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ABSTRACT

Phenotyping electronic health records (EHR) focuses on defining

meaningful patient groups (e.g., heart failure group and diabetes

group) and identifying the temporal evolution of patients in those

groups. Tensor factorization has been an effective tool for pheno-

typing. Most of the existing works assume either a static patient

representation with aggregate data or only model temporal data.

However, real EHR data contain both temporal (e.g., longitudinal

clinical visits) and static information (e.g., patient demographics),

which are difficult to model simultaneously. In this paper, we pro-

pose Temporal And Static TEnsor factorization (TASTE) that jointly
models both static and temporal information to extract phenotypes.

TASTE combines the PARAFAC2 model with non-negative matrix

factorization to model a temporal and a static tensor. To fit the pro-

posed model, we transform the original problem into simpler ones

which are optimally solved in an alternating fashion. For each of the

sub-problems, our proposed mathematical re-formulations lead to

efficient sub-problem solvers. Comprehensive experiments on large

EHR data from a heart failure (HF) study confirmed that TASTE is
up to 14× faster than several baselines and the resulting phenotypes

were confirmed to be clinically meaningful by a cardiologist. Using

60 phenotypes extracted by TASTE, a simple logistic regression can

achieve the same level of area under the curve (AUC) for HF pre-

diction compared to a deep learning model using recurrent neural

networks (RNN) with 345 features.
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1 INTRODUCTION

Phenotyping is the process of identifying patient groups sharing

similar clinically-meaningful characteristics and is essential for

treatment development and management [1, 2]. However, the com-

plexity and heterogeneity of the underlying patient information

render manual (or hand-curated) phenotyping impractical for large

populations or complex conditions. Unsupervised EHR-based phe-

notyping based on tensor factorization, e.g., [3–5], provides an

effective alternative. However, existing unsupervised phenotyping

methods are unable to handle both static and dynamically-evolving

information, which is the focus of this work.

Figure 1: TASTE applied on dynamically-evolving structured

EHR data and static patient information. Each 𝑿𝒌 repre-

sents themedical features recorded for different clinical vis-

its for patient k. Matrix 𝑨 includes the static information

(e.g., race, gender) of patients. TASTE decomposes {𝑿𝒌 } into
three parts: {𝑼𝒌 }, {𝑺𝒌 }, and 𝑽 . Static matrix𝑨 is decomposed

into two parts: {𝑺𝒌 } and 𝑭 . Note that {𝑺𝒌 } (personalized phe-

notype scores) is shared between static and dynamically-

evolving features.

Traditional tensor factorization models [6–9] assume the same

dimensionality along each tensor mode. However, in practice one

193



ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada Afshar et al.

mode such as time can be irregular. For example, different patients

may vary by the number of clinical visits over time. To handle

such longitudinal datasets, [10] and [11] propose algorithms to fit

the PARAFAC2 model [12] which are faster and more scalable for

handling irregular and sparse data. However, these PARAFAC2 ap-

proaches only focus on modeling the dynamically-evolving features

for every patient (e.g., the structured codes recorded for every visit).

Static features (such as race and gender) which do not evolve are

completely neglected; yet, they are crucial factors for phenotyping

analyses (e.g., some diseases have the higher prevalence in a certain

race).

To address this problem, we propose a scalable method called

TASTE which jointly models both temporal and static features by

combining the non-negative PARAFAC2 model with non-negative

matrix factorization as shown in Figure 1. We reformulate our

new non-convex problem into simpler sub-problems (i.e., orthogo-

nal Procrustes, least square and non-negativity constrained least

square) and solve each of the sub-problems efficiently by avoiding

unnecessary computations (e.g., expensive Khatri-Rao products).

We summarize our contributions below:

• Temporal and Static Tensor Factorization:We propose

a new optimization problem to jointly model static and dy-

namic features from EHR data as non-negative factor matri-

ces.

• Fast and Accurate Algorithm: Our proposed fitting algo-

rithm is up to 14 × faster than the state-of-the-art baseline.

At the same time, TASTE preserves model constraints which

promote model uniqueness better than baselines while main-

taining interpretability.

• Case Study on Heart Failure Phenotyping: We demon-

strate the practical impact of TASTE through a case study

on heart failure (HF) phenotyping. We identified clinically-

meaningful phenotypes which are confirmed by a cardiolo-

gist. Using phenotypes extracted by TASTE, a simple logistic

regression model can achieve comparable predictive accu-

racy with deep learning techniques such as RNNs.

2 BACKGROUND & RELATEDWORK

Table 1 summarizes the notations used in this paper.

Table 1: Notations

Symbol Definition

* Element-wise Multiplication

� Khatri Rao Product

𝒀 ,𝒚 matrix, vector

𝒀 (𝒊, :) the 𝑖-th row of 𝒀
𝒀 (:, 𝒓) the 𝑟 -th column of 𝒀
𝒀 (𝒊, 𝒓) element (i,r) of 𝒀
𝑿𝒌 Feature matrix of patient 𝑘

diag(𝒀 ) Extract the diagonal of matrix 𝒀
vec(𝒀 ) Vectorizing matrix 𝒀
svd(𝒀 ) Singular value decomposition on 𝒀
| | · | |2𝐹 Frobenius Norm

max(0, 𝒀 ) max operator replaces negative values in 𝒀 with 0

𝒀 ≥ 0 All elements in 𝒀 are non-negative

2.1 PARAFAC2 Model

The PARAFAC2 model [13], has the following objective function:

minimize
{𝑼𝒌 },{𝑺𝒌 },𝑽

𝐾∑
𝑘=1

1

2
| |𝑿𝒌 − 𝑼𝒌𝑺𝒌𝑽

𝑻 | |2𝐹

subject to 𝑼𝒌 = 𝑸𝒌𝑯 , 𝑸𝑻
𝒌𝑸𝒌 = 𝑰 ,

(1)

where 𝑿𝒌 ∈ R𝐼𝑘×𝐽 is the input matrix, factor matrix 𝑼𝒌 ∈ R𝐼𝑘×𝑅 ,
diagonal matrix 𝑺𝒌 ∈ R𝑅×𝑅 , and factor matrix 𝑽 ∈ R𝐽 ×𝑅 are output

matrices. Factor matrix 𝑸𝒌 ∈ R𝐼𝑘×𝑅 is an orthogonal matrix, and

𝑯 ∈ R𝑅×𝑅 where 𝑼𝒌 = 𝑸𝒌𝑯 . SPARTan [10] introduces a scalable

algorithm to fit this model for sparse datasets. COPA [11] extends

this work and incorporates different constraints such as temporal

smoothness and sparsity to the model factors to produce more

meaningful results. However, none of these models (i.e., the original

PARAFAC2 model, SPARTan [10], and COPA [11]) can incorporate

a non-negativity constraint on the factor matrix 𝑼𝒌 .
The uniqueness property ensures that a decomposition is pur-

suing the true latent factors, rather than an arbitrary rotation of

them. The unconstrained version of PARAFAC2 in (1) without con-

straints 𝑼𝒌=𝑸𝒌 𝑯 and 𝑸𝑻
𝒌
𝑸𝒌=𝑰 is not unique. Assume 𝑩 is an

invertible 𝑅 ×𝑅 matrix and {𝒁𝒌 } are 𝑅 ×𝑅 diagonal matrices. Then,

we can transform 𝑼𝒌𝑺𝒌𝑽
𝑻 as:

𝑼𝒌𝑺𝒌𝑽
𝑻 = (𝑼𝒌𝑺𝒌𝑩−1𝒁−1

𝒌 )︸��������������︷︷��������������︸
𝑮𝒌

𝒁𝒌 (𝑩𝑽𝑻 )︸�︷︷�︸
𝑬𝑻

which is another valid solution achieving the same approximation

error [13]. This is problematic in terms of the interpretability of

the result. To promote uniqueness, Harshman [12] introduced the

cross-product invariance constraint, which dictates that 𝑼𝑻
𝒌
𝑼𝒌

should be constant ∀𝑘 ∈ {1, . . . , 𝐾}. To achieve that, the following

constraint is added: 𝑼𝒌 = 𝑸𝒌𝑯 where 𝑸𝑇
𝑘
𝑸𝑘 = 𝑰 , so that: 𝑼𝑻

𝒌
𝑼𝒌 =

𝑯𝑻𝑸𝑻
𝒌
𝑸𝒌𝑯 = 𝑯𝑻𝑯 = Φ.

2.2 Non-Negativity constrained Least Squares
(NNLS)

The Non-Negativity constrained Least Squares (NNLS) problem has

the following form:

minimize
𝑪

���𝑩𝑪𝑻 −𝑨
���2
𝐹

subject to 𝑪 ≥ 0 (2)

Here, 𝑨 ∈ R𝑀×𝑁 , 𝑩 ∈ R𝑀×𝑅 and 𝑪 ∈ R𝑁×𝑅 where 𝑅 �
𝑚𝑖𝑛(𝑀, 𝑁 ). NNLS is a convex problem and the optimal solution of

2 can be solved efficiently. For example, the block principal pivoting

method [14] can be used to solve NNLS problems. Authors in [14]

showed the block principal pivoting method achieves state-of-the-

art performance.

2.3 Unsupervised Computational Phenotyping

A wide range of approaches applies tensor factorization techniques

to extract phenotypes. [3, 4, 15–19] incorporate various constraints

(e.g., sparsity, non-negativity, integer) into regular tensor factor-

ization to produce more clinically-meaningful phenotypes. [10, 11]

identify phenotypes and their temporal trends by using irregular

tensor factorization based on PARAFAC2 [12]; yet, those approaches

cannot model both dynamic and static features for meaningful
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phenotype extraction. As part of our experimental evaluation, we

demonstrate that naively adjusting existing PARAFAC2-based ap-

proaches to incorporate static information results in biased and less

interpretable phenotypes. The authors of [5] proposed a collective

non-negative tensor factorization for phenotyping purposes. How-

ever, the method is not able to jointly incorporate static information

such as demographics with temporal features. Also they do not

employ the orthogonality constraint on the temporal dimension, a

strategy that result in non-unique solutions [12, 13].

3 THE TASTE FRAMEWORK

3.1 Intuition

We first explain the intuition of TASTE in the context of the pheno-

typing application.

Input data include both temporal and static features for all 𝐾
patients:

• Temporal features (𝑿𝒌 ); For patient 𝑘 , we record the med-

ical features for different clinical visits in matrix𝑿𝒌 ∈ R𝐼𝑘×𝐽
where 𝐼𝑘 is the number of clinical visits and 𝐽 is the total
number of medical features. Note that 𝐼𝑘 can be different for

different patients.

• Static features (𝑨): The static features like gender, race,

body mass index (BMI), smoking status1 are recorded in

𝑨 ∈ R𝐾×𝑃 where 𝐾 is the total number of patients and 𝑃 is

the number of static features. In particular, each row 𝑨(𝑘, :)
contains the static features for patient 𝑘 .

The phenotyping process maps input data into a set of pheno-

types, which involves the definition of phenotypes and a patient’s

temporal evolution. Figure 1 illustrates the following model inter-

pretation. First, phenotype definitions are shared by factor matrices

𝑽 and 𝑭 for temporal and static features, respectively. In particular,

𝑽 (:, 𝒓) or 𝑭 (:, 𝒓) are the 𝑟𝑡ℎ column of factor matrix 𝑽 or 𝑭 which

indicates the participation of temporal or static features in the 𝑟𝑡ℎ

phenotype. Second, personalized phenotype scores for patient 𝑘 are

provided in the diagonal matrix 𝑺𝒌 where its diagonal element

𝑺𝒌 (𝒓, 𝒓) indicates the overall importance of the 𝑟𝑡ℎ phenotype for

patient 𝑘 . Finally, temporal phenotype evolution for patient 𝑘 is spec-

ified in factor matrix 𝑼𝒌 where its 𝑟𝑡ℎ column 𝑼𝒌 (:, 𝒓) indicates the
temporal evolution of phenotype 𝑟 over all clinical visits of patient
𝑘 .

3.2 Objective function and challenges

We introduce the following optimization problem:

minimize
{𝑼𝒌 },{𝑸𝒌 },
𝑯 ,{𝑺𝒌 },𝑽 ,𝑭

𝐾∑
𝑘=1

( 1
2
| |𝑿𝒌 − 𝑼𝒌𝑺𝒌𝑽

𝑻 | |2𝐹︸������������������������������︷︷������������������������������︸
PARAFAC2 (1)

)
+ 𝜆

2
| |𝑨 −𝑾𝑭𝑻 | |2𝐹︸����������������︷︷����������������︸

Coupled Matrix (2)

+
𝐾∑
𝑘=1

( 𝜇𝑘
2

| |𝑼𝒌 −𝑸𝒌𝑯 | |2𝐹︸��������������������������︷︷��������������������������︸
Uniqueness (3)

)

subject to 𝑸𝑻
𝒌𝑸𝒌 = 𝑰 , 𝑼𝒌 ≥ 0, 𝑺𝒌 ≥ 0, for all k=1,...,K

𝑾 (𝒌, :) = diag(𝑺𝒌 ) for all k=1,...,K

𝑽 ≥ 0, 𝑭 ≥ 0

(3)

1Although BMI and smoking status can change over time, in our data set these values
for each patient are constant over time.

Our objective function has three main parts as follows:

(1) The first part is related to fitting a PARAFAC2 model that fac-

torizes a set of temporal feature matrices 𝑿𝒌 ∈ R𝐼𝑘×𝐽 into

𝑼𝒌 ∈ R𝐼𝑘×𝑅 , diagonal matrix 𝑺𝒌 ∈ R𝑅×𝑅 , and 𝑽 ∈ R𝐽 ×𝑅 .
(2) The second part is for optimizing the static feature matrix 𝑨

where 𝑨 ∈ R𝐾×𝑃 ,𝑾 ∈ R𝐾×𝑅 and 𝑭 ∈ R𝑃×𝑅 . 𝜆 also is the weight

parameter. Common factor matrices {𝑺𝒌 } are shared between

static and temporal features by setting𝑾 (𝒌, :)=diag(𝑺𝒌 ).
(3) The third part enforces both non-negativity of the 𝑼𝒌 factor

and also minimizes its difference to 𝑸𝒌𝑯 . Due to the constraint

𝑸𝑇
𝑘
𝑸𝑘 = 𝐼 , minimizing | |𝑼𝑘 − 𝑸𝑘𝐻 | |2𝐹 encourages 𝑼𝑻

𝒌
𝑼𝒌 to

be constant over K subjects, which is a desirable PARAFAC2

property that promotes uniqueness, and thus enhances inter-

pretability [13].

𝜆 and 𝜇𝑘 are weighting parameters which are set by the user. For

simplicity, we set 𝜇1 = 𝜇2 = · · · = 𝜇𝐾 = 𝜇. The challenge in solv-

ing the above optimization problem lies in: 1) addressing all the

non-negative constraints especially on 𝑼𝒌 , 2) trying to make 𝑼𝑻
𝒌
𝑼𝒌

constant over𝐾 subjects bymaking non-negative 𝑼𝒌 as close as pos-

sible to 𝑸𝒌𝑯 while 𝑸𝒌𝑯 can contain negative values, 3) estimating

all factor matrices in order to best approximate both temporal and

static input matrices, and 4) developing a computationally efficient

method to scale to large patient populations.

3.3 Algorithm

To optimize the objective function (3), we need to update {𝑸𝒌 },𝑯 ,

{𝑼𝒌 }, 𝑽 , {𝑺𝒌 }, and 𝑭 iteratively. Although the original problem in

Equation 3 is non-convex, our algorithm utilizes the Block Coor-

dinate Descent framework [20] to mathematically reformulate the

objective function (3) into simpler sub-problems. In each iteration,

we update {𝑸𝒌 } based on the Orthogonal Procrustes problem [21]

which ensures an orthogonal solution for each 𝑸𝒌 (𝑸𝑇
𝒌
𝑸𝒌 = 𝑰 ).

Factor matrix 𝑯 can be solved efficiently by least square solvers.

For factor matrices {𝑼𝒌 }, 𝑽 , {𝑺𝒌 } and 𝑭 , we reformulate the objec-

tive function (3) so that the factor matrices are instances of the

non-negativity constrained least squares (NNLS) problem. Each

NNLS sub-problem is a convex problem and the optimal solution

can be found easily. We use block principal pivoting method [14]

to solve each NNLS sub-problem, as it achieved state-of-the-art

performance on NNLS problems compared to other optimization

techniques [14] as discussed in section 2.2. We also exploit struc-

ture in the underlying computations (e.g., involving Khatri-Rao

products) so that each one of the sub-problems is solved efficiently.

Next, we summarize the solution for each factor matrix.

3.3.1 Solution for factor matrix 𝑸𝒌 . We can rewrite objective

function (3) with respect to 𝑸𝒌 based on trace properties [22] as:

minimize
𝑸𝒌

𝜇𝑘
2
Trace(𝑼𝑇

𝒌 𝑼𝒌 )︸���������������︷︷���������������︸
constant

−𝜇𝑘Trace(𝑼𝑇
𝒌 𝑸𝒌𝑯 )

+ 𝜇𝑘
2
Trace(𝑯𝑇𝑸𝑇

𝒌𝑸𝒌𝑯 )︸������������������������︷︷������������������������︸
constant

subject to 𝑸𝑻
𝒌𝑸𝒌 = 𝑰

(4)
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Removing the constant terms and applying the trace property

Trace(𝑨𝑩𝑪) = Trace(𝑪𝑨𝑩) yields the following new objective:

minimize
𝑸𝒌

𝜇𝑘
��𝑼𝒌𝑯

𝑇 −𝑸𝒌

��2
𝐹

subject to 𝑸𝑻
𝒌𝑸𝒌 = 𝑰

(5)

The optimal value of 𝑸𝒌 can then be computed via the Orthog-

onal Procrustes problem [21] which has the closed form solution

𝑸𝒌 = 𝑩𝒌𝑪
𝑇
𝒌
where 𝑩𝒌 ∈ 𝑅𝐼𝑘×𝑅 and 𝑪𝒌 ∈ 𝑅𝑅×𝑅 are the right and

left singular vectors of 𝜇𝑘𝑼𝒌𝑯
𝑇 . Note that each 𝑸𝒌 can contain

negative values.

3.3.2 Solution for factormatrix𝑯 . The objective function with

respect to 𝑯 can be rewritten as an unconstrained problem:

minimize
𝑯

𝐾∑
𝑘=1

𝜇𝑘
2

��𝑸𝑇𝒌𝑼𝒌 − 𝑯
��2
𝐹

(6)

Note that Equation 6 is different than the original formulation

introduced in Equation 3, where the Frobenius norm contains the

term 𝑼𝒌 −𝑸𝒌𝑯 . Through this reformulation, TASTE can utilize the

least square solver to efficiently update 𝑯 .

To obtain the new objective function, we observe that 𝑸𝒌 ∈
R
𝐼𝑘×𝑅 is a rectangular orthogonal matrix (𝑸𝑇

𝒌
𝑸𝒌 = 𝑰 ∈ R𝑅×𝑅 ).

We introduce a new orthogonal matrix, 𝑸𝒌 ∈ R𝐼𝑘×(𝐼𝑘−𝑅) , where
𝑸𝒌

𝑇
𝑸𝒌 = 𝑰 ∈ R𝐼𝑘−𝑅×𝐼𝑘−𝑅 and 𝑸𝒌

𝑇
𝑸𝒌 = 0. This can be used to

produce a new square orthogonal matrix [𝑸𝒌 𝑸𝒌 ].[
𝑸𝑇
𝒌

𝑸𝒌
𝑇

] [
𝑸𝒌 𝑸𝒌

]
=

[
𝑸𝑇
𝒌
𝑸𝒌 𝑸𝑇

𝒌
𝑸𝒌

𝑸𝒌
𝑇
𝑸𝒌 𝑸𝒌

𝑇
𝑸𝒌

]

=

[
𝑰𝑅×𝑅 0

0 𝑰 (𝐼𝑘−𝑅)×(𝐼𝑘−𝑅)

]
= 𝑰𝐼𝑘×𝐼𝑘

(7)

Since [𝑸𝒌 𝑸𝒌 ] is a square orthogonal matrix (shown in Equa-

tion (7)), we can now demonstrate that Equation (6) and Equation

(3) are equivalent objectives for 𝑯 .

𝐾∑
𝑘=1

𝜇𝑘
2

‖𝑸𝒌𝑯 − 𝑼𝒌 ‖2𝐹 =
𝐾∑
𝑘=1

𝜇𝑘
2

�����
[
𝑸𝑇

𝒌

𝑸𝒌
𝑇

] (
𝑸𝒌𝑯 − 𝑼𝒌

)�����
2

𝐹

=
𝐾∑
𝑘=1

𝜇𝑘
2

�����
[
𝑸𝑇

𝒌
𝑸𝒌

𝑸𝒌
𝑇
𝑸𝒌

]
𝑯 −

[
𝑸𝑇

𝒌
𝑼𝒌

𝑸𝒌
𝑇
𝑼𝒌

]�����
2

𝐹

=
𝐾∑
𝑘=1

( 𝜇𝑘
2

��𝑯 −𝑸𝑇𝒌𝑼𝒌

��2
𝐹
+

constant︷���������︸︸���������︷���𝑸𝒌
𝑇
𝑼𝒌

���2
𝐹

)
(8)

where
∑𝐾
𝑘=1

���𝑸𝒌
𝑇
𝑼𝒌

���2
𝐹
is a constant and independent of the param-

eter under minimization. Therefore, the value of 𝑯 that minimizes∑𝐾
𝑘=1

𝜇𝑘
2 ‖𝑸𝒌𝑯 − 𝑼𝒌 ‖2𝐹 alsominimizes

∑𝐾
𝑘=1

𝜇𝑘
2

���𝑯 − 𝑸𝑇
𝒌
𝑼𝒌

���2
𝐹
and

the update rule for factor matrix 𝑯 is based on the least square

solution and has the following form:

𝑯 =

∑𝐾
𝑘=1 𝜇𝑘𝑸

𝑇
𝒌
𝑼𝒌∑𝐾

𝑘=1 𝜇𝑘
.

3.3.3 Solution for phenotype evolution matrix 𝑼𝒌 . After up-
dating the factor matrices 𝑸𝒌 , 𝑯 , we focus on solving for 𝑼𝒌 . In
classic PARAFAC2 [12, 13], this factor is retrieved through the sim-

ple multiplication 𝑼𝑘 = 𝑸𝒌𝑯 . However, for improved interpretabil-

ity, we prefer temporal factor matrix 𝑼𝑘 to be non-negative because

the temporal phenotype evolution for patient k (𝑼𝒌 ) should not be

negative. As shown in the empirical results, a naive enforcement of

non-negativity (𝑚𝑎𝑥 (0,𝑸𝑘 𝑯 )) violates the important uniqueness

property of PARAFAC2. Therefore, we consider 𝑼𝒌 as an additional

factor matrix, constrain it to be non-negative, and minimize its

difference to 𝑸𝑘𝑯 .

The objective function with respect to 𝑼𝒌 can be combined into

the following NNLS form:

minimize
𝑼𝒌

1

2

����[ 𝑽𝑺𝒌√
𝜇𝑘 𝑰

]
𝑼𝑇𝒌 −

[
𝑿𝑇
𝒌√

𝜇𝑘𝑯
𝑇𝑸𝑇

𝒌

]����2
𝐹

subject to 𝑼𝒌 ≥ 0

(9)

As mentioned earlier, factor matrix 𝑼𝒌 is updated based on block

principal pivoting method.

3.3.4 Solution for temporal phenotype definition 𝑽 . Factor

matrix 𝑽 defines the participation of temporal features in different

phenotypes. In Equation (3), the factor matrix 𝑽 participates in the

PARAFAC2 part with the non-negativity constraint. Therefore, the

objective function for factor matrix 𝑽 has the following form:

minimize
𝑽

1

2

��������
⎡⎢⎢⎢⎢⎢⎢⎣
𝑼1𝑺1
𝑼2𝑺2
.

𝑼𝑲 𝑺𝑲

⎤⎥⎥⎥⎥⎥⎥⎦
𝑽𝑇 −

⎡⎢⎢⎢⎢⎢⎢⎣
𝑿1

𝑿2

.
𝑿𝐾

⎤⎥⎥⎥⎥⎥⎥⎦

��������
2

𝐹

subject to 𝑽 ≥ 0

(10)

To update 𝑽 based on block principal pivoting, the algorithm

calculates (𝑼𝒌𝑺𝒌 )𝑇 (𝑼𝒌𝑺𝒌 ) and 𝑼𝒌𝑺𝒌𝑿𝒌 for all 𝐾 samples which

can be done in an embarrassingly parallel fashion.

3.3.5 Solution for factor matrix𝑾 or {𝑺𝑘 }. The objective func-
tion with respect to𝑾 yields the following format:

minimize
𝑺𝒌

𝐾∑
𝑘=1

( 1
2
| |𝑿𝒌 − 𝑼𝒌𝑺𝒌𝑽

𝑻 | |2𝐹
)
+ 𝜆

2
| |𝑨 −𝑾𝑭𝑻 | |2𝐹

subject to 𝑺𝒌 ≥ 0

𝑾 (𝒌, :) = diag(𝑺𝒌 ) for all k=1,...,K

(11)

Factor matrices {𝑺𝒌 } are shared between the PARAFAC2 input

and matrix 𝑨 where𝑾 (𝒌, :)=diag(𝑺𝒌 ). Since vec(𝑼𝒌𝑺𝒌𝑽𝑇 ) = (𝑉 �
𝑼𝒌 )𝑾 (𝒌, :)𝑇 , Equation (11) can be rewritten in the following NNLS

form:

minimize
𝑺𝒌

1

2

����[𝑽 � 𝑼𝒌√
𝜆𝑭

]
𝑾 (𝒌, :)𝑇 −

[
vec(𝑿𝒌 )√
𝜆𝑨(𝒌, :)𝑇

]����2
𝐹

subject to 𝑾 (𝒌, :) ≥ 0

(12)

where � denotes Khatri-Rao product. Each row of factor matrix

𝑾 (𝑾 (𝒌, :) or diag(𝑺𝒌 )) can be solved separately and in parallel.

Unfortunately, the update for each factor matrix 𝑺𝒌 involves com-

puting two time-consuming operations: 1)(𝑽 � 𝑼𝒌 )𝑇 (𝑽 � 𝑼𝒌 ) and
2)(𝑽 � 𝑼𝒌 )𝑇 vec(𝑿𝒌 ). Instead of explicitly forming the Khatri-Rao

product, both operations can be replaced with more efficient coun-

terparts. The first operation can be replaced with 𝑽𝑇 𝑽 ∗ 𝑼𝑇
𝒌
𝑼𝒌
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where * denotes the element-wise (Hadamard) product [23]. The

second operation also can be replaced with 𝑑𝑖𝑎𝑔(𝑼𝒌𝑿𝒌𝑽
𝑇 ) [23].

Thus, each row of W can be efficiently updated via block principal

pivoting.

3.3.6 Solution for static phenotype definition 𝑭 . Finally, fac-
tor matrix 𝑭 represents the participation of static features for the

phenotypes. The objective function for factor matrix 𝑭 has the

following NNLS form:

minimize
𝑭

𝜆

2

���𝑾𝑭𝑻 −𝑨
���2
𝐹

subject to 𝑭 ≥ 0 (13)

which can be easily updated via block principal pivoting.

3.4 Phenotype inference on new data

Given the learned phenotype definition (𝑽 , 𝑭 ) and factor matrix

𝑯 for some training set, TASTE can project data of new unseen

patients into the existing low-rank space. This is useful because

healthcare providers maywant to fix the phenotype definitionwhile

score new patients with those existing definitions. Moreover, such a

methodology enables using the low-rank representation of patients

such as (𝑺𝒌 ) as feature vectors for a predictive modeling task.

Suppose, {𝑿1,𝑿2, ...,𝑿𝑁 ′ } represents the temporal information

of unseen patients {1, 2, ..., 𝑁 ′ } and 𝑨
′ ∈ R𝑁

′×𝑃 indicates their

static information. TASTE projects the new patient’s information

into the existing low-rank space (𝑯 , 𝑽 , and 𝑭 ) by optimizing {𝑸𝒏},

{𝑼𝒏} and {𝑺𝒏} for the following objective function:

minimize
{𝑸𝒏 },{𝑼𝒏 },

{𝑺𝒏 }

𝑁 ′∑
𝑛=1

( 1
2
| |𝑿𝒏 − 𝑼𝒏𝑺𝒏𝑽

𝑻 | |2𝐹
)
+ 𝜆

2
| |𝑨′ −𝑾𝑭𝑻 | |2𝐹

+
𝑁 ′∑
𝑛=1

( 𝜇𝑛
2

| |𝑼𝒏 −𝑸𝒏𝑯 | |2𝐹
)

subject to 𝑸𝑻
𝒏𝑸𝒏 = 𝑰 , for all 𝑛 = 1, ..., 𝑁 ′

𝑼𝒏 ≥ 0, 𝑺𝒏 ≥ 0 for all 𝑛 = 1, ..., 𝑁 ′

(14)

The updates for the factor matrices {𝑸𝒏} are based on Equation

(5). {𝑼𝒏} can be minimized based on Equation (9). Finally,𝑾 can

be updated based on Equation (12) where 𝑑𝑖𝑎𝑔(𝑺𝒏) =𝑊 (𝑛, :).

4 EXPERIMENTAL RESULTS

We focus on answering the following questions:

Q1. Does TASTE preserve accuracy and the uniqueness-promoting

constraint, while being fast to compute?

Q2. How does TASTE scale for increasing number of patients (𝐾 )?
Q3. Does TASTE recover the true factor matrices? How does pro-

moting uniqueness correlate with recovery in the presence

of noise?

Q4. Does the static information added in TASTE improve predic-

tive performance for detecting heart failure?

Q5. Are the heart failure phenotypes produced by TASTE mean-

ingful to an expert cardiologist?

4.1 Data Set Description

Table 2 summarizes the statistics of data sets.

Sutter: This dataset is from Sutter Palo Alto Medical Foundation,

a large primary care and multispecialty group practice. The data

set contains the EHRs for patients with new onset of heart failure

Table 2: Summary statistics of two real data sets.

Dataset # Patients # Temporal Features Mean(𝐼𝑘 ) # Static Features

Sutter 64,912 1164 29 22

CMS 151,349 284 50 30

and matched controls (matched by encounter time, and age). It

includes 5912 cases and 59300 controls. For all patients, encounter

features (e.g., medication orders, diagnoses) were extracted from

the electronic health records. We use standard medical concept

groupers to convert the available ICD-9 or ICD-10 diagnosis codes

to Clinical Classification Software (CCS level 3) [24]. We also group

the normalized drug names based on unique therapeutic sub-classes

using the Anatomical Therapeutic Chemical (ATC) Classification

System. Static patient information includes their gender, age, race,

smoking status, alcohol status and BMI.

Centers forMedicare andMedicaid (CMS):2 The second data

set is CMS 2008-2010 Data Entrepreneurs’ Synthetic Public Use File

(DE-SynPUF). The goal of CMS data set is to provide a set of realistic

data by protecting the privacy of Medicare beneficiaries by using 5%

of real data to synthetically construct the whole dataset. We extract

the ICD-9 diagnosis codes and convert them to CCS diagnostic

categories as in the case of Sutter dataset.

4.2 Evaluation metrics:

RMSE: Accuracy is evaluated as the Root Mean Square Error

(RMSE) which is a standard measure used in coupled matrix-tensor

factorization literature [25, 26]. Given an input collection of matri-

ces 𝑿𝒌 ∈ R𝐼𝑘×𝐽 ,∀𝑘 = 1, ..., 𝐾 and a static input matrix 𝑨 ∈ R𝐾×𝑃 ,
we define

RMSE =

√√√√√√√ 𝐾∑
𝑘=1

𝐼𝑘∑
𝑖=1

𝐽∑
𝑗=1

(𝑿𝒌 (𝑖, 𝑗) − 𝑿̂𝒌 (𝑖, 𝑗))2 + 𝜆
2

𝐾∑
𝑘=1

𝑃∑
𝑗=1

(𝑨(𝑖, 𝑗) − 𝑨̂(𝑖, 𝑗))2∑𝐾
𝑘=1 (𝐼𝑘 × 𝐽 ) +𝐾 × 𝑃

(15)

𝑿𝒌 (𝑖, 𝑗) denotes the (𝑖, 𝑗) element of input matrix 𝑿𝒌 and 𝑿̂𝒌 (𝑖, 𝑗)
its approximation through a model’s factors (the (𝑖, 𝑗) element of

the product 𝑼𝒌𝑺𝒌𝑽
𝑻 in the case of TASTE). Similarly, 𝑨(𝑖, 𝑗) is the

(𝑖, 𝑗) element of input matrix 𝑨 and 𝑨̂(𝑖, 𝑗) is its approximation (in

TASTE, this is the (𝑖, 𝑗) element of𝑾𝑭𝑇 ).

Cross-Product Invariance (CPI):We use CPI to assess the solu-

tion’s uniqueness, since this is the core constraint promoting it [13].

In particular we check whether 𝑼𝑇
𝑘
𝑼𝑘 is close to constant (𝑯𝑻𝑯 )

∀𝑘 ∈ {1, . . . , 𝐾}). The cross-product invariance measure is defined

as:

CPI = 1 −
∑𝐾
𝑘=1 | |𝑼𝑻

𝒌
𝑼𝒌 − 𝑯𝑻𝑯 | |2𝐹∑𝐾

𝑘=1 | |𝑯𝑻𝑯 | |2𝐹
.

The range of CPI is between [−∞, 1], with values close to 1 indicat-

ing unique solutions (i.e., 𝑼𝑇
𝑘
𝑼𝑘 is close to constant).

2https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-
Public-Use-Files/SynPUFs/DE_Syn_PUF.html
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Area Under the ROC Curve (AUC): We examine the classifica-

tion model’s performance when the data is imbalanced by compar-

ing the actual and estimated labels. We use AUC on the test set to

evaluate predictive model performance.

4.3 Implementation details

TASTE is implemented in MATLAB. To facilitate reproducibility, we

provide the source code repository on Github. All the approaches

(including the baselines) are evaluated on MatlabR2017b. We uti-

lize the capabilities of Parallel Computing Toolbox of Matlab by

activating parallel pool for all methods. For both datasets, we used

12 workers. For the prediction task, we use the implementation of

regularized logistic regression from Scikit-learn machine learning

library in Python 3.6.

4.4 Q1. TASTE is fast, accurate and preserves
uniqueness-promoting constraints

4.4.1 Baseline Approaches: In this experiment, we compare

TASTE with methods that incorporate non-negativity constraint

on all factor matrices. Note that SPARTan [10] and COPA [11] are

not able to incorporate non-negativity constraint on factor matrices

{𝑼𝒌 }.
Cohen+ [27]: Cohen et al. proposed a PARAFAC2 framework

which imposes non-negativity constraints on all factor matrices

based on non-negative least squares algorithm [20]. We modified

this method to handle the situation where a static matrix 𝑨 is cou-

pled with PARAFAC2 input based on Figure 1. To do so, we add
𝜆
2 | |𝑨 −𝑾𝑭𝑻 | |2𝐹 to their objective function and solve both factor

matrices𝑾 and 𝑭 in an Alternating Least Squares manner, similar

to how the rest of the factors are updated in [27].

COPA+: One simple and fast way to enforce non-negativity con-

straint on factormatrix𝑼𝒌 is to compute𝑼𝒌 as:𝑼𝒌 :=𝑚𝑎𝑥 (0,𝑸𝒌𝑯 ),
where𝑚𝑎𝑥 () is taken element-wise to ensure non-negative results.

Therefore, we modify the implementation in [11] to handle both

the PARAFAC2 input and the static matrix 𝑨 and then apply the

simple heuristic to make {𝑼𝒌 } non-negative. We will show in the

experimental results section that this heuristic method no longer

guarantees unique solutions (i.e., it violates model constraints).

4.4.2 Setting hyper-parameters: We perform a grid search for

𝜆 ∈ {0.01, 0.1, 1} and 𝜇1 = · · · = 𝜇𝐾 = 𝜇 ∈ {0.01, 0.1, 1} for TASTE
and Cohen+ for different target ranks (𝑅 = {5, 10, 20, 40}). Each
method is run with the specific parameter for 5 random initializa-

tions and the best values of 𝜆 and 𝜇 are selected based on the lowest

average RMSE value. For COPA+, we search for the best value of

𝜆 ∈ {0.1, 1, 10} since it does not have a 𝜇 parameter.

4.4.3 Results: Apart from purely evaluating the RMSE and the

computational time achieved, we assess to what extent the cross-

product invariance constraint is satisfied [13]. Therefore, in Figure

2 we present the average and standard deviation of RMSE, CPI, and

the computational time for both the Sutter and CMS data sets for

four different target ranks (𝑅 ∈ {5, 10, 20, 40}). In Figures 2a, 2d,

we compare the RMSE for all three methods. We observe that all

methods achieve comparable RMSE values on the two different

data sets. On the other hand, Figures 2b, 2e show the cross-product

invariance (CPI) for Sutter and CMS respectively. COPA+ achieves

poor values of CPI for both data sets. This indicates that the output

factors violate model constraints and do not satisfy the uniqueness

property [13]. Also TASTE significantly outperforms Cohen on CPI

in Figures 2b and 2e. Finally, Figures 2c, 2f show the running time

comparison for all three methods where TASTE is up to 4.5× and

2× faster than Cohen on Sutter and CMS data sets. Therefore, our

approach is the only one that achieves a fast and accurate solution

(in terms of RMSE) and preserves model uniqueness (in terms of

CPI).

4.5 Q2. TASTE is scalable
Apart from assessing the time needed for increasing values of tar-

get rank (i.e., number of phenotypes), we evaluate the same three

approaches from section 4.4 in terms of computation time for an

increasing amount of input patients. Each method is run 5 times and

the convergence threshold is set to 1𝑒 − 4 for all of them. Figure 3

compares the average and standard deviation of total running time

for 125K, 250K, 500K, and 1 Million patients for 𝑅 = 40. TASTE is

up to 14× faster than Cohen’s baseline for 𝑅 = 40. While COPA+ is

a fast approach, this baseline suffers from not satisfying model con-

straints which promote uniqueness as demonstrated in the previous

experiment.

4.6 Q3. Recovery of true factor matrices

In this section, we assess to what extent the original factor matrices

can be recovered through synthetic data experiments 3. We demon-

strate that: a) TASTE recovers the true latent factors more accurately

than baselines for noisy data; and b) the baseline (COPA+) which

does not preserve a high CPI measure fails to match TASTE in terms

of latent factor recovery, despite achieving similar RMSE.

4.6.1 EvaluationMetric: Similarity between two factor ma-

trices: We define the cosine similarity between two vectors 𝒙 𝒊 , 𝒚𝒋

as𝐶𝑖 𝑗 =
𝒙𝑇𝒊 𝒚𝒋

| |𝑥𝑖 | | | |𝑦 𝑗 | | . Then the similarity between two factor matrices

𝑿 ∈ R𝐼×𝑅 , 𝒀 ∈ R𝐼×𝑅 can be computed as (similar to [13]):

Sim(𝑿 , 𝒀 ) =

𝑅∑
𝑖=1

max
1≤ 𝑗≤𝑅

𝐶𝑖 𝑗

𝑅

The range of 𝑆𝑖𝑚 is between [0,1] and values near 1 indicate higher

similarity.

4.6.2 Synthetic Data Construction: We construct the ground-

truth factor matrices 𝑯̃ ∈ R𝑅×𝑅 , 𝑽̃ ∈ R𝐽 ×𝑅 , 𝑾̃ ∈ R𝐾×𝑅 , 𝑭 ∈ R𝑃×𝑅
by drawing a number uniformly at random between (0,1) to each

element of each matrix. For each factor matrix 𝑸̃𝒌 , we create a

binary non-negative matrix such that 𝑸̃𝑇
𝒌
𝑸̃𝒌 = 𝐼 and then compute

𝑼̃𝒌=𝑸̃𝒌 𝑯̃ . After constructing all factor matrices, we compute the

input based on 𝑿𝒌 = 𝑼̃𝒌𝒅 𝒊𝒂𝒈(𝑾̃ (𝒌, :))𝑽̃𝑻 and 𝑨 = 𝑾̃𝑭𝑇 . We set

𝐾 = 100, 𝐽 = 30, 𝑃 = 20, 𝐼𝑘 = 100, and 𝑅 = 4. We then add Gaussian

normal noise to varying percentages of randomly-drawn elements

({5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%}) of 𝑿𝑘 ,∀𝑘 = 1, . . . , 𝐾 and 𝑨
input matrices.

3The reason that we are working with synthetic data here is that we do not know the
original factor matrices in real data sets.
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Figure 2: The average and standard deviation of RMSE (lower is better), CPI (higher is better), and total running time (in

seconds) (lower is better) for different approaches and for different target ranks (𝑅 = {5, 10, 20, 40}) related to 5 different random

initialization for Sutter and CMS data sets.
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Figure 3: The average and standard deviation of running

time (in seconds) for 𝑅 = 40 and for 5 random initialization

by varying number of patients from 125K to 1 million for

CMS data set. TASTE is upto 14× faster than Cohen.

4.6.3 Results: All threemethods achieve the same value for RMSE,

therefore, we omit the RMSE versus different noise levels plot. We

assess the similarity measure between each ground truth latent

factor and its corresponding estimated one (e.g., 𝑆𝑖𝑚(𝑽̃ , 𝑽 )), and
consider the average 𝑆𝑖𝑚(·, ·) measure across all output factors as

shown in Figure 4a. We also measure CPI and provide the results

in 4b for different levels of noise. We observe that despite achiev-

ing comparable RMSE, COPA+ scores the lowest on the similarity

between the true and the estimated factors. On the other hand, our

model achieves the highest amount of recovery, in accordance to

the fact that it achieves the highest CPI among all approaches. Over-

all, we demonstrate how promoting uniqueness (by enforcing the

CPI measure to be preserved [13]) leads to more accurate parameter

recovery, as suggested by prior work [13, 28].

4.7 Q4. Static features in TASTE improve
predictive power

We measure the importance of static features in TASTE indirectly
using classification performance. The task is to predict whether a

patient will be diagnosed with heart failure (HF) or not. We assess

whether static features handled by TASTE boost predictive perfor-
mance by using personalized phenotype scores for all patients (𝑾 )

as features.

4.7.1 Cohort Construction: After applying the preprocessing

steps (i.e. removing sparse features and eliminating patients with

less than 5 clinical visits), we create a data set from Sutter with

35,113 patients where 3,244 of them are cases and 31,869 are controls

(prevalence of 9.2 %). For case patients, we know the date that they

are diagnosed with heart failure (HF dx). Control patients also have

the same index dates as their corresponding cases. We extract 145

medications, 178 diagnosis codes, and 22 static features from a 2-

year observation window and set the prediction window length to

6 months. Figure 5 depicts the observation and prediction windows

in more detail.
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Figure 4: Figure 4a provides total average similarity between

the estimated and the true factormatrices for different noise

levels ({5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%}) on synthetic data.

Figure 4b provides the CPI of three methods for different

levels of noise for a synthetic data with K=100, J=30, P=20,

𝐼𝑘 = 100, R=4. All points in the figures is computed as an aver-

age of 5 random initialization. All three algorithms achieve

similar values for RMSE.

Figure 5: The arrow represents the encounter visits of a pa-

tient. We extract diagnosis and medications from a 2-year

observation window by setting prediction window length to

6 months.

4.7.2 Baselines: We assess the performance of TASTE with 6 dif-

ferent baselines.

RNN-regularized CNTF: CNTF [5] feeds the temporal phenotype

evolution matrices ({𝑼𝒌 }) into an LSTM model for HF prediction.

This baseline only uses temporal medical features.

RNN Baseline: We use the GRU model for HF prediction imple-

mented in [29]. The one-hot vector format is used to represent all

dynamic and static features for different clinical visits.

Logistic regression with raw dynamic:We create a binary ma-

trix where the rows are the number of patients and columns are

the total number of medical features (323). Row 𝑘 of this matrix is

created by aggregating over all clinical visits of matrix 𝑿𝒌 .

Logistic regression with raw static+dynamic: Same as the pre-

vious approach, we create a binary matrix where the rows are

number of patients and columns are the total number of temporal

and static features (345) by appending matrix 𝑨 to raw dynamic

baseline matrix.

COPA Personalized Score Matrix: We use the implementation

of pure PARAFAC2 from [11] which learns the low-rank representa-

tion of phenotypes (𝑽𝒄𝒐𝒑𝒂 ) from the training set and then projects

all the new patients onto the learned phenotypic low-rank space.

COPA (+static) Personalized Score Matrix: This is same as the

previous baseline, however, we incorporate the static features into

PARAFAC2 matrix by repeating the value of static features of a

particular patient for all encounter visits.

4.7.3 TrainingDetails: To calculate theAUC score for ourmodel,

we extended 5-fold cross-validation processes (described below) to

access how to use phenotyping models to perform HF prediction,

by calculating AUC score in the cross validation. At each fold, we

take 80% percent of patients as the training set and the remaining

20% as the test set. Figure 6 depicts our heart failure prediction

framework which contains 5 steps including:

(1) First, we apply TASTE on case patients in the training set

and extract the HF phenotypes (𝑽𝑐𝑎𝑠𝑒𝑠 , 𝑭𝑐𝑎𝑠𝑒𝑠 ) and calculate

phenotype score values for them ({𝑺 (𝐾𝑐𝑎𝑠𝑒𝑠 ) }).
(2) Second, we assign the existing HF phenotypes (𝑽𝑐𝑎𝑠𝑒𝑠 , 𝑭𝑐𝑎𝑠𝑒𝑠 )

to the control patient information ({𝑿 (𝐾(𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ) )}) from
training set (based on section 3.4) and extract personalized

phenotype scores for control patients ({𝑺 (𝐾𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ) }).
(3) We train a regularized logistic regression classifier on per-

sonalized phenotype scores for all patients in the training

set ({𝑺 (𝐾𝑐𝑎𝑠𝑒𝑠 ) }, {𝑺 (𝐾𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ) }).
(4) We assign the existing HF phenotypes (𝑽𝑐𝑎𝑠𝑒𝑠 , 𝑭𝑐𝑎𝑠𝑒𝑠 ) to

the patient information from test set (including cases and

controls) and extract their personalized phenotype scores

({𝑺 (𝐾𝑡𝑒𝑠𝑡 ) }).
(5) Finally, we predict HF (AUC score) for patients in the test set

based on the classifier model trained in step 3. we pick the

best parameters (𝐶, 𝜆, 𝜇) based on the highest average AUC

score on the test set.

All the other tensor baselines have the same training strategy as

TASTE. For all the baselines under comparison, we apply 5-fold

cross-validation processes and train a Lasso Logistic Regression
4. Lasso Logistic Regression has regularization parameter (𝐶 =
[1𝑒 − 2, 1𝑒 − 1, 1, 10, 100, 1000, 10000]). For all 6 baselines, we just
need to tune parameter 𝐶 . However, for TASTE we need to perform

a 3-D grid search over 𝜆 ∈ {0.01, 0.1, 1} and 𝜇1 = 𝜇2 = · · · = 𝜇𝐾 =
𝜇 =∈ {0.01, 0.1, 1} and 𝐶 .

Results: Figure 7 shows the average of AUC for all baselines and

TASTE. For COPA, COPA(+static), CNTF and TASTE we report the
AUC score for different values of R ({5,10,20,40,60}). TASTE improves

the AUC score over a simple non-negative PARAFAC2model (COPA

and COPA(+static)) and CNTF which suggests: 1) incorporating

static features with dynamic ones will increase the predictive power

(comparison of TASTE with COPA and CNTF); and 2) incorporating

static features using a coupled matrix improves predictive power

(comparison of TASTE and COPA(+static)). We also observe that

TASTE with R=60 (AUC=0.7687) performs slightly better than the

RNN baseline model. Moreover, TASTE offers interpretability as

the phenotype definitions can be readily extracted. RNNs require

additional mechanisms to explain the model [30].

4Both CNTF [5] and RNN baseline [29] applied logistic regression model to the final
state of the hidden layer to perform the binary classification.
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Figure 6: HF prediction Framework contains five steps.

Figure 7: The average of AUC score for varying number of

phenotypes (R) for TASTE and 3 other tensor baselines on

the test set. The AUC score for a baseline with raw dynamic

features (323) is 0.7437, for the raw dynamic+static baseline

(345) is 0.7487 and for RNN baseline is 0.7680.

4.8 Q5. Heart Failure Phenotype Discovery

Heart failure (HF) is a complex, heterogeneous disease and is the

leading cause of hospitalization in people older than 65 5. How-

ever, there are no well-defined phenotypes other than the simple

categorization of ejection fraction of the heart (i.e., preserved or

reduced ejection fraction). With the comprehensive collection of

available longitudinal EHR data, now we have the opportunity to

computationally tackle the challenge of phenotyping HF patients.

4.8.1 Cohort Construction: We select the patients diagnosed

withHF from the EHRs in Sutter dataset.We extract 145medications

and 178 diagnosis codes from a 2-year observation window which

5https://www.webmd.com/heart-disease/guide/diseases-cardiovascular#1-4

Table 3: Two sample phenotypes discovered by

COPA(+static) baseline by naively integrating static features

into a simpler PARAFAC2-based model [11] .

Phenotype 1 weight

Static_Alcohol_yes 0.3860

Static_White 0.2160

Static_Non_Hispanic 0.2064

Static_Smk_Quit 0.1743

Static_male 0.1508

Static_moderately_obese 0.1025

Phenotype 2 weight

Static_age_between_70_79 1

Static_Non_Hispanic 0.8233

Static_White 0.7502

Static_Alcohol_No 0.6905

Static_moderately_obese 0.2098

Static_male 0.2026

Static_Smk_No 0.1614

ends 6 months before the heart failure diagnosis date (HFdx). 6 The

total number of patients (K) is 3,244 (the HF case patients of Sutter

dataset) same as section 4.7.

4.8.2 Pure PARAFAC2 cannot handle static feature integra-

tion. In this experiment, we further analyze the results of the

naive way of incorporating static feature information into a simpler

PARAFAC2-based framework [11]. We posit that this results in less

interpretable phenotypes. We incorporate the static features into

PARAFAC2 input by repeating the value of static features on all

clinical visits of the patients in the same fashion as COPA(+static).

For instance, if the male feature of patient k has value 1, we repeat

the value 1 for all the clinical visits of that patient. Then we com-

pare the phenotype definitions discovered by TASTE (matrices 𝑽 , 𝑭 )
and by COPA (matrix 𝑽 ). Table 3 contains two sample phenotypes

discovered by this baseline, using the same truncation threshold

that we use throughout this work (we only consider features with

6Figure 5 presents the observation window in more detail.
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values greater than 0.1). We observe that the static features intro-

duce a significant amount of bias into the resulting phenotypes: the

phenotype definitions are essentially dominated by static features,

while the values of weights corresponding to dynamic features are

close to 0. This suggests that pure PARAFAC2-based models such

as the work in [11] are unable to produce meaningful phenotypes

that handle both static and dynamic features. Such a conclusion

extends to other PARAFAC2-based work which does not explicitly

model side information [10, 13, 27].

4.8.3 TASTE Findings of HF Phenotypes. Based on Figure 7, we

present the top 5 phenotypes extracted from TASTE using 𝑅 = 40

due to space limitations7. This rank is selected as outperforms all

but the RNN baseline and is comparable to 𝑅 = 60 in terms of

performance. The 5 phenotypes are all confirmed and annotated

by an expert cardiologist. Table 4 provides the details of these phe-

notypes. The clinical description of the 5 phenotypes as provided

by the cardiologist are:

[P1.] HypertensiveHeart Failure: This is a classic and dominant

heart failure phenotype, representing a subgroup of patients with

long history of hypertension, and cardiac performance declines

over time. Anti-hypertensive medications are spelled out as to indi-

cate the treatment to hypertension.

[P2.] Atrial Fibrillation (AF): This phenotype represents patients

with irregular heartbeat and AF predisposes to HF. Medications are

related to managing AF and preventing strokes. This phenotype

is usually more prevalent in male and old patients (i.e. 80 years or

older).

[P3.] Obesity-induced Heart Failure: This phenotype captures

patients with severe obesity (BMI>35) and obesity-induced ortho-

pedic conditions.

[P4.] Cardiometablic Driving Heart Failure: This phenotype

is featured by diabetes and cardiometabolic conditions (i.e. hyper-

lipidemia, hypertension). Diabetes is a well known risk factor for

cardiovascular complications (i.e. stroke, myocardial infaction, etc.),

and increases the risk for heart failure.

[P5.] Severe Coronoary Heart Disease: This phenotype is asso-

ciated with a greater deterioration of left ventricle function and a

worse prognosis. This phenotype is also more prevalent in the male

and white population.

5 CONCLUSIONS

TASTE jointly models temporal and static information from elec-

tronic health records to extract clinically meaningful phenotypes.

We demonstrate the computational efficiency of our model on ex-

tensive experiments that showcase its ability to preserve important

properties underpinning the model’s uniqueness, while maintain-

ing interpretability. TASTE not only identifies clinically meaningful

heart failure phenotypes validated by a cardiologist but the pheno-

types also retain predictive power for predicting heart failure.

To promote reproducibility, we make our implementation public

at: https://github.com/aafshar/TASTE.

7The top 5 phenotypes are selected based on highest phenotype’s prevalence. Preva-
lence of a phenotype is the number of patients belong to that phenotype and is
calculated based on applying hard clustering of patients on the maximum coordinate
of the vector along the diagonal of 𝑺𝒌 factor matrix.

Table 4: TASTE extracted 5 phenotypes from the HF dataset.

Red indicates the static features; 𝐷𝑥_ indicates diagnoses;

𝑅𝑥_ indicates medication; The phenotype names are pro-

vided by the cardiologist.

P1. Hypertensive Heart Failure: Weight

dx_Essential hypertension [98.] 0.804074

Rx_Calcium Channel Blockers 0.752547

Rx_ACE Inhibitors 0.648243

Rx_Beta Blockers Cardio-Selective 0.439681

Rx_Angiotensin II Receptor Antagonists 0.230808

Rx_Thiazides and Thiazide-Like Diuretics 0.221251

Static_Non_Hispanic 0.411001

Static_female 0.264393

Static_white 0.263096

Static_Smk_NO 0.25793

Static_Alchohol_No 0.239262

P2. Atrial Fibrillation (AF): Weight

dx_Cardiac dysrhythmias [106.] 0.621756

Rx_Coumarin Anticoagulants 0.482428

dx_Heart valve disorders [96.] 0.428493

Static_white 0.216603

Static_age_greater_80 0.20026

Static_Non_Hispanic 0.191727

Static_male 0.163882

Static_Alchohol_yes 0.157758

Static_Smk_Quit 0.132414

P3. Obesity-induced Heart Failure: Weight

dx_Other back problems 0.439425

Rx_Opioid Agonists 0.36535

dx_Intervertebral disc disorders 0.33781

Rx_Central Muscle Relaxants 0.326111

dx_Other nervous system symptoms and disorders 0.22293

Static_white 0.133696

Static_Static_Severely_obese 0.110279

Static_age_between_70_79 0.107631

P4. Cardiometablic Driving Heart Failure: Weight

dx_Diabetes mellitus without complication [49.] 0.58191

Rx_Biguanides 0.075524

Rx_Diagnostic Tests 0.044592

Rx_Sulfonylureas 0.041006

Rx_Insulin 0.031447

Rx_HMG CoA Reductase Inhibitors 0.027469

dx_Esophageal disorders [138.] 0.022313

Static_Severely_obese 0.223931

Static_Alchohol_No 0.205342

Static_Smk_NO 0.149338

Static_male 0.128847

Static_Non_Hispanic 0.124907

Static_age_between_60_69 0.119808

P5. Severe Coronoary Heart Disease: Weight

dx_Coronary atherosclerosis and other heart disease 0.495272

Rx_Platelet Aggregation Inhibitors 0.434221

Rx_Nitrates 0.333018

dx_Heart valve disorders [96.] 0.230577

Rx_Alpha-Beta Blockers 0.225503

dx_Peripheral and visceral atherosclerosis [114.] 0.124041

Rx_Beta Blockers Cardio-Selective 0.121939

Static_male 0.324708

Static_Smk_Quit 0.190111

Static_white 0.117237

Static_Overweight 0.116107

Static_Non_Hispanic 0.10634
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