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ABSTRACT: We examine the ability of six molecular
dynamics (MD) force fields (Amber ff14SB, Amber
ff99SBnmrl, Amber ff03ws, OPLS-AA/L, OPLS-AA/M, and
CHARMM36) to reproduce conformational ensembles of the
central alanine in GAG and AAA in a way that is consistent
with five (GAG) or six (AAA) J coupling constants and amide
I' profiles. MD-derived Ramachandran plots for all six force
fields under study differ from those obtained by the Gaussian
fit to experimental data in three major ways: (i) the
polyproline II (pPII) basin in the Ramachandran plot is too
concentrated, (ii) the antiparallel # (af) basin is over-
populated, and (iii) the transitional f (ft) basin is
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underpopulated. Amber ff14SB outperforms the other five MD force fields and yields the highest pPII populations of the
central alanine residue in GAG (55%) and AAA (63%), in good agreement with the predictions of the Gaussian model (59 and
76%). The analysis of the hydration layer around the central alanine residue reveals considerable reorientation of water
molecules and reduction in both the average number of water molecules and the average number of water—water hydrogen
bonds when glycines (in GAG) are replaced by alanines (in AAA), elucidating water-mediated nearest neighbor effects on

alanine’s conformational dynamics.

B INTRODUCTION

Intrinsically disordered proteins (IDPs) defy the classical view
of the protein function arising from a stable three-dimensional
structure." More than 30% of gene sequences in eukaryotic
genomes encode proteins or protein regions that lack a well-
structured three-dimensional fold, yet these unstructured
regions are often key to the function of IDPs.”’ Structural
characterization of IDPs is challenging both experimentally and
computationally. Molecular dynamics (MD) simulations can
provide key insights into the structural dynamics of IDPs and,
by implication, also their function. However, reliability of
structural predictions derived from MD simulations depends
on the accuracy of the underlying force field. Despite
formidable progress in the development of accurate all-atom
MD force fields in the past decade,” MD force fields fail to
accurately reproduce conformational dynamics of intrinsic
amino acid residues and unfolded short peptides, which are the
building blocks of the unstructured regions of IDPs.
Specifically, the affinity of most amino acid residues (in
particular alanine) to adopt the polyproline II (pPII)
conformation is typically underestimated, whereas the helical
content is overestimated.”~” We here posit that a successful
force field for IDPs alongside the appropriate water model
should be able to reproduce conformational dynamics of short
unfolded peptides and proteins in agreement with the
experimental data.
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To assess intrinsic conformational propensities of amino
acid residues in water, blocked dipeptides and glycine-based
host—guest systems are typically used in computational and
spectroscopic studies because the terminal charges of
unblocked (tri)peptides are generally suspected to exert
undesired effects on conformational propensities of amino
acid residues.*” However, this notion is at variance with the
results of Toal et al. who showed that the conformational
ensembles of the central alanine in AAA are not affected by the
protonation states of the terminal groups.” Moreover, they
found that alanine in AdP and GAG displayed very similar
conformational propensities, suggesting that dipeptides and
unblocked GxG peptides are both suitable systems for studying
intrinsic conformational propensities of amino acid residues in
water.

The intrinsic conformational ensembles (Ramachandran
distributions) of amino acid residues in water have been
determined by measuring and analyzing several scalar NMR
coupling constants and amide I' band profiles in the IR,
polarized Raman, and vibrational circular dichroism (VCD)
spectra in cationic GxG tripeptides.'’™"® The term “intrinsic”
indicates that the influence of the adjacent residues (ie.
glycine) on the conformational distribution of the guest
residue x is assumed to be negligible. To relate the scalar NMR
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coupling constants and amide I’ profiles to conformational
distributions in the Ramachandran space, Schweitzer-Stenner
developed a Gaussian model, in which Ramachandran
distributions for the central amino acid residues of tripeptides
are described as a superposition of two-dimensional Gaussian
subdistributions related to different conformational states, such
as pPII, f-strand, right- and left-handed helical, and various
turn-like conformations.'® The positions, half-widths, and
statistical weights of Gaussian model subdistributions are
adjusted to best fit the average J coupling constants, which are
calculated using Karplus equations (Graf et al.'® and references
cited therein) and amide 1’ profiles, for which the excitonic
coupling model, describing the intensity distributions of amide
I' profiles in terms of conformationally dependent couplin%
between amide I’ modes of different peptide groups, is used.’
This theoretical approach was used to obtain Ramachandran
plots and conformational propensities of 16 unblocked GxG
peptides in water,'””"*'® revealing the prevalence of the pPII
state in most amino acid residues and the resulting
conformational dynamics dominated by pPII/f-strand equi-
libria. To what extent the current MD force fields capture the
experimentally observed intrinsic conformational dynamics of
amino acid residues in water remains an open question.

MD studies of peptides and proteins are dominated by three
classes of all-atom MD force fields for biomolecular
simulations: Optimized Potentials for Liquid Simulations
(OPLS), Chemistry at HARvard Macromolecular Mechanics
(CHARMM), and Assisted Model Building with Energy
Refinement (Amber) combined with various water models,
such as TIPS2, TIP3P, and TIP4P;'’ SPC/E;*° and the more
recent TIP4P/2005 water model, which reproduces the water
density maximum at 4 °C as well as a number of other
anomalous water properties.”’ Whereas the parameterization
of the all-atom OPLS (OPLS-AA) force field was initially
based on the experimental data,”>*’ torsional coefficients were
later modified based on quantum mechanical (QM)
calculations, resulting in the OPLS-AA/L force field.**
Recently, Jorgensen and collaborators further optimized this
force field with respect to backbone dihedral and side-chain
torsional potentials to fit ab initio gas-phase QM calculations
of alanine and glycine dipeptides alongside side-chain torsional
potential scans for the remaining dipeptides, resulting in
OPLS-AA/M.> Similar empirical potentials were used in the
CHARMM development, whereby CHARMM22 was para-
metrized alongside the TIP3P water model.”® An improved
version of CHARMM22, CHARMM?22-CMAP (also known as
CHARMM?27), introduced an extension of the potential
energy function to include backbone dihedral angle crossterms
(CMAP correction) but also pointed out limitations of gas-
phase QM calculations in reproducing the experimental
crystallographic data.”” Best et al. optimized the backbone
dihedral and side-chain torsional potential functions against
solution NMR data and NMR scalar couplings derived for
weakly structured and unfolded peptides, which reduced the a-
helical bias of the CHARMM?22/CMAP version, resulting in
CHARMM36.”® The Amber force field, 94, for protein
simulations with the TIP3P water model was released in
1995, followed by a number of Amber variants, including
99,°° #03,*" and notably, f99SB,>* which is the “canonical”
Amber force field, commonly used as a starting force field for
improved parameterization, resulting in several revised Amber
force fields released over the recent years.”> > The canonical
Amber f99SB improved dihedral potentials in the f99 energy

function based on energies obtained by gas-phase ab initio QM
calculations on glycine and alanine tetrapeptides, resulting in a
better secondary structure balance for glycine and alanine with
respect to PDB* survey data.”” Li and Briischweiler employed
NMR chemical shifts of four trial proteins, two with a-helical
and two with a + f# folds, to optimize the backbone dihedral
potentials of ff99SB for simulating proteins with the SPC/E
(instead of the more common TIP3P) water model, resultin
in the f99SB-nmrl force field.** Best et al. used Amber ff03°
with TIP4P/200S and modified the backbone dihedral
parameters, resulting in Amber ff03w, which lead to increased
cooperativity of the helix—coil transition and, unlike its
predecessor ff03, captured the experimentally observed
temperature-induced collapse in the radius of gyration of
folded peptides.”" Best et al. further modified f03w by
increasing the strength of short-range protein—water inter-
actions to increase protein solubility, resulting in the ff03ws
force field, which was reported to improve properties of
disordered proteins.”” The canonical f99SB force field was
further revised with respect to backbone dihedral potentials
and side-chain torsional potentials, resulting in ff14SB force
field.”” Amber ff14SB introduced empirical corrections to the
backbone dihedral potentials and modified side-chain torsional
potentials using gas-phase ab initio QM calculations of the
complete set of amino acid dipeptides.”’

When examining Ramachandran distributions of backbone
dihedral angles ¢ and y of amino acid residues, the concept of
mesostate is frequently used as a population of conformations
confined to a predefined rectangular region of the (¢, )
space.””~* In our previous work, we explored conformational
dynamics of alanine in trialanine (AAA) and alanine dipeptide
(AdP) using two MD force fields, OPLS-AA/L and Amber
ff03, combined with several water models and found that
OPLS-AA/L combined with SPC/E best matched the
experimentally derived pPII and f-strand mesostate popula-
tions.” In a subsequent study, we examined conformational
dynamics of 15 guest residues x in GxG peptides by MD using
OPLS-AA/L combined with SPC/E and TIP3P to demon-
strate that the correspondence between experimental and MD-
derived mesostate populations is less than satisfactory.” In the
past decade, a number of MD force fields with modified
dihedral and torsional potentials have been proposed, whereby
modifications were based on novel QM calculations, NMR
data, or both. Alanine is of particular interest because of its
notoriously hi§h propensity to adopt the pPII-type con-
formations,”'”""1®** which is typically underestimated in
MD simulations, but also because QM calculations on alanine-
based short peptides are often used to calibrate the force field
parameters, in particular, dihedral potentials.

In this study, we examine to which extent the intrinsic
conformational dynamics of alanine in two short peptides,
GAG and AAA, is captured by two OPLS force fields (OPLS-
AA/L and OPLS-AA/M), CHARMM36, and four different
Amber force fields (ff99SB, ff03ws, ff99SB-NMRI, and
ff14SB). The MD-derived Ramachandran dihedral angle
distributions are then used to calculate five (GAG) or six
(AAA) J coupling constants and amide I’ profiles of respective
Raman, IR, and VCD spectra to facilitate a direct comparison
to the previously published experimental data.”'"'* We use the
respective differences between measured and calculated |
coupling constants and VCD amide I profiles as criteria to
assess the degree to which the MD-derived Ramachandran
distributions can account for the experimental data. It is
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Figure 1. Ramachandran plots for alanine in GAG and AAA derived from the Gaussian model. Ramachandran plots for (a) alanine in GAG and (b)
the central alanine in AAA derived by fitting the Gaussian model parameters to best reproduce experimentally obtained J coupling constants and

VCD amide I’ profiles.

important to note that although we describe our results in
terms of mesostate populations, our assessment of the six force
fields takes into consideration the entire Ramachandran
distributions and is thus independent of our particular
definition of the mesostates. We also study the stability of
conformational populations in different force fields by
calculating and comparing their lifetimes. Finally, we explore
properties of hydration water around the central alanine
residue in GAG and AAA, including the orientational degrees
of freedom of water adjacent to the side chain, which is
visualized through previously reported water orientation plots.”

B METHODS

MD Simulations. For each force field/water model
combination, dynamics of a single GAG or AAA peptide is
probed at temperature 300 K using GROMACS 5.1.2.*77>°
The peptide is capped with a protonated N-terminus (—NH;")
and neutral C-terminus (—COOH for OPLS and CHARMM
force fields and —CO—NH, for Amber force fields). Each
peptide is solvated in a cubic box of edge length 40 A using the
corresponding water model. One Cl™ is added to neutralize the
system. Cubic periodic boundary conditions and Verlet cutoff
scheme™ are applied. A time step of 2 fs is used. The energy
minimization is performed using the steepest descent
minimization for 100000 steps, followed by a pressure
equilibration for 20 ns at 300 K and 1.0 bar. All 100 ns (or
200 ns) long trajectories are acquired using the velocity rescale
thermostat®” and Berendsen barostat.>®

Analysis. Gaussian Model. The Gaussian model, which
was introduced by Schweitzer-Stenner,'” is based on the 2D
distribution function of the two backbone dihedral angles of
the amino acid residue under consideration

P(¢,~; ll/l) = Z)(ka(‘ﬁ,-) ll/l)
k (1)

where y; is the mole fraction (propensity) of the k-th state,
modeled by a two-dimensional Gaussian subdistribution Gy
with the maximum at . and Wi,y and half-widths oy, , and
0y, For any given dihedral angle distribution, P(¢,y), the |
coupling constants are calculated using Karplus equations with
previously reported Karplus parameters. © Hu and Bax’’
reported two sets of Karplus parameters: one based entirely
on X-ray data and another obtained from a combined analysis
of solution and X-ray data. Because the latter set yields
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substantially lower root mean square deviation values, it is
frequently used in the literature'® and is also adopted in our
present study. Figure S1 shows Karplus plots using six different
Karplus parameter sets: four empirical sets reported by Bax and
collaborators®”®® and two sets derived from DFT calcula-
tions.”’ The two Karplus plots derived from DFT calculations
deviate strongly from the plots produced with the four
empirical sets. Importantly, Karplus plots produced with the
four empirical data sets from Hu and Bax’’ and Wang and
Bax” are very similar to each other, in particular for negative
¢p-values. Only for positive ¢p-values, noticeable differences in
the 3](HN,C/,) maximum are observed but these difference
would be relevant only for Ramachandran distributions with a
substantial population of left-handed helical conformations,
which is not the case for alanine.

The corresponding amide I' band profile are derived for
each of the 180 X 180 = 32400 ¢ and y values and averaged
(the prime sign in I’ indicates that the measurements were
performed in D,0). More specifically, if f(¢,y;) describes the
dependence of the amide I' profile or J coupling constant on
the two dihedral angles, then the average value is calculated as

GEDNIC w)P(4, w)
i @)

As reported by Hagarman et al, the parameters of the
Gaussian model (y;, values, positions, and widths of the
corresponding Gaussian subdistributions) are then adjusted in
such a way that the calculated ] coupling constants and amide
I' profiles best match the corresponding experimental ]
coupling constants and amide I’ profiles'" (see Figure 1).

The experimental data for the central alanine in cationic
GAG and AAA include the following ] coupling constants:
SJ(HNJHCH); 3](HN)C/)) 3](HN)Cﬂ); 3](HC0)C/)) and 1](N;Ca)-
The additional J coupling constant, *J(C’,C’), which was
reported for the central alanine in AAA,""'® is included in the
derivation of the Gaussian model parameters for AAA.

Definition of Mesostates. The following mesostate
definitions are used: (a) polyproline II (pPII) (—90° < ¢ <
— 42° 100° < yw < 180°), (b) antiparallel f-strand (af)
(—180° < ¢ < —130°, 130° < y < 180°), (c) the transition
region between af} and pPII (ft) (—130° < ¢p < — 90°, 130° <
w < 180°), and (d) right-handed a-helix (—90° < ¢ < —32°,
—60° < y —14°) (Figure 2).
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Figure 2. Definitions of the four mesostates in the Ramachandran
plot. The regions 1—4 correspond to af, ft, pPIl, and right-handed a-
helix, respectively.

MD-Derived Ramachandran Plots. Ramachandran plots
are constructed from dihedral angles (¢, ) within
GROMACS 5.1.2 using 25000 time frames of each MD
trajectory between 50 and 100 ns (with time frames 2 ps
apart). Normalized 2D distributions are calculated with a bin
size of 2° X 2° resulting in 180 X 180 = 32400 bins to
facilitate a direct comparison to the Ramachandran plots
predicted by the Gaussian model.

Calculation of J Coupling Constants and Amide I’ Profiles
from MD Data. As shown in the Results and Discussion
section, nearly all MD-derived Ramachandran distributions
reproduce the IR and Raman band profiles rather well because
of their rather limited content of right-handed helical
conformations. Therefore, the ] coupling constants and the
VCD band profile, which are the most sensitive to the
sampling of the upper left quadrant of the Ramachandran plot,
represent the best indicators of differences among different
MD force fields. We use MD-derived Ramachandran
distributions to calculate the J coupling constants and amide
I’ profiles for alanine in GAG and the central alanine in AAA.
With regard to J coupling constants, we characterize the overall
difference between the calculated and experimental values by
the absolute value of their differences as well as by y;* function

al (] - 1calc)2

1 Miexp  Zijcale”
Z (3)

where ., and J; denote experimental and calculated ]
coupling constants, respectively. N is the number of considered
coupling constants, whereas s; are the corresponding statistical
errors. Following Maier et al, we calculate the latter as a
combination of experimental errors'' and errors due to the
reported uncertainties of the Karplus parameters®”®’ using
Gaussian error propagation. Statistical uncertainties s; are
ensemble averages of the following function 5,(¢)

5(9)
= \/sAlz cos*(¢p + 0) + 53,2 cos’(¢p + 0) + 5c|2 + 51[2
(4)

where s,, 55, and s¢, are the statistical uncertainties of the three

Karplus parameters listed in Table S1, 6; is the phase associated
with the ] coupling constant ], s; is the corresponding
experimental error (as previously reported for GAG'' and
AAA'®), and s; = (5;), whereby the ensemble average () is
defined by eq 2. Wang and Bax reported s,, s, and s, values

for two different sets of Karplus parameters: one obtained from
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the fit of the data set derived from X-ray structures of proteins
and another derived from a data set based on a combination of
X-ray and NMR structures.”” While there is no obvious reason
to favor one over the other, we here selected the former set
with larger s values as a conservative estimate of J-coupling
uncertainties. Unfortunately, statistical errors for two Karplus
parameters 'J(N,C,) (relevant to GAG and AAA) and
31(C',C") (relevant only to AAA) are not known.'®®> For
these two | coupling constants, only the experimental errors
are considered in the above calculation, leading to an
overestimation of )(]2 values. However, because this work
focuses on a comparison rather than on the absolute value of
2 values, lower uncertainties for 'J(N,C,) and 3/(C’,C’) in
the y;* function are mostly inconsequential.
The reproduction of the VCD band profile is assessed by

4 2
N (Aeexp,k - Aecalc,k)

2 -
Ko = N’Z 2
k=1 k

()

where Ae represents the molar dichroism and k labels the
different data point. N’ is the number of data points and the
standard deviation s; is derived from an analysis of a spectral
region dominated by noise.

The population of the m-th mesostate was calculated as

Vinax

Z 2 P(¢, w)

i= Vonin

(6)

where P(¢,y;) is the occupation probability of dihedral angles
¢; £ 1° and y; + 1° whereby the discrete values of the
backbone dihedral angles are assigned in increments of 2°. The
summations run from the lower bound values ¢, and v, to
the upper bound values @7, and i, respectively, which are
defined for each mesostate m under consideration as described
above.

Mesostate Lifetimes. Mesostate lifetimes are calculated
within GROMACS 5.1.2 using all conformations between 50
and 100 ns resulting in 25000 conformations per trajectory.
Conformations are classified into mesostates following the
definition above. All conformations outside the four defined
mesostates are treated as a separate mesostate. The lifetime of
a mesostate is defined as the time interval between alanine
residue entering and exiting the mesostate. For each mesostate,
a distribution of lifetimes is derived and the average lifetime 7
is extracted by fitting the distribution with an exponential curve
p=poe t/‘r‘

Water Orientation Plots. Water orientation plots are
calculated as introduced in our previous work” to elucidate
the orientation of water molecules around the side chain of
alanine in GAG and AAA in the pPII mesostate. Briefly, usmg
Visual Molecular Dynamics (VMD) software package,  we
extract the orientation of each water molecules in a 4 A-thick
hydration layer around side chain atoms of alanine (the methyl
group —Cg4H,) relative to the local normal to the solvent
accessible surface (SAS) of the side chain. The local normal to
the SAS of the side chain, 7, is derived for each water molecule
using three proximate points on the triangulated SAS area of
the side chain. For each water molecule, the water symmetry
axis and the normal to the water plane (i.e., the plane formed
by the centers of mass of water oxygen and two water
hydrogens) were determined. Each water molecule is
characterized by two angles, 7 and 6. The angle # is defined
as the angle between the water symmetry axis and 7. The angle

hoin. J=
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0 is computed as the angle between the normal to the water
plane and #i. The angles 77 and 6 of each water molecule in the
hydration layer are collected into a 2D histogram using 90 X
90 = 8100 bins in the (1, 6) space, whereby a histogram value
at (i, j) is equal to the number of water molecules N(ij)
characterized by (1, 8) angles within the (i, j)-th bin. The final
water orientation plot is normalized by the total number of
water molecules in the hydration layer N to obtain N(i,)/N,
which corresponds to the probability of a water molecule to
adopt (7, 0) angles within (i, j)-th bin. Water orientation plots
are obtained by averaging over all pPII conformations between
50 and 100 ns of each MD trajectory.

Properties of Hydration Water around Alanine. For this
analysis, which is done within GROMACS 5.1.2, we select time
frames from each MD trajectory between 50 and 100 ns, which
are separated by 20 ns to ensure statistical independence of
consecutive configurations, then classify the configurations
with respect to the mesostate of the central alanine residue in
GAG and AAA. The hydration layer around alanine is chosen
to include all water molecules within the center-of-mass
distance of 4 A from (1) alanine’s side chain atoms (C4H,),
(2) alanine’s backbone atoms (NH, C,H, and CO), or the
entire alanine residue (NH, C,H, CO, and C/3H3). A hydrogen
bond is defined by a cut-off distance of 3 A between a donor
and acceptor, using an upper limit of the hydrogen—donor—
acceptor angle of 20°. The average number of water molecules
in the selected hydration layer, the average number of water—
water hydrogen bonds within the respective hydration layer,
and the average number of alanine—water hydrogen bonds are
calculated alongside their SEM values.

B RESULTS AND DISCUSSION

In most MD force fields, the backbone dihedral angle
potentials are parametrized by ab initio QM calculations on
amino acid analogues or on glycine- and alanine-based short
peptides.”>**>?” It is thus reasonable to expect that the intrinsic
conformational propensities of alanine residues in water are
well accounted for when probed by explicit-solvent MD
simulations, in particular within the recently recalibrated force
fields. In this paper, we assess commonly used MD force fields
with respect to their ability to predict conformational
ensembles of the central alanine in GAG and AAA in a way
that is consistent with the experimental data. These
experimental data include five (GAG) or six (AAA) NMR
scalar coupling constants and amide I' profiles greviously
obtained by Schweitzer-Stenner and colleagues.”'"'* We
perform MD simulations of GAG and AAA using several
MD force fields combined with their respective water model or
with several commonly used water models, such as TIP3P,
TIP4P, SPC/E, and TIP4P/200S. The resulting Ramachan-
dran plots are derived by calculating probability distributions
of backbone dihedral angles (¢, i) from each MD trajectory.
These MD-derived probability distributions of (¢, ) values
are then used to calculate the respective J coupling constants
and amide I' profiles of the central alanine in GAG and AAA
for a direct comparison to the experimental data as outlined in
Methods. To better assess the ability of a given force field to
capture the experimental constraints, we compare the perform-
ance of different MD force fields to the respective performance
of the Gaussian model (see Methods for more details). To
facilitate a better visual comparison of Ramachandran plots
produced by different MD force fields to the spectroscopic
data-based Gaussian model predictions, we introduce, in the
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spirit of previous studies,”’~* four mesostates as the most
populated rectangular regions in the Ramachandran space,
each defined by its mesostate-specific range of backbone
dihedral ¢ and y angles (as defined in Methods). Assuming
that a high probability density on the Ramachandran plot
corresponds to a low free energy, we hereafter adhere to the
free energy landscape terminology and refer to a basin as the
region in the Ramachandran space (mostly coinciding with one
of the four mesostates) with an increased probability density.

Conformational Ensembles of Alanine in GAG.
Gaussian Model for Alanine in GAG: Sensitivity Analysis.
Our research focuses on Ramachandran distributions of the
central alanine residue in cationic GAG and AAA, whereby the
performance of different MD force fields and water models is
evaluated based on the ability to reproduce experimentally
obtained amide I’ band profiles and J-coupling constants. We
utilize the previously reported Gaussian model of the
Ramachandran distribution, which assumes that all conforma-
tional states can be modeled as 2D Gaussian subdistributions
in the (¢, w) space (see Methods for details). Experimental
data have shown that conformational dynamics of alanine in
GAG and AAA is dominated by the pPII state, followed by the
Jt state. Because the Gaussian model is used as a benchmark
for evaluating the performance of the MD force fields with
respect to their ability to capture alanine conformational
dynamics, we examine here the sensitivity of the Gaussian
model for alanine in GAG with respect to the central (¢, )
location of the pPII state and the corresponding weight of the
Gaussian pPII subdistribution. To this end, we calculated ;(]2,
Xvep, and their sum, for each of three different sets of pPII/ft
weights (0.60/0.30, 0.72/0.18, and 0.80/0.10) while keeping
the weights of the right-handed helical and inverse y turn states
constant. For each set of pPII/ft values, we then examined the
effect of the central location of the pPII state by shifting the
center in ¢ € [—80°, —60°] or w € [140°, 160°] directions.
Figure S2 demonstrates a strong dependence of y;* on both
dihedral angles, whereas yycp” depends much more on y than
on ¢. Both )(]2 and jycp® assume the lowest values at similar ¢
values. With regard to the y dependence, the situation is more
complex. Whereas y;* displays a minimum at y ~ 145° and
then increases with y, yycp> decreases with . It is important
to note that of the five J coupling constants, only 'J(N,C,)
strongly depends on y and contributes to the y dependence of
X" The optimal y value was thus identified as the value which
minimizes the sum )(]2 + yvep- As shown in Figure S2, the
minimal values of the sum of the two y* values are assumed for
the pPII/ft weights of 0.8/0.1, respectively, and (¢p = —72°, y
= 152°). We then examined the dependence of )(]2 and yycp®
values on the location of St in the dihedral angle space (data
not shown). In view of a rather lower propensity of ft relative
to pPII, it is not surprising that both y* functions displayed
shallow minima around their optimal positions (data not
shown). Hence, the location of ft carries a rather large
uncertainty of at least +15° for ¢ and +10° for y. The final
Gaussian parameter values used for constructing the
Ramachandran distributions of GAG and AAA within the
Gaussian model are listed in Table 1.

Two additional low populations that fall out of the
Ramachandran space region defined by the four mesostates,
that is, the inverse y turn (GAG) and y turn (AAA), were
included in the Gaussian models as a compromise in the
optimization of )(]2 and yycp’ functions. By eliminating the
inverse y turn population from the Gaussian model of GAG,
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Table 1. Gaussian Model Parameters for the Central
Alanine in GAG and AAA“

pPII GAG AAA Bt GAG AAA
boon —72° —69° bp —115° —125°
Wepn 152° 147° Wpe 155° 150°
Ay 0.80 0.84 Ay 0.10 0.08

“The central locations of the Gaussian subdistributions corresponding
to the pPII and ft states are specified as (¢ppu, l//PPH) and (dp Wpo),
respectively. The corresponding weights are denoted as A,py; and Ay,
respectively.

the yycp” decreased to 2.07; however, the )(]2 value increased to
4.9. Similarly, by eliminating the y turn population from the
Gaussian model of AAA, yycp® decreased to 2.85, whereas the
)(]2 value increased to 5.4. These relatively minor populations
were included in the Gaussian models of GAG and AAA to
minimize ;(]2 while keeping yycp’ at reasonably low values.
Selection of the Water Model for OPLS-AA/L and OPLS-
AA/M. Six force fields from three different series (OPLS,
Amber, and CHARMM): OPLS-AA/L** OPLS-AA/M,*>
f99SBnmrl,>* ff03ws,** f14SB,”” and CHARMM36>® are
selected for the assessment of their capability to predict
conformational distributions of alanine in GAG. Whereas
Amber force fields and CHARMM36 were parametrized each
with the specific water model, no specific water model was
used in the parameterization of OPLS-AA/L and OPLS-AA/
M. For this reason, we first examine to which extent the water
model affects the conformational ensembles of alanine in GAG
within OPLS-AA/L and OPLS-AA/M by comparing the
Ramachandran plots derived from MD simulations using
four different water models: SPC/E,"® TIP3P,°* TIP4P,** and
TIP4P/2005.”" The effect of the water model on the
Ramachandran plots of alanine in GAG derived in OPLS-
AA/L and OPLS-AA/M is displayed in Figures S3 and SS.

Ramachandran plots for OPLS-AA/L (Figure S3) show that
regardless of the water model, pPII and a-helical conforma-
tions are overall shifted to smaller ¢ values (for pPII) and
smaller ¢ and larger y values (for @ helix), whereas the af
conformations fit well with our definition of this mesostates
(Figure 1). The a-helical population appears to be favored by
TIP3P in both OPLS-AA force fields (Figures S3 and SS).
The comparison of ] coupling constants and amide I’
profiles derived from MD simulations with OPLS-AA/L to the
experimental data in Figure S4 reveals major discrepancies
between experimental and calculated ] coupling constants.
Overall, ;(]2 values for all OPLS-AA simulations are more than
an order of magnitude larger (in the 20—40 region) than the
value obtained for the Gaussian model (0.81). A similar
conclusion can be made for the yycp* values derived for both
OPLS-AA force fields. The large yycp® values reflect a
substantial underestimation of the amide I' mode’s rotational
strength. Ramachandran plots for OPLS-AA/M in Figure S$
show that pPII conformations are better overlapped with our
definition of this mesostate than in the case of OPLS-AA/L;
however, the shift of a-helical conformations is comparable to
the shift observed for OPLS-AA/L. OPLS-AA/M results in a
notable decrease in a-helical mesostate populations relative to
OPLS-AA/L. Importantly, alanine conformations outside the
four mesostate regions, which are present in Ramachandran
plots for OPLS-AA/L (Figure S3), are absent from the
Ramachandran plots obtained with OPLS-AA/M (Figure SS).
The comparison to the experimental data in Figure S4
demonstrates a significant improvement of OPLS-AA/M
over OPLS-AA/L with respect to two ] coupling constants
CJ(HSC’) and 'J(N,C,)) except when OPLS-AA/M is
combined with TIP3P. Overall, TIP4P combined with
OPLS-AA/M vyields a better agreement with the experimental
data than TIP3P (Figure S6). Consequently, we select TIP4P
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Figure 3. Ramachandran distributions for alanine in GAG. Normalized distributions of backbone dihedral angles ¢ and y are derived from MD
simulations with different force fields, each combined with the respective water model. Black frames correspond to the four mesostates (af3, ft, pPIl,
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Figure 4. Comparison between MD-derived and experimental ] coupling constants and VCD amide I' profiles for alanine in GAG. Five ] coupling
constants and VCD amide I’ profile are calculated from the Ramachandran distribution obtained for each force field as well as the Gaussian model
to facilitate a direct comparison to the experimental data. (a—e) Absolute differences between the calculated and experimental values (1], — ]expl)
are displayed for each of the five ] coupling constants. The red lines correspond to experimental errors. (gh) ;(]2 and yycp’ values as defined in
Methods measure overall deviations from experimental data. (i) Calculated VCD profiles predicted by the Gaussian model, Amber ff14SB (with
TIP3P), OPLS-AA/M (with TIP4P), and CHARMM36 (with TIP3P) are compared to the experimental VCD profile.

for the follow-up comparison of both OPLS-AA force fields to
other force field/water model combinations.

Force Field-Specific Ramachandran Plots for Alanine in
GAG. Six force fields are selected for the assessment of
conformational dynamics of alanine in GAG: ff14SB (with
TIP3P), ff99SBnmrl (with SPC/E), fl03ws (with TIP4P/
2005), OPLS-AA/L and OPLS-AA/M each combined with
TIP4P, and CHARMM36 (with TIP3P). To probe the
convergence of MD simulations, MD trajectories with Amber
ff14SB, OPLS-AA/M, and CHARMMS36 are extended to 200
ns and Ramachandran distributions are calculated in time
windows of S0 ns (Figure S7). The comparison of
Ramachandran plots across four different time windows
demonstrates that despite small fluctuations in the mesostate
populations, the two-dimensional dihedral angle distributions
remain self-similar within each force field, indicating that 100
ns is long enough to capture the conformational dynamics of
alanine in GAG. The corresponding ] coupling constants
calculated for 50 ns-long time intervals along each 200 ns-long
trajectory also indicate that the fluctuations in | coupling
constants are not large enough to affect our assessment of force
fields (Figure S8). Extracting alanine conformations from the
200 ns-long trajectory of GAG in water (with time frames 2 ps
apart) within each of the three force field/water model
combinations, we use consecutive 10 ns-long time intervals
each containing 5000 conformations to calculate the average
mesostate populations. The results in Figure S9 show
fluctuations in the four different mesostate populations for
each of the three MD force fields. Fluctuations in pPII and a-
helical populations are the highest in CHARMM36 and the
lowest in OPLS-AA/M. The above analysis suggests that the
average mesostate populations alone do not provide sufficient
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information about conformational dynamics of short peptides
in water and that other characteristics of the Ramachandran
distribution, such as the centers and widths of mesostate basins
and dynamic properties as captured by mesostate fluctuations,
may be required for a more complete assessment of each force
fields.

Although clearly dominated by pPII populations, the six
Ramachandran plots for alanine in GAG in Figure 3 show
distinct features with respect to the four mesostate populations,
central locations of the mesostate basins, and their widths. All
MD-derived Ramachandran distributions are quite distinct
from the Gaussian model distribution (Figure 1la), which is
characterized by a visibly broader pPII basin than any MD-
derived distribution. MD-derived distributions also display a
well-defined aff mesostate basin that is clearly distinct from the
pPII basin and significantly more populated than the
corresponding basin in the Gaussian model distribution,
where the pPII basin strongly overlaps with af and ft basins.
Most force fields produce a helical populations that are
partially outside the a-helical mesostate, shifted to smaller ¢
and larger y values. Of the six force fields, OPLS-AA/L
produces the most conformations on the left side of the
Ramachandran plot that are outside the four mesostate regions
(Figure 3, red frame in the bottom leftmost Ramachandran
plot). CHARMMS36 is the only force field that gives rise to
nonzero populations on the right side of the Ramachandran
plot (Figure 3, red frame in the bottom rightmost
Ramachandran plot). In both OPLS-AA force fields, the
center of the pPII basin is shifted to more negative ¢ values
relative the other force fields and relative to our definition of
the pPII mesostate. OPLS-AA/M results in the lowest a-helical
population, whereas Amber ff14SB displays the lowest pt
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population. Interestingly, for Amber ff99SBnmrl, the aff basin
is shifted to larger ¢ values, that is, closer to the pPII
mesostate, which is in better agreement with the Gaussian
model predictions (Figure la).

Experimental Data for Alanine in GAG Are Best
Reproduced by Amber ff14SB. A comparison of the
Ramachandran distributions for alanine in GAG obtained
with six different force fields (Figure 3) to the corresponding
Gaussian model (Figure 1a) reveals several similarities but also
elucidates major differences. Similarities include the predom-
inant pPII population, which is in a stark contrast to the
classical plots for the alanine dipeptide first reported by
Ramachandran and Flory,65’66 and later reproduced MD force
fields, such as CHARMM22%” and the force fields included in
this study. While the MD-derived Ramachandran distributions
in Figure 3 look qualitatively similar, they clearly differ in their
capabilities to reproduce the experimental data, as shown in
Figure 4. The J coupling constants calculated from simulations
using different force fields and Gaussian model alongside
experimental values and uncertainties used in y;* calculation
are reported in Table S2. Considering an overall performance
with respect to ] coupling constants as assessed by y;* (Figure
4g), only Amber ff14SB (with TIP3P) produces a value of
3.18, which is relatively close to the prediction of the Gaussian
model of 1.49. CHARMM36 (with TIP3P) ranks second with
a y;” value of 6.02. The other force fields, in particular OPLS-
AA/L and OPLS-AA/M, result in much higher )(]2 values. A
comparison of the absolute differences between MD-derived
and experimental ] coupling constants offers important
insights. All force fields under study other than Amber
ff14SB significantly overestimate *J(HY,H®). This reflects a
shift of the pPII basin in the Ramachandran space toward more
negative ¢ values relative to its location predicted by the
Gaussian model (Figure 1a). These shifts are also responsible
for the underestimation of the amide I’ VCD signal (Figure

4i). Even Amber ff14SB does not account for a sufficient
rotational strength of amide I' profile to match the
corresponding profile derived from the Gaussian model. The
reduced VCD signals reflect the ¢ dependence of the excitonic
coupling between the two amide I' modes, which decreases
with increasing negative ¢ values. With the sole exception of
'T(N,C,), the Gaussian model outperforms all MD force fields,
but this is of little significance because with the exception of
OPLS-AA/L, all force fields and the Gaussian models yield
'J(N,C,) values within the statistical error of the respective
experimental value. CHARMM36 yields a relatively low y;*
value because it reproduces *J(H,C") and 'J(N,C,) quite well,
while not being too much off-target on the remaining coupling
constants. Thus, of all the force fields under study, Amber
ff14SB outperforms the other five force fields for 3 of the 5 J
coupling constants: *J(HY,H), J(N,C,), and *J(HNH%)
(Figure 4a,d,e), resulting in the best agreement with the
spectroscopic data for alanine in GAG.

We then asked to what extent the MD force fields under
study capture IR and Raman band profiles of amide I’ band, so
that these additional spectroscopic data might be used as
additional benchmarks. Because all MD force fields under
study predominantly sample alanine conformations in the
upper left quadrant of the Ramachandran plot, they are not
expected to differ in their capabilities to reproduce the IR and
Raman band profiles. Indeed, all MD force fields predict
almost identical isotropic Raman, anisotropic Raman, and IR
amide I’ profiles (data not shown). Figure S10 compares both
Raman and IR amide I’ profiles as predicted by Amber ff14SB
(with TIP3P) to the corresponding experimental profiles and
those derived from the Gaussian model to demonstrate that
these profiles are well-reproduced by MD.

The above results suggest that among the investigated force
fields, Amber ff14SB (with TIP3P) performs the best with
respect to the reproduction of the ] coupling constants,
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followed by CHARMM36 (with TIP3P), Amber f99SBnmrl
(with SPC/E), and ff03ws (with TIP4P/200S5). None of the
MD force fields reproduces the amide I’ VCD well but Amber
f14SB yields the least deviation from the experimental data. As
reported in Table S3 for alanine in GAG, Amber ff14SB
predicts the pPII population of 0.55 in good agreement with
the Gaussian model of 0.59. The corresponding pPII
populations predicted by Amber ff99SBnmrl (with SPC/E)
and Amber ff03ws (with TIP4P/2005) of 0.44 and 0.41,
respectively, are well below this value. OPLS-AA/L (with
TIP4P) results in the lowest pPII population of 0.39, while the
corresponding populations predicted by OPLS-AA/M (with
TIP4P) and CHARMM36 both reach 0.51, in a relatively close
agreement with the Gaussian model (Table S3). The close
correspondence between OPLS-AA/M and Gaussian model
with respect to pPII mesostate population might seem
surprising considering a rather limited capability of OPLS-
AA/M to reproduce the spectroscopic data. The reason for this
contradiction can be inferred from the Ramachandran plot for
OPLS-AA/M (Figure 3), which exhibits a pPII distribution
that is shifted significantly to the left from the center of the
pPII mesostate. While the probability density in the pPII basin
is high enough to keep the population of the pPII mesostate
high, this shift is large enough to cause the observed deviations
from the experimental coupling constants and VCD profiles.
A significant difference between the MD-derived and
Gaussian model Ramachandran distributions has to be
addressed. For all six force fields, the peak of the f-strand
population (i.e, a combined population of the aff and fit
mesostates) lies within the af mesostate, while in the Gaussian
model, this population is centered in the ft region, that is, at
less negative ¢ values. Intuitively, Ramachandran distributions

518

with a larger separation between pPII and  mesostates make
physical sense because they are indicative of a significant
barrier between the two states in the free energy landscape. We
therefore asked to which extent the Gaussian model
predictions would be affected if we shifted the p-strand
population from the St toward the aff mesostate. However,
such a shift would require a simultaneous shift of the pPII
population to maintain the ability of the Gaussian model to
reproduce of two ] coupling constants *J(HVH®:) and
3](HNCﬁ). This procedure would deteriorate the Gaussian
model prediction of the other two °J coupling constants and
the VCD amide I’ profile. We thus conclude that the Gaussian
model parameters as reported in the previous work'* offer the
optimal fit to the experimental data.

Conformational Ensembles of the Central Alanine in
AAA. Force Field-Specific Ramachandran Plots for the
Central Alanine in AAA. Ramachandran plots for the central
alanine in AAA are obtained from MD simulations of cationic
AAA in explicit water using the same six force fields as in the
case of GAG (Figure 3). All MD-derived Ramachandran
distributions for alanine in AAA in Figure 5 demonstrate that
the pPII population increases when terminal glycines are
replaced by alanines, indicating that the nearest neighbor
amino acids significantly affect conformational propensities as
predicted by Toal et al®® This result is in a qualitative
agreement with the predictions of the Gaussian model (Figure
la,b), which also features an increased pPII population of
alanine in AAA relative to GAG.

Mesostate populations are reported in Table SS for all six
force fields and the predictions of the Gaussian model are
included for comparison. Amber ff14SB again produces the
highest pPII population (0.63) of all force fields under
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consideration, although the pPII basin in CHARMM36 (with
TIP3P) is the most condensed in the (¢, y) space. The pPII
population predicted by Amber ff14SB of 0.63 is lower than
the pPII population of 0.76 predicted by the Gaussian model.
Following Amber ff14SB are CHARMMS36 and Amber
ff99SBnmrl, which result in comparable pPII populations of
~0.57, followed by OPLS-AA/M (0.55), Amber ff03ws (0.47),
and OPLS-AA/L (~0.40). With respect to the aff population,
Amber ff03ws and Amber ff99SBnmr1 result in the highest and
the lowest values, respectively. The remaining force fields
produce comparable aff populations, which are still higher than
those predicted by the Gaussian model. OPLS-AA/M results in
the highest ft population, followed by OPLS-AA/L and Amber
ff99SBnmrl. Amber ffl03ws and CHARMMS36 result in
comparable St populations. Amber ff14SB is characterized by
the lowest fft population. Whereas OPLS-AA/L produces the
most populated a-helical mesostate, OPLS-AA/M results in
the lowest a-helical population (<0.01) among the force fields
under study. The discrepancies between the respective aff and
Pt populations of the Gaussian model and the MD-derived
distributions are again present. However, these discrepancies
affect the ] coupling constants and VCD profiles to a lesser
extent than in the case of GAG because the overall f-strand
sampling is decreased for the central alanine in AAA.

Amber ff145B Outperforms the Other Force Fields in
Capturing Conformational Ensembles of the Central
Alanine in AAA. A comparison of MD-derived ] coupling
constants and amide I’ VCD profiles to the respective
experimental data, which is displayed in Figure 6, clearly
indicates that Amber ff14SB (with TIP3P) again performs the
best among the investigated force fields. Although the ]
coupling constants are slightly less well reproduced than they
are in the case of GAG, fI14SB still results in the lowest )(]2
value. The ] coupling constants calculated from simulations
using different force fields and Gaussian model alongside
experimental values and uncertainties used in ;" calculation
are reported in Table S3. The corresponding VCD band profile
is also quite close to the experimental profile. Interestingly, all
force fields, in particular f99SBnmrl and ff03ws, much better
reproduce the experimental VCD profile of the central alanine
in AAA than the corresponding VCD profiles of alanine in
GAG. The rather large ){]2 values (compared with GAG) are to
a significant extent caused by the deviations between MD-
derived and experimental *J(C,C’) values. This coupling
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constant is rather difficult to obtain, and the statistical error
displayed in Figure 6f might not fully capture the uncertainties
of the coupling constant and of the respective Karplus
parameters. Moreover, all force fields overestimate the
3J(HN,H) value when compared to the Gaussian model.
Finally, the calculated *J(HY,C;) constants are all under-
estimated, even by the Gaussian model. This coupling constant
is particularly tricky to handle. In order to obtain a value above
2 Hz, one has to consider some sampling in the upper right
quadrant of the Ramachandran plot."”'*'® Conformations in
the upper right quadrant of the Ramachandran plot are absent
from all MD-derived distributions as well as from the Gaussian
model.

Comparison of Mesostate Populations of Alanine in
GAG and AAA. A comparison of mesostate populations
predicted by different force fields and the Gaussian model in
Tables S3 and S5 and Figure 7 demonstrates that the
propensity of alanine to adopt the pPII mesostate increases
if the neighboring glycines (in GAG) are replaced by alanines
(in AAA), which is consistent with the experimental data and
indicative of the nearest neighbor interactions.”®

Thus, the pPII conformations dominate the conformational
ensembles of alanine even more in AAA than in GAG. The
GAG — AAA increase in the pPII population of 0.55 — 0.63
obtained for Amber ff14SB (with TIP3P) is quite close to the
Gaussian model prediction of 0.59 — 0.76. The lowest pPII
populations are predicted by OPLS-AA/L with the GAG —
AAA increase of 0.39 — 0.40, followed by Amber ff03ws (0.41
— 0.47), Amber f99SBnmrl (0.44 — 0.57), OPLS-AA/M
(0.51 = 0.55), and CHARMMS36 (0.50 — 0.57). If the relative
GAG — AAA increase in the pPII population is indicative of
the strength of the nearest neighbor interactions, then these
interactions are the strongest in Amber ff99SBnmrl (1.30),
followed by Amber ff14SB (1.15), Amber ff03ws (1.15), and
CHARMMS3S (1.14), whereas both OPLS force fields yield the
lowest relative increases (1.08 and 1.03 for OPLS-AA-M and
OPLS-AA-L, respectively).

It is noteworthy that af and St populations are significantly
less well accounted for by the six force fields under study,
whereby af is significantly overpopulated for both GAG and
AAA even in the best case (for Amber f99SBnmr1 with SPC/
E) relative to the corresponding population predicted by the
Gaussian model. On the other hand, MD-derived pt
populations are below the Gaussian model prediction of 0.16
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Figure 8. Lifetimes of the four mesostates for alanine in GAG and AAA derived from six different MD force fields.

Table 2. Mesostate Populations and Lifetimes of GAG and AAA in Amber ff99SB and Amber ff14SB

pPII af pt right-handed a-helix
ff99SB ff14SB ff99SB ff14SB ff99SB ff14SB ff99SB ff14SB
Populations
GAG 0.31 0.55 0.20 0.13 0.13 0.07 0.07 0.09
AAA 0.45 0.63 0.21 0.10 0.16 0.07 0.04 0.07
Lifetimes [ps]
GAG 4.53 10.23 3.08 4.01 1.32 0.94 1.96 3.10
AAA 5.37 13.08 3.43 4.13 1.44 0.96 3.18 4.85

for alanine in GAG for all force fields except for OPLS-AA/M,
which predicts a higher value for this population than the
Gaussian model. The reason for the increased St population
within OPLS-AA/M is the shift of the pPII basin to more
negative ¢ values. However, in the Gaussian model pt
decreases to 0.09 for alanine in AAA, whereas in all force
fields other than Amber ff14SB (which predicts much lower ft
populations than the Gaussian model), the St population
increases. Overall, Amber ff14SB outperforms the other five
force fields with respect to its ability to reproduce the pPII
mesostate populations for alanine in GAG and AAA. The next
largest discrepancy between the Ramachandran distributions
derived from Amber ff14SB (and other MD force fields under
study) and those obtained in the Gaussian model revolve
around the incorrect sampling of aff and St populations.
Finally, although the right-handed a-helical mesostate has low
occupancy in the Gaussian model, this mesostate remains
oversampled in MD force fields other than OPLS-AA/M.

Lifetimes of Mesostates: A Glimpse into Their Stability.
Here, we probe dynamic properties of the alanine residue
within the six force fields under investigation by exploring the
average time this residue remains in each mesostate. To this
end, we calculate the mesostate lifetimes for the central alanine
in both GAG and AAA, as described in Methods. As shown in
Figure 8, the longest lifetimes are associated with pPII, which is
also the most populated mesostate in alanine both in GAG and
AAA within all six force fields. The lifetimes of aff and right
handed « helix are comparable but depend on the force field
and are sensitive to nearest neighbors as GAG — AAA
differences are notable. Lifetimes associated with ft are the
shortest within all force fields.

The pPII lifetimes of different alanine’s mesostates in GAG
and AAA are significantly longer in Amber ff14SB than in the
other five force fields. Because longer lifetimes of a particular
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mesostate may be associated with a lower free energy and thus
increased mesostate stability, the above observation indicates
that Amber ff14SB stabilizes pPII better than the other force
fields, most likely due to a decreased ft population, which
produces a higher free energy barrier for pPII — f-strand
transitions. Amber ff14SB and Amber ff03ws produce
comparable af lifetimes, which are significantly longer than
the corresponding lifetimes predicted by the other force fields.
Of the six force fields, Amber ff14SB produces the lowest ft
populations and the shortest St lifetimes for alanine in GAG
and AAA.

Figure S10 shows that the pPII lifetime of the central alanine
in AAA for Amber ff14SB, which was the longest recorded
lifetime of all mesostates across all force fields under
investigation, does not exceed 130 ps. Moreover, we calculated
that more than 72% (for GAG) and 82% (for AAA) of pPII
lifetimes are shorter than 20 ps. The corresponding average
lifetimes of 10 ps (for GAG) and 13 ps (for AAA) are even
shorter (Table S6). These results indicate that the total
simulation time of 100 ns is 3 orders of magnitude longer than
the longest mesostate lifetime, providing additional evidence
that our MD simulations have converged.

Amber ff14SB*” was developed from Amber ffl99SB** by
recalculation of side-chain torsional potentials as well as by
introducing changes to parameters associated with backbone
dihedral potentials. Specifically, Maier et al. aimed to reduce
sampling in the region between f and pPII (i.e., reduce the
population of ft mesostate). To test to which extent these
changes in the backbone dihedral potentials in Amber ff14SB
affect mesostate populations and lifetimes, we performed MD
simulations of GAG and AAA also within the canonical Amber
ff99SB (combined with TIP3P). The corresponding mesostate
populations and lifetimes for Amber ff14SB and Amber ff99SB
are shown in Table 2. In comparison to Amber ff99SB, Amber
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Figure 9. Difference in water orientation distributions between Amber ff14SB and other force fields for GAG. The top left water orientation plot
corresponds to Amber ff14SB (with TIP3P). On the remaining plots, the water orientation distribution of Amber ff14SB is subtracted from the
distribution in other force fields and the difference is normalized to the maximum value across all water orientation distributions (45 X 107°), such
that the scale on the five difference plots corresponds to relative (fractional) changes.

ff14SB produces increased pPII populations for the central
alanine in both GAG and AAA. These increased pPII
populations are associated with significantly longer lifetimes,
whereby the pPII lifetimes of alanine are increased by more
than two-fold in both GAG and AAA. In contrast, Amber
ff14SB-derived af populations of alanine in GAG and AAA are
lower than the corresponding Amber ff99SB populations.
Consistent with the reported reparameterization of the
backbone dihedral potentials, Amber ff14SB predicts lower
Pt populations and shorter lifetimes than Amber ffI99SB. These
findings imply that the pPII mesostate in Amber f14SB was
stabilized by increasing its lifetime via increased free energy
barrier for the pPII — f-strand transition.

GAG — AAA Increase in the pPIl Population Correlates
with the Changes in Water Orientation. We here asked if
properties of water within the first hydration layer around the
side chain of alanine are affected by the nearest neighboring
amino acids. Because pPII conformations dominate the
conformational dynamics of alanine, we derived water
orientation plots as previously introduced by Meral et al.”
(see also Methods) for the ensemble of pPII conformations of
alanine in GAG and AAA for all six force fields. The water
orientation plot of alanine in GAG predicted by Amber {f14SB,
shown in Figure 9 (top leftmost plot), indicates that water
around alanine’s side chain adopts three predominant
orientations: region A (90° < 7 < 100° @ < 10°) wherein
the water molecule plane is parallel to the SAS of the alanine’s
side chain; region B (50° < 7 < 70° 6 > 60°) wherein the
water oxygen points toward and the two water hydrogens point
away from the SAS of the alanine’s side chain; and region C (1
120°, 80° < 6 < 90°) wherein one of the two water
hydrogens points toward and water oxygen points away from
the SAS of the alanine’s side chain in such a way that the
normal to the water plane is nearly perpendicular to the SAS
normal.

~
~
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To examine the effect of the force field on the preferred
water orientation next to the side chain of alanine in GAG, the
water orientation distributions for the five remaining force
fields are displayed in Figure 9 as differences from the water
orientation distribution predicted by Amber ff14SB (with
TIP3P), whereby the scale on the five plots is normalized to
show relative changes. These difference plots demonstrate that
water orientation around the side chain is sensitive to the force
field and water model as the average water orientation
probability density changes up to +50%. Importantly, these
variations are not random. For example, Amber f99SBnmrl
(with SPC/E) predicts significantly more water orientations in
region C than any other force field. Relative to Amber ff14SB
(with TIP3P), in Amber ff99SBnmrl (with SPC/E), water
orientations in all three main regions A, B, and C are more
populated at the expense of the more peripheral regions. One
may argue that these differences stem from distinct water
models. However, both Amber ff14SB and CHARMM36 use
TIP3P yet CHARMM36 predicts more water orientations in
region C at the expense of those in regions A and B (and in the
transitional region between regions A and B). The two OPLS-
AA force fields (both combined with TIP4P) also show
distinct (nonrandom) patterns. Relative to Amber ff14SB,
Amber ff03ws (with TIP4P/2005) exhibits a unique pattern
predicting significantly more water orientations in region B as
well as an increased population in region C, whereas the most
populated region A is shifted to larger n values. These
observations demonstrate that water orientation around
alanine’s side chain is strongly sensitive to the force field and
water model.

Is the water orientation distribution around alanine’s side
chain sensitive to the nearest neighbor amino acids? To assess
this sensitivity, we derive water orientation distributions
around the side chain of the central alanine in AAA and
compared them to the corresponding distributions for GAG.
The results in Figure 10 for Amber ff14SB (upper leftmost
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Figure 10. Difference in water orientation distributions between Amber ff14SB and other force fields for AAA. The top left water orientation plot
corresponds to Amber ff14SB (with TIP3P). On the remaining plots, the water orientation distribution of Amber ff14SB is subtracted from the
distribution in other force fields and the difference is normalized to the maximum value across all water orientation distributions (45 X 107°), such
that the scale on the five difference plots corresponds to relative (fractional) changes.

plot) demonstrate that nearest neighbors have a significant
effect on the orientation of hydration water adjacent to the side
chain. This conclusion is valid for all six force fields as explicitly
shown using the GAG — AAA difference distributions in
Figure S12.

All six force fields predict increased populations of water
orientations within region C whereby Amber ff14SB (with
TIP3P) is associated with the largest and OPLS-AA/M (with
TIP4P) with the lowest increase. Concomitant with the
increase of water orientations in region C is a somewhat
smaller decrease in water orientations in region A, again a
feature shared across all six force fields. A comparison of the
water orientation distribution around the side chain of the
central alanine in AAA in Figure 10 to the one obtained for
Amber ff14SB reveals that force field-specific differences follow
similar force field-specific patterns as the ones for GAG (vide
supra) except for CHARMMS36. These differences are larger
for the two Amber force fields. The water orientation
distribution derived from CHARMMS36 is more similar to
the distribution obtained from Amber ff14SB than in the case
of GAG (compare Figures 9 and 10, bottom right) with an
exception of a decreased population of water orientations in
region C.

Properties of Hydration Water around the Alanine’s Side
Chain. We here asked if the properties of hydration water
(other than their orientation) adjacent to alanine’s side chain
are affected by the mesostate or by the nearest neighbors. We
calculate the average number of water molecules and the
average number of water—water hydrogen bonds formed by
water in the hydration layer surrounding the side chain of the
central alanine in GAG and AAA (see Methods). Figure S13
shows the average number of water molecules for each
mesostate as predicted by the six force fields. On average, pPII
and right-handed « helix are associated with a larger number of
water molecules around alanine’s side chain than St and af,
although the differences are in the order of a fraction of one
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water molecule, that is, <10%. The most interesting is a slight
but statistically significant decrease of ~1/4 in the average
number of water molecules around alanine’s side chain when
glycines in GAG are replaced by alanines in AAA, which is
observed for all six force fields. This result implies that the
average of water molecules around the side chain of the central
alanine residue is affected by its nearest neighbors. When
combined with the above result on the changes in the average
water orientation, these findings demonstrate that on average
both the number and orientation of hydration water molecules
adjacent to the alanine’s side chain are sensitive to its nearest
neighbors.

Figure S14 shows the average number of water—water
hydrogen bonds that form in the hydration layer around the
side chain of the central alanine. The four graphs in Figure S15
that correspond to different mesostates are self-similar,
indicating that water—water hydrogen bonding is dominated
by the water model such that force fields combined with the
same water model (Amber ff14SB and CHARMM?36 are both
combined with TIP3P whereas both OPLS-AA force fields use
TIP4P) predict similar average numbers of water—water
hydrogen bonds. The average number of water—water
hydrogen bonds in the hydration layer around the side chain
of alanine is the highest for SPC/E and TIP4P/2005,
somewhat lower for TIP4P, and the lowest for TIP3P,
showcasing the structural properties of water as predicted by
different water models.®””® Within each of the six force fields,
the average number of water—water hydrogen bonds is larger
in pPII than in aff for both GAG and AAA. No such conclusion
can be made when pPII is compared to St or right-handed o
helix. The average number of water—water hydrogen bonds
around the central alanine tends to decrease when the
neighboring glycines (GAG) are replaced by alanines (AAA)
for all six force fields; however, this decrease is not statistically
significant for all force fields.
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Properties of Hydration Water around the Alanine’s
Backbone. To complement Figure S13, which shows the
average number of water molecules in the hydration layer
around the side chain of alanine in GAG and AAA, Figure S15
shows the same quantity calculated for the hydration layer
around the backbone of alanine in GAG and AAA as predicted
by the six force fields. The results in Figure S15 show that pPII
and right-handed « helix are associated with on average higher
numbers of water molecules in the hydration layer than aff and
S, similar to the case of the side chain hydration layer (Figure
S13). When glycines in GAG are replaced by alanines, Figure
S13 reveals a smaller average number of water molecules
around the side chain of the central alanine. One might
anticipate that this small (~1/4 of a water molecule) but
statistically significant deficit of water molecules would be
compensated for in the hydration layer around the alanine’s
backbone. This prediction would be incorrect as clearly
displayed in Figure S15, which demonstrates an even larger
decrease of ~1 in the average number of water molecules in
the hydration layer around the alanine’s backbone in AAA
relative to GAG.

Is the number of water—alanine hydrogen bonds affected by
the mesostate or nearest neighbors? To answer this question,
we calculated the average number of hydrogen bonds between
water and the central alanine residue in GAG and AAA for all
six force fields. Because the side chain of alanine does not form
hydrogen bonds with water (data not shown), the number of
water—peptide hydrogen bonds displayed in Figure S16
reflects the number of hydrogen bonds between water and
the functional (NH and CO) groups of alanine. We note that
the average number of water—alanine hydrogen bonds is
significantly less affected by the water model than the average
number of water—water hydrogen bonds in the hydration layer
around alanine’s side chain (Figure S14). For all six force
fields, the highest number of water—peptide hydrogen bonds is
formed when alanine adopts pPIl. With respect to nearest
neighbor effects, Amber ff03ws (with TIP4P/2005) is the only
force field that predicts a decreased average number of water—
alanine hydrogen bonds when glycines (in GAG) are replaced
with alanines (in AAA), regardless of the mesostate. For the
other five force fields (and their respective water models), the
water—alanine hydrogen bonding is not strongly affected by
nearest neighbors as both central alanines in GAG and AAA
form on average comparable numbers of water—alanine
hydrogen bonds. Although the hydration layer around the
alanine’s backbone in AAA contains on average fewer water
molecules than in GAG (as predicted by all force fields in our
study), the water—alanine hydrogen bonding is not affected
except for Amber ff03ws.

The above results indicate that the hydration layer around
the entire alanine residue contains on average a fewer number
of water molecules when the neighboring glycines are replaced
by alanines and the effect is significantly stronger in the
hydration layer surrounding its backbone atoms. We then
asked whether the total number of water—water hydrogen
bonds around the entire alanine is also affected by the
neighboring amino acids. Figure S16 confirms that this is
indeed the case as the average number of water—water
hydrogen bonds around the entire alanine residue significantly
decreases when glycines (in GAG) are replaced by alanines (in
AAA) within all force fields. This decrease is particularly large
for Amber ffl03ws (with TIP4P/2005), whereby the decrease in
the average number of water—water hydrogen bonds is ~4.
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Notably, just like in the case of water—water hydrogen bonding
in the hydration layer adjacent to the side chain (Figure S14),
the average number of water—water hydrogen bonds around
the entire alanine is mostly dominated by the structural
properties of the water model with SPC/E showing the largest
numbers, followed by TIP4P/200S, TIP4P, and TIP3P with
the lowest number of water—water hydrogen bonds. The
observation that fewer water molecules in the hydration layer
around alanine in AAA relative to GAG are concomitant with
fewer water—water hydrogen bonds in this layer may not be
surprising. However, the observation that the hydration layer
around the alanine’s backbone rather than the side chain is the
main contributor to these differences is unexpected as it
showcases strong water-mediated interactions between ala-
nine’s side chain and backbone dynamics as well as between
alanine and its nearest neighbors.

B CONCLUSIONS

MD simulations provide atomistic insights into the dynamics
of protein folding and protein—protein interactions. The
predictive power of MD, however, depends on the accuracy
of the underlying force field. Some deficiencies of commonly
used biomolecular MD force fields are well-docu-
mented.”””'~"> One of the fundamental challenges of any
MD force field is to predict intrinsic conformational
propensities and dynamics of guest amino acids x in GxG
peptides in water in a way that is consistent with the published
experimental data.” Of all naturally occurring amino acids,
alanine has drawn a lot of attention in the literature because of
its high propensity to adopt pPIl (see reviews "> and
references therein). Alanine-based short peptides are important
as they are often used as reference systems for MD force field
parameterization.

In this work, we examine several MD force fields with
respect to their ability to capture experimentally determined |
coupling constants and amide I profiles for the central alanine
in GAG and AAA. We explore Amber f14SB (with TIP3P),
Amber ff99SBnmrl (with SPC/E), Amber ff03ws (with
TIP4P/2005), CHARMM36 (with TIP3P), and both OPLS-
AA force fields, OPLS-AA/L and OPLS-AA/M. For each force
field, MD-derived Ramachandran distributions are used to
calculate five (in the case of GAG) or six (in the case of AAA)
J coupling constants and VCD amide I’ profile to facilitate a
direct comparison to spectroscopic data. As a benchmark, we
also use the predictions of the Gaussian model, which employs
a sum of symmetric 2D Gaussian subdistributions to model the
Ramachandran distribution, whereby the parameters of the
Gaussian subdistributions are optimized to best fit the
experimental data. The overall performance of each force
field and Gauss’s model is then assessed via )(]2 and yycp”
values. Although we define four mesostates as rectangular
regions in the Ramachandran space as visual guides, our
assessment of force fields (alongside the respective water
models) is independent of the definition of mesostates because
both * functions are calculated using the entire Ramachandran
distributions and not only the regions enclosed by the four
mesostates.

For both OPLS-AA force fields, we first examine the effect of
a water model on the Ramachandran distributions of alanine in
GAG, using SPC/E, TIP3P, TIP4P, and TIP4P/2005,
identifying TIP4P as the optimal choice. Examining the
performance of the six force fields with respect to their ability
to capture experimental data for the central alanine in GAG
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and AAA shows that Amber ff14SB outperforms the other five
force fields, giving rise to pPII populations for alanine in GAG
and AAA that are in good agreement with those predicted by
the Gaussian model. Two other force fields, Amber
ff99SBnmrl (with SPC/E) and CHARMM36 (with TIP3P),
produce fairly good results. Amber ff03ws (with TIP4P/2005)
and OPLS-AA/L (with TIP4P) show rather strong deviations
from the experimental data.

Although the new version of the OPLS-AA force field,
OPLS-AA/M (with TIP4P) is strongly improved over OPLS-
AA/L (with TIP4P) in predicting pPII populations in GAG
and AAA; these two force fields performed poorly in
comparison to the others in this study, in particular with
respect to predictions of two J coupling constants, *J(HN,H")
and *J(HN,C’), which may be in part associated with a shift of
pPII populations to more negative ¢ values in the
corresponding Ramachandran distributions of alanine in both
GAG and AAA. To make this assessment more quantitative,
we shifted the entire OPLS-AA/M (with TIP4P) dihedral
angle distributions for GAG and AAA by 1 and 10°
respectively, in the positive ¢ angle direction, to match the
centers of the pPII populations in the respective Gaussian
models. We then calculated the ] coupling constants and amide
I' profiles for thus shifted OPLS-AA/M distributions and
calculated the respective ;(]2 and yycp” values. For GAG, the 1°
shift resulted in a minor decrease in )(]2 and yycp® from 29.50
to 27.85 and from 11.03 to 10.8S, respectively. For AAA, the
10°-shift resulted in a decrease in )(]2 and yycp® from $9.76 to
31.44 and from 5.42 to 1.77, respectively. While not sufficient
to outperform Amber ff14SB, thus shifted OPLS-AA/M would
become more comparable in performance to CHARMM36 for
the central alanine in AAA.

The success of Amber ff14SB in the description of alanine
conformations represents a great improvement over the
canonical Amber fI99SB force field, which strongly under-
estimates pPII populations in GAG and AAA alike. This
improvement most likely stems from the empirical adjustments
of dihedral potentials for ¢ and y, which reduced the
population of the St mesostate, thereby stabilizing pPII by
increasing the free energy barrier for pPII/f-strand transitions,
which is reflected also in a significant increase in pPII lifetimes
for both GAG and AAA. Paradoxically, this reduction in the St
population makes Amber ff14SB-derived Ramachandran
distributions for GAG and AAA more distinct from the
predictions of the Gaussian model. In fact, all MD force fields
under study exhibit similar deviations from the Gaussian
model-derived Ramachandran distributions of the central
alanine in both GAG and AAA: (i) the pPII basin predicted
by the Gaussian model is significantly broader than all MD-
derived pPII basins; (ii) all MD force fields predict
overpopulated aff and underpopulated St mesostates; and
(iii) there are two populations in the Ramachandran
distributions of alanine in GAG (see Figure la, y turn
population) and AAA (see Figure 1b, inverse y turn
population) derived from the Gaussian model, which are not
accounted for by MD force fields under investigation. Our
findings thus suggest three potential ways to improve the
ability of MD force fields to capture the experimental data.

Although Amber {f14SB (with TIP3P) outperforms the
other force fields in predicting alanine conformational
dynamics in water, CHARMM36 (with TIP3P) performs
quite well and does not lag behind Amber ff14SB very much.
Importantly, there is no guarantee that Amber ff14SB will

524

perform equally well when predicting conformational dynamics
of other amino acid residues in water. Nonetheless, studies of
alanine and alanine-based peptides help elucidate the peculiarly
high propensity of this amino acid residue to adopt the pPII
mesostate. Meral et al. proposed that pPII conformations of
amino acid residues in water are stabilized by the clathrate-like
water structure around them.” We here further explore
properties of hydration water around alanine in GAG and
AAA for each of the four mesostates. Of the four mesostates,
pPII emerges as the state, in which water forms the most
hydrogen bonds with the functional groups of the alanine’s
backbone, which may anchor the water clathrate structure to
alanine. Our analysis of orientational degrees of hydration
water shows that in all six MD force fields under study, the
average orientation of water molecules in the hydration layer
around the side chain of alanine in the pPII state is significantly
affected by alanine’s nearest neighbors. Namely, replacing
glycines (in GAG) by alanines (in AAA) increases the relative
population of water orientations, in which one of the two water
hydrogens is turned toward the SAS of the side chain. This
water orientation is typical for amino acid side chains that
engage in hydrogen bonding with water, which is surprising
because the alanine’s side chain is not involved in the hydrogen
bond formation. Concomitant with this GAG — AAA water
reorientation in the hydration layer adjacent to alanine’s side
chain is a loss of on average >1 water molecule from the
hydration layer around alanine. This loss of hydration water
around alanine in AAA relative to GAG is accompanied by a
loss of water—water hydrogen bonding in the hydration layer
surrounding the entire alanine, which is particularly large in the
hydration layer adjacent to the alanine’s backbone. These
results combined provide a direct atomistic evidence of
hydration water-mediated interactions between the alanine’s
side chain and backbone groups, a phenomenon that is
relevant to understanding conditional solvation.”® Moreover,
our findings demonstrate that several hydration water proper-
ties are strongly sensitive to neighboring amino acid residues,
elucidating the molecular basis of nearest neighbor effects in
short unfolded peptides in water.
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