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TWO DETECTION RESULTS OF KHOVANOV HOMOLOGY ON
LINKS

ZHENKUN LI, YI XIE, AND BOYU ZHANG

ABSTRACT. We prove that Khovanov homology with Z/2—coefficients detects
the link L7nl, and the union of a trefoil and its meridian.

1. INTRODUCTION

Given an oriented link L in S® and a commutative ring R, Khovanov homology
[KXho00] assigns a bi-graded R—module Kh(L; R) to the link L. In 2011, Kronheimer
and Mrowka [[{M11] proved that Khovanov homology detects the unknot. Since
then, many other detection results of Khovanov homology have been obtained. It
is now known that Khovanov homology detects the unlink [BS15, HN13], the trefoil
[BS18], the Hopf link [BSX19], the forest of unknots [XZ19], the splitting of links
[LS19], and the torus link T'(2,6) [Mar20].

In [X720], a classification is given for all links L such that ranky,, Kh(L;Z/2) < 8
and all 3-component links L such that ranky/, Kh(L;Z/2) < 12. By [Shul4, Corol-
lary 3.2.C], ranky /o Kh(L;Z/2) = 2ranky, Khr(L;Z/2), where Khr denotes the
reduced Khovanov homology. Moreover, the parity of ranky /o Khr(L; Z/2) is invari-
ant under crossing changes and hence is always even for 2-component links (as is the
case for the 2-component unlink). Therefore ranky/, Kh(L;Z/2) is always a multi-
ple of 4. As a consequence, if a 2-component link L satisfies ranky /, Kh(L; Z/2) > 8,
then ranky /o Kh(L;Z/2) > 12.

This paper studies 2-component links L such that rankz/,(L;Z/2) = 12. Among
2-component links with crossing numbers less than or equal to 7, there are four
links (up to mirror images) satisfying rankz,,(L; Z/2) = 12. These links are:

(1) L7nl in the Thistlethwaite Link Table,
(2) L6a3 in the Thistlethwaite Link Table,
(3) the disjoint union of a trefoil and an unknot,
(4) the union of a trefoil and its meridian.

Question 1.1. Suppose L is a 2-component link with ranky o (L;Z/2) = 12, is it
true that L must be isotopic (up to mirror image) to one of the links listed above?

Instead of giving a full answer to the question above, we show that Khovanov
homology (with the bi-grading) detects the link L7nl, and the union of a trefoil
with its meridian, from the list above. Since [XZ19] proved that Khovanov ho-
mology detects the disjoint union of a trefoil and an unknot, and Martin [Mar20]
recently proved that Khovanov homology detects L6a3, we conclude that Khovanov
homology detects all the links on the list.

In the following, we will call the link L7nl as Ly, and the union of a trefoil with
a meridian Lo. Moreover, we fix the chirality and orientation of these two links by
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Ly =L7nl Ly = trefoil U meridian

FIGURE 1. The two links L1 and Lo

Figure 1. Notice that the link L, can also be described as the closure of the 2-braid
o3 together with an axis unknot.

Recall that the internal grading of Khovanov homology is defined by h — ¢ in
[ |, where h is the homological grading and ¢ is the quantum grading. The
precise statement of our detection result is given as follows.

Theorem 1.2. Let Ly, Ly C S® be the oriented links as shown in Figure 1, and let
i € {1,2}. Suppose L C S is a 2-component oriented link, such that

Kh(L;Z/2) = Kh(L;; Z/2)

as abelian groups equipped with the internal gradings, then L is isotopic to L; as
oriented links.

The proof of Theorem 1.2 depends on a rank inequality between reduced Kho-
vanov homology and knot Floer homology by Dowlin | ], and a braid detection
property of link Floer homology by Martin | ]. The main ingredient of the
proof of Theorem 1.2 is the following proposition, which is established in Section 3.

Proposition 1.3. Let L = K UU be a link such that U is an unknot and K is
either an unknot or a trefoil. Let | = |1k(K,U)| be the linking number of K and U.
Suppose I > 0, and

dimg HFK(L; Q) < 12, (1.1)
where AFK is the knot Floer homology defined in | , |. Then at least one

of the following holds:

(1) K is the closure of an l-braid with axis U.
(2) 1 =1, K is an unknot.
(3) =1, K is a trefoil, U is the meridian of K.

Recall that a 2-component link K; U K is said to be exchangeably braided (or
mutually braided) if both K7 and K5 are unknots, K is a braid closure with axis K,
and K is a braid closure with axis K. The concept of exchangeably braided links
was introduced and studied by Morton | ]. We will also need the following
result from | ].
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Proposition 1.4 (] , Corollary 3.9]). Suppose L is an exchangeably braided
link with linking number | > 3, then we have rankg HFK(L; Q) > 12. Moreover, if
[ >3, then rankg HFK(L; Q) > 12.

We will prove Theorem 1.2 in Section 4 as a consequence of Proposition 1.3,
Proposition 1.4, Dowlin’s rank inequality [ , Corollary 1.7], and Batson-Seed’s
spectral sequence | ].

Acknowledgement. The first author is supported by his advisor Tom Mrowka’s
NSF Grant 1808794.

2. LINK FLOER HOMOLOGY

This section reviews the basic properties of link Floer homology and proves a
result on the rank of link Floer homology that will play an important role in the
proof of Proposition 1.3.

The link Floer homology was originally defined for Z/2—coefficients by Ozsvath
and Szabd in | ], and was generalized to Z—coefficients in | ]. We will work
with Q—coefficients in order to invoke Dowlin’s spectral sequence | ]. For the
rest of this section, all Floer homology groups are with Q—coefficients and it will
be omitted from the notation. .

Given an oriented n—component link L C S3, its link Floer homology HFL(L)
carries a homological grading over Z and n Alexander gradings associated to the
n components of L. The Alexander grading associated to the i-th component K;
takes values in either Z or Z+ %7 which depends on the parity of the linking number
k(K;, L — K;).

By | ], when n > 2, the link Floer homology recovers the multi-variable
Alexander polynomial in the following sense:

Z X(Iﬁ(L,al,~-- ,an)) ST T

al, " ,an
= (0 17 (TP = T PAL(TL T, (20)
where I—TF\L(L, ai, -+ ,an) is the component of Iﬁ(L) with multi-Alexander grad-
ing (a1, -+ ,an), and x(-) denotes the Euler characteristic with respect to the ho-

”

mological grading. The notation ”=" means that the two sides are equal up to a
multiplication by :I:le1 -+~ Tb for some by, ---b, € %Z. There is also a symmetry

}Tﬁ,(L,al,u- ,n,) %ﬁF\L(L, —a1, -, —Gy). (2.2)

The following proposition is a special case of the Thurston norm detection prop-
erty of link Floer homology.

Proposition 2.1 (] , Theorem 1.1]). Suppose L = K UU C S is a 2-
component link with an unknotted component U and | = |1k(K,U)| > 0. Then the
top Alexander grading of ILTF\L(L) associated to U is é if and only if U has a Seifert
disk that intersects K transversely at | points.

Remark 2.2. The proof of | , Theorem 1.1] was originally given for Z/2—
coefficients, but the same argument applies to Q—coefficients. Alternatively, a simi-
lar norm-detection property for instanton Floer homology was established by | ]
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using sutured manifold decompositions and the formal properties of Floer homol-
ogy, and the same argument can be carried over to Heegaard Floer homology with
Q-——coefficients.

The following is a weaker version of a result from | ].

Proposition 2.3 (| , Corollary 2]). Let L= K UU C S? be a 2-component
link such that U an unknot and | = |1k(K,U)| > 0. Then K is the closure of a

braid with azis U if and only if the dimension of ﬁ(L) is 2 at the top Alexander
grading associated to U.

The link Floer homology HFL can be interpreted by sutured Floer homology
using the following proposition. Here we use SFH to denote the sutured Floer
homology defined by Juhdsz in | ].

Proposition 2.4 (| , Proposition 9.2]). Suppose L = K; U ... U K, is an
oriented link, and let S3— N (L) be the link complement. Let ~y be a suture on 9(S®—
N (L)) which consists of two meridians of each K;. Then there is an isomorphism

HFL(L) = SFH(S® — N(L), 7).
Moreover, the Alexander grading associated to K; corresponds to the grading induced

by a Seifert surface of K; on SFH(S® — N(L),7).

Remark 2.5. The original statement is for Z/2—coefficients, but the proof is done
by examining the Heegaard diagrams, which also works for Q—coefficients.

We also need the following proposition from | ]

Proposition 2.6 (| , Proposition 9.2]). Suppose (M,) is a balanced sutured
manifold. Suppose 7y is a component of v that is homologically essential on OM.
Let v be a suture on OM obtained by adding two parallel copies of vy to v. Then
we have

SFH(M,~') = SFH(M,~) ©q Q°.
The main result of this section is the following proposition.
Proposition 2.7. Suppose L = KUU C S is a 2-component link with an unknot-

ted component U and | = |1k(K,U)| > 0, and suppose U has a Seifert disk D that
intersects K transversely at | points. Then

dimg }TF\L(L, %) =2 mod 4,

where Iﬁ(L,l/Q) is the component of I—Tﬁ;(L) with degree 1/2 on the Alexander
grading associated to U.

In order to prove Proposition 2.7, we need to establish the following property of
sutured Floer homology.

Proposition 2.8. Let | € Z*t, let T C [~1,1] x D? be a tangle given by T =
a; U---Uaqy, where o; is an arc connecting {—1} x D? and {1} x D? for all i.
Let My = [-1,1] x D? — N(T), let y7 C Mz be a suture on Mr with (I + 1)
components: one meridian component on each one of ON(ay),---ON (), and a
component on [—1,1] x dD? given by {pt} x D?. Then dimg SFH(Mr,~r) is odd.

We start the proof of Proposition 2.8 by verifying the trivial case.
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FIGURE 2. Surgery along (8

Lemma 2.9. If T is a product tangle, i.e., there are points py, ..., p, C int(D?) so
that o; = [—1,1] x {p;} for all i, then dimg SFH(My,~yr) is odd.

Proof. When T is a product tangle, (My,~r) is a product sutured manifold. Hence
it follows from | ] that the dimension of SFH(My,yr) is one. O

Let T be the tangle in Proposition 2.8. Orient T so that each «a; goes from
{=1} x D% to {1} x D%. Fix a diagram on [—1, 1] x [—1, 1] that represents the tangle
T. We will also denote the diagram by 7" when there is no source of confusion. For
a positive crossing of T, we can perform surgeries along the curve g as depicted
in Figure 2. Let My _; be the manifold obtained by performing the (—1)-surgery
along 3, and let Mr o be the manifold obtained by performing the O-surgery along
B. Let T_ be the tangle that only differs from 7T at the crossing linked by £ as
depicted in Figure 2. It straightforward to show that (M7 _1,vr) = (Mr_,vr ).

Definition 2.10. We call the operation of switching from 7" to 7_ or from 7_ to
T a crossing change.

Lemma 2.11. For any vertical tangle T C [~1,1] x D?, there is a finite sequence
of crossing changes that takes T to the product tangle. O

Now we study the sutured manifold (M g,yr). Inside [—1,1] x D?, the circle 8
bounds a disk D that intersects the tangle T twice. After performing the O—surgery,
the boundary 0D can be capped by a meridian disk in the surgery solid torus, and
hence we obtain a 2-sphere S that intersects the tangle T twice. The intersection
of S and My is a properly embedded annulus Ag C M7 . We can pick the suture
vr so that one boundary component of Ag lies in Ry (yr) and the other lies in
R_(yr). Then there is a sutured manifold decomposition

A
(Mro,7r) ~* (M',5").
From | , Section 3.1], we know that M’ = Mr, := [-1,1] x D? — N(Ty), where

Ty is another tangle on [—1,1] x D?, possibly having closed components, such that
Ty only differs from T near the crossing linked by g as depicted in Figure 2.

Definition 2.12. We say that Tj is obtained from 77, by an oriented smoothing.
Lemma 2.13. We have

SFH(Mr o, vr) = SFH(M7,,7'),
and dimg SFH(Mr,,~') is even.
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Proof. The isomorphism
SFH(MT’O, ")/T) = SFH(MTO, ’)/I)

follows from | , Lemma 8.9]. For the parity statement, we argue in two cases.
Case 1. The crossing linked by 3 involves two different components of T'. With-
out loss of generality we can assume that they are a; and as. See Figure 3. Recall
we have an annulus Ag C Mr after performing the 0-surgery along 5. To make
sure that the two boundary components of Ag lie in two different component of
R(vyr), the suture v must be arranged as in one of the two possibilities shown in
Figure 3. After performing the sutured manifold decomposition along Ag, the new
tangle Tp has two new arcs o} and of. Fori = 1,2, let C! = ON(o/}) —{—1,1} x D%
It is straightforward to check that, after the sutured manifold decomposition along
Apg, one and exactly one of the following two possibilities happens, as shown in
Figure 3:
e 7/ N C] consists of three parallel copies of meridians of &)
e 7' N CY consists of three parallel copies of meridians of af,.

Without loss of generality, we assume that the first possibility happens, i.e., 7/
contains three copies meridians of . Removing two such copies, we obtain a new
sutured manifold (Mr,,vr,), and by Proposition 2.6 we have

dimQ SFH(MTO, "yl) =2 dimQ SFH(MTO ; ’VTO).
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FIGURE 4. Oriented smoothing

As a result, dimg SFH(Mrp,,~') is even.

Case 2. The crossing linked by g involves only one component of 7. Without
loss of generality, we assume it is aq, see Figure 4. Let C; = ON (o;) —{—1,1} x D?
for all 7. To make sure that the two boundary components of Ag lie in two different
components of R(vyr), we must have the suture on Cj to be in the position as
depicted in Figure 4. After the decomposition along Ag, the new tangle Ty now has
a closed component, which we call o), and an arc that we call . Let Cj = 9N (oy)
and C] = ON(a}) — {—1,1} x D% Note that C} is a torus while C{ is an annulus.
The suture v contains two meridians on C{), and one meridian on C] (and one
meridian on every other Cj).

Recall that our goal is to show that dimg SFH(M7,,7’) is even. Write

Ty = To\ey.
Case 2.1. When «f) is split from T}, i.e., there is a 3-ball B3 C (—1,1) x D? so
that
B3N Ty = o.
In this case, we know that (Mg,,~') is a connected sum:
(Mz,,7") = (Mg, = B*)#(5%(ap), 7' N B%).

Here S3(af) is the knot complement of the knot afy C B3 C S3. It then follows
from | , Proposition 9.15] that the dimension of SFH(Mr,,~’) is even.

Case 2.2. When «f, is not split from Tj. Suppse there is a positive crossing of
Tp involving both «f, and Tj. Pick the circle  as depicted in Figure 5. Suppose the
component of T} involved in the crossing is o/. There is a surgery exact triangle
associated to 6:

SFH(Mr,,~") SFH(Mz, _,~")

\/

SFH(MTo,m'%))

As above, Ty _ is obtained from Ty by a crossing change and (Mz, _,7") is the
corresponding sutured manifold. The tangle T} ¢ is obtained from T by an oriented
smoothing. As in Figure 5, o, and o/ merge into a single component «f C Tpo. It
is then straightforward to check that the new suture () consists of five meridians
of afj: The two meridians of o, and one meridian of &’ all survive, and there are
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FIGURE 5. Surgery along 6

two more meridians coming from the decomposition along an annulus Ay (similar
to the annulus Ag above). By Proposition 2.6, we know that the dimension of
SFH(MTt, ,,70) is even, and hence

dimg SFH(Mr,,~") = dimg SFH(Mr, _,+") mod 2. (2.3)

However, Ty and Ty — only differ by a crossing change, and following the same
line of Lemma 2.11, there is a finite sequence of such crossing changes that makes
oy split from T}. Hence, it follows from Case 2.1 and (2.3) that the dimension of
SFH(Mr,,~") must be even. This concludes the proof of Lemma 2.13. O

Proof of Proposition 2.8. There is a surgery exact triangle associated to 3:

SFH(Mr,~yr) SFH(M7_,vr_)

\/

SFH(Mr,,v")

Therefore Lemma 2.13 implies dimg SFH(Mr, vr) = dimg SFH(M7_,yr_) mod 2.
Proposition 2.8 then follows from Lemma 2.9 and Lemma 2.11. (]

Remark 2.14. The statement and the proof of Proposition 2.8 can be applied to
sutured monopole theory and sutured instanton theory as well (with suitable choices
of coefficients).

Proof of Proposition 2.7. Take a pair of oppositely oriented meridional sutures to
each boundary component of S® — N (L), then S3 — N(L) becomes a balanced
sutured manifold.

Decompose S% — N(L) along the disk D, we obtain a sutured manifold (M, ).
The manifold M is given by [—1,1] x D? — N(T'), where T is a tangle in [—1, 1] x D2
Since the linking number of K and U is equal to |[K NU|, we have T = a1 U---Uqy
where q; is an arc from {1} x D? to {—1} x D? for each i. The suture y consists of
(I + 3) components: one meridian on each of ON(ay),---ON(ay_1), three parallel
meridians on N (q;), and one component on [—1,1] x dD? given by {pt} x dD?.
We have

AFL(L, %) =~ SFH(M, v).
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Removing two sutures from 9N (cy), we obtain the sutured manifold (My,~yr) as
in Proposition 2.8. By Proposition 2.6, we have

dimg SFH(Mr,v) = 2dimg SFH(M7, 7).

Therefore the desired result follows from Proposition 2.8. O

3. PROOF OF PROPOSITION 1.3

The strategy of our proof of Proposition 1.3 is to exploit the properties of the
multi-variable Alexander polynomial so that we can apply the braid detection prop-
erty of link Floer homology by Martin | , Corollary 2]. The link Floer homol-
ogy and the multi-variable Alexander polynomial are related by (2.1).

Suppose L is a 2-component link, let Ay (z,y) € Z[x,y,2~!,y~1] be the multi-
variable Alexander polynomial of L. Then Ay (z,y) is a priori only well-defined up
to a multiplication by +z%®. It is possible to normalize the Alexander polynomial,
for example, using Equation (2.1). However, the Alexander polynomial normalized
by (2.1) can be a Laurent polynomial with half-integer exponents. For our purpose,
it is more convenient to take Ay, (z,y) as Laurent polynomial with integer exponents,
and therefore we will not normalize Ay (z,y).

For fi, fo € Zlxy, a7, -+ xn, 2], we write fi = fp if and only if there exists
a multiplicative unit € such that f; = e fs.
For f € Z[z1, 27", - , 20,2, '], we use || f|| to denote the sum of the absolute

values of the coefficients of f. By (2.1), we have
rankg HFK(L; Q) = rankg HFL(L; Q) > [|(1 — 2)(1 — y)A(z,y)].
We need the following result.
Theorem 3.1 ([ ). Suppose L = K1 U Ky is a 2-component link with multi-

variable Alezander polynomial A (x,y), where x,y are the variables associated to
K1, K5 respectively. Then we have

11—zt

AL(‘T’]-) = AK1($)7

where Ak, (x) is the Alexander polynomial of Ky and | = 1k(K7, Ks).

1—2x

From now on, let L = K UU be a 2-component link such that
(1) U is an unknot,
(2) K is either a trefoil or an unknot,
(3) the linking number | = 1k(K,U) is positive.
Let Ap(x,y) be the multi-variable Alexander polynomial of L, where z, y are the
variables corresponding to K and U respectively. Define
Fz,y) = (1 - 2)(1 —y)Ar(z,y).
By Theorem 3.1, we have
Ap(Ly) =0 +y+-+y HAuly) =1+y+---+y' " (3.1)

Write
“+o0

(1=ypAr(z,y) = > gml@)y™, (3:2)

m=—0o0
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then by definiton,
F(z,y) =Y (1 —a)gm(x)y™. (3.3)

m

By (3.1), have

L=9ArLy) =1 -y +y+-+yH=1-y"
Therefore, after multiplying Ay (z,y) by £y%, we may assume without loss of gen-
erality that
go(1) = —gi(1) =1, g,n(1) =0 for all m # 0,1. (3.4)
We establish the following two technical lemmas, which allow us to deduce topo-
logical properties of L from the sequence of Laurent polynomials {g,,(x)}mez.

Lemma 3.2. Let L, {gm(2)}mez be as above. If g, (x) =0 for all m # 0,1, then
we have | = 1.

Proof. By the assumption and (3.2),

(1—y) AL(z,y) = go(z) + qu()y".

Plugging in y = 1, we have g;(x) = —go(z), therefore
1—y") go(x _
Bnfany) = P 1y (o),
and hence
Ap(x,1) =1lgo(x).
On the other hand, by Theorem 3.1,

Ap(z,1) = (1+z+-+ 27 H)Ak(z).

Recall that [ is assumed to be positive. Comparing the two equations above, we

have A
Kl(x) € Zzx,z 1.

Since Ak (1) = £1, this implies [ = 1. O

Recall that for a Laurent polynomial f, we use ||f|| to denote the sum of the
absolute values of the coeflicients of f.

Lemma 3.3. Let L, {gm ()} mez be as above. Suppose the following two conditions
hold:

(1) There exists k € Zt, such that gm(z) =0 for all m # 0,1, —k,l + k,
(2) 1A ==z)go(x)| = |1 — z)gu ()] =2,
then | =1 and K is an unknot.

Proof. By Condition (1),

(1 -y AL(z,y) = g-r(@)y™" + go(x) + gi(@)y' + grew(2)y' ™. (3.5)

By Condition (2), ||(1 — x) go(z)|| = 2. Hence there exists an integer s > 0 such
that (1 — z) go(x) =1 — x*, thus

go(x) =14 +uz

By (3.4), this implies s = 1, therefore go(x) = 1. Similarly g;(x) = 1. By (3.4),
there exist integers a, b, such that

s—1

go(z) =z qi(z) = —al.
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Plugging in y = 1 to (3.5), we obtain
guin(z) =2t — 2% — g_p(x), (3.6)
and hence
1 =yAL(z,y) = g-r(2)y " +a =2’y + (2° -2 — g_p(2))y"*"
= gon(@)(y " =y Fat (1 — ) —at Y -y,
Therefore

—k _ Itk a(q _ o l+ky _ bl _ o0k
Ap(z,1) = liInl <gk(l‘)(y Y )"rli 1=yt =2’y —y ))
y— —y

= (1 +2k) g_r(x) + (I + k)2* — ka. (3.7)

By (3.7), if Ap(x,1) has more than two terms, then at least one of its coefficients
is a multiple of (I + 2k).
On the other hand, by Theorem 3.1,

Ap(z,1) =1+ 2+ + 27" Ag(2),
and hence (recall we have assumed that K is either a trefoil or an unknot)

14 x+---4+271 if K is an unknot,

1—2+ 22 if K is a trefoil and [ =1,

Ar(z,1) = (3.8)

-1
1+ sz + 2! if K is a trefoil and [ > 2.
k=2

In particular, all the coefficients of Ay (z,1) € Z[z,z~1] are 1. Since [ + 2k > 3,
the previous argument implies that Ap(z,1) has at most two terms, and hence
there are three possibilities:

(1) K is an unknot, [ =1,
(2) K is an unknot, [ = 2,
(3) K is a trefoil, I = 2.

To eliminate the second and third possibilities, notice that in these cases, (3.7) and
(3.8) yield
(2k +2)g_p(zx) + (k +2)2% —ka® =2 + 1 or 2% 4 1.
By the assumptions, we have k € Z*, and hence
(k+2)z* —ka® =z +1or2®+1 mod (2k +2),
therefore we have
a # b,
and
k+2=+1,k=7F1 mod (2k +2),

which imply k& = 1, thus g_x(2) = —z®. This yields a contradiction to (3.4). O

Proof of Proposition 1.3. Without loss of generality, we assume | = 1k(K,U) > 0.
By (1.1), we have

dimg AFL(L; Q) = dimg HFK(L; Q) < 12. (3.9)
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For a € %Z, we use Iﬁ(L,a;Q) to denote the component of ﬁ(L;Q) with
degree a on the Alexander grading associated to U. Let Ap(x,y), F(z,v), gm(x)
be as above, and we choose Ar(z,y) such that (3.4) holds.

Recall that by (2.1), the coefficients of F(x,y) are the bi-graded Euler charac-
teristics of }ﬁ(L;Q). Since F(1,y) = 0, we have dimg ﬁ(L,a;@) is even for
all a. By (2.2), we have

dimg AFL(L, a; Q) = dimg HFL(L, —a; Q). (3.10)

Since 0 # Ap(z,y) = Ar(z~t,y~!), there is a unique (a,b) € 3Z x 17, such
that F(z,y) := 2%y F(x,y) satisfies F(z,y) = £F(z~,y~!). Write

Flay)= Y ful)y™,

meiz
then by (3.4), we have fl/Q(l') = :I:f_l/2(x*1) # 0. Therefore by (2.1) and (2.2),
dimg AFL(L, 1/2; Q) = dimg HFL(L, —1/2; Q) # 0. (3.11)

Let s € %Z be the maximum degree such that dimg }TF\L(L,S;Q) # 0, then
s >1/2 > 0. Since dimg ﬁ(L, $;Q) is even, by (3.9) and (3.10), we have

dimg I—TF\L(L, $;Q) = 2,4, or 6.

We discuss four cases.

Case 1. dimg HFL(L, s; Q) = 2. By Proposition 2.3, K is a braid closure with
axis U, therefore Case (1) of the proposition holds.

Case 2. dimg ﬁ(L, $;Q) =4, and s = é By Proposition 2.1, U has a Seifert
disk that intersects K transversely at [ points, therefore this assumption contradicts
Proposition 2.7.

Case 3. dimg I’TF\L(L,S;Q) =4, and s > £. By (3.9) and (3.11),

dimg Iﬁ(L, +s5;,Q) =4, dimg }TF\L(L, ié;@) =2,

and ﬁ(L, a; Q) vanishes at all the other degrees. By (2.1), {gm(x)}mez satisfies
the assumption of Lemma 3.3, therefore [ = 1 and K is an unknot, and hence Case
(2) holds.

Case 4. dimg ITF\L(L,S;Q) = 6. By (3.9) and (3.11), we have s = L. By
Proposition 2.1, there is a Seifert disk of U that intersects K transversely at [ points.
By (2.1), F(z,y) is supported at only two degrees in y, and hence {gm(z)}mez
satisfies the assumption of Lemma 3.2. By Lemma 3.2, we have [ = 1, therefore U
is a meridian of K. If K is an unknot, then L is the Hopf link, which satisfies Case
(1). Otherwise, K is a trefoil, and hence Case (3) holds.

O

4. PROOF OF THE MAIN THEOREM

In this section, we prove that Khovanov homology detects the links L; and Lo
given by Figure 1.

Recall that the internal grading of the Khovanov homology of a link L is intro-
duced in | , Section 2] as h — ¢, where h is the homological grading, and ¢ is the



TWO DETECTION RESULTS OF KHOVANOV HOMOLOGY ON LINKS 13

quantum grading. Following | ], we use [ to denote the internal grading. The
next theorem is a special case of a more general result due to Batson and Seed.

Theorem 4.1 (] , Corollary 4.4]). Suppose L = K1 U K» is a 2-component
oriented link. Then we have

rankh Kh(L; F) > rankL ™ 50 52) (kKn (K F) © Kh(Ky; F))

for all 1 € Z, where F is an arbitrary field and rank® denotes the rank of the
summand with internal grading k.

Let F = Z/2 from now on. We have
Kh(Uy; F) = F_g) @ Ffy) @ F(a), (4.1)

where U, is the 2-component unlink and the subscripts denote the internal gradings.
Let T be the left-handed trefoil, and let U be the unknot, we have

Kh(T;F) @ Kh(U;F) = Fg) @ Fly) ®F3) @ Flyy @ Fpy ©F ) @F(ry  (4.2)

Let T be the right-handed trefoil, we have
Kh(T;F) @ Kh(U;F) = F(o) ©F{_yy @F(_3) OF_, @F; 5 @F(_) DF(_7) (4.3)
Recall that the link L; = L7nl can be described as 6%UU where [7% is the closure
of the 2-braid ¢ with axis unknot U, and we choose the orientation as given by
Figure 1 and hence the linking number is 2. The link Ly is given by T'U U where

U is a meridian of T" and the orientation is chosen so that the linking number is 1.
We have

Kh(Ly; F) = Fy) @ Fls) @ F(r) @ Flg) @ Fly) @ F10) ® Fa1), (4.4)
Kh(Lq; F) = F(g) ® F?4) D ]F(5) ¥ F?G) ® F%?) D ]F(S) ¥ F(g). (4.5)
Besides the above links, we define the link Ly = 105 U U, which is the union
of the closure of the 3-braid oi09 and its axis unknot U. This is the torus link
T(2,6), which is denoted by L6a3 in the Thistlethwaite Link Table. We pick the
orientation properly so that the linking number is positive, then
Kh(Ls; F) = Fa) ® Fig) © F(ry ® Fiy) © Flg) @ Fi) ®F1yy) ®F1z). (4.6)
We now prove Theorem 1.2.
Theorem 1.2. Suppose L = K1 UK> is a 2-component oriented link and i € {1,2}.
If Kh(L;F) 2 Kh(Ly;F) (i =1,2) as l-graded abelian groups, then L is isotopic to
L; as oriented links.

Proof. Recall that F = Z/2. By the assumptions, we have
ranky Kh(L; F) = 12. (4.7
By | , Corollary 1.7], we have
rankg Iﬁ:‘T{(L; Q) < 2rankg Khr(L; Q) < 2ranky/, Khr(L;Z/2) = 12. (4.8)

Theorem 4.1 yields

1 112
rankp Khr(K;;F) = 3 rankr Kh(K;; F) < 55 = = 3.
Therefore K; (i = 1,2) is either the unknot or a trefoil according to [ , ]

By Theorem 4.1 again, we have at least one of K; and K5 is the unknot. Without
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loss of generality we assume Ko is an unknot, and we discuss two cases.

Case 1. K is also an unknot. We show that this is contradictory to the as-
sumptions. In fact, Theorem 4.1 and (4.1), (4.4), (4.5) imply that [ = Ik(K;, K3) is
no less than 2. Therefore K is the closure of an [-braid with axis K by Proposition
1.3. Switching the role of K7 and K5 we obtain that K5 is the closure of an [-braid
with axis K;. By Proposition 1.4, we have | < 3. If [ = 2, then L = &fl uu,
which is the link L4al in the Thistlethwaite Link Table. This contradicts (4.7)
because ranky Kh(L4al;[F) = 8. If | = 3, since the only 3-braid representations of

the unknot are given by oi'oy! and o 'of!, we further divide into two cases:

Case 1.1. L=05,0,UU = Ly or L = 0; 05 " UU = L3. Recall that Kh(L3;TF)
is given by (4.6). Changing the orientation or taking the mirror image will shift
the l-grading or change the sign of the [-grading, respectively. In any case, the
l-graded Khovanov homology of L cannot be isomorphic to Kh(L;;F) (i € {1,2}),
contradicting the awp‘cions.

—

Case 1.2. L =010, 'UU or L = 0; o, UU. In this case L is the link L6a2 (or
its mirror image) in the Thistlethwaite Link Table. We have rankyp Kh(L;F) = 20,
which is not the same as L; and Ls.

In conclusion, K cannot be an unknot.

Case 2. K; is a trefoil. There are two cases.

Case 2.1. K is the right-handed trefoil 7. Then Theorem 4.1 and (4.3), (4.4),
(4.5) yield a contradiction.

Case 2.2. K is the left-handed trefoil T'.

If Kh(L;F) = Kh(Lq;F), then by Theorem 4.1, we have lk(K;, K2) = 2. By
Proposition 1.3, the knot K is the closure of a 2-braid in S — N(K3). A 2-braid
representing the left-handed trefoil can only be 3. Therefore L is isotopic L.

If Kh(L;F) = Kh(Lo;F), then by Theorem 4.1, we have 1k(K;,K2) = 1. By
Proposition 1.3, the knot K5 is a meridian of the left-handed trefoil K;. Therefore
L is isotopic to Ls. O

Remark 4.2. The argument above gives an alternative proof of Martin’s theorem
that Khovanov homology detects the torus link 7'(2,6) | , Theorem 4]. In
fact, the link 7'(2,6) is detected by Case 1.1 in the argument above.
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