
14

SlimCache: An Efficient Data Compression Scheme for

Flash-based Key-value Caching

YICHEN JIA, Louisiana State University

ZILI SHAO, The Chinese University of Hong Kong

FENG CHEN, Louisiana State University

Flash-based key-value caching is becoming popular in data centers for providing high-speed key-value services.

These systems adopt slab-based space management on flash and provide a low-cost solution for key-value

caching. However, optimizing cache efficiency for flash-based key-value cache systems is highly challenging,

due to the huge number of key-value items and the unique technical constraints of flash devices. In this

paper, we present a dynamic on-line compression scheme, called SlimCache, to improve the cache hit ratio

by virtually expanding the usable cache space through data compression. We have investigated the effect

of compression granularity to achieve a balance between compression ratio and speed, and we leveraged

the unique workload characteristics in key-value systems to efficiently identify and separate hot and cold

data. To dynamically adapt to workload changes during runtime, we have designed an adaptive hot/cold

area partitioning method based on a cost model. In order to avoid unnecessary compression, SlimCache also

estimates data compressibility to determine whether the data are suitable for compression or not. We have

implemented a prototype based on Twitter’s Fatcache. Our experimental results show that SlimCache can

accommodate more key-value items in flash by up to 223.4%, effectively increasing throughput and reducing

average latency by up to 380.1% and 80.7%, respectively.

CCS Concepts: • Information systems→ Data compression; Flash memory; Key-value stores.

Additional Key Words and Phrases: Flash memory, SSD, key-value caching, data compression

ACM Reference Format:

Yichen Jia, Zili Shao, and Feng Chen. 2020. SlimCache: An Efficient Data Compression Scheme for Flash-based

Key-value Caching. ACM Trans. Storage 16, 2, Article 14 (June 2020), 34 pages. https://doi.org/10.1145/3383124

This is a revised version. A preliminary version of this work was published in the Proceedings of the 26th IEEE International

Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’18).

The work described in this article was partially supported by the U.S. National Science Foundation under Grants No. CCF-

1453705, No. CCF-1629291, and No. CCF-1910958, the Louisiana Board of Regents under Grant No. LEQSF(2014-17)-RD-A-01,

the Research Grants Council of the Hong Kong Special Administrative Region, China under Grants No. GRF 15273616, No.

GRF 15206617, and No. GRF 15224918, and Direct Grant for Research, The Chinese University of Hong Kong (Project No.

4055096).
Authors’ addresses: Yichen Jia, Louisiana State University, Baton Rouge, Louisiana, USA, yjia@csc.lsu.edu; Zili Shao, The

Chinese University of Hong Kong, Shatin, NT, Hong Kong, shao@cse.cuhk.edu.hk; Feng Chen, Louisiana State University,

Baton Rouge, Louisiana, USA, fchen@csc.lsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2020/6-ART14 $15.00

https://doi.org/10.1145/3383124

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:2 Y. Jia et al.

1 INTRODUCTION

Today’s data centers still heavily rely on hard disk drives (HDDs) as their main storage devices. In
order to reduce the traffic of requests to backend data stores, in-memory key-value cache systems,
such as Memcached [58], become popular in data centers for serving various applications [23, 78].
Although memory-based key-value caches can eliminate a large amount of key-value data retrievals
(e.g., “User ID” and “User Name”) from the back-end data stores, they also raise concerns on cost
and power consumption issues in a large-scale deployment. As an alternative solution, flash-based
key-value cache systems recently have attracted an increasingly high interest in industry. For
example, Facebook has deployed a key-value cache system based on flash, called McDipper [23], as
a replacement of the expensive Memcached servers. Twitter has a similar key-value cache solution,
called Fatcache [78].

1.1 Motivations

The traditional focus on improving the caching efficiency is to develop sophisticated cache re-
placement algorithms [39, 57]. Unfortunately, it is highly challenging in the scenario of flash-based
key-value caching. This is for two reasons.
First, compared to memory-based key-value cache, such as Memcached, flash-based key-value

caches are usually 10-100 times larger. As key-value items are typically small (e.g., tens to hundreds
of bytes), a flash-based key-value cache often needs to maintain billions of key-value items, or
even more. Tracking such a huge number of small items in cache management would result in
an unaffordable overhead. Also, many advanced cache replacement algorithms, such as ARC [57]
and CLOCK-Pro [39], need to maintain a complex data structure and a deep access history (e.g.,
information about evicted data), making the overhead even more pronounced. Therefore, a complex
caching scheme is practically infeasible for flash-based key-value caches.
Second, unlike DRAM, flash memories have several unique technical constraints, such as the

well-known “no in-place overwrite” and “sequential-only writes” requirements [3, 12]. As such,
flash devices generally favor large, sequential, log-like writes rather than small, random writes.
Consequently, flash-based key-value caches do not directly “replace” small key-value items in place
as Memcached does. Instead, key-value data are organized and replaced in large coarse-grained
chunks, relying on Garbage Collection (GC) to recycle the space occupied by obsolete or deleted
data. This unfortunately reduces the usable cache space and affects the caching efficiency.

For the above two reasons, it is difficult to solely rely on developing a complicated, fine-grained
cache replacement algorithm to improve the cache hit ratio for key-value caching in flash. In
fact, real-world flash-based key-value cache systems often adopt a simple, coarse-grained caching
scheme. For example, Twitter’s Fatcache uses a First-In-First-Out (FIFO) policy to manage its cache
in a large granularity of slabs (a group of key-value items) [78]. Such a design, we should note, is
an unwillingly-made but necessary compromise to fit the needs for caching many small key-value
items in flash. This paper seeks an alternative solution to improve the cache hit ratio. This solution,
interestingly, is often ignored in practice—increasing the effective cache size.

The key idea is that for a given cache capacity, the data could be compressed to save space, which
would “virtually” enlarge the usable cache space and allow us to accommodate more data in the
flash cache, in turn increasing the hit ratio.

In fact, on-line compression fits flash devices very well. Figure 1 shows the percentage of I/O and
computation time for compressing and decompressing random data in different request sizes. The
figure illustrates that for read requests, the decompression overhead only contributes a relatively
small portion of the total time, less than 2% for requests smaller than 64KB. For write requests, the
compression operations are more computationally expensive, contributing for about 10%-30% of

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:3

4
K

B
,W

1
6
K

B
,R

1
6
K

B
,W

6
4
K

B
,R

6
4
K

B
,W

2
5
6
K

B
,R

2
5
6
K

B
,W

1
M

B
,R

1
M

B
,W

P
er

ce
n
ta

g
e

o
f

to
ta

l
la

te
n
cy

I/O
Compute

 0%

 20%

 40%

 60%

 80%

 100%
1
K

B
,R

1
K

B
,W

4
K

B
,R

Fig. 1. I/O time vs. computation time.

128B 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB128KB

 C
o
m

p
re

s
s
io

n
 R

a
ti

o

 Compression Granularity

Weibo
Tweets
Reddit

 0

 0.5

 1

 1.5

 2

 2.5

 3

Item 64B

Fig. 2. Compression ratio vs. granularity.

the overall time, but it is still at the same order of magnitude compared to an I/O access to flash.
Compared to schemes compressing data in memory, such as zExpander [84], the relative computing
overhead accounts for an even smaller percentage, indicating that it would be feasible to apply
on-line compression in flash-based caches.

1.2 Challenges and Critical Issues

Though promising, efficiently incorporating on-line compression in flash-based key-value cache
systems is non-trivial. Several critical issues must be addressed.
First, various compression algorithms have significantly different compression efficiency and

computational overhead [30, 52, 66]. Lightweight algorithms, such as lz4 [52] and snappy [30],

are fast, but only provide a moderate Compression Ratio, which is calculated as
D=2><?A4BB43

2><?A4BB43
; heavy-

weight schemes, such as the deflate algorithm used in gzip [29] and zlib [66], can provide better
compression efficacy, but are relatively slow and would incur higher overhead. We need to select a
proper algorithm.

Second, compression efficiency is highly dependent on the compression unit size. A small unit size
suffers from a low compression ratio problem, while aggressively using an oversized compression
unit could incur a severe read amplification problem (i.e., read more than needed). Figure 2 shows
the average compression ratio of three datasets (Weibo, Tweet, Reddit) with different container sizes.
We can see that these three datasets are all compressible, as expected, and a larger compression
granularity generally results in a higher compression ratio. In contrast, compressing each key-value
item individually or using a small compression granularity (e.g., smaller than 4 KB) cannot reduce
the data size effectively. In this paper we will present an effective scheme, which considers the
properties of flash devices, to pack small items into a proper-size container for bulk compression.
This scheme allows us to achieve both high compression ratio and low amplification factor.

Third, certain data are unsuitable for compression, either because they are frequently accessed
or simply incompressible, e.g., JPEG images. We need to quickly estimate the data compressibility
and conditionally apply on-line compression to minimize the overhead.
Last but not least, we also need to be fully aware of the unique properties of flash devices.

For example, flash devices generally favor large and sequential writes. The traditional log-based
solution, though being able to avoid generating small and random writes, relies on an asynchronous
Garbage Collection (GC) process, which would leave a large amount of obsolete data occupying
the precious cache space and negatively affect the cache hit ratio.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:4 Y. Jia et al.

All these issues must be well considered for an effective adoption of compression in flash-based
key-value caching.

1.3 Our Solution: SlimCache

In this paper, we present an adaptive on-line compression scheme for key-value caching in flash,
called SlimCache. SlimCache identifies key-value items that are suitable for compression, and
applies a compression and decompression algorithm at a proper granularity, thus expanding the
effectively usable flash space for caching more data.

In SlimCache, the flash cache space is dynamically divided into two separate regions, a hot area
and a cold area, to store frequently and infrequently accessed key-value items, respectively. Based
on the highly skewed access patterns in key-value systems [5], the majority, infrequently accessed
key-value items are cached in flash in a compressed format for the purpose of space saving. A small
set of frequently accessed key-value items is cached in their original, uncompressed format to avoid
the read amplification and decompression penalty. The partitioning is automatically adjusted based
on runtime workloads. In order to create the desired large sequential write pattern on flash, the
cache eviction process and the hot/cold data separation mechanism are integrated to minimize the
cache space waste caused by data movement between the two areas.
To our best knowledge, SlimCache is the first work introducing compression into flash-based

key-value caches. Our compression mechanism achieves both high performance and high hit
ratio by restricting compressed unit within one flash page, dynamically identifying hot/cold data
for caching without causing thrashing, and maintaining a large sequential access pattern on
flash without wasting cache space. We have implemented a fully functional prototype based on
Twitter’s Fatcache [78]. Our experimental evaluations on an Intel 910 PCIe SSD have shown
that SlimCache can accommodate more key-value items in the cache by up to 223.4%, effectively
increasing throughput and reducing average latency by up to 380.1% and 80.7%, respectively. Such
an improvement is essential for data-intensive applications in data centers.

The rest of this paper is organized as follows. Section 2 gives the background. Section 3 introduces
the design of SlimCache. Section 4 presents the experimental results. Section 5 discusses the
limitations. The related work is presented in Section 6. The final section concludes this paper.

2 BACKGROUND

In this section, we briefly introduce flash memory SSD and key-value cache systems. The difference
between the flash-based key-value cache and the in-memory cache has motivated us to design an
efficient flash-based solution.

Flash Memory. NAND flash is a type of EEPROM devices. Typically a flash memory chip is
composed of several planes, and each plane has thousands of blocks. A block is further divided into
multiple pages. NAND flash memory has three unique characteristics: (1) Read/write speed disparity.
Typically, a flash page read is fast (e.g., 25-100 `s), but a write is slower (e.g., 200-900 `s). An erase
must be conducted in blocks and is time-consuming (e.g., 1.5-3.5 ms). (2) No in-place update. A
flash page cannot be overwritten once it is programmed. The entire block must be erased before
writing any flash page. (3) Sequential writes only. The flash pages in a block must be written in a
sequential manner. To address these issues, modern flash SSDs have the Flash Translation Layer
(FTL) implemented in device firmware to manage the flash memory chips and to provide a generic
Logical Block Address (LBA) interface as a disk drive. More details about flash memory and SSDs
can be found in prior studies [3, 11–13].

Flash-based Key-value Caches. Similar to in-memory key-value caches, such as Memcached,
flash-based key-value cache systems also adopt a slab-based space management scheme. Here we
take Twitter’s Fatcache [78] as an example. In Fatcache, the flash space is divided into fixed-size

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:5

slabs. Each slab is further divided into a group of slots, each of which stores a key-value item. The
slots in a slab are of the same size. According to the slot size, slabs are classified into slab classes. For
a given key-value pair, the smallest slot size that is able to accommodate the item and the related
metadata is selected. A hash table is maintained in memory to index the key-value pairs stored in
flash. A query operation (GET) searches the hash table to find the location of the corresponding
key-value item on flash and then loads that slot into memory. An update operation (SET) writes the
data to a new location and updates the mapping in the hash table accordingly. A delete operation
(DELETE) only removes the mapping entry from the hash table. A Garbage Collection (GC) process
is responsible for reclaiming the deleted and obsolete items later.
Although in-memory key-value caches and in-flash key-value caches are similar in their struc-

tures, they show several remarkable distinctions. (1) I/O granularity. The flash SSD is treated as
a log-structured storage. Fatcache maintains a small memory buffer for each slab class. This in-
memory slab buffer is used to accumulate small slot writes, and when it is filled up, the entire slab
is flushed to flash, converting small random writes to large sequential writes. (2) Data manage-

ment granularity. Unlike Memcached, which keeps an object-level LRU list, the capacity-triggered
eviction procedure in Fatcache reclaims slabs based on a slab-level FIFO order.

3 DESIGN OF SLIMCACHE

In order to fully exploit compression opportunities for key-value caching in flash, we need to
carefully consider three critical issues: the compression overhead, the data compressibility and the
constraints of flash hardware.
• Compression overhead. Though simple, naïvely compressing all key-value data and decompressing
them upon every access would incur high computational overhead. We particularly need to separate
“hot” and “cold” data and selectively apply compression to them. So we have:

Rule #1: Do not compress the hot data.

• Compressibility. Certain data types, such as multimedia data and encrypted strings, are already
compressed or by nature incompressible. So we need a simple mechanism to estimate the com-
pressibility of the target data beforehand and to determine a proper compression granularity to
maximize the potential compression efficiency and avoid ineffective compression. So, we have:

Rule #2: Do not compress the incompressible data.

• Flash constraints. Since the underlying flash memory favors large sequential writes, the compres-
sion mechanism should not generate extra small random ones. Considering that all the invalid or
duplicated values have to wait for the garbage collection process to asynchronously reclaim their
occupied valuable cache space, we need to avoid generating much obsolete data. So, we have:

Rule #3: Optimization should be flash-aware.

3.1 Overview

SlimCache is a comprehensive on-line compression scheme for flash-based key-value caching. As
shown in Figure 3, SlimCache adopts a similar structure as Fatcache: A hash table is held in memory
to manage the mapping from a hashed key to the corresponding value stored in flash, compressed
or uncompressed; An in-memory slab buffer is maintained for each slab class, which batches up
writes to flash and also serves as a temporary staging area for making the compression decision.

Unlike Fatcache, SlimCache has an adaptive on-line compression layer, which is responsible for
selectively compressing, decompressing, and managing the flash space. In SlimCache, the flash
space is segmented into two areas, a hot area, which stores the frequently accessed key-value data,
and a cold area, which stores the relatively infrequently accessed data. Note that the key-value

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:6 Y. Jia et al.

Fig. 3. An illustration of the SlimCache architecture.

items in the hot area are stored in the original uncompressed format, which speeds up repeated
accesses, while data in the cold area could be stored in either compressed and uncompressed format,
depending on their compressibility. The division of the two regions is dynamically determined by
the compression module at runtime. In the following, we will explain each of these components.

3.2 Slab Management

Similar to Fatcache, SlimCache adopts a slab-based space management: The flash space is sliced
into slabs. A slab is further divided into equal-size slots, which is the basic storage unit. Slabs are
virtually organized into multiple slab classes, according to their slot sizes. Differently, the slab slot
in SlimCache can store compressed or uncompressed data. Thus, a slab could contain a mix of
compressed slots and uncompressed slots. This design purposefully separates the slab management
from the compression module and simplifies the management. A slab could be a hot slab or a cold
slab, depending on its status. The hot slabs in aggregate virtually form the hot area, and similarly,
the cold slabs together form the cold area. We will discuss the adaptive partitioning of the two
areas later.

Slab Buffer. As flash devices favor large and sequential writes, a slab buffer is maintained to
collect a full slab of key-value items in memory and write them to the flash in bulk. Upon an
update (PUT), the item is first stored in the corresponding memory slab and completion is returned
immediately. Once the in-memory slab becomes full, it is flushed to flash. Besides asynchronizing
flash writes and organizing large sequential writes to flash, the buffer also serves as a staging area
to collect compressible data.

Compression Layer. SlimCache has a thin compression layer to seamlessly integrate on-line
compression into the I/O path. It works as follows. When the in-memory slab buffer is filled up,
we iterate through the items in the slab buffer, and place the selected compressible ones into a
Compression Container until full. Then an on-line compression algorithm is applied to the container,
producing one single Compressed Key-value Unit, which represents a group of key-value items
in the compressed format. Note that the compressed key-value unit is treated the same as other
key-value items and placed back to the in-memory slab buffer, according to its slab class, and
waiting for being flushed. In this process, the only difference is that the slot stores data in the
compressed format. It is unnecessary for the slab I/O management to be aware of such a difference.

Mapping Structure. In SlimCache, each entry of the mapping table could represent two types
of mappings. (1) Key-to-uncompressed-value mapping: An entry points to a slab slot that contains

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:7

an original key-value item, which is identical to a regular flash-based key-value cache. (2) Key-to-
compressed-value mapping: An entry points to the location of a slab slot that contains a compressed
key-value unit, to which the key-value item belongs. That means, in SlimCache, multiple keys
could map to the same physical location (i.e., a compressed slot in the slab). In the items stored
on flash, we add a 1-bit attribute, called compressed bit, to differentiate the two situations. Upon a
GET request, SlimCache first queries the mapping table, loads the corresponding slot from the flash,
and depending on its status, returns the key-value item (if uncompressed) or decompresses the
compressed key-value unit first and then returns the demanded key-value item.

The above design has two advantages. First, we maximize the reuse of the existing well-designed
key-to-slab mapping structure. A compressed key-value unit is treated exactly the same as a
regular key-value item—select the best-fit slab slot, append it to the slab, and update the mapping
table. Second, it detaches the slab management from the on-line compression module, which is
only responsible for deciding whether and how to compress a key-value item. This makes the
management more flexible. For example, we can adaptively use different container sizes at runtime,
while disregarding the details of storing and transferring data.

3.3 Compression Granularity

Deciding a proper compression container size is crucial, because the compression unit size directly
impacts the compression ratio and the computational overhead. Two straightforward considerations
are compressing data in slot granularity or compressing data in slab granularity. Here we discuss
the two options and explain our decision.
• Option 1: Compressing data in slot granularity. A simple method is to directly compress each key-

value item individually. However, such a small compression unit would result in a low compression
ratio. As reported in prior work [5], in Facebook’s Memcached workload, the size of most (about
90%) values is under 500 bytes, which is unfriendly to compression. As shown is Figure 4, around

0 500 1000 1500 2000

Item Size(Bytes)

 0

 20

 40

 60

 80

100

C
u
m
u
l
a
t
i
v
e

P
r
o
b
a
b
i
l
i
t
y
(
%
)

Weibo

Tweets

Reddit

Fig. 4. Distribution of item sizes.

 250

 300

 350

 400

 450

256B 1KB 4KB 16KB 64KB256KB1MB

C
o
m

p
u
ta

ti
o
n
 T

im
e

(u
s)

Size of Data Chunk

Compression
Decompression

 0

 50

 100

 150

 200

Fig. 5. Compression time vs. unit size.

80% of items in the three datasets, Weibo [27, 28], Twitter [77] and Reddit [65], are under 288 bytes,
418 bytes and 637 bytes, respectively. Compressing such small-size values individually suffers from
the low-compression-ratio problems (see Figure 2), and the space saving by compression would be
limited.
• Option 2: Compressing data in slab granularity. Another natural consideration is to compress

the in-memory slab, which is typically large (1 MB in Fatcache as default). However, upon a request
to a key-value item in a compressed slab, the entire compressed slab has to be loaded into memory,
decompressed, and then the corresponding item is retrieved from the decompressed slab. This read
amplification problem incurs two kinds of overhead. (1) I/O overhead. Irrelevant data have to be

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:8 Y. Jia et al.

transferred over the I/O bus, no matter they are needed or not. (2) Computational overhead. We
apply lz4 [52], an efficient compression algorithm, on data chunks of different sizes, generated
from /dev/urandom. As shown in Figure 5, the computational overhead becomes non-negligible
when the compressed data chunk size increases, considering that a flash page read is typically only
about 25-100 `s. So, compressing data in slabs would cause concerns on the overhead issues.

The above analysis indicates that we must carefully balance between two design goals, achieving
a high compression ratio and reducing the overhead. Directly applying compression in either slab
or slot granularity would be unsatisfactory.
SlimCache attempts to make a GET operation completed in no more than one flash page read.

We keep track of the compression ratio after each compression operation at runtime, and calcu-
late the estimated compression ratio, 4BC_2><?A4BB8>=_A0C8> , by calculating the arithmetic mean
of the measured compression ratios. The estimated compression container size is calculated as
: × 5 ;0Bℎ_?064_B8I4 ×4BC_2><?A4BB8>=_A0C8> , where 5 ;0Bℎ_?064_B8I4 is the known flash page size
(typically 4-16 KB), and must be no smaller than a memory page size (4KB as default). The coeffi-
cient : is the multiplier of 5 ;0Bℎ_?064_B8I4 when multiple flash pages are needed. The rationale
behind this is that we desire to provide the compression algorithm a sufficient amount of data for
compression (at least one memory page), and also minimize the extra I/Os of loading irrelevant
data (at least one flash page has to be loaded anyway). It is worth noting that the purpose is not to
guarantee that the amount of data after being compressed will surely fit into one flash page but to
estimate a proper granularity to meet the goal as best efforts. Also, one can adjust the coefficient :
according to the properties of the target workloads to achieve the best performance. We set : = 1

in the prototype, which works well in our experiments. We will study the effect of compression
granularity on the performance in Section 4.3.1.

3.4 Hot/Cold Data Separation

In order to mitigate the computational overhead, it is important to selectively compress the in-
frequently accessed data, cold data, while leaving the frequently accessed data, hot data, in their
original format to avoid the read amplification problem and unnecessary decompression overhead.
For this purpose, we logically partition the flash space into two regions: The hot area contains
frequently accessed key-value items in the uncompressed format; the cold area contains relatively
infrequently accessed key-value items in the compressed format, if compressible (see Figure 6). We
will present a model-based approach to automatically tune the sizes of the two areas in Section 3.5.

Fig. 6. Hot and cold data separation.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:9

Identifying hot/cold data. SlimCache labels the “hotness” at the fine-grained key-value item
level rather than the slab level, considering that a slab could contain a random collection of key-
value items that have completely different localities (hotness). Identifying the hot key-value items
rather than hot slabs would provide more accuracy and efficiency. In order to identify the hot
key-value items, we add an attribute, called access_count, in each entry of the mapping table. When
updating a key-value item, its access_count is reset to 0. When the key-value item is accessed, its
access_count is incremented by 1. During garbage collection, if a compressed key-value item’s
access_count is greater than zero, it means that this key-value item has been accessed at least once
in a compressed format and could be a candidate for promotion to the hot area or continue to
stay in the cold area. In Section 3.6, we will discuss these two polices. Another issue is how many
bits should be reserved for an access_count. Intuitively, the more bits, the more precisely we can
tell the hotness of a key-value item, but more overhead is involved. We will study this effect in
Section 4.3.4.

Admitting key-value items in cache. Two options are possible for handling new key-value
items. The first one is to insert the newly admitted key-value item into the hot area, and when
the hot area runs out of space, we demote the cold items (access_count is 0) into the cold area,
compress and “archive” them there. The second method is to first admit the key-value item into the
cold area, and when the garbage collection process happens, we decompress and promote the hot
items to the hot area. Both approaches have advantages and disadvantages. The former has to write
most key-value data at least twice (one to the hot area and the other to the cold area), causing write
amplification; the latter applies compression in the front, which could cause the decompression
overhead if a promotion happens later. Considering the high locality in key-value caches, only a
small set of key-value items is hot and most are cold, the latter solution would remove unnecessary
flash writes and thus be more efficient. We choose the second solution in SlimCache.

Promotion and demotion. Key-value items can be promoted from the cold area to the hot area,
and vice verse. Our initial implementation adopts a typical promotion approach, which immediately
promotes a key-value item upon access, if its access_count is non-zero. However, we soon found a
severe problem with this approach—in order to create a log-like access pattern on flash, when a
key-value item is promoted into the hot area, its original copy in the cold area cannot be promptly
freed. Instead, it has to be simply marked as “obsolete” and waits for the garbage collection process
to recycle at a later time. During this time window, the occupied space cannot be reused. In our
experiments, we have observed a hit ratio loss of 5-10 percentage points (p.p.) caused by this space
waste. If we enforce a direct reuse of the flash space occupied by the obsolete key-value items,
random writes would be generated to flash, which is not desirable either.

SlimCache solves this challenging problem in a novel way. Upon a repeated access to a key-value
item, we do not immediately promote it to the hot area; rather, we postpone the promotion until
the garbage collector scans the slab. In the victim slab, if a key-value item has an access_count
greater than the threshold (see Section 3.6), we promote it to the hot area and its original space is
reclaimed then. In this way, we can ensure that hot data be promoted without causing any space
loss, and in the meantime, we still can preserve the sequential write pattern.
In order to determine the coldest slab for demotion from the hot area, the slabs are organized

in a linked list and we use the standard Least Recently Used (LRU) replacement algorithm in the
slab granularity for eviction. Every time a slab is accessed, it is regarded as the Most Recently
Used (MRU) one and moved to the head of the list. When the hot area is full, the Least Recently
Used (LRU) hot slab is selected for demotion. Instead of directly dropping all the key-value items,
SlimCache compresses the items with a non-zero access_count and demotes them into the cold
area, which offers the items that have been accessed a second chance to stay in cache. For the

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:10 Y. Jia et al.

items that have never been accessed, SlimCache directly drops them since they are unlikely to be
accessed again.
In both promotion and demotion, we simply place the compressed/uncompressed key-value

items back to the slab buffer, and the slab buffer flushing process is responsible for writing them
to flash later. Such a hot/cold data separation scheme is highly effective. In our experiments, the
write amplification caused by data movement between the two areas is found rather low (see
Section 4.3.2).

3.5 Adaptive Partitioning

As mentioned above, the partitioning of flash space effectively determines the portion of key-value
items being stored in compressed or uncompressed format. The larger the cold region is, the more
flash space could be saved, and the higher hit ratio would be; however, the more I/Os have to
experience a time-consuming decompression. Thus, we need to first identify a reasonable initial
partitioning plan and also provide a dynamic partitioning scheme to reflect the change of workload
patterns. We use a simple model-based solution for such adaptive partitioning.

Initializing partitions. If we assume the workload distribution follows the Zipf’s law [8, 70, 88],
a small portion of records will serve most of the requests. The Zipfian distribution has been
extensively studied. In the following, we adopt the expressions defined in prior work [45] to explain
how we determine the initial partition ratio. As defined in the work [45], the Zipfian distribution
has the random variable - and parameters U and # , and the probability is

5 (G) =
1

GU
∑#

8=1 (
1
8
)U
, G = 1, 2, ..., # . (1)

where # is a positive integer and U ≥ 0. The true Zipf’s law [88] has U = 1, and a broader class
of Zipf-like distributions [8] has 0 < U < 1 and close to 1. If we represent the summation in the
denominator as

�#,U =

#∑

8=1

(
1

8
)U (2)

the cumulative distribution function on the support of - becomes

� (G) = % (- ≤ G) =
�G,U

�#,U
(3)

In the case that U = 1, asymptotically � (G) ≈ lnG
ln#

. If we assume the distribution follows a true
Zipf’s law, where U = 1, according to the work [45], the population mean of the true Zipf’s law is

� [-] =
�#,U−1

�#,U
(4)

When we set G to � [-], the cumulative distribution function becomes

� (� [-]) ≈
ln(#

ln#
)

ln#
= 1 −

ln ln#

ln#
(5)

For more details, one may refer to prior studies [8, 45, 70, 88]. In this paper, we use Equations 4
and 5 to determine the initial partition ratio. Two examples are shown as below.
(1) When the number of records in the system is 100 million (i.e., # = 100"), � [-] = #

ln#
=

100"/18.42 = 5.43" . This means that the update frequency of 5.43M records (i.e., approximately

5.4%) is above the average frequency. The hit ratio of all the 5.43M records is � (� [-]) ≈ 1− ln ln#
ln#

=

1 − 2.91/18.42 = 84.2%.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:11

(2) When the number of records in the system is 10 billion (i.e., # = 10�), � [-] =
#
ln#

=

10�/23.03 = 434" . This means that the update frequency of 434M records (i.e., approximately 4.3%)

is above the average frequency. The hit ratio of all the 434M records is � (� [-]) ≈ 1 − ln ln#
ln#

=

1 − 3.14/23.03 = 86.4%.
In our prototype, we set the hot area initially as 5% of the flash space. According to our analysis

above, it is expected to satisfy about 85% of service requests to the cache server. Then we use a
model-based on-line partitioning method to adaptively adjust the sizes of the two areas at runtime.

Cost model based partitioning. As mentioned above, there is a tradeoff between the decom-
pression overhead and the cache hit ratio. We propose a simple cost model to estimate the effect of
area partitioning.

�>BC = �ℎ>C ×�ℎ>C + �2>;3 ×�2>;3

+(1 − �ℎ>C − �2>;3) ×�<8BB
(6)

�ℎ>C and �2>;3 are the ratios of hits contributed by the hot key-value items and the cold key-value
items on the flash, respectively.�ℎ>C and�2>;3 are the costs when the data is retrieved from the hot
and cold areas, respectively. �<8BB is the cost of fetching data from the backend data store. These
parameters can be obtained through measurement during runtime.
As shown in ALGORITHM 1, our model needs to consider two possible partitioning decisions,

increasing or decreasing the hot area size:
• Option #1: Increasing hot area size. If the size of the hot area is increased by (, more data could

be cached in the uncompressed format. The hit ratio contributed by the head (space of the cold
area is denoted as�2_ℎ403 . The hit ratio�

′

ℎ>C
provided by the hot area after increasing by (becomes

�ℎ>C +�2_ℎ403/2><?A4BB8>=_A0C8> . The hit ratio �
′

2>;3
provided by the cold area after decreasing

by (becomes �2>;3 − �2_ℎ403 .
• Option #2: Decreasing hot area size. If the size of the hot area is decreased by (, there will be less

uncompressed data cached. The hit ratio contributed by the tail (space of the hot area is denoted
as �ℎ_C08; . The hit ratio �

′

ℎ>C
provided by the hot area after decreasing by (becomes �ℎ>C −�ℎ_C08; .

Correspondingly, the cold area will grow by (, so the hit ratio �
′

2>;3
provided by the cold area will

be increased to �2>;3 + �ℎ_C08; × 2><?A4BB8>=_A0C8> .
We compare the current cost with the predicted cost after the possible adjustments. If the current

cost is lower, we keep the current partitioning unchanged. If the predicted cost after increasing or
decreasing the hot area is lower, we enlarge or reduce the hot area size, accordingly.

The above-said model is simple yet effective. Other models, such as miss ratio curve [87], could
achieve a more precise prediction but is more complex and costly. In our scenario, since multiple
factors vary at runtime anyway and the step (is relatively small, the cost estimation based on this
simple model works well in our experiments.

3.6 Garbage Collection

Garbage collection is a must-have process in flash-based key-value cache systems. Since flash
memory favors large and sequential writes, when certain operations (e.g., SET and DELETE) create
obsolete value items in slabs, we need to write the updated content to a new slab and recycle the
obsolete or deleted key-value items at a later time. When the system runs out of free slabs, we need
to reclaim their space on flash.
As Figure 7 shows, SlimCache deploys a Two-stage Garbage Collection similar to our prior

work [73]. When the number of free slabs in the cold area of SSD drops to the start watermark
(,BC0AC), Space-based Eviction is triggered and quickly cleans slabs. It switches to Locality-based

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:12 Y. Jia et al.

Algorithm 1 DYNAMIC PARTITIONING

1: Data: compression_ratio, init_hot_area
2: Result: The partition of flash space
3: // �ℎ>C and �2>;3 mean the hit ratios in the hot and cold areas, respectively.
4: // 8=8C_ℎ>C_0A40, 2DAA_ℎ>C_0A40 and >?C_ℎ>C_0A40 mean
5: // the initialized, current, and optimal hot area sizes, respectively.
6: // �8C () calculates the estimated hit ratios in the hot and cold areas.
7: // �>BC () calculates the estimated overall cost with the estimated hit ratios.
8: �ℎ>C , �2>;3 ← �8C (8=8C_ℎ>C_0A40, 2><?A4BB8>=_A0C8>);
9: >?C_ℎ>C_0A40 ← 8=8C_ℎ>C_0A40;
10: >?C_2>BC ← �>BC (�ℎ>C , �2>;3);
11: 2DAA_ℎ>C_0A40 ← 8=8C_ℎ>C_0A40;
12: BC4? ← {+(,−(}

13: <0G_ℎ>C_0A40 ← ?A434 5 8=43_CℎA4Bℎ>;3
14: procedure �.#�"��_%�')�) �$#�#�

15: for 8 ← 0; 8 ≤ 1; 8 ← 8 + 1 do

16: =4F_ℎ>C_0A40 ← 2DAA_ℎ>C_0A40 + BC4? [8];
17: �ℎ>C , �2>;3 ← �8C (=4F_ℎ>C_0A40, 2><?A4BB8>=_A0C8>);
18: =4F_2>BC ← �>BC (�ℎ>C , �2>;3);
19: if =4F_2>BC ≤ >?C_2>BC and |>?C_2>BC − =4F_2>BC | > n then

20: if =4F_ℎ>C_0A40 ≤ <0G_ℎ>C_0A40 then

21: >?C_2>BC = =4F_2>BC ;
22: >?C_ℎ>C_0A40 ← =4F_ℎ>C_0A40;
23: end if

24: end if

25: end for

26: 2DAA_ℎ>C_0A40 ← >?C_ℎ>C_0A40
27: ���*()_%�')�) �$# (>?C_ℎ>C_0A40)
28: end procedure

Fig. 7. An illustration of the two-stage GC. Fig. 8. Data recycling in garbage collection.

Recycling, when the free slab number is brought back to the low watermark (,;>F). The GC process
continues until the number of free slab reaches the high watermark (,ℎ86ℎ).
• Space-based eviction: When the number of the free slabs in the cold area drops to below

the start watermark,,BC0AC , the space-based eviction process is triggered to release the high space

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:13

pressure. All the data in the Least Recently Used (LRU) slab, including the valid data, will be dropped
directly to reclaim the free space quickly. This is safe, since the backend data store still contains
the most recent version. After updating the hash table mapping, the whole slab is put into the free
cold slab list. This GC policy aims to reclaim the free space as fast as possible. When the number of
free slabs reaches the low watermark,,;>F , the GC process switches to locality-based recycling.
• Locality-based recycling: When the number of the free slabs in the cold area is between the

low watermark,,;>F , and the high watermark,,ℎ86ℎ , the locality-based recycling is triggered.
We search the slab queue of the cold area to identify the slab that is most frequently accessed.
The whole slab is read and based on the access_count, the key-value items can be divided into
three possible categories: hot, warm and cold. Accordingly, as illustrated in Figure 8, we could
apply different recycling policies for them—the cold or invalid (obsolete or deleted) key-value items
are dropped directly; the warm items continue to stay in the cold area in the compressed format;
the hot items are decompressed and promoted into the hot area. Note that we may also make
a coarser differentiation by dividing the items into only two categories, hot and cold. In fact, in
our experiments we find that using a 1-bit counter to differentiate hot and cold items generally
satisfies our needs in most cases. After updating the hash table mappings, the whole slab is cleaned
and placed back to the free cold slab list. Unlike the space-based eviction, this garbage collection
procedure takes more time, and collects and promotes valuable items for the purpose of retaining a
high hit ratio. When the number of free slabs reaches the high watermark,,ℎ86ℎ , the GC process
stops.

These two GC policies are designed for different situations. The space-based eviction is responsi-
ble for evicting cold items and aims to reclaim the free space as quickly as possible. So it is used
when SlimCache runs out of free slabs to a severe degree. The locality-based recycling is mainly
responsible for collecting and promoting the hot items to retain the hit ratio.

The demotion process in the hot area is similar. When the free space is below the low watermark,
,;>F , the LRU slab is selected and all the valid items are compressed and demoted into the cold
area. The process repeats until the number of free slabs reaches to the high watermark,,ℎ86ℎ .

3.7 Dynamic Compressibility Recognition

Some key-value data are incompressible by nature, such as encrypted or already-compressed data,
e.g., JPEG images. Compressing them would not bring any benefit but incurs unnecessary overhead.
We need to quickly estimate data compressibility and selectively apply compression.

A natural indicator of data compressibility is the entropy of the data [72], which is defined as
� = −

∑=
8=1 ?8 × log1 ?8 . Entropy quantitatively measures the information density of a data stream

based on the appearing probability (?8) of the = unique symbols. It provides a predictive method
to estimate the amount of redundant information that could be removed by compression, such as
the Huffman encoding [31, 43]. Entropy has been widely used for testing data compressibility in
various scenarios, such as primary storage [31], memory cache [14], device firmware [69], image
compression [56], and many others. We use normalized entropy [80], which is the entropy divided
by the maximum entropy (log1 =), to quickly filter out the incompressible data, which are indicated
by a high entropy value.
We initialize the threshold to be the average entropy value of randomly generated strings.

Since randomly generated strings are mostly incompressible [75], we can effectively skip compres-
sion operations for strings whose normalized entropy is larger than that of random strings (i.e.,
incompressible) to remove the unnecessary computational overhead.
We have developed a Dynamic Compressibility Recognition (DCR) algorithm to adaptively

adjust the entropy threshold during runtime based on the real-time compression ratio. It works as
shown in ALGORITHM 2. The global_min_cmpr is a predefined minimum compression ratio that

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:14 Y. Jia et al.

Algorithm 2 DYNAMIC COMPRESSION RECOGNITION

1: Result: threshold for the entropy
2: 8=8C_4=CA>?~_E0;D4 ← 4=CA>?~ (A0=3><BCA8=6B);
3: 4=CA>?~_CℎA4Bℎ>;3 ← 8=8C_4=CA>?~_E0;D4 ;
4: 6;>10;_<8=_2<?A ← ?A434 5 8=43_E0;D4;
5: 2DAA_<8=_2<?A ←<0G_8=8C_2<?A ;
6: for each 2DAA_1;: do

7: if 6;>10;_<8=_2<?A < 2><?A4BB8>=_A0C8> (2DAA_1;:) < 2DAA_<8=_2<?A then

8: 4=CA>?~_CℎA4Bℎ>;3 = 4=CA>?~ (2DAA_1;:);
9: 2DAA_<8=_2<?A = 2><?A4BB8>=_A0C8> (2DAA_1;:);
10: end if

11: end for

12: *%��)�_)�'�(�$!� (4=CA>?~_CℎA4Bℎ>;3)

is acceptable for SlimCache to apply compression operations to gain performance benefits. The
curr_min_cmpr is the minimum compression ratio found in the current workload. If a current data
block’s compression ratio is found smaller than curr_min_cmpr and greater than global_min_cmpr,
the entropy_threshold and the curr_min_cmpr are updated as the entropy value and the compression
ratio of the current data block, respectively. The rationale behind this algorithm is that we first
ensure that using the entropy threshold would not result in a compression ratio lower than the
acceptable ratio (defined by global_min_cmpr), and we initially set a high entropy threshold to
ensure a high compression ratio, and gradually tune down this entropy threshold if we observe an
acceptable compression ratio during runtime. In this way, we can find the best cutoff thresholds for
different workloads.

The items that are detected incompressible are directly written to the cold area in their original un-
compressed format. Thus note that the cold area could hold a mix of compressed and uncompressed
data. This entropy-based estimation fits well in our caching system, especially for its simplicity,
low computation cost, and time efficiency. We will study the effect of dynamic compressibility
recognition in Section 4.3.6.

3.8 Summary

SlimCache shares the basic architecture design with regular flash-based key-value caches, such as
the slab/slot structure, the mapping table, the in-memory slab buffer, and the garbage collection.
However, SlimCache also has several unique designs to realize efficient data compression.
First, we add a compression layer that applies compression algorithms on the suitable items

at a proper granularity. The compressed unit is placed back to the slab-based cache structure
as regular key-value items, so that the cache space can be consistently allocated and managed.
Accordingly, the mapping structure is also modified to point to either compressed or uncompressed
items. Second, SlimCache dynamically divides the flash cache space into two separate regions,
a hot area and a cold area, to store data in different formats for minimizing the computational
overhead caused by compression. Third, SlimCache also enhances the garbage collection process by
integrating it with the hot/cold data separation mechanism to avoid the cache space waste caused
by data movement between the two areas. Finally, we add compressibility recognition mechanism
to identify the data suitable for compression. These differences between SlimCache and a regular
flash-based key-value cache, such as Fatcache, contribute to the significant performance gain.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:15

4 EVALUATION

To evaluate the proposed schemes, we have implemented a prototype of SlimCache based on
Twitter’s Fatcache [78], which has been used in academic works [4, 25, 42, 71, 73] and commercial
product benchmarking [67, 68]. Our implementation accounts for about 2,700 lines of code in C. In
this section, we present our evaluation results for the SlimCache design on a real SSD hardware
platform.

4.1 Experimental Setup

Our experiments are conducted on three Lenovo ThinkServers. All the three servers feature an Intel
Xeon(R) 3.40GHz CPU and 16GB DRAM memory. In the key-value cache server, an 800GB Intel 910
PCIe SSD is used as the storage device for key-value caching. Note that for a fair comparison, only
a part of the SSD space (12-24 GB) is used for caching in our experiments, proportionally to the
workload dataset size. All the experiments use direct_io to minimize the effect of the operating
system page cache. In Fatcache and SlimCache, the consumed memory space is mainly for holding
the hash mapping structure in memory. Each mapping entry consumes 44 bytes, and the memory
consumption is largely proportional to the number of key-value items in cache. For example, in
our experiments with the Twitter data set, SlimCache consumes up to about 4 GB memory for
indexing 98 million key-value items. Fatcache, due to the less amount of key-value items being
cached, consumes proportionally less memory. Our backend data store is MongoDB v3.4.4 running
on a separate server with 1TB Seagate 7200RPM hard drive. The clients run on another ThinkServer
to generate traffic to drive the experiments. The three servers are connected via a 10Gbps Ethernet
switch. For all the three servers, we use Ubuntu 14.04 with Linux kernel 4.4.0-31 and Ext4 file
system.

We use Yahoo’s YCSB benchmark suite [24] to generate workloads to access key-value items, fol-
lowing three different distributions, Zipfian, Normal, andHotspot1, as described in priorwork [9] [84]
to simulate typical traffic in cloud services [5]. Since the YCSB workloads do not contain actual
data, we use the datasets from Twitter [77], Flickr [33], and Reddit [65] to emulate three typical
types of key-value data with different compressibility. The Twitter and Reddit datasets have a
high compression ratio (about 2-4), while the Flickr dataset has a low compression ratio, near to 1
(incompressible). In order to generate fixed-size compressible values (Section 4.3.1), we use the
text generator [26] based on Markov chain provided by Python to generate the pseudo-random
fixed-size values. We use the lightweight lz4 [52] and the heavyweight deflate method in zlib [66]
for compression in comparison.
In the following, our first set of experiments evaluates the overall system performance with a

complete setup, including both the cache server and the backend database. Then we focus on the
cache server and study each design component individually. Finally we study the cache partitioning
and further give the overhead analysis.

4.2 Overall Performance

In this section, our experimental system simulates a typical key-value caching environment, which
consists of clients, key-value cache servers, and a database server in the backend. We test the system
performance by varying the cache size from 6% to 12% of the dataset size, which is about 200 GB in
total (480 million, 300 million, and 2 million records for Twitter, Reddit and Flicker, respectively).
Thus only part of the 800GB SSD capacity is used as cache (12-24 GB) for fair comparison. For
each test, we first generate the dataset to populate the database, and then generate 300 million GET

requests. We only collect the data for the last 400K requests in the trace replaying to ensure that

1Hotspot is a distribution in which 80% of the operations access 20% of the data items and the rest 20% of the operations

access the rest 80% items. Elements for the hot set and cold set are chosen in an uniform manner.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:16 Y. Jia et al.

the cache server has been warmed up. All the experiments use 8 key-value cache servers and 32
clients.

4.2.1 Performance for Twi!er Dataset. Our on-line compression solution can “virtually” enlarge
the size of the cache space. Figures 9a, 9b, and 9c show the number of items cached in SlimCache
compared to the stock Fatcache with the same amount of flash space.

 100

 120

6 8 10 12

N
u
m

b
er

 o
f

O
b
je

ct
s

(M
)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(a) Num. of objects, Zipfian

 100

 120

6 8 10 12

N
u
m

b
er

 o
f

O
b
je

ct
s

(M
)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(b) Num. of objects, Hotspot

 100

 120

6 8 10 12

N
u
m

b
er

 o
f

O
b
je

ct
s

(M
)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(c) Num. of objects, Normal

 100

 120

6 8 10 12

H
it

 R
a
ti

o
(%

)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(d) Hit Ratio (%), Zipfian

 100

 120

6 8 10 12

H
it

 R
a
ti

o
(%

)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(e) Hit Ratio (%), Hotspot

 100

 120

6 8 10 12

H
it

 R
a
ti

o
(%

)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(f) Hit Ratio (%), Normal

 500

 600

 700

 800

6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 100

 200

 300

 400

(g) Throughput (OPS), Zipfian

 500

 600

 700

 800

6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 100

 200

 300

 400

(h) Throughput (OPS), Hotspot

 500

 600

 700

 800

6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 100

 200

 300

 400

(i) Throughput (OPS), Normal

 250

 300

 350

 400

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 50

 100

 150

 200

(j) Latency (ms), Zipfian

 250

 300

 350

 400

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 50

 100

 150

 200

(k) Latency (ms), Hotspot

 250

 300

 350

 400

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 50

 100

 150

 200

(l) Latency (ms), Normal

Fig. 9. Performance of Twi"er dataset.

As shown in Figure 9a, the number of items in cache increases substantially by up to 125.9%.
Such an effect can also be observed in other distributions. Having more items cached in SlimCache
means a higher hit ratio. Figures 9d, 9e, and 9f show the hit ratio difference between Fatcache and

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:17

SlimCache. In particular, when the cache size is 6% of the dataset, the hit ratio (54%) of SlimCache-
zlib for the hotspot distribution is 2.1 times of the hit ratio provided by Fatcache. For the Zipfian
and normal distributions, the hit ratio of SlimCache-zlib reaches 72.6% and 64.7%, respectively.
A higher hit ratio further results in a higher throughput. As the backend database server runs
on a disk drive, the increase of hit ratio in the flash cache can significantly improve the overall
system throughput and reduce the latencies. As we can see from Figures 9g, 9h, and 9i, compared
to Fatcache, the throughput improvement provided by SlimCache-zlib ranges from 25.7% to 255.6%,
and the latency decrease ranges from 20.7% to 78.9%, as shown in Figures 9j, 9k, and 9l.

Scheme Zipfian Hotspot Normal

Fatcache 65.1% 25.2% 32%
SlimCache w/o Compression 66.2 % 26.4% 33.5%

SlimCache with lz4 70.2 % 45.4% 52.8%

Table 1. Hit ratio gain of compression in SlimCache.

To further understand the reason of the performance gains, we repeated the experiments with
compression disabled. Table 1 shows the results with a cache size as 6% of the dataset. We can see
that without data compression, solely relying on the two-area (hot and cold area) cache design,
SlimCache only provides a slight hit ratio increase (1.1-1.5 p.p.) over the stock Fatcache. In contrast,
SlimCache with compression provides a more significant hit ratio improvement (5.1-20.8 p.p.). It
indicates that the performance gain is mainly a result of the virtually enlarged cache space by
on-line compression rather than the two-area cache design.

4.2.2 Performance for Reddit Dataset. We further conduct experiments with Reddit on SlimCache
to illustrate the effectiveness of our proposed approaches. Figures 10a–10c show the number of key-
value items cached in SlimCache compared to Fatcache with the same amount of cache space. We
can see from Figure 10a that the number of items cached in SlimCache-zlib increases significantly
by up to 223.4%. Such an increase can also be found with other distributions. More key-value items
cached by SlimCache result in a higher hit ratio. We can observe the hit ratio difference between
Fatcache and SlimCache in Figures 10d–10f. For the Zipfian distribution, when the cache size is 6%
of the working set, the hit ratio provided by SlimCache-zlib is about 69.3%, which is about 7 p.p.
higher than Fatcache. A higher hit ratio further helps improve the throughput. As Figures 10g–10i
show, the throughput improvement provided by SlimCache-zlib ranges from 18.9% to 380.1%. We
can also observe in Figures 10j–10l that, as the cache size increases, the latency decrease ranges
from 16.4% to 80.7%. It well shows that SlimCache can gain significant performance improvement
for both Twitter and Reddit datasets.

4.2.3 Effect of Replacement Algorithms. Figure 11 shows the effect of different replacement algo-
rithms on the performance of the system for the Reddit workload with Zipfian distribution. We
compare Fatcache with the FIFO algorithm (default) and the LRU algorithm with our proposed
SlimCache-zlib. Figure 11a shows that the hit ratio increases from 66.39% to 68.72%, if we change
the replacement algorithm from FIFO to LRU for Fatcache when the cache size is 12% of the working
set. Accordingly, Figure 11b shows that the throughput increases from 233 ops/sec to 252 ops/sec
and Figure 11c shows that the average latency decreases from 122.78 ms to 112.17 ms. These exper-
imental results illustrate that the LRU replacement algorithm only slightly improves performance
over FIFO. In contrast, SlimCache-zlib outperforms Fatcache-LRU significantly. For example, the
throughput of SlimCache-zlib is 32.1% higher than that of Fatcache-LRU when the cache size is 12%.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:18 Y. Jia et al.

 100

6 8 10 12

N
u
m

b
er

 o
f

O
b
je

ct
s

(M
)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(a) Num. of objects, Zipfian

 100

6 8 10 12

N
u
m

b
er

 o
f

O
b
je

ct
s

(M
)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(b) Num. of objects, Hotspot

 100

6 8 10 12

N
u
m

b
er

 o
f

O
b
je

ct
s

(M
)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(c) Num. of objects, Normal

 0

 20

 40

 60

 80

 100

 120

6 8 10 12

H
it

 R
a
ti

o
(%

)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

(d) Hit Ratio (%), Zipfian

 100

 120

6 8 10 12

H
it

 R
a
ti

o
(%

)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(e) Hit Ratio (%), Hotspot

 100

 120

6 8 10 12

H
it

 R
a
ti

o
(%

)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 20

 40

 60

 80

(f) Hit Ratio (%), Normal

 0

 50

 100

 150

 200

 250

 300

 350

 400

6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

(g) Throughput (OPS), Zipfian

 250

 300

 350

 400

6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 50

 100

 150

 200

(h) Throughput (OPS), Hotspot

 1,000

 1,200

6 8 10 12

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 200

 400

 600

 800

(i) Throughput (OPS), Normal

 0

 50

 100

 150

 200

 250

 300

 350

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

(j) Latency (ms), Zipfian

 250

 300

 350

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 50

 100

 150

 200

(k) Latency (ms), Hotspot

 250

 300

 350

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache
SlimCache−lz4
SlimCache−zlib

 0

 50

 100

 150

 200

(l) Latency (ms), Normal

Fig. 10. Performance of Reddit dataset.

It clearly shows that most of the performance gain of SlimCache-zlib is due to the efficient data
compression mechanism, which significantly increases the cache hit ratio.

4.2.4 Effect of Caching Devices. Figure 12 shows the effect of caching devices on the performance
of the system for the Reddit workloads with Zipfian distribution. In this experiment set, we replace
the caching device with a 280GB Intel 900P Optane SSD [35], which is built on 3D XPoint non-
volatile memory, while keeping the other configurations unchanged. Figure 12a shows that the
conventional NAND flash based SSD and the new 3D XPoint based SSD provide nearly identical hit

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:19

 100

 120

6 8 10 12

H
it

 R
a
ti

o
(%

)

Cache Size(%)

Fatcache−FIFO
Fatcache−LRU
SlimCache−zlib

 0

 20

 40

 60

 80

(a) Hit ratio (%)

 250

 300

 350

 400

6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Cache Size(%)

Fatcache−FIFO
Fatcache−LRU
SlimCache−zlib

 0

 50

 100

 150

 200

(b) Throughput (OPS)

 250

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache−FIFO
Fatcache−LRU
SlimCache−zlib

 0

 50

 100

 150

 200

(c) Latency (ms)

Fig. 11. Effect of cache replacement algorithms.

ratios. If we compare the two devices, as we can see in Figure 12b, when the cache size is 12% of the
workload, Fatcache-Optane can provide 4.7% higher throughput than Fatcache-Flash, and SlimCache-
Optane can provide 5.1% higher throughput than SlimCache-Flash. Correspondingly, as Figure 12c
shows, Fatcache-Optane reduces 5.7% average latency than Fatcache-Flash, and SlimCache-Optane
reduces 5.3% average latency than SlimCache-Flash. Together with the experimental results shown
in Section 4.2.2, we can find that when the speeds of caching devices (SSDs) are on the same order of
magnitude, it only incurs slight performance difference, since the backend data store, which stores
data in hard disk drive, is much slower than the caching device. As a consequence, increasing the
cache hit ratio, which means fewer accesses being generated to the slow backend data store, would
improve system performance more significantly than simply using a faster and more expensive
caching device. This observation further illustrates that SlimCache, which aims to improve hit ratio
by caching more key-value items with compression techniques, is practically a more effective and
cost-efficient approach.

8 10 12

H
it

 R
at

io
(%

)

Cache Size(%)

Fatcache−Flash
Fatcache−Optane
SlimCache−Flash
SlimCache−Optane

 0

 20

 40

 60

 80

 100

 120

6

(a) Hit ratio (%)

 400

6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Cache Size(%)

Fatcache−Flash
Fatcache−Optane
SlimCache−Flash
SlimCache−Optane

 0

 50

 100

 150

 200

 250

 300

 350

(b) Throughput (OPS)

SlimCache−Optane

 0

 50

 100

 150

 200

 250

6 8 10 12

A
v
er

ag
e

L
at

en
cy

(m
s)

Cache Size(%)

Fatcache−Flash
Fatcache−Optane
SlimCache−Flash

(c) Latency (ms)

Fig. 12. Effect of caching devices.

4.2.5 Effect of the Compression Algorithms. We compare the performance of applying three differ-
ent compression algorithms, the lightweight lz4, snappy, and heavyweight deflate in zlib, when
the cache size is 6% of the Twitter dataset.
Figure 13 shows that zlib performs the best among the three, while lz4 and snappy are very

similar. In particular, zlib provides a hit ratio gain of 2.4-11.9 p.p. over lz4 and snappy, which
results in a throughput increase of 3.4%-25% and a latency decrease of 6%-20.6%. Meanwhile, the
CPU utilization ratio is up to 2.34% in all the cases as shown in Figure 13d. This indicates that
heavyweight compression algorithms, such as the deflate method in zlib, work fine with flash-
based caches, since the benefit of increasing the hit ratio significantly outweighs the incurred
computational overhead in most of our experiments.

4.2.6 Performance for Flickr Dataset. We have also studied the performance of SlimCache when
handling incompressible data. SlimCache can estimate the compressibility of the cache data, and

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:20 Y. Jia et al.

 0

 20

 40

 60

 80

 100

zipfian hotspot normal

H
it

 R
at

io
(%

)

Distributions

lz4
snappy
zlib

(a) Hit ratio (%)

 0

 50

 100

 150

 200

 250

 300

zipfian hotspot normal

T
h

ro
u

g
h

p
u

t(
o

p
s/

se
c)

Distributions

lz4
snappy
zlib

(b) Throughput (OPS)

 150

 200

 250

 300

zipfian hotspot normal

A
v

er
ag

e
L

at
en

cy
(m

s)

Distributions

lz4
snappy
zlib

 0

 50

 100

(c) Latency (ms)

 0

 0.5

 1

 1.5

 2

 2.5

 3

zipfian hotspot normal

C
P

U
 U

ti
li

za
ti

o
n

(%
)

Distributions

lz4
snappy
zlib

(d) CPU Utilization (%)

Fig. 13. Effect of different compression algorithms.

skip the compression process for the items that are not suitable for compression, such as already-
compressed images. We have tested SlimCache with the Flickr dataset and Figure 14 shows that for
workloads with little compression opportunities, SlimCache can effectively identify and skip such
incompressible data and avoid unnecessary overhead, showing nearly identical performance as the
stock Fatcache.

 0

 10

 20

 30

 40

 50

 60

zipfian hotspot normal

H
it

 R
at

io
(%

)

Distributions

Fatcache−6%
SlimCache−6%

(a) Hit ratio (%)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

zipfian hotspot normal

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Distributions

Fatcache−6%
SlimCache−6%

(b) Throughput (OPS)

Fig. 14. Hit ratio and throughput with Flickr dataset.

4.3 Cache Server Performance

In this section, we study the performance details of the cache server by generating GET/SET requests
directly to the cache server. Since we focus on testing the raw cache server capabilities, there is no
backend database server in this set of experiments, if not otherwise specified, and we load about

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:21

30GB data using the Twitter dataset to populate the cache server, and generate 10 million GET/SET
requests with the Zipfian distribution for the test. All the experiments use 8 key-value cache servers
and 32 clients.

4.3.1 Compression Granularity. We first study the effect of compression granularity. Table 2 shows
the average compression ratio of fixed-size key-value pairs generated by Markov text generator [26]
when compressed individually with lz4. In the following experiments, we compare our proposed
dynamic compression granularity with static compression in three large granularities, 4KB, 8KB
and 16KB, which achieve the highest compression ratios as shown in the table.

Item Size 64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB

Compression Ratio 0.98 1.00 1.03 1.07 1.12 1.13 1.19 1.37 1.37

Table 2. Compression ratios of the key-value pairs of different sizes.

1KB 2KB 4KB

T
h
ro

u
g
h
p
u
t(

k
o
p
s/

se
c)

Item Size

SlimCache−16K
SlimCache−8K
SlimCache−4K
SlimCache−Dynamic

 0

 20

 40

 60

 80

 100

64B 128B 256B 512B

Fig. 15. Throughput vs. granularity.

1KB 2KB 4KB

L
at

en
cy

(m
s)

Item Size

SlimCache−16K
SlimCache−8K
SlimCache−4K
SlimCache−Dynamic

 0

 0.5

 1

 1.5

 2

 2.5

64B 128B 256B 512B

Fig. 16. Latency vs. granularity.

Figure 15 and Figure 16 show the throughput and the average latency of the workload with
a GET/SET ratio of 95:5. We vary the fixed-size compression granularity from 4 KB to 16 KB, as
comparison to our dynamically adjusted approach (see Section 3). It shows that by limiting the
size of the compressed items in one flash page, the throughput can be significantly higher than
those spreading over multiple flash pages. For example, when the value size is 128 Bytes, if the
compression granularity is 16 KB, the throughput is 34K ops/sec, and it increases to 51K ops/sec
by using our dynamic method. The improvement is as high as 50%. Figure 15 also shows that the
throughput of the dynamic mechanism is always among the top two and is close to the highest
static setting. Figure 16 shows a similar trend. Using dynamic compression granularity, we can
achieve both high compression ratio and high throughput simultaneously. Compared to static
setting, our dynamic configuration approach achieves a similar performance, and is more flexible
and adapts to the workloads during runtime.

4.3.2 Hot/Cold Data Separation. Figure 17 compares the throughput with and without the hot area
for the Twitter dataset with the Zipfian distribution. As shown in the figure, the throughput when
SET/GET ratio is 0:100 is 39K ops/sec and 65K ops/sec for SlimCache without and with hot/cold
data separation, respectively. Thus, a 66.7% improvement can be achieved with hot/cold separation.
Such an improvement can also be seen with other SET/GET ratios, but when all the requests are
SET operations, the two mechanisms achieve almost the same throughput. That is because the SET
path in SlimCache is identical, no matter the data separation is enabled or not—the items are all
batched together and written to the cold area in the compressed format. However, the difference

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:22 Y. Jia et al.

emerges when GET operations are involved, because the hot items are promoted to the hot area
in uncompressed format, and the following GET requests to this item can avoid the unnecessary
overhead. Although the hot area only accounts for a small percentage of the cache space, it improves
the performance significantly compared to that without hot/cold separation.

 150

 200

 250

100:0 95:5 50:50 5:95 0:100

T
h

ro
u

g
h

p
u

t(
k

o
p

s
/s

e
c
)

Set/Get Operation

SlimCache−w/o−DataSeparation
SlimCache−w−DataSeparation

 0

 50

 100

Fig. 17. Hot/cold data separation.

We note that such a great performance improvement is not for free. Frequent data movement
between the hot and cold areas may cause a write amplification problem, which is harmful to the
performance and also the lifetime of flash. In our experiments, we find that the Write Amplification
Factor (WAF) is up to 4.2% in SlimCache, meaning that only 4.2% of the write requests is caused by
the switch between the two areas. Since the WAF is quite low and the hot/cold data switch is a
background operation, the benefit introduced by hot/cold data separation clearly outweighs its
overhead, as shown in Figure 17.

4.3.3 Two-stage Garbage Collection. We test the effect of the high watermark ,ℎ86ℎ and low
watermark,;>F to the performance by setting the high watermark from 8 to 128 free slabs, and the
low watermark half of the high watermark. For the Twitter dataset following different distributions,
the performance is insensitive to the watermark settings. This is because the reserved free space
only accounts for a very small portion of the entire cache space as shown in Figure 18 and Figure 19.
In our experiments, we set,ℎ86ℎ=16,,;>F=8 and,BC0AC=2, which is only about 1% of the overall
cache space.

 0

 20

 40

 60

 80

 100

8 16 32 64 128

H
it

 R
at

io
(%

)

 High Watermark (Free Slabs)

Zipfian
Hotspot
Normal

Fig. 18. Hit ratio vs. watermark.

 0

 100

 200

 300

 400

 500

8 16 32 64 128

T
h

ro
u

g
h

p
u

t(
o

p
s/

se
c)

High Watermark (Free Slabs)

Zipfian
Hotspot
Normal

Fig. 19. Throughput vs. watermark.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:23

4.3.4 Data Recycling. We investigate the effect of threshold setting for hot, warm and cold data
identification during garbage collection, with 300 million requests following the Zipfian distribution.
The cache size is set 6% of the workload dataset size.

Threshold settings

 0

 10

 20

 30

 40

 50

 60

 70

 80

H1L1 H2L1 H2L2 H3L1 H3L2 H3L3

H
it

 R
at

io
(%

)

Fig. 20. Threshold se"ings in GC.

Figure 20 shows the hit ratio change by setting different thresholds. When the high threshold
and the low threshold are both 1 (denoted as H1L1 in the figure), which means that the items will
be promoted to the hot area when they are reaccessed at least once and all the rest are dropped
directly, the hit ratio reaches the highest, 70.4%, among all the settings. When we vary the threshold
settings, the hit ratio drops to about 60%. It indicates that recycling hot data to the hot area is very
effective to identify the most valuable data. However, recycling warm data to the cold area incurs
inefficient recollection, since many of the recollected warm data are not frequently reaccessed but
occupy the cache space that could be used for other valuable items. Based on the experimental
results, we simplify the garbage collection process without recycling warm data to the cold area.
Instead, only hot items are promoted to the hot area.
Table 3 shows the percentage of GET requests that are served from the hot area when the high

threshold and the low threshold are both 1. With a SET/GET ratio of 5:95, 56.7% of the GET requests
fall in the hot area, whose size is only 5% of the entire cache space. These results show that the
hot/cold data separation can effectively alleviate the read amplification problem caused by on-line
compression.

SET/GET 95:5 50:50 5:95 0:100

SlimCache 79.1 % 87.3% 56.7% 55%

Table 3. Ratio of GET requests served in the hot area.

4.3.5 Garbage-Collection-Merged Promotion. We compare two different promotion approaches.
The first one is on-line promotion, whichmoves the items to the hot area in the uncompressed format
immediately after this item is re-accessed. The second one is called Garbage Collection Merged
(GCM) promotion, which is used in GC in SlimCache (see Section 3.6). In the GCM promotion,
re-accessed items are promoted to the hot area during the GC period. Neither of the two approaches
causes extra read overhead, since the on-demand read requests or the embedded GC process needs
to read the items or the slab anyway. However, these two methods have both advantages and
disadvantages. On-line promotion is prompt, but it wastes extra space, because the original copy of
the promoted items would not be recycled until the slab is reclaimed, reducing the usable cache

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:24 Y. Jia et al.

space and harming the hit ratio. On the contrary, the GCM promotion postpones the promotion
until the GC process happens, but it does not cause space waste, which is crucial for caching.

 150

 200

100:0 95:5 50:50 5:95 0:100

T
h

ro
u

g
h

p
u

t(
k

o
p

s
/s

e
c
)

Set/Get Operation

SlimCache−GCM
SlimCache−Online

 0

 50

 100

Fig. 21. Online vs. GCM promotion.

As Figure 21 shows, when we test the server without considering the backend database server,
the on-line promotion shows a relatively better performance than the GCM promotion, because
the on-line compression can timely promote a frequently accessed item into the hot area, reducing
the decompression overhead.

Scheme Zipfian Hotspot Normal

Fatcache 65.1% 25.2% 32%
SlimCache-Online 69.5% 38.2% 47%
SlimCache-GCM 70.2% 45.4% 52.8%

Table 4. Hit ratio of Online and GCM promotion.

However, the on-line promotion approach could create duplicate copies in cache. It would incur a
waste of cache space, reducing the hit ratio and causing a negative performance impact. In contrast,
GCM removes such issues and maintains a higher hit ratio. Table 4 shows the effect of such a
space waste on the hit ratio. We have repeated the Twitter experiments in Section 4.2.1 and set the
cache size as 6% of the dataset size. It shows that SlimCache-GCM provides a hit ratio increase of
0.7-7.2 p.p. over SlimCache-Online, which would correspondingly translate into performance gains
in cases when a backend database is involved. As space saving for hit ratio improvement is the
main goal of SlimCache, we choose GCM in SlimCache. This highly integrated garbage collection
and hot/cold data switch process is specifically customized for flash-based caching systems, with
significant performance improvement.

4.3.6 Dynamic Compressibility Recognition (DCR). The dynamic compressibility recognition (DCR)
can bring both benefits and overhead. For incompressible data, it can reduce significant overhead
by skipping the compression process. However, for compressible data, the compressibility check
incurs additional overhead.

We have benchmarked the effect of DCR with Zipfian workloads. Figure 22 shows the benefit of
applying compressibility recognition to the incompressible dataset, which is composed of randomly

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:25

95:5 50:50 5:95 0:100

T
h
ro

u
g
h
p
u
t(

k
o
p
s/

se
c)

Set/Get Operation

SlimCache−w/o−CR
SlimCache−w−SCR
SlimCache−w−DCR

 0

 50

 100

 150

 200

 250

100:0

Fig. 22. DCR with incompressible data.

95:5 50:50 5:95 0:100

T
h
ro

u
g
h
p
u
t(

k
o
p
s/

se
c)

Set/Get Operation

SlimCache−w/o−CR
SlimCache−w−SCR
SlimCache−w−DCR

 0

 20

 40

 60

 80

 100

100:0

Fig. 23. DCR with Twi"er data.

95:5 50:50 5:95 0:100

T
h
ro

u
g
h
p
u
t(

k
o
p
s/

se
c)

Set/Get Operation

SlimCache−w/o−CR
SlimCache−w−SCR
SlimCache−w−DCR

 0

 20

 40

 60

 80

 100

100:0

Fig. 24. DCR with hybrid data.

generated characters. In particular, compressibility recognition improves the throughput by up
to 156.1%. In contrast, the DCR mechanism adds overhead for the compressible Twitter dataset, as
shown in Figure 23. We can also see that the overhead is mainly associated with SET operations.
When the GET operations are dominant, which is typical in key-value cache systems, the overhead
is minimal. Figure 24 shows the effect of DCR when the workload is a hybrid compressible (Twitter)
and incompressible (random) dataset at the ratio of 1:1. The overhead introduced by DCR is
negligible when the dataset is hybrid. Compared to Static Compressibility Recognition (SCR), DCR
provides very close performance as shown in Figures 22, 23, and 24. However, DCR provides a
more user-friendly interface than SCR, since determining the proper compression ratio is more
straightforward than determining the proper entropy. Our results show that the DCR mechanism
generally incurs little overhead for the read-intensive compressible data and improves throughput
significantly for incompressible data. It is also worth noting that such an automatic approach
avoids the need for involving human efforts in determining whether to apply data compression or
not, which is particularly important for an online system handling key-value requests at a high
throughput.

4.4 Adaptive Partitioning

4.4.1 High miss cost. To illustrate the adaptive partitioning, we collect the average read latency
to configure our proposed cost model. The hot area cache read is measured 400 `s, the cold area
cache read is 900 `s, and the backend fetch is 300 ms. The parameters are listed in Table 5.

Figure 25 shows the runtime hot area size and the hit ratio when dynamic partitioning happens
when the miss cost is high. As the speed of our backend database is slow, SlimCache tends to

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:26 Y. Jia et al.

Scheme latency (`s)

Hot area read 400
Cold area read 900
Back-end fetch 300,000

Table 5. Parameters used in Dynamic Partition Mechanism I.

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 50

 52

 54

 56

 58

 60

 62

T
h

e
 R

a
ti
o

 o
f

H
o

t
R

e
g

io
n

 (
%

)

H
it
 R

a
ti
o

 (
%

)

Execution Time (mins)

Hot-Region-Size
Hit-Ratio

Fig. 25. Adaptive partitioning.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 0

 1

 2

 3

 4

 5

 6

 7

 8

T
h

e
 R

a
ti
o

 o
f

H
o

t
R

e
g

io
n

 (
%

)

Execution Time (mins)

10%HotRegion
15%HotRegion
20%HotRegion

Fig. 26. Step (for partitioning.

keep a larger cold area and attempts to reduce the number of cache misses until the convergence
condition is reached. Figure 25 shows that the hit ratio keeps stable when data migration happens
in SlimCache. We have also studied the effect of step S by setting it to 10%, 15%, and 20% of the hot
area size. SlimCache can reach a stable cache partitioning within 9 minutes for all the step settings
as Figure 26 shows. Considering that the up-time of a real server is often long (days to months),
such a short time for reaching a stable cache partitioning means that our adaptive partitioning
approach is reasonably responsive and effective.

4.4.2 Low miss cost. In this section, we configure the hot area cache read time to be 400 `s, the
cold area cache read time to be 900 `s, and the backend access read time to be 1.2 ms to illustrate
the adaptive partitioning when the backend access cost is low. The parameters are listed in Table 6.

Scheme latency (`s)

Hot area read 400
Cold area read 900
Back-end fetch 1,200

Table 6. Parameters used in Dynamic Partition Mechanism II.

Figure 27 shows the runtime hot area size and the hit ratio, when dynamic partitioning happens
in the situation of dealing with a fast backend data store. In this case, as the speed of our backend
database is only 33% slower than the cache server, SlimCache gradually expands the hot area (to
about 20%) to reduce the incurred compression overhead until the convergence condition is reached.
This is because with a fast backend data store, the relative benefit of maintaining a large amount of
compressed data in the cold area decreases. Figure 27 also shows that the hit ratio keeps stable,
when data migration happens in SlimCache. Similar to the high-miss cost case, we also study the
effect of step S by setting it to 10%, 15%, and 20% of the hot area size. It takes less than 15 minutes for
SlimCache to reach a stable cache partitioning for all the step settings as Figure 28 shows. Together
with the results from Section 4.4.1, we can see that no matter the backend database is relatively
fast or slow, our adaptive partitioning approach can reach a reasonably good partition quickly.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:27

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20
 40

 45

 50

 55

 60

 65

T
h
e
 R

a
ti
o
 o

f
H

o
t
R

e
g
io

n
 (

%
)

H
it
 R

a
ti
o
 (

%
)

Execution Time (mins)

Hot-Region-Size
Hit-Ratio

Fig. 27. Adaptive partitioning.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20
 0

 5

 10

 15

 20

 25

 30

 35

T
h
e
 r

a
ti
o
 o

f
h
o
t
re

g
io

n
 (

%
)

Execution Time (mins)

10%HotRegion
15%HotRegion
20%HotRegion

Fig. 28. Step (for partitioning.

4.5 Overhead Analysis

SlimCache introduces on-line compression in flash-based key-value caching, which could increase
the consumption of CPU, memory and flash resources on the sever side.
•Memory utilization. In SlimCache, memory is mainly used for three purposes. (1) In-memory

hash table. SlimCache adds a 1-bit access_count attribute to record the access count of the item since
stored in the system. (2) Slab buffer. SlimCache performance is not sensitive to the memory buffer.
We maintain a 128 MB memory for slab buffer, which is identical to Fatcache. (3) Slab metadata.
We add a 1-bit attribute for each slab, called hotslab. This bit indicates whether the slab belongs
to the hot area or not. In total, for a 1TB SSD that stores 1 billion records, SlimCache consumes
about 128 MB (128 MB for hash table entry metadata, 128 KB for slab metadata) more memory than
Fatcache, which is about 0.3% of the overall memory consumption. In our experiments, we find
that the actual memory consumption of SlimCache and Fatcache is similar, when caching the same
amount of key-value items.
• CPU utilization. SlimCache is multi-threaded. In particular, we maintain one thread for the

drain operation, one thread for garbage collection, one thread for data movement between the
hot and the cold areas, and one thread for dynamic partitioning. Compression and decompression
operations also consume CPU cycles. As shown in Table 7, the CPU utilization of SlimCache is
less than 3.5% in all our experiments. The main bottleneck is the backend database for the whole
system. Computation resource is sufficient on the cache server to complete the demanded work.

Table 7. CPU utilization of SlimCache.

Scheme Zipfian Hotspot Normal

Cache 6% 12% 6% 12% 6% 12%

Fatcache 1.93% 2.08% 1.07% 1.19% 1.84% 2.25%
SlimCache 2.09% 2.14% 1.23% 2.21% 2.05% 3.37%

• Flash utilization. We add a 1-bit compressed attribute to each key-value item to indicate
whether the item is in compressed format or not. This attribute is used to determine if a decom-
pression process should be applied when the slot is read upon a GET operation. Storing 1 billion
records will consume 128 MB more flash space, which is a small storage overhead.

5 LIMITATIONS

Although SlimCache can achieve significantly better performance than Fatcache, there are still
several limitations that are out of the scope of this work and worth studies in the future.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:28 Y. Jia et al.

5.1 Data Persistence

As a replacement of Memcached, Twitter’s Fatcache is not designed to guarantee data persistence
in cache. In Fatcache, the mapping structure is completely stored in volatile memory rather than
the flash SSD. This design choice removes the related performance overhead and also simplifies
the system design, but when a system crash or power failure happens, the key-value data hosted
in the flash cache would become invalid. It is worth noting that it is still safe, because the client
can always find a copy of the most up-to-date data in the backend data store. However, the cache
system has to warm up again after restart, which could take a long duration. Similar to the stock
Fatcache, SlimCache shares the same limitation in terms of cache data persistence. A potential
solution is to keep the mapping structure is byte-addressable persistent memory, such as Intel’s
Optane Memory [37]. Our main goal in this work is to improve the caching performance and
efficiency by adopting data compression techniques in cache management, as demonstrated in
SlimCache. As an orthogonal challenge, the cache data persistence issue is worth further studies in
the future.

5.2 Flash Durability

Since SlimCache divides the logical space of the flash SSD into a hot area and a cold area, the data
swapping between the two areas could potentially result in write amplification, causing additional
amount of writes to the flash SSD and accelerating the wear-out process of the caching device. We
find that because of the strict yet effective data swapping policy, the write amplification factor
is observed to be about 4.2% in our experiments. Considering the significant performance gain
of SlimCache and the continuously decreasing price of flash SSDs, such a relatively small write
amplification is considered to be fairly acceptable to most users. Measures, such as using a flash-
based RAID, can also be adopted to reduce the concerns on the durability. It is worth future studies
on further reducing the impact of flash durability in such scenarios.

6 RELATED WORK

This paper and its earlier version [38] present a highly efficient on-line data compression scheme
for enhancing flash-based key-value caching. The two topics, data compression [1, 6, 17, 19, 64, 76,
81, 84] and key-value systems [5, 18, 46, 48, 51, 73, 83, 86], have been extensively researched. This
section discusses prior studies that are most related to these components.
Data compression is a popular technique. In prior works, extensive studies have been con-

ducted on compressing memory and storage at both architecture and system levels, such as device
firmware [36, 89], storage controller [34], and operating systems [2, 6, 19, 53, 76, 81]. Many prior
works have also be done in database systems (e.g., [1, 16, 44, 59, 60, 64]). Our work focuses on
applying data compression to improve the hit ratio by caching more key-value items in flash. To
our best knowledge, SlimCache is the first work introducing data compression into flash-based
key-value caching.
Recent research on key-value cache focuses mostly on performance improvement [47, 49, 54],

such as network request handling, OS kernel involvement, data structure design, and concurrency
control, etc. Recently hardware-centric studies [50], such as FPGA-based design [7], Open-Channel
SSD [73] and programmable NIC [46], began to explore the hardware features. In particular,
DIDACache [73] provides a holistic flash-based key-value cache using Open-Channel SSD through
a deep integration between hardware and software. KV-Direct [46] presents a high performance
key-value system through remote direct key-value access to the host memory by extending the
RDMA primitives based on programmable NIC. Similarly, NetCache [40] optimizes the queries
to hot key-value items and attempts to balance the load across storage nodes by leveraging the

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:29

flexibility of new programmable switches. Memshare [15] gives a DRAM-based key-value cache
system with a dynamic memory management across applications. In order to reduce small random
writes in photo caching, RIPQ [74] provides a framework to support advanced cache replacement
algorithms with optimized writes on flash devices by collecting small writes, flushing updates lazily,
and grouping similar data together. For a similar purpose, Flashield [20, 21] gives a hybrid solution
by using DRAM to filter and reduce writes to flash, which addresses the write amplification problem
on flash SSDs. In comparison, SlimCache adopts a largely orthogonal approach, data compression,
to improve the flash-based key-value cache performance and efficiency.

Besides performance, some other studies deal with the scalability problem [23, 61, 62, 82], which
results from hardware cost and power/thermal issues. For example, Nishtala et al. aim to scale
Memcached to handle large amount of Internet traffic in Facebook [61]. Ouyang et al. design an
SSD-assisted hybrid memory for Memcached to achieve high performance and low cost [62].
McDipper [23] is a flash-based key-value cache solution to replace Memcached in Facebook.
BlueCache [85] proposes to address the scalability challenges by implementing all the key-value
operations including the flash controller operations directly in hardware. Anna [82] is a partitioned,
multi-mastered key-value system that can effectively scale from a single core to multi-core to the
distributed system via wait-free execution and coordination-free consistency. As a scale-up solution,
Tucana [63] presents an efficient and high-speed key-value store design for achieving both high
performance and low CPU overhead. CascadeMapping [79] provides a new indexmapping structure
in key-value caches to address the scalability challenge caused by limited memory resources.
With the popularity of persistent memory, a number of studies [10, 22, 32, 41, 42, 55, 79] have

been proposed to integrate non-volatile memory (NVM) within key-value systems. Huang et al. [32]
propose to use cross-referencing logs to close the performance gap between the key-value stores in
volatile DRAM and persistent NVM. NVMKV [55] optimizes flash-based key-value stores through
techniques, such as alleviating dynamic mapping, providing transaction support, and leveraging
parallelization. NoveLSM [41] proposes an LSM-tree based design of persistent key-value store
by taking advantage of the byte addressability and persistence features of non-volatile memories,
such as creating a byte-addressable skiplist, directly manipulating persistent state, and exploiting
opportunistic read parallelism, etc. HashKV [10] is designed to achieve high update performance
based on KV separation and using hash-based data grouping. MyNVM [22] reduces the DRAM
footprint of Facebook’s key-value store by replacing DRAM with NVM. uDepot [42] presents
a key-value design, which exploits the performance of NVM devices with a two-level indexing
structure and a new task-based IO run-time system. In contrast, the data compression scheme
presented in this paper and its earlier version [38] is a general-purpose software-level solution
without relying on any special hardware.

Among the prior works, zExpander [84], which applies compression in memory-based key-value
caches, is the closest to our work. However, SlimCache is particularly designed for key-value
caching in flash, which brings several different and unique challenges. First, small random writes
are particularly harmful to the lifetime and performance of flash devices, so storing and querying
an item using a small-size (2KB) block on SSD as what zExpander does would be sub-optimal in
our scenario. Second, as the amount of key-value items stored in flash-based key-value cache is
much larger than that in a memory-based cache, the organization unit has to be much coarser
and the metadata overhead brought by each item must be minimized. Third, choosing a proper
compression granularity on flash needs to consider the flash page size to minimize the extra I/Os
caused by loading irrelevant data. Finally, in order to guarantee that all the writes are sequential in
flash, the space occupied by the obsolete values in one slab cannot be freed until the whole slab
is dropped. A special mechanism is needed to handle such situations to avoid the loss of hit ratio
caused by data promotion and demotion while preserving the sequential write pattern. All these

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:30 Y. Jia et al.

distinctions and new challenges have motivated us to design an efficient, on-line data compression
scheme, customized for caching key-value data in flash.

7 CONCLUSION

In this paper, we present an on-line compressionmechanism for flash-based key-value cache systems,
called SlimCache, which expands the effectively usable cache space, increases the hit ratio, and
improves the cache performance. For optimization, SlimCache introduces a number of techniques,
such as unified management for compressed and uncompressed data, dynamically determining
compression granularity, efficient hot/cold data separation, optimized garbage collection, and
adaptive cache partitioning. Our experiments show that SlimCache can effectively accommodate
more key-value data in cache, which in turn significantly increases the cache hit ratio and improves
the system performance.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feedback and insightful comments.

REFERENCES

[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Compression and Execution in Column-

oriented Database Systems. In Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data

(SIGMOD ’06). Chicago, IL, USA.

[2] Bulent Abali, Mohammad Banikazemi, Xiawei Shen, Hubertus Franke, Dan E. Poff, and T. Basil Smith. 2001. Hardware

Compressed Main Memory: Operating System Support and Performance Evaluation. IEEE Trans. Comput. 50, 11 (Nov.

2001), 1219–1233. https://doi.org/10.1109/12.966496

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigrahy. 2008. Design Tradeoffs for SSD

Performance. In Proceedings of the 2008 USENIX Annual Technical Conference (USENIX ATC ’08). Boston, MA.

[4] Zhongqi An, Zhengyu Zhang, Qiang Li, Jing Xing, Hao Du, Zhan Wang, Zhigang Huo, and Jie Ma. 2017. Optimizing

the Datapath for Key-value Middleware with NVMe SSDs over RDMA Interconnects. In Proceedings of 2017 IEEE

International Conference on Cluster Computing (CLUSTER ’17). 582–586. https://doi.org/10.1109/CLUSTER.2017.69

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload Analysis of a Large-Scale

Key-Value Store. In Proceedings of 2012 ACM International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS ’12). London, UK.

[6] Vicenc Beltran, Jordi Torres, and Eduard Ayguad. 2008. Improving Web Server Performance Through Main Memory

Compression. In Proceeding of the 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS ’08).

Melbourne, VIC, Australia.

[7] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Baer, and Zsolt Istvan. 2013. Achieving 10Gbps Line-

rate Key-value Stores with FPGAs. In Proceeding of the 5th USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud ’13). San Jose, CA.

[8] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. 1999. Web Caching and Zipf-like Distributions:

Evidence and Implications. In Proceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications

Societies. (INFOCOMM ’99). New York, NY.

[9] Damiano Carra and Pietro Michiard. 2014. Memory Partitioning in Memcached: An Experimental Performance

Analysis. In Proceedings of 2014 IEEE International Conference on Communications (ICC ’14). Sydney, Austrilia.

[10] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. HashKV: Enabling Efficient Updates in

KV Storage via Hashing. In Proceedings of 2018 USENIX Annual Technical Conference (USENIX ATC ’18). USENIX

Association, Boston, MA, 1007–1019. https://www.usenix.org/conference/atc18/presentation/chan

[11] Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal Parallelism of Flash Memory-Based Solid-State Drives. ACM

Transactions on Storage 12, 3 (May 2016), 13:1–13:39.

[12] Feng Chen, David Koufaty, and Xiaodong Zhang. 2009. Understanding Intrinsic Characteristics and System Implications

of Flash Memory based Solid State Drives. In Proceedings of 2009 ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS/Performance ’09). Seattle, WA.

[13] Feng Chen, Rubao Lee, and Xiaodong Zhang. 2011. Essential Roles of Exploiting Internal Parallelism of Flash Memory

based Solid State Drives in High-speed Data Processing. In Proceedings of the 17th International Symposium on High

Performance Computer Architecture (HPCA ’11). San Antonio, Texas.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:31

[14] Seonghyeog Choi and Euiseong Seo. 2017. A Selective Compression Scheme for In-Memory Cache of Large-Scale File

systems. In Proceedings of 2017 International Conference on Electronics, Information, and Communication (ICEIC ’17).

Phuket, Thailand.

[15] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman. 2017. Memshare: A Dynamic Multi-tenant

Key-value Cache. In Proceedings of 2017 USENIX Annual Technical Conference (USENIX ATC ’17). USENIX Association,

Santa Clara, CA, 321–334. https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon

[16] Gordon V. Cormack. 1985. Data Compression on a Database System. Commun. ACM 28, 12 (Dec. 1985), 1336–1342.

[17] Rodrigo S. de Castro, Alair Pereira do Lago, and Dilma Da Silva. 2003. Adaptive Compressed Caching: Design and

Implementation. In Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD ’03). Sao Paulo, Brazil.

[18] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM Space Skimpy Key-Value Store on Flash-based

Storage. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (SIGMOD ’11).

Athens, Greece.

[19] DoromNakar and Shlomo Weiss. 2004. Selective Main Memory Compression by Identifying Program Phase Changes.

In Proceedings of the 23rd IEEE Convention of Electrical and Electronics Engineers in Israel. Tel-Aviv, Isreal.

[20] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman, Mohammad Alizadeh, and Sachin

Katti. 2017. Flashield: A Key-value Cache that Minimizes Writes to Flash. CoRR abs/1702.02588 (2017). arXiv:1702.02588

http://arxiv.org/abs/1702.02588

[21] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman, Mohammad Alizadeh, and Sachin

Katti. 2019. Flashield: A Hybrid Key-value Cache that Controls Flash Write Amplification. In 16th USENIX Symposium

on Networked Systems Design and Implementation (NSDI ’19). USENIX Association, Boston, MA, 65–78. https://www.

usenix.org/conference/nsdi19/presentation/eisenman

[22] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong, Kim Hazelwood, Chris Petersen, Asaf

Cidon, and Sachin Katti. 2018. Reducing DRAM Footprint with NVM in Facebook. In Proceedings of the Thirteenth

EuroSys Conference (EuroSys ’18). ACM, New York, NY, USA, Article 42, 13 pages. https://doi.org/10.1145/3190508.

3190524

[23] Facebook. 2013. McDipper: A Key-value Cache for Flash Storage. https://www.facebook.com/notes/facebook-

engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/.

[24] Brian F.Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking Cloud

Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud computing (SoCC ’10). Indianapolis,

Indiana.

[25] Annie Foong and Frank Hady. 2016. Storage As Fast As Rest of the System. In Proceedings of 2016 IEEE 8th International

Memory Workshop (IMW ’16). https://doi.org/10.1109/IMW.2016.7495289

[26] Python Software Foundation. 2019. Text Generator based on Markov Chain. https://pypi.python.org/pypi/markovgen/

0.5.

[27] Kingwa Fu. 2017. Weiboscope Open Data. https://hub.hku.hk/cris/dataset/dataset107483.

[28] Kingwa Fu, CH Chan, and Michael Chau. 2013. Assessing Censorship on Microblogs in China: Discriminatory Keyword

Analysis and Impact Evaluation of the Real Name Registration Policy. IEEE Internet Computing 17, 3 (2013), 42–50.

[29] GNU. 2018. Gzip. https://www.gnu.org/software/gzip/.

[30] Google. 2019. Snappy. https://github.com/google/snappy.

[31] Danny Harnik, Ronen Kat, Oded Margalit, Dmitry Sotnikov, and Avishay Traeger. 2013. To Zip or Not to Zip:

Effective Resource Usage for Real-Time Compression. In Proceedings of the 11th USENIX Conference on File and Storage

Technologies (FAST ’13). San Jose.

[32] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and Steve Byan. 2018. Closing the

Performance Gap Between Volatile and Persistent Key-Value Stores Using Cross-Referencing Logs. In Proceedings

of 2018 USENIX Annual Technical Conference (USENIX ATC ’18). USENIX Association, Boston, MA, 967–979. https:

//www.usenix.org/conference/atc18/presentation/huang

[33] Mark J. Huiskes and Michael S. Lew. 2008. The MIR Flickr Retrieval Evaluation. In Proceedings of the 2008 ACM

International Conference on Multimedia Information Retrieval (MIR ’08). Vancouver, Canada.

[34] IBM. 2015. IBM Real-time Compression in IBM SAN Volume Controller and IBM Storwize V7000. http://www.redbooks.

ibm.com/redpapers/pdfs/redp4859.pdf.

[35] Intel. 2012. Optane SSD. https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/

consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series/900p-280gb-aic-20nm.html.

[36] Intel. 2018. Intel SSD. https://www.intel.com/content/www/us/en/support/articles/000006354/memory-and-storage.

html.

[37] Intel. 2020. Intel Optane Memory. https://www.intel.com/content/www/us/en/architecture-and-technology/

optane-memory.html.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:32 Y. Jia et al.

[38] Yichen Jia, Zili Shao, and Feng Chen. 2018. SlimCache: Exploiting Data Compression Opportunities in Flash-based

Key-value Caching. In Proceedings of 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS ’18). IEEE, 209–222.

[39] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An Effective Improvement of the CLOCK Replacement.

In Proceedings of 2005 USENIX Annual Technical Conference (USENIX ATC ’05). Anaheim, CA.

[40] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion Stoica.

2017. NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In Proceedings of the 26th Symposium on

Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 121–136. https://doi.org/10.1145/3132747.3132764

[41] Sudarsun Kannan, Nitish Bhat, AdaGavrilovska, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. Redesigning

LSMs for Nonvolatile Memory with NoveLSM. In Proceedings of 2018 USENIX Annual Technical Conference (USENIX

ATC ’18). USENIX Association, Boston, MA, 993–1005. https://www.usenix.org/conference/atc18/presentation/kannan

[42] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. 2019. Reaping the Performance of Fast NVM Storage with

uDepot. In Proceedings of the 17th USENIX Conference on File and Storage Technologies (FAST ’19). USENIX Association,

Boston, MA, 1–15. https://www.usenix.org/conference/fast19/presentation/kourtis

[43] Sanjeev R. Kulkarni. 2002. Information, Entropy, and Coding. Lecture Notes for ELE201 Introduction to Electrical

Signals and Systems, Princeton University, 2002.

[44] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter Boncz, Thomas Neumann, and Alfons Kemper. 2016. Data Blocks:

Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and Compilation. In Proceedings of the 2016

International Conference on Management of Data (SIGMOD ’16). San Francisco, CA.

[45] Larry Leemis. 2019. Zipf. http://www.math.wm.edu/ leemis/chart/UDR/PDFs/Zipf.pdf.

[46] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen, and Lintao

Zhang. 2017. KV-Direct: High-Performance In-Memory Key-Value Store with Programmable NIC. In Proceedings

of the 26th Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 137–152. https:

//doi.org/10.1145/3132747.3132756

[47] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia, Michael Kaminsky, David G. Andersen, Seongil O,

Sukhan Lee, and Pradeep Dubey. 2015. Architecting to Achieve a Billion Requests Per Second Throughput on a Single

Key-Value Store Server Platform. In Proceeding of the 42nd ACM/IEEE Annual International Symposium on Computer

Architecture (ISCA ’15). Portland, OR.

[48] Hyeontaek Lim, Bin Fan, David G. Andersen, andMichael Kaminsky. 2011. SILT: AMemory-Efficient, High-Performance

Key-Value Store. In Proceedings of the 23th Symposium on Operating Systems Principles (SOSP ’11). Cascais, Portugal.

[49] Hyeontaek Lim, Dongsu Han, David G.Andersen, and Michael Kaminsky. 2014. MICA: A Holistic Approach to

Fast In-Memory Key-Value Storage. In Proceedings of the 11th USENIX Conference on Networked Systems Design and

Implementation (NSDI ’14). Seattle, WA.

[50] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin Servers with

Smart Pipes: Designing SoC Accelerators for Memcached. In Proceeding of the 40th Annual International Symposium on

Computer Architecture (ISCA ’13). Tel Aviv, Israel.

[51] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016.

WiscKey: Separating Keys from Values in SSD-conscious Storage. In Proceedings of 14th USENIX Conference on File and

Storage Technologies (FAST ’16). Santa Clara.

[52] lz4. 2019. Extremely Fast Compression. http://lz4.github.io/lz4/.

[53] Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas. 2010. Using Transparent

Compression to Improve SSD-based I/O Caches. In Proceedings of the 5th European conference on Computer systems

(EuroSys ’10). Paris, France.

[54] Yandong Mao, Eddie Kohler, and Robert Morris. 2012. Cache Craftiness for Fast Multicore Key-Value Storage. In

Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys ’12). Bern, Switzerland.

[55] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju Rangaswami. 2015. NVMKV: A Scal-

able, Lightweight, FTL-aware Key-Value Store. In Proceedings of 2015 USENIX Annual Technical Conference (USENIX

ATC ’15). USENIX Association, Santa Clara, CA, 207–219. https://www.usenix.org/conference/atc15/technical-session/

presentation/marmol

[56] Venkata Lakshmi Marripudi and P. Yakaiah. 2015. Image Compression based on Multilevel Thresholding Image Using

Shannon Entropy for Enhanced Image. Global Journal of Advanced Engineering Technologies 4 (2015), 271–274. Issue 3.

[57] N. Megiddo and D. Modha. 2003. ARC: A Self-tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd

USENIX Conference on File and Storage (FAST ’03). San Francisco, CA.

[58] Memcached. 2018. A Distributed Memory Object Caching System. https://memcached.org/.

[59] MongoDB. 2019. WiredTiger Storage Engine. https://docs.mongodb.com/manual/core/wiredtiger/.

[60] Ingo Muller, Cornelius Ratsch, and Franz Faerber. 2014. Adaptive String Dictionary Compression in In-Memory

Column-Store Database Systems. In Proceedings of the 17th International Conference on Extending Database Technology

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:33

(EDBT ’14). Athens, Greece.

[61] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, RyanMcElroy, Mike Paleczny,

Daniel Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at

Facebook. In Proceeding of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13).

Lombard, IL.

[62] Xiangyong Ouyang, Nusrat S. Islam, Raghunath Rajachandrasekar, Jithin Jose, Miao Luo, HaoWang, and Dhabaleswar K.

Panda. 2012. SSD-Assisted Hybrid Memory to Accelerate Memcached over High Performance Networks. In Proceeding

of the 41st International Conference on Parallel Processing (ICPP ’12). Pittsburgh, PA.

[63] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos Bilas. 2016. Tucana: Design and

Implementation of a Fast and Efficient Scale-up Key-value Store. In Proceedings of 2016 USENIX Annual Technical

Conference (USENIX ATC ’16). USENIX Association, Denver, CO, 537–550. https://www.usenix.org/conference/atc16/

technical-sessions/presentation/papagiannis

[64] Meikel Poess and Dmitry Potapov. 2003. Data Compression in Oracle. In Proceedings of the 29th International Conference

on Very Large Data Bases (VLDB ’03). Berlin, Germany.

[65] Reddit. 2015. Reddit Comments. https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_

available_reddit_comment/.

[66] Greg Roelofs, Jean-loup Gailly, and Mark Adler. 2017. Zlib. https://zlib.net/.

[67] Samsung. 2017. Ultra-Low Latency with Samsung Z-NAND SSD - Breakthrough Storage for a New Generation of

Enterprise and Data Center Infrastructure. https://www.samsung.com/semiconductor/global.semi.static/Brochure_

Samsung_S-ZZD_SZ985_1804.pdf.

[68] Samsung. 2018. Samsung Z-SSD SZ985 - Ultra-low Latency SSD for Enterprise and Data Centers - Brochure. https:

//www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf.

[69] Bon-Keun Seo, Seungryoul Maeng, Joonwon Lee, and Euiseong Seo. 2015. DRACO: A Deduplicating FTL for Tangible

Extra Capacity. IEEE Computer Architecture Letters 14 (July-December 2015), 123–126. Issue 2.

[70] Dimitrios N. Serpanos and Wayne H. Wolf. 1998. Caching Web Objects Using Zipf’s Law. Proceedings of the SPIE 3527

(October 1998), 320–326.

[71] Dipti Shankar, Xiaoyi Lu, Md Rahman, Nusrat Islam, and D.K. Panda. 2015. Benchmarking Key-value Stores on

High-performance Storage and Interconnects for Web-scale Workloads. In Proceedings of 2015 IEEE International

Conference on Big Data (Big Data ’15). 539–544. https://doi.org/10.1109/BigData.2015.7363797

[72] C. E. Shannon. 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27 (1948), 379–423.

[73] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. 2017. DIDACache: A Deep Integration of Device and Application

for Flash-based Key-value Caching. In Proceedings of the 15th USENIX Conference on File and Storage Technologies

(FAST ’17). Santa Clara, CA.

[74] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li. 2015. RIPQ: Advanced Photo Caching on Flash for

Facebook. In Proceedings of 13th USENIX Conference on File and Storage Technologies (FAST ’15). USENIX Association,

Santa Clara, CA, 373–386. https://www.usenix.org/conference/fast15/technical-sessions/presentation/tang

[75] Luca Trevisan. 2012. Kolmogorov Complexity. http://cs.stanford.edu/~trevisan/cs154-12/kolcomplexity-rev.pdf.

[76] Irina Chihaia Tuduce and Thomas Gross. 2005. Adaptive Main Memory Compression. In Proceedings of 2005 USENIX

Annual Technical Conference (USENIX ATC ’05). Anaheim, CA.

[77] Twitter. 2011. Tweets2011. http://trec.nist.gov/data/tweets/.

[78] Twitter. 2013. Fatcache. https://github.com/twitter/fatcache.

[79] Kefei Wang and Feng Chen. 2018. Cascade Mapping: Optimizing Memory Efficiency for Flash-based Key-value

Caching. In Proceedings of the ACM Symposium on Cloud Computing (SoCC ’18). ACM, New York, NY, USA, 464–476.

https://doi.org/10.1145/3267809.3267847

[80] Wikipedia. 2019. Entropy (Information Theory). https://en.wikipedia.org/wiki/Entropy_(information_theory).

[81] Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. 1999. The Case for Compressed Caching in Virtual Memory

Systems. In Proceedings of the 1999 USENIX Annual Technical Conference (USENIX ATC ’99). Monterey, CA.

[82] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. 2018. Anna: A KVS for Any Scale. In Proceedings

of 2018 IEEE 34th International Conference on Data Engineering (ICDE ’18). 401–412. https://doi.org/10.1109/ICDE.2018.

00044

[83] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-based Ultra-Large Key-Value Store for

Small Data Items. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX Association, Santa Clara,

CA, 71–82. https://www.usenix.org/conference/atc15/technical-session/presentation/wu

[84] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren, Michel HHack, and Song Jiang. 2016. zExpander: A Key-Value Cache

with Both High Performance and Fewer Misses. In Proceedings of the 11th European Conference on Computer Systems

(EuroSys ’16). London, UK.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

14:34 Y. Jia et al.

[85] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, and Arvind. 2016. Bluecache: A Scalable Distributed

Flash-based Key-value Store. Proc. VLDB Endow. 10, 4 (Nov. 2016), 301–312. https://doi.org/10.14778/3025111.3025113

[86] Heng Zhang, Mingkai Dong, and Haibo Chen. 2016. Efficient and Available In-memory KV-Store with Hybrid Erasure

Coding and Replication. In Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST ’16). Santa

Clara.

[87] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman, Yuanyuan Zhou, and Sanjeev Kumar. 2004.

Dynamically Tracking Miss-Ratio-Curve for Memory Management. In Proceedings of the 11th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’04). Boston, MA.

[88] George Kingsley Zipf. 1929. Relative Frequency as a Determinant of Phonetic Change. Reprinted from the Harvard

Studies in Classical Philology XL (1929).

[89] Aviad Zuck, Sivan Toledo, Dmitry Sotnikov, and Danny Harnik. 2104. Compression and SSD: Where and How?. In

Proceedings of the 2nd Workshop on Interactions of NVM/Flash with Operating Systems and Workloads (INFLOW ’14).

Broomfield, CO.

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.

