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Flash-based key-value caching is becoming popular in data centers for providing high-speed key-value services.

These systems adopt slab-based space management on flash and provide a low-cost solution for key-value

caching. However, optimizing cache efficiency for flash-based key-value cache systems is highly challenging,

due to the huge number of key-value items and the unique technical constraints of flash devices. In this

paper, we present a dynamic on-line compression scheme, called SlimCache, to improve the cache hit ratio

by virtually expanding the usable cache space through data compression. We have investigated the effect

of compression granularity to achieve a balance between compression ratio and speed, and we leveraged

the unique workload characteristics in key-value systems to efficiently identify and separate hot and cold

data. To dynamically adapt to workload changes during runtime, we have designed an adaptive hot/cold

area partitioning method based on a cost model. In order to avoid unnecessary compression, SlimCache also

estimates data compressibility to determine whether the data are suitable for compression or not. We have

implemented a prototype based on Twitter’s Fatcache. Our experimental results show that SlimCache can

accommodate more key-value items in flash by up to 223.4%, effectively increasing throughput and reducing

average latency by up to 380.1% and 80.7%, respectively.

CCS Concepts: • Information systems→ Data compression; Flash memory; Key-value stores.

Additional Key Words and Phrases: Flash memory, SSD, key-value caching, data compression

ACM Reference Format:

Yichen Jia, Zili Shao, and Feng Chen. 2020. SlimCache: An Efficient Data Compression Scheme for Flash-based

Key-value Caching. ACM Trans. Storage 16, 2, Article 14 (June 2020), 34 pages. https://doi.org/10.1145/3383124

This is a revised version. A preliminary version of this work was published in the Proceedings of the 26th IEEE International

Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’18).

The work described in this article was partially supported by the U.S. National Science Foundation under Grants No. CCF-

1453705, No. CCF-1629291, and No. CCF-1910958, the Louisiana Board of Regents under Grant No. LEQSF(2014-17)-RD-A-01,

the Research Grants Council of the Hong Kong Special Administrative Region, China under Grants No. GRF 15273616, No.

GRF 15206617, and No. GRF 15224918, and Direct Grant for Research, The Chinese University of Hong Kong (Project No.

4055096).
Authors’ addresses: Yichen Jia, Louisiana State University, Baton Rouge, Louisiana, USA, yjia@csc.lsu.edu; Zili Shao, The

Chinese University of Hong Kong, Shatin, NT, Hong Kong, shao@cse.cuhk.edu.hk; Feng Chen, Louisiana State University,

Baton Rouge, Louisiana, USA, fchen@csc.lsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2020/6-ART14 $15.00

https://doi.org/10.1145/3383124

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.



14:2 Y. Jia et al.

1 INTRODUCTION

Today’s data centers still heavily rely on hard disk drives (HDDs) as their main storage devices. In
order to reduce the traffic of requests to backend data stores, in-memory key-value cache systems,
such as Memcached [58], become popular in data centers for serving various applications [23, 78].
Although memory-based key-value caches can eliminate a large amount of key-value data retrievals
(e.g., “User ID” and “User Name”) from the back-end data stores, they also raise concerns on cost
and power consumption issues in a large-scale deployment. As an alternative solution, flash-based
key-value cache systems recently have attracted an increasingly high interest in industry. For
example, Facebook has deployed a key-value cache system based on flash, called McDipper [23], as
a replacement of the expensive Memcached servers. Twitter has a similar key-value cache solution,
called Fatcache [78].

1.1 Motivations

The traditional focus on improving the caching efficiency is to develop sophisticated cache re-
placement algorithms [39, 57]. Unfortunately, it is highly challenging in the scenario of flash-based
key-value caching. This is for two reasons.
First, compared to memory-based key-value cache, such as Memcached, flash-based key-value

caches are usually 10-100 times larger. As key-value items are typically small (e.g., tens to hundreds
of bytes), a flash-based key-value cache often needs to maintain billions of key-value items, or
even more. Tracking such a huge number of small items in cache management would result in
an unaffordable overhead. Also, many advanced cache replacement algorithms, such as ARC [57]
and CLOCK-Pro [39], need to maintain a complex data structure and a deep access history (e.g.,
information about evicted data), making the overhead even more pronounced. Therefore, a complex
caching scheme is practically infeasible for flash-based key-value caches.
Second, unlike DRAM, flash memories have several unique technical constraints, such as the

well-known “no in-place overwrite” and “sequential-only writes” requirements [3, 12]. As such,
flash devices generally favor large, sequential, log-like writes rather than small, random writes.
Consequently, flash-based key-value caches do not directly “replace” small key-value items in place
as Memcached does. Instead, key-value data are organized and replaced in large coarse-grained
chunks, relying on Garbage Collection (GC) to recycle the space occupied by obsolete or deleted
data. This unfortunately reduces the usable cache space and affects the caching efficiency.

For the above two reasons, it is difficult to solely rely on developing a complicated, fine-grained
cache replacement algorithm to improve the cache hit ratio for key-value caching in flash. In
fact, real-world flash-based key-value cache systems often adopt a simple, coarse-grained caching
scheme. For example, Twitter’s Fatcache uses a First-In-First-Out (FIFO) policy to manage its cache
in a large granularity of slabs (a group of key-value items) [78]. Such a design, we should note, is
an unwillingly-made but necessary compromise to fit the needs for caching many small key-value
items in flash. This paper seeks an alternative solution to improve the cache hit ratio. This solution,
interestingly, is often ignored in practice—increasing the effective cache size.

The key idea is that for a given cache capacity, the data could be compressed to save space, which
would “virtually” enlarge the usable cache space and allow us to accommodate more data in the
flash cache, in turn increasing the hit ratio.

In fact, on-line compression fits flash devices very well. Figure 1 shows the percentage of I/O and
computation time for compressing and decompressing random data in different request sizes. The
figure illustrates that for read requests, the decompression overhead only contributes a relatively
small portion of the total time, less than 2% for requests smaller than 64KB. For write requests, the
compression operations are more computationally expensive, contributing for about 10%-30% of
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Fig. 1. I/O time vs. computation time.
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Fig. 2. Compression ratio vs. granularity.

the overall time, but it is still at the same order of magnitude compared to an I/O access to flash.
Compared to schemes compressing data in memory, such as zExpander [84], the relative computing
overhead accounts for an even smaller percentage, indicating that it would be feasible to apply
on-line compression in flash-based caches.

1.2 Challenges and Critical Issues

Though promising, efficiently incorporating on-line compression in flash-based key-value cache
systems is non-trivial. Several critical issues must be addressed.
First, various compression algorithms have significantly different compression efficiency and

computational overhead [30, 52, 66]. Lightweight algorithms, such as lz4 [52] and snappy [30],

are fast, but only provide a moderate Compression Ratio, which is calculated as
D=2><?A4BB43

2><?A4BB43
; heavy-

weight schemes, such as the deflate algorithm used in gzip [29] and zlib [66], can provide better
compression efficacy, but are relatively slow and would incur higher overhead. We need to select a
proper algorithm.

Second, compression efficiency is highly dependent on the compression unit size. A small unit size
suffers from a low compression ratio problem, while aggressively using an oversized compression
unit could incur a severe read amplification problem (i.e., read more than needed). Figure 2 shows
the average compression ratio of three datasets (Weibo, Tweet, Reddit) with different container sizes.
We can see that these three datasets are all compressible, as expected, and a larger compression
granularity generally results in a higher compression ratio. In contrast, compressing each key-value
item individually or using a small compression granularity (e.g., smaller than 4 KB) cannot reduce
the data size effectively. In this paper we will present an effective scheme, which considers the
properties of flash devices, to pack small items into a proper-size container for bulk compression.
This scheme allows us to achieve both high compression ratio and low amplification factor.

Third, certain data are unsuitable for compression, either because they are frequently accessed
or simply incompressible, e.g., JPEG images. We need to quickly estimate the data compressibility
and conditionally apply on-line compression to minimize the overhead.
Last but not least, we also need to be fully aware of the unique properties of flash devices.

For example, flash devices generally favor large and sequential writes. The traditional log-based
solution, though being able to avoid generating small and random writes, relies on an asynchronous
Garbage Collection (GC) process, which would leave a large amount of obsolete data occupying
the precious cache space and negatively affect the cache hit ratio.
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All these issues must be well considered for an effective adoption of compression in flash-based
key-value caching.

1.3 Our Solution: SlimCache

In this paper, we present an adaptive on-line compression scheme for key-value caching in flash,
called SlimCache. SlimCache identifies key-value items that are suitable for compression, and
applies a compression and decompression algorithm at a proper granularity, thus expanding the
effectively usable flash space for caching more data.

In SlimCache, the flash cache space is dynamically divided into two separate regions, a hot area
and a cold area, to store frequently and infrequently accessed key-value items, respectively. Based
on the highly skewed access patterns in key-value systems [5], the majority, infrequently accessed
key-value items are cached in flash in a compressed format for the purpose of space saving. A small
set of frequently accessed key-value items is cached in their original, uncompressed format to avoid
the read amplification and decompression penalty. The partitioning is automatically adjusted based
on runtime workloads. In order to create the desired large sequential write pattern on flash, the
cache eviction process and the hot/cold data separation mechanism are integrated to minimize the
cache space waste caused by data movement between the two areas.
To our best knowledge, SlimCache is the first work introducing compression into flash-based

key-value caches. Our compression mechanism achieves both high performance and high hit
ratio by restricting compressed unit within one flash page, dynamically identifying hot/cold data
for caching without causing thrashing, and maintaining a large sequential access pattern on
flash without wasting cache space. We have implemented a fully functional prototype based on
Twitter’s Fatcache [78]. Our experimental evaluations on an Intel 910 PCIe SSD have shown
that SlimCache can accommodate more key-value items in the cache by up to 223.4%, effectively
increasing throughput and reducing average latency by up to 380.1% and 80.7%, respectively. Such
an improvement is essential for data-intensive applications in data centers.

The rest of this paper is organized as follows. Section 2 gives the background. Section 3 introduces
the design of SlimCache. Section 4 presents the experimental results. Section 5 discusses the
limitations. The related work is presented in Section 6. The final section concludes this paper.

2 BACKGROUND

In this section, we briefly introduce flash memory SSD and key-value cache systems. The difference
between the flash-based key-value cache and the in-memory cache has motivated us to design an
efficient flash-based solution.

Flash Memory. NAND flash is a type of EEPROM devices. Typically a flash memory chip is
composed of several planes, and each plane has thousands of blocks. A block is further divided into
multiple pages. NAND flash memory has three unique characteristics: (1) Read/write speed disparity.
Typically, a flash page read is fast (e.g., 25-100 `s), but a write is slower (e.g., 200-900 `s). An erase
must be conducted in blocks and is time-consuming (e.g., 1.5-3.5 ms). (2) No in-place update. A
flash page cannot be overwritten once it is programmed. The entire block must be erased before
writing any flash page. (3) Sequential writes only. The flash pages in a block must be written in a
sequential manner. To address these issues, modern flash SSDs have the Flash Translation Layer
(FTL) implemented in device firmware to manage the flash memory chips and to provide a generic
Logical Block Address (LBA) interface as a disk drive. More details about flash memory and SSDs
can be found in prior studies [3, 11–13].

Flash-based Key-value Caches. Similar to in-memory key-value caches, such as Memcached,
flash-based key-value cache systems also adopt a slab-based space management scheme. Here we
take Twitter’s Fatcache [78] as an example. In Fatcache, the flash space is divided into fixed-size
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slabs. Each slab is further divided into a group of slots, each of which stores a key-value item. The
slots in a slab are of the same size. According to the slot size, slabs are classified into slab classes. For
a given key-value pair, the smallest slot size that is able to accommodate the item and the related
metadata is selected. A hash table is maintained in memory to index the key-value pairs stored in
flash. A query operation (GET) searches the hash table to find the location of the corresponding
key-value item on flash and then loads that slot into memory. An update operation (SET) writes the
data to a new location and updates the mapping in the hash table accordingly. A delete operation
(DELETE) only removes the mapping entry from the hash table. A Garbage Collection (GC) process
is responsible for reclaiming the deleted and obsolete items later.
Although in-memory key-value caches and in-flash key-value caches are similar in their struc-

tures, they show several remarkable distinctions. (1) I/O granularity. The flash SSD is treated as
a log-structured storage. Fatcache maintains a small memory buffer for each slab class. This in-
memory slab buffer is used to accumulate small slot writes, and when it is filled up, the entire slab
is flushed to flash, converting small random writes to large sequential writes. (2) Data manage-

ment granularity. Unlike Memcached, which keeps an object-level LRU list, the capacity-triggered
eviction procedure in Fatcache reclaims slabs based on a slab-level FIFO order.

3 DESIGN OF SLIMCACHE

In order to fully exploit compression opportunities for key-value caching in flash, we need to
carefully consider three critical issues: the compression overhead, the data compressibility and the
constraints of flash hardware.
• Compression overhead. Though simple, naïvely compressing all key-value data and decompressing
them upon every access would incur high computational overhead. We particularly need to separate
“hot” and “cold” data and selectively apply compression to them. So we have:

Rule #1: Do not compress the hot data.

• Compressibility. Certain data types, such as multimedia data and encrypted strings, are already
compressed or by nature incompressible. So we need a simple mechanism to estimate the com-
pressibility of the target data beforehand and to determine a proper compression granularity to
maximize the potential compression efficiency and avoid ineffective compression. So, we have:

Rule #2: Do not compress the incompressible data.

• Flash constraints. Since the underlying flash memory favors large sequential writes, the compres-
sion mechanism should not generate extra small random ones. Considering that all the invalid or
duplicated values have to wait for the garbage collection process to asynchronously reclaim their
occupied valuable cache space, we need to avoid generating much obsolete data. So, we have:

Rule #3: Optimization should be flash-aware.

3.1 Overview

SlimCache is a comprehensive on-line compression scheme for flash-based key-value caching. As
shown in Figure 3, SlimCache adopts a similar structure as Fatcache: A hash table is held in memory
to manage the mapping from a hashed key to the corresponding value stored in flash, compressed
or uncompressed; An in-memory slab buffer is maintained for each slab class, which batches up
writes to flash and also serves as a temporary staging area for making the compression decision.

Unlike Fatcache, SlimCache has an adaptive on-line compression layer, which is responsible for
selectively compressing, decompressing, and managing the flash space. In SlimCache, the flash
space is segmented into two areas, a hot area, which stores the frequently accessed key-value data,
and a cold area, which stores the relatively infrequently accessed data. Note that the key-value

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.



14:6 Y. Jia et al.

Fig. 3. An illustration of the SlimCache architecture.

items in the hot area are stored in the original uncompressed format, which speeds up repeated
accesses, while data in the cold area could be stored in either compressed and uncompressed format,
depending on their compressibility. The division of the two regions is dynamically determined by
the compression module at runtime. In the following, we will explain each of these components.

3.2 Slab Management

Similar to Fatcache, SlimCache adopts a slab-based space management: The flash space is sliced
into slabs. A slab is further divided into equal-size slots, which is the basic storage unit. Slabs are
virtually organized into multiple slab classes, according to their slot sizes. Differently, the slab slot
in SlimCache can store compressed or uncompressed data. Thus, a slab could contain a mix of
compressed slots and uncompressed slots. This design purposefully separates the slab management
from the compression module and simplifies the management. A slab could be a hot slab or a cold
slab, depending on its status. The hot slabs in aggregate virtually form the hot area, and similarly,
the cold slabs together form the cold area. We will discuss the adaptive partitioning of the two
areas later.

Slab Buffer. As flash devices favor large and sequential writes, a slab buffer is maintained to
collect a full slab of key-value items in memory and write them to the flash in bulk. Upon an
update (PUT), the item is first stored in the corresponding memory slab and completion is returned
immediately. Once the in-memory slab becomes full, it is flushed to flash. Besides asynchronizing
flash writes and organizing large sequential writes to flash, the buffer also serves as a staging area
to collect compressible data.

Compression Layer. SlimCache has a thin compression layer to seamlessly integrate on-line
compression into the I/O path. It works as follows. When the in-memory slab buffer is filled up,
we iterate through the items in the slab buffer, and place the selected compressible ones into a
Compression Container until full. Then an on-line compression algorithm is applied to the container,
producing one single Compressed Key-value Unit, which represents a group of key-value items
in the compressed format. Note that the compressed key-value unit is treated the same as other
key-value items and placed back to the in-memory slab buffer, according to its slab class, and
waiting for being flushed. In this process, the only difference is that the slot stores data in the
compressed format. It is unnecessary for the slab I/O management to be aware of such a difference.

Mapping Structure. In SlimCache, each entry of the mapping table could represent two types
of mappings. (1) Key-to-uncompressed-value mapping: An entry points to a slab slot that contains
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an original key-value item, which is identical to a regular flash-based key-value cache. (2) Key-to-
compressed-value mapping: An entry points to the location of a slab slot that contains a compressed
key-value unit, to which the key-value item belongs. That means, in SlimCache, multiple keys
could map to the same physical location (i.e., a compressed slot in the slab). In the items stored
on flash, we add a 1-bit attribute, called compressed bit, to differentiate the two situations. Upon a
GET request, SlimCache first queries the mapping table, loads the corresponding slot from the flash,
and depending on its status, returns the key-value item (if uncompressed) or decompresses the
compressed key-value unit first and then returns the demanded key-value item.

The above design has two advantages. First, we maximize the reuse of the existing well-designed
key-to-slab mapping structure. A compressed key-value unit is treated exactly the same as a
regular key-value item—select the best-fit slab slot, append it to the slab, and update the mapping
table. Second, it detaches the slab management from the on-line compression module, which is
only responsible for deciding whether and how to compress a key-value item. This makes the
management more flexible. For example, we can adaptively use different container sizes at runtime,
while disregarding the details of storing and transferring data.

3.3 Compression Granularity

Deciding a proper compression container size is crucial, because the compression unit size directly
impacts the compression ratio and the computational overhead. Two straightforward considerations
are compressing data in slot granularity or compressing data in slab granularity. Here we discuss
the two options and explain our decision.
• Option 1: Compressing data in slot granularity. A simple method is to directly compress each key-

value item individually. However, such a small compression unit would result in a low compression
ratio. As reported in prior work [5], in Facebook’s Memcached workload, the size of most (about
90%) values is under 500 bytes, which is unfriendly to compression. As shown is Figure 4, around
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80% of items in the three datasets, Weibo [27, 28], Twitter [77] and Reddit [65], are under 288 bytes,
418 bytes and 637 bytes, respectively. Compressing such small-size values individually suffers from
the low-compression-ratio problems (see Figure 2), and the space saving by compression would be
limited.
• Option 2: Compressing data in slab granularity. Another natural consideration is to compress

the in-memory slab, which is typically large (1 MB in Fatcache as default). However, upon a request
to a key-value item in a compressed slab, the entire compressed slab has to be loaded into memory,
decompressed, and then the corresponding item is retrieved from the decompressed slab. This read
amplification problem incurs two kinds of overhead. (1) I/O overhead. Irrelevant data have to be
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transferred over the I/O bus, no matter they are needed or not. (2) Computational overhead. We
apply lz4 [52], an efficient compression algorithm, on data chunks of different sizes, generated
from /dev/urandom. As shown in Figure 5, the computational overhead becomes non-negligible
when the compressed data chunk size increases, considering that a flash page read is typically only
about 25-100 `s. So, compressing data in slabs would cause concerns on the overhead issues.

The above analysis indicates that we must carefully balance between two design goals, achieving
a high compression ratio and reducing the overhead. Directly applying compression in either slab
or slot granularity would be unsatisfactory.
SlimCache attempts to make a GET operation completed in no more than one flash page read.

We keep track of the compression ratio after each compression operation at runtime, and calcu-
late the estimated compression ratio, 4BC_2><?A4BB8>=_A0C8> , by calculating the arithmetic mean
of the measured compression ratios. The estimated compression container size is calculated as
: × 5 ;0Bℎ_?064_B8I4 ×4BC_2><?A4BB8>=_A0C8> , where 5 ;0Bℎ_?064_B8I4 is the known flash page size
(typically 4-16 KB), and must be no smaller than a memory page size (4KB as default). The coeffi-
cient : is the multiplier of 5 ;0Bℎ_?064_B8I4 when multiple flash pages are needed. The rationale
behind this is that we desire to provide the compression algorithm a sufficient amount of data for
compression (at least one memory page), and also minimize the extra I/Os of loading irrelevant
data (at least one flash page has to be loaded anyway). It is worth noting that the purpose is not to
guarantee that the amount of data after being compressed will surely fit into one flash page but to
estimate a proper granularity to meet the goal as best efforts. Also, one can adjust the coefficient :
according to the properties of the target workloads to achieve the best performance. We set : = 1

in the prototype, which works well in our experiments. We will study the effect of compression
granularity on the performance in Section 4.3.1.

3.4 Hot/Cold Data Separation

In order to mitigate the computational overhead, it is important to selectively compress the in-
frequently accessed data, cold data, while leaving the frequently accessed data, hot data, in their
original format to avoid the read amplification problem and unnecessary decompression overhead.
For this purpose, we logically partition the flash space into two regions: The hot area contains
frequently accessed key-value items in the uncompressed format; the cold area contains relatively
infrequently accessed key-value items in the compressed format, if compressible (see Figure 6). We
will present a model-based approach to automatically tune the sizes of the two areas in Section 3.5.

Fig. 6. Hot and cold data separation.
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Identifying hot/cold data. SlimCache labels the “hotness” at the fine-grained key-value item
level rather than the slab level, considering that a slab could contain a random collection of key-
value items that have completely different localities (hotness). Identifying the hot key-value items
rather than hot slabs would provide more accuracy and efficiency. In order to identify the hot
key-value items, we add an attribute, called access_count, in each entry of the mapping table. When
updating a key-value item, its access_count is reset to 0. When the key-value item is accessed, its
access_count is incremented by 1. During garbage collection, if a compressed key-value item’s
access_count is greater than zero, it means that this key-value item has been accessed at least once
in a compressed format and could be a candidate for promotion to the hot area or continue to
stay in the cold area. In Section 3.6, we will discuss these two polices. Another issue is how many
bits should be reserved for an access_count. Intuitively, the more bits, the more precisely we can
tell the hotness of a key-value item, but more overhead is involved. We will study this effect in
Section 4.3.4.

Admitting key-value items in cache. Two options are possible for handling new key-value
items. The first one is to insert the newly admitted key-value item into the hot area, and when
the hot area runs out of space, we demote the cold items (access_count is 0) into the cold area,
compress and “archive” them there. The second method is to first admit the key-value item into the
cold area, and when the garbage collection process happens, we decompress and promote the hot
items to the hot area. Both approaches have advantages and disadvantages. The former has to write
most key-value data at least twice (one to the hot area and the other to the cold area), causing write
amplification; the latter applies compression in the front, which could cause the decompression
overhead if a promotion happens later. Considering the high locality in key-value caches, only a
small set of key-value items is hot and most are cold, the latter solution would remove unnecessary
flash writes and thus be more efficient. We choose the second solution in SlimCache.

Promotion and demotion. Key-value items can be promoted from the cold area to the hot area,
and vice verse. Our initial implementation adopts a typical promotion approach, which immediately
promotes a key-value item upon access, if its access_count is non-zero. However, we soon found a
severe problem with this approach—in order to create a log-like access pattern on flash, when a
key-value item is promoted into the hot area, its original copy in the cold area cannot be promptly
freed. Instead, it has to be simply marked as “obsolete” and waits for the garbage collection process
to recycle at a later time. During this time window, the occupied space cannot be reused. In our
experiments, we have observed a hit ratio loss of 5-10 percentage points (p.p.) caused by this space
waste. If we enforce a direct reuse of the flash space occupied by the obsolete key-value items,
random writes would be generated to flash, which is not desirable either.

SlimCache solves this challenging problem in a novel way. Upon a repeated access to a key-value
item, we do not immediately promote it to the hot area; rather, we postpone the promotion until
the garbage collector scans the slab. In the victim slab, if a key-value item has an access_count
greater than the threshold (see Section 3.6), we promote it to the hot area and its original space is
reclaimed then. In this way, we can ensure that hot data be promoted without causing any space
loss, and in the meantime, we still can preserve the sequential write pattern.
In order to determine the coldest slab for demotion from the hot area, the slabs are organized

in a linked list and we use the standard Least Recently Used (LRU) replacement algorithm in the
slab granularity for eviction. Every time a slab is accessed, it is regarded as the Most Recently
Used (MRU) one and moved to the head of the list. When the hot area is full, the Least Recently
Used (LRU) hot slab is selected for demotion. Instead of directly dropping all the key-value items,
SlimCache compresses the items with a non-zero access_count and demotes them into the cold
area, which offers the items that have been accessed a second chance to stay in cache. For the
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items that have never been accessed, SlimCache directly drops them since they are unlikely to be
accessed again.
In both promotion and demotion, we simply place the compressed/uncompressed key-value

items back to the slab buffer, and the slab buffer flushing process is responsible for writing them
to flash later. Such a hot/cold data separation scheme is highly effective. In our experiments, the
write amplification caused by data movement between the two areas is found rather low (see
Section 4.3.2).

3.5 Adaptive Partitioning

As mentioned above, the partitioning of flash space effectively determines the portion of key-value
items being stored in compressed or uncompressed format. The larger the cold region is, the more
flash space could be saved, and the higher hit ratio would be; however, the more I/Os have to
experience a time-consuming decompression. Thus, we need to first identify a reasonable initial
partitioning plan and also provide a dynamic partitioning scheme to reflect the change of workload
patterns. We use a simple model-based solution for such adaptive partitioning.

Initializing partitions. If we assume the workload distribution follows the Zipf’s law [8, 70, 88],
a small portion of records will serve most of the requests. The Zipfian distribution has been
extensively studied. In the following, we adopt the expressions defined in prior work [45] to explain
how we determine the initial partition ratio. As defined in the work [45], the Zipfian distribution
has the random variable - and parameters U and # , and the probability is

5 (G) =
1

GU
∑#

8=1 (
1
8
)U
, G = 1, 2, ..., # . (1)

where # is a positive integer and U ≥ 0. The true Zipf’s law [88] has U = 1, and a broader class
of Zipf-like distributions [8] has 0 < U < 1 and close to 1. If we represent the summation in the
denominator as

�#,U =

#∑

8=1

(
1

8
)U (2)

the cumulative distribution function on the support of - becomes

� (G) = % (- ≤ G) =
�G,U

�#,U
(3)

In the case that U = 1, asymptotically � (G) ≈ lnG
ln#

. If we assume the distribution follows a true
Zipf’s law, where U = 1, according to the work [45], the population mean of the true Zipf’s law is

� [- ] =
�#,U−1

�#,U
(4)

When we set G to � [- ], the cumulative distribution function becomes

� (� [- ]) ≈
ln( #

ln#
)

ln#
= 1 −

ln ln#

ln#
(5)

For more details, one may refer to prior studies [8, 45, 70, 88]. In this paper, we use Equations 4
and 5 to determine the initial partition ratio. Two examples are shown as below.
(1) When the number of records in the system is 100 million (i.e., # = 100"), � [- ] = #

ln#
=

100"/18.42 = 5.43" . This means that the update frequency of 5.43M records (i.e., approximately

5.4%) is above the average frequency. The hit ratio of all the 5.43M records is � (� [- ]) ≈ 1− ln ln#
ln#

=

1 − 2.91/18.42 = 84.2%.
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(2) When the number of records in the system is 10 billion (i.e., # = 10�), � [- ] =
#
ln#

=

10�/23.03 = 434" . This means that the update frequency of 434M records (i.e., approximately 4.3%)

is above the average frequency. The hit ratio of all the 434M records is � (� [- ]) ≈ 1 − ln ln#
ln#

=

1 − 3.14/23.03 = 86.4%.
In our prototype, we set the hot area initially as 5% of the flash space. According to our analysis

above, it is expected to satisfy about 85% of service requests to the cache server. Then we use a
model-based on-line partitioning method to adaptively adjust the sizes of the two areas at runtime.

Cost model based partitioning. As mentioned above, there is a tradeoff between the decom-
pression overhead and the cache hit ratio. We propose a simple cost model to estimate the effect of
area partitioning.

�>BC = �ℎ>C ×�ℎ>C + �2>;3 ×�2>;3

+(1 − �ℎ>C − �2>;3 ) ×�<8BB
(6)

�ℎ>C and �2>;3 are the ratios of hits contributed by the hot key-value items and the cold key-value
items on the flash, respectively.�ℎ>C and�2>;3 are the costs when the data is retrieved from the hot
and cold areas, respectively. �<8BB is the cost of fetching data from the backend data store. These
parameters can be obtained through measurement during runtime.
As shown in ALGORITHM 1, our model needs to consider two possible partitioning decisions,

increasing or decreasing the hot area size:
• Option #1: Increasing hot area size. If the size of the hot area is increased by ( , more data could

be cached in the uncompressed format. The hit ratio contributed by the head ( space of the cold
area is denoted as�2_ℎ403 . The hit ratio�

′

ℎ>C
provided by the hot area after increasing by ( becomes

�ℎ>C +�2_ℎ403/2><?A4BB8>=_A0C8> . The hit ratio �
′

2>;3
provided by the cold area after decreasing

by ( becomes �2>;3 − �2_ℎ403 .
• Option #2: Decreasing hot area size. If the size of the hot area is decreased by ( , there will be less

uncompressed data cached. The hit ratio contributed by the tail ( space of the hot area is denoted
as �ℎ_C08; . The hit ratio �

′

ℎ>C
provided by the hot area after decreasing by ( becomes �ℎ>C −�ℎ_C08; .

Correspondingly, the cold area will grow by ( , so the hit ratio �
′

2>;3
provided by the cold area will

be increased to �2>;3 + �ℎ_C08; × 2><?A4BB8>=_A0C8> .
We compare the current cost with the predicted cost after the possible adjustments. If the current

cost is lower, we keep the current partitioning unchanged. If the predicted cost after increasing or
decreasing the hot area is lower, we enlarge or reduce the hot area size, accordingly.

The above-said model is simple yet effective. Other models, such as miss ratio curve [87], could
achieve a more precise prediction but is more complex and costly. In our scenario, since multiple
factors vary at runtime anyway and the step ( is relatively small, the cost estimation based on this
simple model works well in our experiments.

3.6 Garbage Collection

Garbage collection is a must-have process in flash-based key-value cache systems. Since flash
memory favors large and sequential writes, when certain operations (e.g., SET and DELETE) create
obsolete value items in slabs, we need to write the updated content to a new slab and recycle the
obsolete or deleted key-value items at a later time. When the system runs out of free slabs, we need
to reclaim their space on flash.
As Figure 7 shows, SlimCache deploys a Two-stage Garbage Collection similar to our prior

work [73]. When the number of free slabs in the cold area of SSD drops to the start watermark
(,BC0AC ), Space-based Eviction is triggered and quickly cleans slabs. It switches to Locality-based
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Algorithm 1 DYNAMIC PARTITIONING

1: Data: compression_ratio, init_hot_area
2: Result: The partition of flash space
3: // �ℎ>C and �2>;3 mean the hit ratios in the hot and cold areas, respectively.
4: // 8=8C_ℎ>C_0A40, 2DAA_ℎ>C_0A40 and >?C_ℎ>C_0A40 mean
5: // the initialized, current, and optimal hot area sizes, respectively.
6: // �8C () calculates the estimated hit ratios in the hot and cold areas.
7: // �>BC () calculates the estimated overall cost with the estimated hit ratios.
8: �ℎ>C , �2>;3 ← �8C (8=8C_ℎ>C_0A40, 2><?A4BB8>=_A0C8>);
9: >?C_ℎ>C_0A40 ← 8=8C_ℎ>C_0A40;
10: >?C_2>BC ← �>BC (�ℎ>C , �2>;3 );
11: 2DAA_ℎ>C_0A40 ← 8=8C_ℎ>C_0A40;
12: BC4? ← {+(,−(}

13: <0G_ℎ>C_0A40 ← ?A434 5 8=43_CℎA4Bℎ>;3
14: procedure �.#�"��_%�')�) �$#�#�

15: for 8 ← 0; 8 ≤ 1; 8 ← 8 + 1 do

16: =4F_ℎ>C_0A40 ← 2DAA_ℎ>C_0A40 + BC4? [8];
17: �ℎ>C , �2>;3 ← �8C (=4F_ℎ>C_0A40, 2><?A4BB8>=_A0C8>);
18: =4F_2>BC ← �>BC (�ℎ>C , �2>;3 );
19: if =4F_2>BC ≤ >?C_2>BC and |>?C_2>BC − =4F_2>BC | > n then

20: if =4F_ℎ>C_0A40 ≤ <0G_ℎ>C_0A40 then

21: >?C_2>BC = =4F_2>BC ;
22: >?C_ℎ>C_0A40 ← =4F_ℎ>C_0A40;
23: end if

24: end if

25: end for

26: 2DAA_ℎ>C_0A40 ← >?C_ℎ>C_0A40
27: ���*()_%�')�) �$# (>?C_ℎ>C_0A40)
28: end procedure

Fig. 7. An illustration of the two-stage GC. Fig. 8. Data recycling in garbage collection.

Recycling, when the free slab number is brought back to the low watermark (,;>F ). The GC process
continues until the number of free slab reaches the high watermark (,ℎ86ℎ).
• Space-based eviction: When the number of the free slabs in the cold area drops to below

the start watermark,,BC0AC , the space-based eviction process is triggered to release the high space
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pressure. All the data in the Least Recently Used (LRU) slab, including the valid data, will be dropped
directly to reclaim the free space quickly. This is safe, since the backend data store still contains
the most recent version. After updating the hash table mapping, the whole slab is put into the free
cold slab list. This GC policy aims to reclaim the free space as fast as possible. When the number of
free slabs reaches the low watermark,,;>F , the GC process switches to locality-based recycling.
• Locality-based recycling: When the number of the free slabs in the cold area is between the

low watermark,,;>F , and the high watermark,,ℎ86ℎ , the locality-based recycling is triggered.
We search the slab queue of the cold area to identify the slab that is most frequently accessed.
The whole slab is read and based on the access_count, the key-value items can be divided into
three possible categories: hot, warm and cold. Accordingly, as illustrated in Figure 8, we could
apply different recycling policies for them—the cold or invalid (obsolete or deleted) key-value items
are dropped directly; the warm items continue to stay in the cold area in the compressed format;
the hot items are decompressed and promoted into the hot area. Note that we may also make
a coarser differentiation by dividing the items into only two categories, hot and cold. In fact, in
our experiments we find that using a 1-bit counter to differentiate hot and cold items generally
satisfies our needs in most cases. After updating the hash table mappings, the whole slab is cleaned
and placed back to the free cold slab list. Unlike the space-based eviction, this garbage collection
procedure takes more time, and collects and promotes valuable items for the purpose of retaining a
high hit ratio. When the number of free slabs reaches the high watermark,,ℎ86ℎ , the GC process
stops.

These two GC policies are designed for different situations. The space-based eviction is responsi-
ble for evicting cold items and aims to reclaim the free space as quickly as possible. So it is used
when SlimCache runs out of free slabs to a severe degree. The locality-based recycling is mainly
responsible for collecting and promoting the hot items to retain the hit ratio.

The demotion process in the hot area is similar. When the free space is below the low watermark,
,;>F , the LRU slab is selected and all the valid items are compressed and demoted into the cold
area. The process repeats until the number of free slabs reaches to the high watermark,,ℎ86ℎ .

3.7 Dynamic Compressibility Recognition

Some key-value data are incompressible by nature, such as encrypted or already-compressed data,
e.g., JPEG images. Compressing them would not bring any benefit but incurs unnecessary overhead.
We need to quickly estimate data compressibility and selectively apply compression.

A natural indicator of data compressibility is the entropy of the data [72], which is defined as
� = −

∑=
8=1 ?8 × log1 ?8 . Entropy quantitatively measures the information density of a data stream

based on the appearing probability (?8 ) of the = unique symbols. It provides a predictive method
to estimate the amount of redundant information that could be removed by compression, such as
the Huffman encoding [31, 43]. Entropy has been widely used for testing data compressibility in
various scenarios, such as primary storage [31], memory cache [14], device firmware [69], image
compression [56], and many others. We use normalized entropy [80], which is the entropy divided
by the maximum entropy (log1 =), to quickly filter out the incompressible data, which are indicated
by a high entropy value.
We initialize the threshold to be the average entropy value of randomly generated strings.

Since randomly generated strings are mostly incompressible [75], we can effectively skip compres-
sion operations for strings whose normalized entropy is larger than that of random strings (i.e.,
incompressible) to remove the unnecessary computational overhead.
We have developed a Dynamic Compressibility Recognition (DCR) algorithm to adaptively

adjust the entropy threshold during runtime based on the real-time compression ratio. It works as
shown in ALGORITHM 2. The global_min_cmpr is a predefined minimum compression ratio that
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Algorithm 2 DYNAMIC COMPRESSION RECOGNITION

1: Result: threshold for the entropy
2: 8=8C_4=CA>?~_E0;D4 ← 4=CA>?~ (A0=3><BCA8=6B);
3: 4=CA>?~_CℎA4Bℎ>;3 ← 8=8C_4=CA>?~_E0;D4 ;
4: 6;>10;_<8=_2<?A ← ?A434 5 8=43_E0;D4;
5: 2DAA_<8=_2<?A ←<0G_8=8C_2<?A ;
6: for each 2DAA_1;: do

7: if 6;>10;_<8=_2<?A < 2><?A4BB8>=_A0C8> (2DAA_1;:) < 2DAA_<8=_2<?A then

8: 4=CA>?~_CℎA4Bℎ>;3 = 4=CA>?~ (2DAA_1;:);
9: 2DAA_<8=_2<?A = 2><?A4BB8>=_A0C8> (2DAA_1;:);
10: end if

11: end for

12: *%��)�_)�'�(�$!� (4=CA>?~_CℎA4Bℎ>;3)

is acceptable for SlimCache to apply compression operations to gain performance benefits. The
curr_min_cmpr is the minimum compression ratio found in the current workload. If a current data
block’s compression ratio is found smaller than curr_min_cmpr and greater than global_min_cmpr,
the entropy_threshold and the curr_min_cmpr are updated as the entropy value and the compression
ratio of the current data block, respectively. The rationale behind this algorithm is that we first
ensure that using the entropy threshold would not result in a compression ratio lower than the
acceptable ratio (defined by global_min_cmpr), and we initially set a high entropy threshold to
ensure a high compression ratio, and gradually tune down this entropy threshold if we observe an
acceptable compression ratio during runtime. In this way, we can find the best cutoff thresholds for
different workloads.

The items that are detected incompressible are directly written to the cold area in their original un-
compressed format. Thus note that the cold area could hold a mix of compressed and uncompressed
data. This entropy-based estimation fits well in our caching system, especially for its simplicity,
low computation cost, and time efficiency. We will study the effect of dynamic compressibility
recognition in Section 4.3.6.

3.8 Summary

SlimCache shares the basic architecture design with regular flash-based key-value caches, such as
the slab/slot structure, the mapping table, the in-memory slab buffer, and the garbage collection.
However, SlimCache also has several unique designs to realize efficient data compression.
First, we add a compression layer that applies compression algorithms on the suitable items

at a proper granularity. The compressed unit is placed back to the slab-based cache structure
as regular key-value items, so that the cache space can be consistently allocated and managed.
Accordingly, the mapping structure is also modified to point to either compressed or uncompressed
items. Second, SlimCache dynamically divides the flash cache space into two separate regions,
a hot area and a cold area, to store data in different formats for minimizing the computational
overhead caused by compression. Third, SlimCache also enhances the garbage collection process by
integrating it with the hot/cold data separation mechanism to avoid the cache space waste caused
by data movement between the two areas. Finally, we add compressibility recognition mechanism
to identify the data suitable for compression. These differences between SlimCache and a regular
flash-based key-value cache, such as Fatcache, contribute to the significant performance gain.
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4 EVALUATION

To evaluate the proposed schemes, we have implemented a prototype of SlimCache based on
Twitter’s Fatcache [78], which has been used in academic works [4, 25, 42, 71, 73] and commercial
product benchmarking [67, 68]. Our implementation accounts for about 2,700 lines of code in C. In
this section, we present our evaluation results for the SlimCache design on a real SSD hardware
platform.

4.1 Experimental Setup

Our experiments are conducted on three Lenovo ThinkServers. All the three servers feature an Intel
Xeon(R) 3.40GHz CPU and 16GB DRAM memory. In the key-value cache server, an 800GB Intel 910
PCIe SSD is used as the storage device for key-value caching. Note that for a fair comparison, only
a part of the SSD space (12-24 GB) is used for caching in our experiments, proportionally to the
workload dataset size. All the experiments use direct_io to minimize the effect of the operating
system page cache. In Fatcache and SlimCache, the consumed memory space is mainly for holding
the hash mapping structure in memory. Each mapping entry consumes 44 bytes, and the memory
consumption is largely proportional to the number of key-value items in cache. For example, in
our experiments with the Twitter data set, SlimCache consumes up to about 4 GB memory for
indexing 98 million key-value items. Fatcache, due to the less amount of key-value items being
cached, consumes proportionally less memory. Our backend data store is MongoDB v3.4.4 running
on a separate server with 1TB Seagate 7200RPM hard drive. The clients run on another ThinkServer
to generate traffic to drive the experiments. The three servers are connected via a 10Gbps Ethernet
switch. For all the three servers, we use Ubuntu 14.04 with Linux kernel 4.4.0-31 and Ext4 file
system.

We use Yahoo’s YCSB benchmark suite [24] to generate workloads to access key-value items, fol-
lowing three different distributions, Zipfian, Normal, andHotspot1, as described in priorwork [9] [84]
to simulate typical traffic in cloud services [5]. Since the YCSB workloads do not contain actual
data, we use the datasets from Twitter [77], Flickr [33], and Reddit [65] to emulate three typical
types of key-value data with different compressibility. The Twitter and Reddit datasets have a
high compression ratio (about 2-4), while the Flickr dataset has a low compression ratio, near to 1
(incompressible). In order to generate fixed-size compressible values (Section 4.3.1), we use the
text generator [26] based on Markov chain provided by Python to generate the pseudo-random
fixed-size values. We use the lightweight lz4 [52] and the heavyweight deflate method in zlib [66]
for compression in comparison.
In the following, our first set of experiments evaluates the overall system performance with a

complete setup, including both the cache server and the backend database. Then we focus on the
cache server and study each design component individually. Finally we study the cache partitioning
and further give the overhead analysis.

4.2 Overall Performance

In this section, our experimental system simulates a typical key-value caching environment, which
consists of clients, key-value cache servers, and a database server in the backend. We test the system
performance by varying the cache size from 6% to 12% of the dataset size, which is about 200 GB in
total (480 million, 300 million, and 2 million records for Twitter, Reddit and Flicker, respectively).
Thus only part of the 800GB SSD capacity is used as cache (12-24 GB) for fair comparison. For
each test, we first generate the dataset to populate the database, and then generate 300 million GET

requests. We only collect the data for the last 400K requests in the trace replaying to ensure that

1Hotspot is a distribution in which 80% of the operations access 20% of the data items and the rest 20% of the operations

access the rest 80% items. Elements for the hot set and cold set are chosen in an uniform manner.
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the cache server has been warmed up. All the experiments use 8 key-value cache servers and 32
clients.

4.2.1 Performance for Twi!er Dataset. Our on-line compression solution can “virtually” enlarge
the size of the cache space. Figures 9a, 9b, and 9c show the number of items cached in SlimCache
compared to the stock Fatcache with the same amount of flash space.
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Fig. 9. Performance of Twi"er dataset.

As shown in Figure 9a, the number of items in cache increases substantially by up to 125.9%.
Such an effect can also be observed in other distributions. Having more items cached in SlimCache
means a higher hit ratio. Figures 9d, 9e, and 9f show the hit ratio difference between Fatcache and
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SlimCache. In particular, when the cache size is 6% of the dataset, the hit ratio (54%) of SlimCache-
zlib for the hotspot distribution is 2.1 times of the hit ratio provided by Fatcache. For the Zipfian
and normal distributions, the hit ratio of SlimCache-zlib reaches 72.6% and 64.7%, respectively.
A higher hit ratio further results in a higher throughput. As the backend database server runs
on a disk drive, the increase of hit ratio in the flash cache can significantly improve the overall
system throughput and reduce the latencies. As we can see from Figures 9g, 9h, and 9i, compared
to Fatcache, the throughput improvement provided by SlimCache-zlib ranges from 25.7% to 255.6%,
and the latency decrease ranges from 20.7% to 78.9%, as shown in Figures 9j, 9k, and 9l.

Scheme Zipfian Hotspot Normal

Fatcache 65.1% 25.2% 32%
SlimCache w/o Compression 66.2 % 26.4% 33.5%

SlimCache with lz4 70.2 % 45.4% 52.8%

Table 1. Hit ratio gain of compression in SlimCache.

To further understand the reason of the performance gains, we repeated the experiments with
compression disabled. Table 1 shows the results with a cache size as 6% of the dataset. We can see
that without data compression, solely relying on the two-area (hot and cold area) cache design,
SlimCache only provides a slight hit ratio increase (1.1-1.5 p.p.) over the stock Fatcache. In contrast,
SlimCache with compression provides a more significant hit ratio improvement (5.1-20.8 p.p.). It
indicates that the performance gain is mainly a result of the virtually enlarged cache space by
on-line compression rather than the two-area cache design.

4.2.2 Performance for Reddit Dataset. We further conduct experiments with Reddit on SlimCache
to illustrate the effectiveness of our proposed approaches. Figures 10a–10c show the number of key-
value items cached in SlimCache compared to Fatcache with the same amount of cache space. We
can see from Figure 10a that the number of items cached in SlimCache-zlib increases significantly
by up to 223.4%. Such an increase can also be found with other distributions. More key-value items
cached by SlimCache result in a higher hit ratio. We can observe the hit ratio difference between
Fatcache and SlimCache in Figures 10d–10f. For the Zipfian distribution, when the cache size is 6%
of the working set, the hit ratio provided by SlimCache-zlib is about 69.3%, which is about 7 p.p.
higher than Fatcache. A higher hit ratio further helps improve the throughput. As Figures 10g–10i
show, the throughput improvement provided by SlimCache-zlib ranges from 18.9% to 380.1%. We
can also observe in Figures 10j–10l that, as the cache size increases, the latency decrease ranges
from 16.4% to 80.7%. It well shows that SlimCache can gain significant performance improvement
for both Twitter and Reddit datasets.

4.2.3 Effect of Replacement Algorithms. Figure 11 shows the effect of different replacement algo-
rithms on the performance of the system for the Reddit workload with Zipfian distribution. We
compare Fatcache with the FIFO algorithm (default) and the LRU algorithm with our proposed
SlimCache-zlib. Figure 11a shows that the hit ratio increases from 66.39% to 68.72%, if we change
the replacement algorithm from FIFO to LRU for Fatcache when the cache size is 12% of the working
set. Accordingly, Figure 11b shows that the throughput increases from 233 ops/sec to 252 ops/sec
and Figure 11c shows that the average latency decreases from 122.78 ms to 112.17 ms. These exper-
imental results illustrate that the LRU replacement algorithm only slightly improves performance
over FIFO. In contrast, SlimCache-zlib outperforms Fatcache-LRU significantly. For example, the
throughput of SlimCache-zlib is 32.1% higher than that of Fatcache-LRU when the cache size is 12%.
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Fig. 10. Performance of Reddit dataset.

It clearly shows that most of the performance gain of SlimCache-zlib is due to the efficient data
compression mechanism, which significantly increases the cache hit ratio.

4.2.4 Effect of Caching Devices. Figure 12 shows the effect of caching devices on the performance
of the system for the Reddit workloads with Zipfian distribution. In this experiment set, we replace
the caching device with a 280GB Intel 900P Optane SSD [35], which is built on 3D XPoint non-
volatile memory, while keeping the other configurations unchanged. Figure 12a shows that the
conventional NAND flash based SSD and the new 3D XPoint based SSD provide nearly identical hit
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Fig. 11. Effect of cache replacement algorithms.

ratios. If we compare the two devices, as we can see in Figure 12b, when the cache size is 12% of the
workload, Fatcache-Optane can provide 4.7% higher throughput than Fatcache-Flash, and SlimCache-
Optane can provide 5.1% higher throughput than SlimCache-Flash. Correspondingly, as Figure 12c
shows, Fatcache-Optane reduces 5.7% average latency than Fatcache-Flash, and SlimCache-Optane
reduces 5.3% average latency than SlimCache-Flash. Together with the experimental results shown
in Section 4.2.2, we can find that when the speeds of caching devices (SSDs) are on the same order of
magnitude, it only incurs slight performance difference, since the backend data store, which stores
data in hard disk drive, is much slower than the caching device. As a consequence, increasing the
cache hit ratio, which means fewer accesses being generated to the slow backend data store, would
improve system performance more significantly than simply using a faster and more expensive
caching device. This observation further illustrates that SlimCache, which aims to improve hit ratio
by caching more key-value items with compression techniques, is practically a more effective and
cost-efficient approach.
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Fig. 12. Effect of caching devices.

4.2.5 Effect of the Compression Algorithms. We compare the performance of applying three differ-
ent compression algorithms, the lightweight lz4, snappy, and heavyweight deflate in zlib, when
the cache size is 6% of the Twitter dataset.
Figure 13 shows that zlib performs the best among the three, while lz4 and snappy are very

similar. In particular, zlib provides a hit ratio gain of 2.4-11.9 p.p. over lz4 and snappy, which
results in a throughput increase of 3.4%-25% and a latency decrease of 6%-20.6%. Meanwhile, the
CPU utilization ratio is up to 2.34% in all the cases as shown in Figure 13d. This indicates that
heavyweight compression algorithms, such as the deflate method in zlib, work fine with flash-
based caches, since the benefit of increasing the hit ratio significantly outweighs the incurred
computational overhead in most of our experiments.

4.2.6 Performance for Flickr Dataset. We have also studied the performance of SlimCache when
handling incompressible data. SlimCache can estimate the compressibility of the cache data, and
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Fig. 13. Effect of different compression algorithms.

skip the compression process for the items that are not suitable for compression, such as already-
compressed images. We have tested SlimCache with the Flickr dataset and Figure 14 shows that for
workloads with little compression opportunities, SlimCache can effectively identify and skip such
incompressible data and avoid unnecessary overhead, showing nearly identical performance as the
stock Fatcache.
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Fig. 14. Hit ratio and throughput with Flickr dataset.

4.3 Cache Server Performance

In this section, we study the performance details of the cache server by generating GET/SET requests
directly to the cache server. Since we focus on testing the raw cache server capabilities, there is no
backend database server in this set of experiments, if not otherwise specified, and we load about

ACM Trans. Storage, Vol. 16, No. 2, Article 14. Publication date: June 2020.



SlimCache: An Efficient Data Compression Scheme for Flash-based Key-value Caching 14:21

30GB data using the Twitter dataset to populate the cache server, and generate 10 million GET/SET
requests with the Zipfian distribution for the test. All the experiments use 8 key-value cache servers
and 32 clients.

4.3.1 Compression Granularity. We first study the effect of compression granularity. Table 2 shows
the average compression ratio of fixed-size key-value pairs generated by Markov text generator [26]
when compressed individually with lz4. In the following experiments, we compare our proposed
dynamic compression granularity with static compression in three large granularities, 4KB, 8KB
and 16KB, which achieve the highest compression ratios as shown in the table.

Item Size 64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB

Compression Ratio 0.98 1.00 1.03 1.07 1.12 1.13 1.19 1.37 1.37

Table 2. Compression ratios of the key-value pairs of different sizes.
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Fig. 16. Latency vs. granularity.

Figure 15 and Figure 16 show the throughput and the average latency of the workload with
a GET/SET ratio of 95:5. We vary the fixed-size compression granularity from 4 KB to 16 KB, as
comparison to our dynamically adjusted approach (see Section 3). It shows that by limiting the
size of the compressed items in one flash page, the throughput can be significantly higher than
those spreading over multiple flash pages. For example, when the value size is 128 Bytes, if the
compression granularity is 16 KB, the throughput is 34K ops/sec, and it increases to 51K ops/sec
by using our dynamic method. The improvement is as high as 50%. Figure 15 also shows that the
throughput of the dynamic mechanism is always among the top two and is close to the highest
static setting. Figure 16 shows a similar trend. Using dynamic compression granularity, we can
achieve both high compression ratio and high throughput simultaneously. Compared to static
setting, our dynamic configuration approach achieves a similar performance, and is more flexible
and adapts to the workloads during runtime.

4.3.2 Hot/Cold Data Separation. Figure 17 compares the throughput with and without the hot area
for the Twitter dataset with the Zipfian distribution. As shown in the figure, the throughput when
SET/GET ratio is 0:100 is 39K ops/sec and 65K ops/sec for SlimCache without and with hot/cold
data separation, respectively. Thus, a 66.7% improvement can be achieved with hot/cold separation.
Such an improvement can also be seen with other SET/GET ratios, but when all the requests are
SET operations, the two mechanisms achieve almost the same throughput. That is because the SET
path in SlimCache is identical, no matter the data separation is enabled or not—the items are all
batched together and written to the cold area in the compressed format. However, the difference
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emerges when GET operations are involved, because the hot items are promoted to the hot area
in uncompressed format, and the following GET requests to this item can avoid the unnecessary
overhead. Although the hot area only accounts for a small percentage of the cache space, it improves
the performance significantly compared to that without hot/cold separation.
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Fig. 17. Hot/cold data separation.

We note that such a great performance improvement is not for free. Frequent data movement
between the hot and cold areas may cause a write amplification problem, which is harmful to the
performance and also the lifetime of flash. In our experiments, we find that the Write Amplification
Factor (WAF) is up to 4.2% in SlimCache, meaning that only 4.2% of the write requests is caused by
the switch between the two areas. Since the WAF is quite low and the hot/cold data switch is a
background operation, the benefit introduced by hot/cold data separation clearly outweighs its
overhead, as shown in Figure 17.

4.3.3 Two-stage Garbage Collection. We test the effect of the high watermark ,ℎ86ℎ and low
watermark,;>F to the performance by setting the high watermark from 8 to 128 free slabs, and the
low watermark half of the high watermark. For the Twitter dataset following different distributions,
the performance is insensitive to the watermark settings. This is because the reserved free space
only accounts for a very small portion of the entire cache space as shown in Figure 18 and Figure 19.
In our experiments, we set,ℎ86ℎ=16,,;>F=8 and,BC0AC=2, which is only about 1% of the overall
cache space.
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4.3.4 Data Recycling. We investigate the effect of threshold setting for hot, warm and cold data
identification during garbage collection, with 300 million requests following the Zipfian distribution.
The cache size is set 6% of the workload dataset size.
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Fig. 20. Threshold se"ings in GC.

Figure 20 shows the hit ratio change by setting different thresholds. When the high threshold
and the low threshold are both 1 (denoted as H1L1 in the figure), which means that the items will
be promoted to the hot area when they are reaccessed at least once and all the rest are dropped
directly, the hit ratio reaches the highest, 70.4%, among all the settings. When we vary the threshold
settings, the hit ratio drops to about 60%. It indicates that recycling hot data to the hot area is very
effective to identify the most valuable data. However, recycling warm data to the cold area incurs
inefficient recollection, since many of the recollected warm data are not frequently reaccessed but
occupy the cache space that could be used for other valuable items. Based on the experimental
results, we simplify the garbage collection process without recycling warm data to the cold area.
Instead, only hot items are promoted to the hot area.
Table 3 shows the percentage of GET requests that are served from the hot area when the high

threshold and the low threshold are both 1. With a SET/GET ratio of 5:95, 56.7% of the GET requests
fall in the hot area, whose size is only 5% of the entire cache space. These results show that the
hot/cold data separation can effectively alleviate the read amplification problem caused by on-line
compression.

SET/GET 95:5 50:50 5:95 0:100

SlimCache 79.1 % 87.3% 56.7% 55%

Table 3. Ratio of GET requests served in the hot area.

4.3.5 Garbage-Collection-Merged Promotion. We compare two different promotion approaches.
The first one is on-line promotion, whichmoves the items to the hot area in the uncompressed format
immediately after this item is re-accessed. The second one is called Garbage Collection Merged
(GCM) promotion, which is used in GC in SlimCache (see Section 3.6). In the GCM promotion,
re-accessed items are promoted to the hot area during the GC period. Neither of the two approaches
causes extra read overhead, since the on-demand read requests or the embedded GC process needs
to read the items or the slab anyway. However, these two methods have both advantages and
disadvantages. On-line promotion is prompt, but it wastes extra space, because the original copy of
the promoted items would not be recycled until the slab is reclaimed, reducing the usable cache
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space and harming the hit ratio. On the contrary, the GCM promotion postpones the promotion
until the GC process happens, but it does not cause space waste, which is crucial for caching.
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Fig. 21. Online vs. GCM promotion.

As Figure 21 shows, when we test the server without considering the backend database server,
the on-line promotion shows a relatively better performance than the GCM promotion, because
the on-line compression can timely promote a frequently accessed item into the hot area, reducing
the decompression overhead.

Scheme Zipfian Hotspot Normal

Fatcache 65.1% 25.2% 32%
SlimCache-Online 69.5% 38.2% 47%
SlimCache-GCM 70.2% 45.4% 52.8%

Table 4. Hit ratio of Online and GCM promotion.

However, the on-line promotion approach could create duplicate copies in cache. It would incur a
waste of cache space, reducing the hit ratio and causing a negative performance impact. In contrast,
GCM removes such issues and maintains a higher hit ratio. Table 4 shows the effect of such a
space waste on the hit ratio. We have repeated the Twitter experiments in Section 4.2.1 and set the
cache size as 6% of the dataset size. It shows that SlimCache-GCM provides a hit ratio increase of
0.7-7.2 p.p. over SlimCache-Online, which would correspondingly translate into performance gains
in cases when a backend database is involved. As space saving for hit ratio improvement is the
main goal of SlimCache, we choose GCM in SlimCache. This highly integrated garbage collection
and hot/cold data switch process is specifically customized for flash-based caching systems, with
significant performance improvement.

4.3.6 Dynamic Compressibility Recognition (DCR). The dynamic compressibility recognition (DCR)
can bring both benefits and overhead. For incompressible data, it can reduce significant overhead
by skipping the compression process. However, for compressible data, the compressibility check
incurs additional overhead.

We have benchmarked the effect of DCR with Zipfian workloads. Figure 22 shows the benefit of
applying compressibility recognition to the incompressible dataset, which is composed of randomly
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Fig. 22. DCR with incompressible data.
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Fig. 23. DCR with Twi"er data.
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Fig. 24. DCR with hybrid data.

generated characters. In particular, compressibility recognition improves the throughput by up
to 156.1%. In contrast, the DCR mechanism adds overhead for the compressible Twitter dataset, as
shown in Figure 23. We can also see that the overhead is mainly associated with SET operations.
When the GET operations are dominant, which is typical in key-value cache systems, the overhead
is minimal. Figure 24 shows the effect of DCR when the workload is a hybrid compressible (Twitter)
and incompressible (random) dataset at the ratio of 1:1. The overhead introduced by DCR is
negligible when the dataset is hybrid. Compared to Static Compressibility Recognition (SCR), DCR
provides very close performance as shown in Figures 22, 23, and 24. However, DCR provides a
more user-friendly interface than SCR, since determining the proper compression ratio is more
straightforward than determining the proper entropy. Our results show that the DCR mechanism
generally incurs little overhead for the read-intensive compressible data and improves throughput
significantly for incompressible data. It is also worth noting that such an automatic approach
avoids the need for involving human efforts in determining whether to apply data compression or
not, which is particularly important for an online system handling key-value requests at a high
throughput.

4.4 Adaptive Partitioning

4.4.1 High miss cost. To illustrate the adaptive partitioning, we collect the average read latency
to configure our proposed cost model. The hot area cache read is measured 400 `s, the cold area
cache read is 900 `s, and the backend fetch is 300 ms. The parameters are listed in Table 5.

Figure 25 shows the runtime hot area size and the hit ratio when dynamic partitioning happens
when the miss cost is high. As the speed of our backend database is slow, SlimCache tends to
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Scheme latency (`s)

Hot area read 400
Cold area read 900
Back-end fetch 300,000

Table 5. Parameters used in Dynamic Partition Mechanism I.
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Fig. 25. Adaptive partitioning.
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Fig. 26. Step ( for partitioning.

keep a larger cold area and attempts to reduce the number of cache misses until the convergence
condition is reached. Figure 25 shows that the hit ratio keeps stable when data migration happens
in SlimCache. We have also studied the effect of step S by setting it to 10%, 15%, and 20% of the hot
area size. SlimCache can reach a stable cache partitioning within 9 minutes for all the step settings
as Figure 26 shows. Considering that the up-time of a real server is often long (days to months),
such a short time for reaching a stable cache partitioning means that our adaptive partitioning
approach is reasonably responsive and effective.

4.4.2 Low miss cost. In this section, we configure the hot area cache read time to be 400 `s, the
cold area cache read time to be 900 `s, and the backend access read time to be 1.2 ms to illustrate
the adaptive partitioning when the backend access cost is low. The parameters are listed in Table 6.

Scheme latency (`s)

Hot area read 400
Cold area read 900
Back-end fetch 1,200

Table 6. Parameters used in Dynamic Partition Mechanism II.

Figure 27 shows the runtime hot area size and the hit ratio, when dynamic partitioning happens
in the situation of dealing with a fast backend data store. In this case, as the speed of our backend
database is only 33% slower than the cache server, SlimCache gradually expands the hot area (to
about 20%) to reduce the incurred compression overhead until the convergence condition is reached.
This is because with a fast backend data store, the relative benefit of maintaining a large amount of
compressed data in the cold area decreases. Figure 27 also shows that the hit ratio keeps stable,
when data migration happens in SlimCache. Similar to the high-miss cost case, we also study the
effect of step S by setting it to 10%, 15%, and 20% of the hot area size. It takes less than 15 minutes for
SlimCache to reach a stable cache partitioning for all the step settings as Figure 28 shows. Together
with the results from Section 4.4.1, we can see that no matter the backend database is relatively
fast or slow, our adaptive partitioning approach can reach a reasonably good partition quickly.
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4.5 Overhead Analysis

SlimCache introduces on-line compression in flash-based key-value caching, which could increase
the consumption of CPU, memory and flash resources on the sever side.
•Memory utilization. In SlimCache, memory is mainly used for three purposes. (1) In-memory

hash table. SlimCache adds a 1-bit access_count attribute to record the access count of the item since
stored in the system. (2) Slab buffer. SlimCache performance is not sensitive to the memory buffer.
We maintain a 128 MB memory for slab buffer, which is identical to Fatcache. (3) Slab metadata.
We add a 1-bit attribute for each slab, called hotslab. This bit indicates whether the slab belongs
to the hot area or not. In total, for a 1TB SSD that stores 1 billion records, SlimCache consumes
about 128 MB (128 MB for hash table entry metadata, 128 KB for slab metadata) more memory than
Fatcache, which is about 0.3% of the overall memory consumption. In our experiments, we find
that the actual memory consumption of SlimCache and Fatcache is similar, when caching the same
amount of key-value items.
• CPU utilization. SlimCache is multi-threaded. In particular, we maintain one thread for the

drain operation, one thread for garbage collection, one thread for data movement between the
hot and the cold areas, and one thread for dynamic partitioning. Compression and decompression
operations also consume CPU cycles. As shown in Table 7, the CPU utilization of SlimCache is
less than 3.5% in all our experiments. The main bottleneck is the backend database for the whole
system. Computation resource is sufficient on the cache server to complete the demanded work.

Table 7. CPU utilization of SlimCache.

Scheme Zipfian Hotspot Normal

Cache 6% 12% 6% 12% 6% 12%

Fatcache 1.93% 2.08% 1.07% 1.19% 1.84% 2.25%
SlimCache 2.09% 2.14% 1.23% 2.21% 2.05% 3.37%

• Flash utilization. We add a 1-bit compressed attribute to each key-value item to indicate
whether the item is in compressed format or not. This attribute is used to determine if a decom-
pression process should be applied when the slot is read upon a GET operation. Storing 1 billion
records will consume 128 MB more flash space, which is a small storage overhead.

5 LIMITATIONS

Although SlimCache can achieve significantly better performance than Fatcache, there are still
several limitations that are out of the scope of this work and worth studies in the future.
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5.1 Data Persistence

As a replacement of Memcached, Twitter’s Fatcache is not designed to guarantee data persistence
in cache. In Fatcache, the mapping structure is completely stored in volatile memory rather than
the flash SSD. This design choice removes the related performance overhead and also simplifies
the system design, but when a system crash or power failure happens, the key-value data hosted
in the flash cache would become invalid. It is worth noting that it is still safe, because the client
can always find a copy of the most up-to-date data in the backend data store. However, the cache
system has to warm up again after restart, which could take a long duration. Similar to the stock
Fatcache, SlimCache shares the same limitation in terms of cache data persistence. A potential
solution is to keep the mapping structure is byte-addressable persistent memory, such as Intel’s
Optane Memory [37]. Our main goal in this work is to improve the caching performance and
efficiency by adopting data compression techniques in cache management, as demonstrated in
SlimCache. As an orthogonal challenge, the cache data persistence issue is worth further studies in
the future.

5.2 Flash Durability

Since SlimCache divides the logical space of the flash SSD into a hot area and a cold area, the data
swapping between the two areas could potentially result in write amplification, causing additional
amount of writes to the flash SSD and accelerating the wear-out process of the caching device. We
find that because of the strict yet effective data swapping policy, the write amplification factor
is observed to be about 4.2% in our experiments. Considering the significant performance gain
of SlimCache and the continuously decreasing price of flash SSDs, such a relatively small write
amplification is considered to be fairly acceptable to most users. Measures, such as using a flash-
based RAID, can also be adopted to reduce the concerns on the durability. It is worth future studies
on further reducing the impact of flash durability in such scenarios.

6 RELATED WORK

This paper and its earlier version [38] present a highly efficient on-line data compression scheme
for enhancing flash-based key-value caching. The two topics, data compression [1, 6, 17, 19, 64, 76,
81, 84] and key-value systems [5, 18, 46, 48, 51, 73, 83, 86], have been extensively researched. This
section discusses prior studies that are most related to these components.
Data compression is a popular technique. In prior works, extensive studies have been con-

ducted on compressing memory and storage at both architecture and system levels, such as device
firmware [36, 89], storage controller [34], and operating systems [2, 6, 19, 53, 76, 81]. Many prior
works have also be done in database systems (e.g., [1, 16, 44, 59, 60, 64]). Our work focuses on
applying data compression to improve the hit ratio by caching more key-value items in flash. To
our best knowledge, SlimCache is the first work introducing data compression into flash-based
key-value caching.
Recent research on key-value cache focuses mostly on performance improvement [47, 49, 54],

such as network request handling, OS kernel involvement, data structure design, and concurrency
control, etc. Recently hardware-centric studies [50], such as FPGA-based design [7], Open-Channel
SSD [73] and programmable NIC [46], began to explore the hardware features. In particular,
DIDACache [73] provides a holistic flash-based key-value cache using Open-Channel SSD through
a deep integration between hardware and software. KV-Direct [46] presents a high performance
key-value system through remote direct key-value access to the host memory by extending the
RDMA primitives based on programmable NIC. Similarly, NetCache [40] optimizes the queries
to hot key-value items and attempts to balance the load across storage nodes by leveraging the
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flexibility of new programmable switches. Memshare [15] gives a DRAM-based key-value cache
system with a dynamic memory management across applications. In order to reduce small random
writes in photo caching, RIPQ [74] provides a framework to support advanced cache replacement
algorithms with optimized writes on flash devices by collecting small writes, flushing updates lazily,
and grouping similar data together. For a similar purpose, Flashield [20, 21] gives a hybrid solution
by using DRAM to filter and reduce writes to flash, which addresses the write amplification problem
on flash SSDs. In comparison, SlimCache adopts a largely orthogonal approach, data compression,
to improve the flash-based key-value cache performance and efficiency.

Besides performance, some other studies deal with the scalability problem [23, 61, 62, 82], which
results from hardware cost and power/thermal issues. For example, Nishtala et al. aim to scale
Memcached to handle large amount of Internet traffic in Facebook [61]. Ouyang et al. design an
SSD-assisted hybrid memory for Memcached to achieve high performance and low cost [62].
McDipper [23] is a flash-based key-value cache solution to replace Memcached in Facebook.
BlueCache [85] proposes to address the scalability challenges by implementing all the key-value
operations including the flash controller operations directly in hardware. Anna [82] is a partitioned,
multi-mastered key-value system that can effectively scale from a single core to multi-core to the
distributed system via wait-free execution and coordination-free consistency. As a scale-up solution,
Tucana [63] presents an efficient and high-speed key-value store design for achieving both high
performance and low CPU overhead. CascadeMapping [79] provides a new indexmapping structure
in key-value caches to address the scalability challenge caused by limited memory resources.
With the popularity of persistent memory, a number of studies [10, 22, 32, 41, 42, 55, 79] have

been proposed to integrate non-volatile memory (NVM) within key-value systems. Huang et al. [32]
propose to use cross-referencing logs to close the performance gap between the key-value stores in
volatile DRAM and persistent NVM. NVMKV [55] optimizes flash-based key-value stores through
techniques, such as alleviating dynamic mapping, providing transaction support, and leveraging
parallelization. NoveLSM [41] proposes an LSM-tree based design of persistent key-value store
by taking advantage of the byte addressability and persistence features of non-volatile memories,
such as creating a byte-addressable skiplist, directly manipulating persistent state, and exploiting
opportunistic read parallelism, etc. HashKV [10] is designed to achieve high update performance
based on KV separation and using hash-based data grouping. MyNVM [22] reduces the DRAM
footprint of Facebook’s key-value store by replacing DRAM with NVM. uDepot [42] presents
a key-value design, which exploits the performance of NVM devices with a two-level indexing
structure and a new task-based IO run-time system. In contrast, the data compression scheme
presented in this paper and its earlier version [38] is a general-purpose software-level solution
without relying on any special hardware.

Among the prior works, zExpander [84], which applies compression in memory-based key-value
caches, is the closest to our work. However, SlimCache is particularly designed for key-value
caching in flash, which brings several different and unique challenges. First, small random writes
are particularly harmful to the lifetime and performance of flash devices, so storing and querying
an item using a small-size (2KB) block on SSD as what zExpander does would be sub-optimal in
our scenario. Second, as the amount of key-value items stored in flash-based key-value cache is
much larger than that in a memory-based cache, the organization unit has to be much coarser
and the metadata overhead brought by each item must be minimized. Third, choosing a proper
compression granularity on flash needs to consider the flash page size to minimize the extra I/Os
caused by loading irrelevant data. Finally, in order to guarantee that all the writes are sequential in
flash, the space occupied by the obsolete values in one slab cannot be freed until the whole slab
is dropped. A special mechanism is needed to handle such situations to avoid the loss of hit ratio
caused by data promotion and demotion while preserving the sequential write pattern. All these
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distinctions and new challenges have motivated us to design an efficient, on-line data compression
scheme, customized for caching key-value data in flash.

7 CONCLUSION

In this paper, we present an on-line compressionmechanism for flash-based key-value cache systems,
called SlimCache, which expands the effectively usable cache space, increases the hit ratio, and
improves the cache performance. For optimization, SlimCache introduces a number of techniques,
such as unified management for compressed and uncompressed data, dynamically determining
compression granularity, efficient hot/cold data separation, optimized garbage collection, and
adaptive cache partitioning. Our experiments show that SlimCache can effectively accommodate
more key-value data in cache, which in turn significantly increases the cache hit ratio and improves
the system performance.
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