatial structure is represented as a connected, weighted, undirected graph G. Joining 69

each pair of vertices i and j is an edge of weight wij ≥ 0, with wij = wji since G is 70

undirected. We exclude the possibility of self-loops by setting wii = 0 for each vertex i. 71

The size of the graph, which is also the population size, is denoted N . 72

Each vertex houses a single haploid individual. Individuals can be of mutant or 73

resident (wild-) type. Mutants have fitness r > 0, while the fitness of the resident type 74

is set to 1. Advantageous mutants have r > 1, while deleterious mutants have r < 1. 75

The case r = 1 describes neutral drift, for which the mutation has no fitness effect. This 76

model describes constant selection, in that the fitnesses of the competing types do not 77

vary with the current population state. 78

Selection proceeds according to the death-Birth (dB) update rule [4,18,44]. First, an 79

individual is selected uniformly at random for death, creating a vacant vertex. Then, a 80

neighbor of the vacant vertex is chosen to reproduce, with probability proportional to 81

(fitness) × (edge weight to the vacant vertex). The new offspring fills the vacancy, 82

inheriting the type of the parent. 83

As an initial state, we suppose that a single mutant is introduced, at a vertex chosen 84

uniformly at random, in a population otherwise composed of residents. We define the 85

mutation’s fixation probability as the expected probability that a state of all mutants is 86

reached from this initial condition. The fixation probability of a mutation of fitness r on 87

a graph G is denoted ρG(r). 88

The baseline case of a well-mixed population is represented by the complete graph 89

KN of size N (Fig 1A). For dB updating on the complete graph KN , a mutant of 90

fitness r has fixation probability [23,28] 91

ρKN
(r) =

N − 1

N

1− r−1

1− r−(N−1)
. (1)

We characterize the effects of graph structure on fixation probabilities using the 92

following definitions: 93

Definition. Let G be a graph of size N . Then G is 94

• An amplifier of selection if ρG(r) < ρKN
(r) for 0 < r < 1 and ρG(r) > ρKN

(r) for 95

r > 1. 96
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• A suppressor of selection if ρG(r) > ρKN
(r) for 0 < r < 1 and ρG(r) < ρKN

(r) for 97

r > 1. 98

• A transient amplifier of selection if there is some r∗ > 1 such that ρG(r) < ρKN
(r) 99

for 0 < r < 1 and for r > r∗, and ρG(r) > ρKN
(r) for 1 < r < r∗. 100

• A reducer of fixation if ρG(r) < ρKN
(r) for all r ̸= 1. 101

For example, the star graph Sn with n leaves (population size N = n+ 1; Fig. 1B) is 102

a suppressor of selection for dB updating [18], with fixation probability [45] 103

ρSn
(r) =

(N − 1)r + 1

N(r + 1)

(
1

N
+

r

N + 2r − 2

)
. (2)

The cycle CN is a reducer of fixation for dB updating [23], with fixation probability [28] 104

ρCN
(r) =

2(r − 1)

3r − 1 + r−(N−3) − 3r−(N−2)
. (3)

Other examples of reducers were identified by Hindersin et al. [30], who called them 105

“suppressors of evolution”; we prefer “reducers of fixation” to avoid confusion with 106

suppressors of selection. 107

A companion work [46] proves that there are no (non-transient) amplifiers of 108

selection for dB updating. Transient amplifiers of selection were previously known for 109

Bd updating [19] but not for dB updating. For Bd updating, there are some graphs that 110

do not fit any of the above definitions, but alternate between amplification and 111

suppression (i.e, ρG(r) > ρKN
(r) on a disconnected set of r-values) [27]; such examples 112

have not been discovered for dB updating. 113

Analysis of weak selection 114

Fixation probabilities on graphs can be difficult to compute. Current numerical 115

methods [22, 23, 26, 33] involve solving a system of O(2N ) equations to compute fixation 116

probabilities on a given graph of size N . For this reason, previous analyses have focused 117

on graphs that are small [23,26,27,33,42,43], highly symmetric [3,7,17,19–21,24,25], or 118

are constrained in the types of connections between vertices [47]. 119

One way to mitigate these difficulties is to focus on weak selection, which is the 120

regime r ≈ 1. Weak selection can be studied as a perturbation of neutral drift (r = 1). 121

This approach has been fruitfully applied to population genetics [48–50] and 122

evolutionary game theory [4, 5, 10,11,14,44,51], but so far has not been applied to 123

models of constant selection on graphs. 124

To implement weak selection for our model, we write the fitness of the mutant as 125

r = 1 + δ, with δ representing the mutation’s selection coefficient. We consider the 126

first-order Taylor expansion of the fixation probability, ρG(1 + δ), at δ = 0. For the 127

complete graph, Taylor expansion of Eq. (1) yields 128

ρKN
(1 + δ) =

1

N
+ δ

N − 2

2N
+O(δ2). (4)

Coalescing random walks 129

For an arbitrary weighted, connected graph, we apply a method developed by Allen et 130

al. [5] to calculate fixation probabilities under weak selection. This method uses 131

coalescing random walks, which trace the co-ancestry of given individuals backwards in 132

time to their most recent common ancestor. 133
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Each individual’s ancestry is represented as a random walk on G. These random 134

walks are defined by the step probabilities pij = wij/wi, where wi =
∑

j∈G wij is the 135

weighted degree of vertex i. Importantly, pij is also equal to the conditional probability, 136

under neutral drift (r = 1), that j reproduces, given that i is replaced. Random walks 137

on G have a stationary distribution, in which the probability of vertex i is equal to its 138

relative weighted degree, πi = wi/
(∑

j∈G wj

)
. 139

To represent the co-ancestry of two individuals, we consider a pair of random 140

walkers. At each time-step, one of the two walkers is chosen (with equal probability) to 141

take a step. The point at which the two walkers meet (coalesce) represents the most 142

recent common ancestor. We let τij denote the expected time to coalescence from initial 143

vertices i and j. These coalescence times can be determined from the following system 144

of equations [5, 52]: 145

τij =

{
0 i = j

1 + 1
2

∑
k∈G (pikτjk + pjkτik) i ̸= j.

(5)

We also define the remeeting time τi from vertex i as the expected time for two 146

random walkers from vertex i to rejoin each other. Remeeting times are related to 147

coalescence times by 148

τi = 1 +
∑
j∈G

pijτij , (6)

and obey the identity [5] 149∑
i∈G

π2
i τi = 1, (7)

which is an instance of Kac’s return time formula [53]. 150

Results 151

Fixation probability under weak selection 152

Applying the properties of coalescence times, we prove in S1 Appendix that the fixation 153

probability on an arbitrary (weighted, undirected, connected) graph G can be expanded 154

under weak selection as 155

ρG(1 + δ) =
1

N
+ δ

Neff − 2

2N
+O(δ2), (8)

where Neff is the effective population size of G, which we define as 156

Neff =
∑
i∈G

πiτi. (9)

This definition of effective population size is distinct from, but closely related to, 157

previous definitions [16,34–40], as we review in the Discussion. 158

Comparing the first-order terms in Eqs. (8) and (4) provides a criterion for the 159

effects of graph structure on fixation probabilities under weak selection: 160

Definition. Let G be a graph of size N . We say G is 161

• An amplifier of weak selection if Neff > N , 162

• A suppressor of weak selection if Neff < N . 163
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An amplifier (respectively, suppressor) of weak selection is guaranteed to amplify 164

(respectively, suppress) selection for all r sufficiently close to 1. Formally, if G is an 165

amplifier of weak selection, there exist a, b with 0 ≤ a < 1 < b ≤ ∞ such that 166

ρG(r) < ρKN
(r) for a < r < 1 and ρG(r) > ρKN

(r) for 1 < r < b. Likewise, if G is a 167

suppressor of weak selection, there exist a, b with 0 ≤ a < 1 < b ≤ ∞ such that 168

ρG(r) > ρKN
(r) for a < r < 1 and ρG(r) < ρKN

(r) for 1 < r < b. 169

As an example, solving Eq. (5) for the star graph Sn, and applying Eqs. (6) and (9), 170

we obtain τH = τL = Neff = 4n/(n+ 1). Since the star graph has size N = n+ 1, we 171

find that the star is a suppressor of weak selection for all n ≥ 2. Substituting in Eq. (8), 172

we obtain 173

ρG(1 + δ) =
1

N
+ δ

N − 2

N2
+O(δ2), (10)

which agrees with the Taylor expansion of Eq. (2). 174

Weak-selection Isothermal Theorem 175

A particularly interesting result arises in the special case of isothermal graphs. An 176

undirected graph G is isothermal if each vertex has the same weighted degree wi, or 177

equivalently, if πi = 1/N for each i ∈ G. The Isothermal Theorem [3] states that, for Bd 178

updating, an isothermal graph has the same fixation probabilities as a well-mixed 179

population of the same size, for all values of r and all starting configurations of mutants. 180

However, the corresponding statement for dB updating is false [28,29]. For example, the 181

cycle (Fig. 1C) is isothermal, but its fixation probabilities, as given by Eq. (3), differ 182

from those of a well-mixed population, given by Eq. (1). 183

Here we show that a weak-selection version of the isothermal theorem holds for 184

death-Birth updating. For an isothermal graph G, Eqs. (7) and (9) give 185

Neff =
∑
i∈G

(
1

N

)
τi = N

∑
i∈G

(
1

N2

)
τi = N

∑
i∈G

π2
i τi = N. (11)

Combining with Eq. (8), we arrive at the following result: 186

Theorem (Weak-Selection Isothermal Theorem for dB Updating). Let G be a weighted, 187

undirected, connected isothermal graph of size N ≥ 2 with no self-loops. Then for dB 188

updating, fixation probabilities on G coincide with those on the complete graph KN to 189

first order in the selection coefficient δ: 190

ρG(1 + δ) = ρKN
(1 + δ) +O(δ2). (12)

In other words, if G is isothermal, then the plots of ρG(r) and ρKN
(r) are tangent at 191

r = 1. This implies that, for dB updating, isothermal graphs neither amplify nor 192

suppress weak selection. For example, the cycle CN (Fig. 1C) is isothermal, and 193

therefore the plots of ρCN
(r) and ρKN

(r) are tangent at r = 1 (Fig. 1F). However, these 194

fixation probabilities do not coincide beyond r = 1; instead, ρCN
(r) < ρKN

(r) for all 195

r ̸= 1 [33], meaning that the cycle is a reducer of fixation. 196

Generating amplifiers of weak selection 197

The Weak-Selection Isothermal Theorem also suggests a method to generate amplifiers 198

of weak selection via perturbations of an isothermal graph. Since Neff = N for all 199

isothermal graphs, any perturbation that increases Neff will yield an amplifier of weak 200

selection. 201
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Consider a family of weighted graphs indexed by a parameter ϵ, such that the graph 202

is isothermal when ϵ = 0. In S1 Appendix we derive the relationship 203

dNeff

dϵ

⏐⏐⏐⏐
ϵ=0

= −
∑
i∈G

(
τi
dπi

dϵ

) ⏐⏐⏐⏐
ϵ=0

. (13)

Equation (13) suggests that we can construct amplifiers of weak selection by starting 204

with an isothermal graph, and perturbing so as to decrease the relative weighted degree 205

of vertices with large remeeting time and/or increase the relative weighted degree of 206

vertices with small remeeting time. 207

Figure 2 provides an example to illustrate this method. Starting with an unweighted 208

3-regular graph of size 12, we reduce the weight of a single edge that is adjacent to a 209

vertex of large remeeting time. This creates a family of amplifiers of weak selection for 210

dB. Notably, the graph remains an amplifier even when this edge is deleted completely. 211

Examples 212

We now introduce three example families of graphs, which can behave as transient 213

amplifiers, suppressors, or reducers, depending on the parameter values. We analyze 214

these graphs both for weak and nonweak selection. Our results are summarized in Table 215

1. Derivations and proofs are presented in S1 Appendix. Our analytical results are 216

verified by Monte Carlo simulation in S1 Fig and S2 Fig. 217

Fan 218

The Fan, Fn,m, (Fig. 3) has one hub and n ≥ 2 blades. Each blade contains m ≥ 2 219

vertices, for a total of N = nm+ 1 vertices. Each blade vertex is joined to the hub by 220

an edge of weight ϵ > 0, and is joined to each other vertex on the same blade by an edge 221

of weight 1. The Fan is isothermal when ϵ = (m− 1)/(nm− 1). 222

Applying our weak-selection method, we find that the Fan has effective population
size

Neff = N

+

(
m− 1− ϵ(nm− 1)

)(
m(m− 1)(n− 2) + ϵ(nm2 + nm− 4m+ 2) + 2ϵ2(nm− 1)

)
(m− 1 + 2ϵ)

(
m(m− 1) + ϵ(nm+ 2m− 1) + ϵ2(nm+ 1)

) .

(14)

From the sign of the second term, we observe that the Fan amplifies weak selection for 223

all 0 < ϵ < (m− 1)/(nm− 1) (Fig. 3B). 224

Taking ϵ → 0, we obtain Neff = nm+ n− 1. Although fixation is impossible when ϵ 225

is exactly zero (because the population is disconnected in this case), the ϵ → 0 limit is 226

still well-defined in the sense that Neff can be made arbitrarily close to nm+ n− 1 by 227

choosing ϵ sufficiently small. In this limit, the Fan amplifies weak selection (Neff > N) 228

for n ≥ 3 blades, but neither amplifies nor suppresses weak selection (Neff = N) for 229

n = 2. The strongest amplifier of weak selection (largest Neff/N) occurs for m = 2 and 230

first ϵ → 0 and then n → ∞; in this case, Neff/N → 3/2. 231

Moving beyond weak selection, we calculate the fixation probability for a mutation 232

of arbitrary fitness r > 0, in the ϵ → 0 limit: 233

ρFn,m
(r) =

n(m− 1)
(
1− r−1

) (
1− r−(m+1)

)
(mn+ 1)

(
1− r−(m−1)

) (
1− r−n(m+1)

) . (15)

In S2 Fig, we show excellent agreement between Eq. (15) and Monte Carlo simulations 234

for ϵ = 10−3. We prove in S1 Appendix that, in the ϵ → 0 limit, the Fan is a reducer of 235

fixation for n = 2 and a transient amplifier of selection for all n ≥ 3. 236
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Separated Hubs 237

Our next examples generalize the Fan graph in two different ways. First, we suppose 238

that there are multiple hub vertices, which are not connected to each other. The 239

resulting graph, which we call the Separated Hubs graph, SHn,m,h (Fig. 4), has h ≥ 1 240

hub vertices, n ≥ 2 blades, and m ≥ 2 vertices per blade for a total population size of 241

N = nm+ h. Vertices on the same blade are connected by edges of weight 1, and each 242

blade vertex is connected to each hub by an edge of weight ϵ. No other edges are 243

present. The Fan is the h = 1 case of Separated Hubs. 244

The weak-selection results for arbitrary ϵ are rather cumbersome, but in the ϵ → 0 245

limit they simplify to 246

Neff = nm+ n− 1. (16)

Interestingly, in this limit, the effective population size is independent of the number h 247

of hubs. Comparing Eq. (16) to N = nm+ h, we observe that the Separated Hubs 248

graph (in the ϵ → 0 limit) is a suppressor of weak selection for n ≤ h and an amplifier 249

of weak selection for n ≥ h+ 2. As for the Fan, the strongest amplifier of weak selection 250

occurs for m = 2 and first ϵ → 0 and then n → ∞, leading to Neff/N → 3/2. The 251

strongest suppressor of weak selection (smallest Neff/N) occurs for first ϵ → 0 and then 252

h → ∞, leading to Neff/N → 0. 253

Beyond weak selection, we compute the fixation probability for arbitrary r > 0 in
the limit ϵ → 0:

ρSHn,m,h
(r) =

n(m− 1)(1− r−1)
(
1− r−(m+1)

)
(mn+ h)

(
1− r−(m−1)

) (
1− r−n(m+1)

) . (17)

In the limit of many blades, we obtain 254

lim
n→∞

ρSHn,m,h
(r) =

{
0 0 ≤ r ≤ 1
m−1
m

(1−r−1)(1−r−(m+1))
1−r−(m−1) r > 1.

(18)

We prove in S1 Appendix that the Separated Hubs graph, in the ϵ → 0 limit, is a 255

suppressor for n ≤ h, a transient amplifier for n ≥ h+ 2, and a reducer for n = h+ 1. 256

Star of Islands 257

Our final example, the Star of Islands, SHn,m,h (Fig. 5), is obtained by joining the hubs 258

in the Separated Hubs graph. It consists of h ≥ 2 hub vertices and n ≥ 2 islands, with 259

m ≥ 2 vertices per island, so that the total population size is again N = nm+h. Within 260

the hub and within each island, vertices are connected to one another with weight 1. 261

Additionally, each hub vertex is connected to each island vertex with weight ϵ > 0. 262

For weak selection, in the ϵ → 0 limit, we calculate 263

Neff = N +
(m− h)mnh

(
h(h− 1) +m(m− 1)(n− 2)

)(
h(h− 1) +m(m− 1)

)(
h(h− 1) +m(m− 1)n

) . (19)

The second term on the right-hand side has the sign of m− h. It follows that the Star 264

of Islands is an amplifier of weak selection when m > h, and a suppressor of weak 265

selection when m < h. 266

We show in S1 Appendix that the strongest amplifier of weak selection occurs for 267

h = 2, m = 4, and first ϵ → 0 and then n → ∞. In this case Neff/N → 9/7. The 268

strongest suppressor occurs for first ϵ → 0, then n → ∞, and then h → ∞, leading to 269

Neff/N → 0. 270
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For arbitrary r > 0, in the ϵ → 0 limit, we obtain ρSIn,m,h(r) = num/denom with

num = rm(1− r−1)
(
1− r−(h+m)

)
(
hrh

(
1− r−(h−1)

)
(mn(m− 1)rm + h(h− 1))

+mrm
(
1− r−(m−1)

) (
mn(m− 1) + h(h− 1)rh

))
, (20)

denom = (mn+ h)
(
h
(
1− r−(h−1)

)
+mrm

(
1− r−(m−1)

))(
mrm

(
1− r−(m−1)

)
(1− xn)

+h
(
1− r−(h−1)

) (
rh+m − xn

))
, (21)

and 271

x =
mr−m(rm−1 − 1) + h(rh−1 − 1)

mrh(rm−1 − 1) + h(rh−1 − 1)
. (22)

In the limit of many islands, we obtain 272

lim
n→∞

ρSIn,m,h
(r) =

⎧⎨⎩0 0 ≤ r ≤ 1
(m−1)(1−r−1)(1−r−(h+m))

hr−m(1−r−(h−1))+m(1−r−(m−1))
r > 1.

(23)

We prove in S1 Appendix that the Star of Islands is a reducer for m = h. 273

Approximating fixation probability 274

We have defined the effective population size Neff in terms of the expected remeeting 275

times of random walks. While this definition allows Neff—and, via Eq. (8), fixation 276

probabilities under weak selection—to be computed in polynomial time, it gives little 277

intuition for how Neff relates to more familiar graph statistics. 278

To build such intuition, we use a mean-field approximation from Fotouhi et al. [54].
We suppose that each remeeting time τi is approximately equal to a single value, τ .
Then from Eq. (7) we have

1 =
∑
i∈G

π2
i τi ≈ τ

∑
i∈G

π2
i =

τ
∑

i∈G w2
i

(
∑

i∈G wi)2
=

τµ2

Nµ2
1

.

Above, µ1 = 1
N

∑
i∈G wi and µ2 = 1

N

∑
i∈G w2

i are the first and second moments, 279

respectively, of the weighted degree distribution. Solving for τ and substituting in the 280

definition of Neff gives the approximation 281

Neff ≈ Nµ2
1/µ2. (24)

Substituting in Eq. (8) gives an approximation for fixation probability under weak 282

selection in terms of µ1 and µ2. Interestingly, the right-hand side of Eq. (24) was taken 283

as the definition of effective population size by Antal et al. [16], who studied the same 284

model but arrived at this expression by different methods and assumptions. 285

The approximation in Eq. (24) is reasonably accurate when compared to exact 286

numerical calculation of Neff/N for Erdös-Renyi and Barabási-Albert graphs (Fig. 6). 287

In particular, the approximation explains the general trend that larger, sparser, and 288

more heterogeneous graphs act as stronger suppressors (have smaller Neff/N ratio). We 289

note, however, that since µ2 ≤ µ2
1 for any degree distribution, the approximated Neff in 290

Eq. (24) is at most equal to the actual population size N , with equality only for 291

isothermal graphs. Therefore, amplifiers of weak selection cannot be detected using this 292

approximation. 293
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Discussion 294

Weak-selection methodology 295

We have brought the method of weak selection, previously developed to analyze games 296

on graphs [4, 5, 9–12,14,44], to bear on the question of amplifiers and suppressors. 297

While our focus is on death-Birth updating, the method also applies to Birth-death 298

updating, using a modified version of the coalescing random walk [5, 52]. Our 299

weak-selection method has the advantage of being computable in polynomial time (in 300

the size of the graph), in contrast to other numerical methods [23, 26, 27, 33], which take 301

exponential time. Our expression for fixation probabilities in terms of coalescence times, 302

Eq. (8), also enables the proof of general results such as the Weak-Selection Isothermal 303

Theorem for dB. A drawback of the weak-selection approach is that it does not 304

distinguish between transient and non-transient amplifiers, nor can it detect complex 305

behavior such as multiple switchings between amplification and suppression [27]. 306

Effective population size 307

Our analysis motivated a new definition of the effective population size of a graph, 308

Neff =
∑

i∈G πiτi. This notion of effective population is particular to dB updating, 309

since it was derived from weak-selection fixation probabilities under this update rule. 310

Our definition has a number of interesting connections to other definitions previously 311

proposed for this concept [16,38–40]. 312

First, as noted above, the effective population size of Antal et al. [16] appears in 313

Eq. (24) as an approximation to ours. Whereas we obtain Neff ≈ Nµ2
1/µ2 using 314

coalescent theory and assuming uniformity of remeeting times, Antal et al. [16] obtain 315

the same expression using diffusion approximation and assuming 316

degree-uncorrelatedness of the graph. That the same expression arises from distinct 317

analytical frameworks and assumptions hints at its naturality. 318

Second, our definition differs by a simple rescaling from the notion of “fixation 319

effective population size” proposed by Allen, Dieckmann, and Nowak (hereafter, 320

ADN) [39], and elaborated upon by Giaimo et al. [40]: 321

NADN
eff =

N2

N − 1

dρ

dr

⏐⏐⏐
r=1

. (25)

Comparing Eqs. (25) and (8), we find the relationship

NADN
eff =

N(Neff − 2)

2(N − 1)
.

For large populations, NADN
eff ≈ Neff/2. The factor of two appears because the ADN 322

definition uses the Wright-Fisher (discrete generations) model as a baseline, whereas the 323

baseline for our Neff is the death-Birth process, for which generations are overlapping. 324

Such factors of two commonly appear in translating between discrete- and 325

overlapping-generations models [36,39,55]. 326

Third, our proposed definition is closely related to the concept of “inbreeding 327

effective population size”, which dates back to Wright [34] and has been elaborated on 328

by many others [35–38]. The inbreeding effective population size is typically defined, for 329

diploid populations, as the size of an idealized population that would have the same 330

level of autozygosity (a locus containing two alleles that are identical by 331

descent) [35,37]. Although autozygosity as such cannot occur in haploid populations, 332

the remeeting time τi quantifies the closely-related concept of auto-coalescence—the 333

time for two hypothetical, independent lineages from i to coalesce. For rare mutation, 334
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coalescence time is proportional to the probability of non-identity by descent [56]; thus 335

auto-coalescence can be taken as a proxy for autozygosity in haploid populations. Our 336

Neff is equal to the size of a well-mixed population that would experience the same 337

degree of auto-coalescence, when averaged over individuals weighted by their 338

reproductive values πi. It is therefore reasonable to interpret our Neff as a haploid 339

analogue of the inbreeding effective population size. 340

Transient amplifiers of selection 341

The most novel of our results is the discovery of the first transient amplifiers of selection 342

for dB updating. Previous investigations [18, 23, 28] had uncovered only suppressors and 343

reducers. Of the transient amplifiers we have found, the strongest is the 2-Fan, Fn,2, 344

with many blades (n → ∞; Fig. 3D). A companion work [46] proves that full 345

(non-transient) amplifiers cannot exist for death-Birth updating. 346

Transient amplifiers appear to be quite rare for death-Birth updating. None were 347

present within an ensemble of thousands of small graphs analyzed by Hindersin and 348

Traulsen [23]. Similarly, no amplifiers of weak selection for dB were found in our 349

ensembles of Erdös-Renyi and Barabasi-Albert random graphs. 350

Why should transient amplifiers be so rare? One possible clue comes from the
approximation for effective population size in Eq. (24). The approximated Neff is
always less than or equal to the actual population size N , with equality only for
isothermal graphs. Thus any amplifier (transient or not) must be a graph for which the
approximation in Eq. (24) is inaccurate. Another possible clue is found by combining
Eqs. (9) and (7) to obtain

N −Neff

N2
=

(
1

N

∑
i∈G

π2
i τi

)
−

(
1

N

∑
i∈G

πi

)(
1

N

∑
i∈G

πiτi

)
.

The right-hand side can be interpreted as the covariance of πi with πiτi, as i runs over 351

vertices of G. It follows that G is an amplifier of weak selection if and only if πi and 352

πiτi are negatively correlated on G. This requires a very strong negative relationship 353

between weighted degree and remeeting time, which seems unlikely to arise in the usual 354

random graph models. A third clue comes from a companion work [46], which proves a 355

bound on the strength of transient amplifiers for dB. Since transient amplifiers are 356

limited in their possible strength, it is reasonable to suppose they are also limited in 357

number. Each of these clues, however, falls very short of a formal proof. 358

Reducers of fixation 359

Evolutionarily speaking, reducers of fixation maintain the status quo. They protect the 360

resident type from replacement by any mutation, whether beneficial or deleterious. 361

Reducers may have applications in bio-engineering, in situations where it is desirable to 362

inhibit the accumulation of all fitness-affecting mutations. Indeed, it has been argued 363

that the cycle-like structure of epithelial stem cells in mammals [57,58] may have been 364

evolutionarily designed to limit somatic mutations [30]. The cycle was the first known 365

reducer [23]; others were identified by Hindersin et al. [30]. To these examples we have 366

added two more: the Separated Hubs graph with n = h+ 1 and the Star of Islands with 367

m = h. 368

Isothermal graphs appear to be obvious candidates for reducers of fixation. This is 369

because, if G is a reducer of fixation, then ρG(r) and ρKN
(r) must coincide to first 370

order in r at r = 1, and this latter property holds for all isothermal graphs according to 371

the Weak-Selection Isothermal Theorem for dB. Indeed, all previously-known examples 372

of reducers [23,30] were isothermal. However, neither the Separated Hubs graph for 373
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n = h+ 1 nor the Star of Islands for m = h are isothermal; thus reducers need not be 374

isothermal. The converse question—whether all isothermal graphs are 375

reducers—remains open. To resolve this question, one would have to either discover or 376

rule out other behaviors for isothermal graphs G, such as ρG(r) > ρKN
(r) for all r 377

sufficiently close but not equal to 1. Another open question is whether reducers of 378

fixation exist for Bd updating. 379

Limitations 380

Although we have uncovered an interesting range of behaviors for dB updating on 381

graphs, there are limitations to our approaches. All of our analytical results involve the 382

limit of either weak selection or certain edge weights going to zero. Some of our results 383

combine these limits, meaning that they apply only in rather extreme scenarios, and the 384

results may depend on the limit ordering [59]. 385

We also do not consider the issue of fixation time [33,41–43,60–63]. Previous 386

work [42,43,60,61] has uncovered a tradeoff between fixation probability and time: 387

Graphs that amplify selection tend to have larger fixation times than the complete 388

graph, which impedes their ability to accelerate adaptation. A number of our examples 389

involve limits as certain edge weights go to zero. Fixation times diverge to infinity for 390

these examples; therefore they do not hasten the accumulation of beneficial mutations. 391

The search for graphs that (transiently) amplify selection without greatly increasing 392

fixation times is left to future work. 393

Conclusion 394

The identification of amplifiers and suppressors of selection has become a robust field of 395

inquiry [3, 7, 8, 16–29,40,42]. Most investigations of this question follow the lead of the 396

initial work [3] in focusing on Birth-death updating. This is an interesting contrast to 397

the study of games on graphs [4, 5, 9–15], which typically considers death-Birth 398

updating—likely because Birth-death updating tends not to support cooperative 399

behaviors [4, 15]. 400

Since the choice of update rule has such marked consequences, a full understanding 401

of evolutionary dynamics in structured populations requires studying a variety of 402

update rules. Indeed, the update rule should properly be considered an aspect of the 403

population structure, equal in importance to the graph itself [11, 15,28,29,52]. If the 404

theory of amplifiers and suppressors is to find application (for example, to microbial 405

populations [8]), it is critical to determine which update rules are plausible for specific 406

organisms. Our work shows that dB updating exhibits at least some of the interesting 407

phenomena that have been observed for Bd updating, and suggests there is more to be 408

discovered. 409
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33. Hindersin L, Möller M, Traulsen A, Bauer B. Exact numerical calculation of
fixation probability and time on graphs. Biosystems. 2016;150:87–91.

34. Wright S. Evolution in Mendelian populations. Genetics. 1931;16(2):97.

35. Kimura M, Crow JF. The measurement of effective population number.
Evolution. 1963;17(3):279–288.

36. Felsenstein J. Inbreeding and variance effective numbers in populations with
overlapping generations. Genetics. 1971;68(4):581.

37. Crow JF, Denniston C. Inbreeding and variance effective population numbers.
Evolution. 1988;42(3):482–495.

July 6, 2020 14/19



38. Broom M, Voelkl B. Two measures of effective population size for graphs.
Evolution. 2012;66(5):1613–1623.

39. Allen B, Nowak MA, Dieckmann U. Adaptive dynamics with interaction
structure. The American Naturalist. 2013;181(6):E139–E163.

40. Giaimo S, Arranz J, Traulsen A. Invasion and effective size of graph-structured
populations. PLOS Computational Biology. 2018;14(11):e1006559.

41. Hathcock D, Strogatz SH. Fitness dependence of the fixation-time distribution
for evolutionary dynamics on graphs. Physical Review E. 2019;100(1):012408.
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Figure Legends

Fig 1. Fixation probabilities for constant selection on graphs. (A) The
complete graph represents a well-mixed population. (B) The star graph consists of one
hub vertex connected to n leaf vertices. This star is a suppressor of selection for
death-Birth updating [18]. (C) The cycle, a regular graph of degree 2, is a reducer of
fixation: the fixation probability of any mutant type of fitness r ̸= 1 is smaller than it
would be in the well-mixed case [23]. Panels (D)–(F) plot fixation probability versus
mutant fitness for the respective graphs, with the well-mixed case (orange curve) shown
for comparison. Dashed lines show the linear approximation to fixation probability at
r = 1. These approximations are accurate for weak selection (r ≈ 1) and can be
computed from coalescence times using Eqs. (5)–(9).

Fig 2. Creating an amplifier of weak selection for death-Birth updating.
(A) We begin with a 3-regular graph of size 12 in which all edges have weight 1. This
graph is isothermal, and therefore has Neff = N = 12. We solve for remeeting times
according to Eqs. (5) and (6), and identify the vertex with the largest remeeting time
(τi ≈ 18.29, shown in magenta). We decrease the edge weight from this vertex to one of
its neighbors by an amount ϵ. (B) As this edge weight decreases, the graph becomes an
amplifier of weak selection (Neff > N). For ϵ = 1, the resulting undirected, unweighted
graph is still an amplifier of weak selection, with effective population size Neff ≈ 12.03.

Fig 3. The Fan (A) The Fan, Fn,m, consists of one hub and n ≥ 2 “blades”, with
m ≥ 2 vertices per blade. Edge weights are as shown. The case n = m = 3 is pictured.
(B) The ratio of effective versus actual population size, plotted against the hub-to-blade
edge weight ϵ, for m = 2 vertices per blade. For n = 2 blades, the Fan is an amplifier of
weak selection for 0 < ϵ < 1/3, but becomes a reducer in the ϵ → 0 limit. For n ≥ 3, the
Fan is a transient amplifier for sufficiently small ϵ, including the ϵ → 0 limit. (C)
Fixation probability for F4,2 (blue curve), plotted against mutant fitness r, in the ϵ → 0
limit, according to Eq. (15). The orange curve shows the corresponding well-mixed
population result, Eq. (1), for comparison. Dotted lines show the corresponding
weak-selection results (i.e. the linear approximation at r = 1), according to Eqs. (4),(8),
and (14). (D) In the n → ∞ limit, fixation probability is given by Eq. (15), and the
Fan is an amplifier for 1 < r < (1 +

√
5)/2.
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Fig 4. Separated Hubs (A) The Separated Hubs graph consists of h ≥ 1 hubs and
n ≥ 1 blades, with m ≥ 2 vertices per blade. Edge weights are as shown. (B)–(D) Blue
curves show fixation probability, Eq. (17), plotted against mutant fitness r, in the ϵ → 0
limit. Blue dotted lines show the weak selection result, Eqs. (8) and (16). The orange
curve and dotted line show the corresponding well-mixed population results, Eqs. (1)
and (4), for comparison. The Separated Hubs graph is (B) a suppressor for n ≤ h, (C) a
reducer for n = h+ 1, and (D) a transient amplifier for n ≥ h+ 2.

Fig 5. Star of Islands (A) The Star of Islands graph consists of a hub island of size
h ≥ 2, and n ≥ 1 other islands of size m ≥ 2. Edge weights are as shown. (B)–(D)
Blue curves show fixation probability, Eqs. (20)–(22), plotted against mutant fitness r,
in the ϵ → 0 limit. Blue dotted lines show the weak selection result, Eqs. (8) and (19).
The orange curve and dotted line show the corresponding well-mixed population results,
Eqs. (1) and (4), for comparison. The Star of Islands graph is (B) a suppressor for
m ≥ h− 1, (C) a reducer for m = h, and (D) a transient amplifier for m ≥ h+ 1.

Fig 6. Random graphs suppress weak selection. Plot markers show the ratio
Neff/N , averaged over 1000 trials, plotted against population size N . Effective
population size, Neff , is calculated by numerically solving Eq. (5) for each graph and
applying Eqs. (6) and (9). All random graphs generated have Neff < N and are
therefore suppressors of weak selection. Curves of the corresponding colors show the
approximation Neff/N ≈ µ2

1/µ2 from Eq. (24). Overall, we find that larger, sparser, and
more heterogeneous graphs have smaller Neff/N ; these trends are all reflected in the
approximation from Eq. (24). (A) Erdös-Renyi graphs were generated for specific
values of the expected degree ⟨k⟩ by setting the link probability to p = ⟨k⟩/(N − 1).
The moments µ1 and µ2 were approximated by assuming that the degree of each vertex
is independently distributed as Binom(N − 1, p). This leads to
Neff/N ≈ (N − 1)p/[(N − 2)p+ 1]. At the minimum population size of N = ⟨k⟩+ 1, the
graph is complete and therefore Neff/N = 1. (B) Barabási-Albert preferential
attachment networks [64] were generated for linking numbers 3 ≤ m ≤ 6, starting from
a complete graph of size m+ 2. The second moment was calculated using the expected
degree distribution for finite Barabási-Albert networks obtained by Fotouhi and
Rabbat [65]. At the minimum population size of N = m+ 2, the graph is complete and
therefore Neff/N = 1.
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Supporting Information Legends

S1 Appendix Mathematical derivations and proofs. This supplement contains
a derivation of our weak selection method, Eqs. (5)–(9), as well as analysis of our three
example graph families.

S1 Fig Monte Carlo Simulations for Weak Selection. Fixation probability
approximated from 104 Monte Carlo trials, for ϵ = 0.1, plotted against mutant fitness, r
(blue dots). Black lines show the linear approximation to fixation probability as
calculated from our weak-selection results; i.e., ρ ≈ 1/N + ((Neff − 2)/2N)(r − 1) as in
Eq. (8). As expected, this approximation is accurate for r ≈ 1. (A) The Fan graph,
F4,2, with Neff given by Eq. (14). (B) The Separated Hubs, graph SH3,2,2, with Neff

given by Eqs. (40)–(42) of S1 Appendix. (C) The Star of Islands graph SI2,3,3, with
Neff ≈ 8.89 as calculated in Mathematica from Eqs. (5), (6), and (9).

S2 Fig Monte Carlo Simulations for Nonweak Selection with small ϵ.
Fixation probability approximated from 104 Monte Carlo trials, for ϵ = 10−3, plotted
against mutant fitness, r (blue dots). Our analytical results for fixation probability in
the ϵ → 0 limit (black curves) show excellent agreement with the simulation results.
(A) The Fan F4,2, with ϵ → 0 limit given by Eq. (15). (B) The Separated Hubs graph
SH3,2,2, with ϵ → 0 limit given by Eq. (17), and (C) The Star of Islands graph SI2,3,3,
with ϵ → 0 limit given by Eqs. (20)–(22).

Tables

Table 1. Results for example graphs

Example Case Classification

Separated Hubs* n ≤ h Suppressor
(ϵ → 0) n = h+ 1 Reducer

n ≥ h+ 2 Transient amplifier

Star of Islands m ≤ h− 1 Suppressor**

(ϵ → 0) m = h Reducer
m ≥ h+ 1 Transient amplifier**

* The Fan is the h = 1 case of separated hubs.
** Proven only for weak selection (other cases are
proven for arbitrary selection strength).
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