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ABSTRACT

Phenotyping electronic health records (EHR) focuses on defining
meaningful patient groups (e.g., heart failure group and diabetes
group) and identifying the temporal evolution of patients in those
groups. Tensor factorization has been an effective tool for pheno-
typing. Most of the existing works assume either a static patient
representation with aggregate data or only model temporal data.
However, real EHR data contain both temporal (e.g., longitudinal
clinical visits) and static information (e.g., patient demographics),
which are difficult to model simultaneously. In this paper, we pro-
pose Temporal And Static TEnsor factorization (TASTE) that jointly
models both static and temporal information to extract phenotypes.
TASTE combines the PARAFAC2 model with non-negative matrix
factorization to model a temporal and a static tensor. To fit the pro-
posed model, we transform the original problem into simpler ones
which are optimally solved in an alternating fashion. For each of the
sub-problems, our proposed mathematical re-formulations lead to
efficient sub-problem solvers. Comprehensive experiments on large
EHR data from a heart failure (HF) study confirmed that TASTE is
up to 14X faster than several baselines and the resulting phenotypes
were confirmed to be clinically meaningful by a cardiologist. Using
60 phenotypes extracted by TASTE, a simple logistic regression can
achieve the same level of area under the curve (AUC) for HF pre-
diction compared to a deep learning model using recurrent neural
networks (RNN) with 345 features.
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1 INTRODUCTION

Phenotyping is the process of identifying patient groups sharing
similar clinically-meaningful characteristics and is essential for
treatment development and management [1, 2]. However, the com-
plexity and heterogeneity of the underlying patient information
render manual (or hand-curated) phenotyping impractical for large
populations or complex conditions. Unsupervised EHR-based phe-
notyping based on tensor factorization, e.g., [3-5], provides an
effective alternative. However, existing unsupervised phenotyping
methods are unable to handle both static and dynamically-evolving
information, which is the focus of this work.

Phenotypes(R)

Decompose t¢

Static Features

Clinical
Visits(ly )| [

Clinical
Visits(l,)

Figure 1: TASTE applied on dynamically-evolving structured
EHR data and static patient information. Each X repre-
sents the medical features recorded for different clinical vis-
its for patient k. Matrix A includes the static information
(e.g., race, gender) of patients. TASTE decomposes {X}.} into
three parts: {Uy}, {Sr}, and V. Static matrix A is decomposed
into two parts: {Si.} and F. Note that {S;.} (personalized phe-
notype scores) is shared between static and dynamically-
evolving features.

Traditional tensor factorization models [6-9] assume the same
dimensionality along each tensor mode. However, in practice one
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mode such as time can be irregular. For example, different patients
may vary by the number of clinical visits over time. To handle
such longitudinal datasets, [10] and [11] propose algorithms to fit
the PARAFAC2 model [12] which are faster and more scalable for
handling irregular and sparse data. However, these PARAFAC2 ap-
proaches only focus on modeling the dynamically-evolving features
for every patient (e.g., the structured codes recorded for every visit).
Static features (such as race and gender) which do not evolve are
completely neglected; yet, they are crucial factors for phenotyping
analyses (e.g., some diseases have the higher prevalence in a certain
race).

To address this problem, we propose a scalable method called
TASTE which jointly models both temporal and static features by
combining the non-negative PARAFAC2 model with non-negative
matrix factorization as shown in Figure 1. We reformulate our
new non-convex problem into simpler sub-problems (i.e., orthogo-
nal Procrustes, least square and non-negativity constrained least
square) and solve each of the sub-problems efficiently by avoiding
unnecessary computations (e.g., expensive Khatri-Rao products).

We summarize our contributions below:

e Temporal and Static Tensor Factorization: We propose
a new optimization problem to jointly model static and dy-
namic features from EHR data as non-negative factor matri-
ces.

e Fast and Accurate Algorithm: Our proposed fitting algo-
rithm is up to 14 X faster than the state-of-the-art baseline.
At the same time, TASTE preserves model constraints which
promote model uniqueness better than baselines while main-
taining interpretability.

e Case Study on Heart Failure Phenotyping: We demon-
strate the practical impact of TASTE through a case study
on heart failure (HF) phenotyping. We identified clinically-
meaningful phenotypes which are confirmed by a cardiolo-
gist. Using phenotypes extracted by TASTE, a simple logistic
regression model can achieve comparable predictive accu-
racy with deep learning techniques such as RNNs.

2 BACKGROUND & RELATED WORK

Table 1 summarizes the notations used in this paper.

Table 1: Notations

Symbol Definition
* Element-wise Multiplication
[0} Khatri Rao Product
Y,y matrix, vector
Y(i,:) the i-th row of Y
Y(:,r) the r-th column of Y
Y(i,r) element (i,r) of Y
Xr Feature matrix of patient k
diag(Y) Extract the diagonal of matrix Y
vec(Y) Vectorizing matrix Y
svd(Y) Singular value decomposition on Y
|| - ”12: Frobenius Norm
max(0,Y) | max operator replaces negative values in Y with 0
Y>0 All elements in Y are non-negative
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2.1 PARAFAC2 Model
The PARAFAC2 model [13], has the following objective function:

K
s 1 T2
minimize Xk = UeSi V7|
{UR b Sk 1V kzq 2 r (1)
subject to Uy = OrH, Q,{Qk =1,

where X;. € R/ is the input matrix, factor matrix Uy € RI*R,
diagonal matrix S3 € RR*R | and factor matrix V € R/*R are output
matrices. Factor matrix Q € RI*R is an orthogonal matrix, and
H e RR*R where Uy = Qr H. SPARTan [10] introduces a scalable
algorithm to fit this model for sparse datasets. COPA [11] extends
this work and incorporates different constraints such as temporal
smoothness and sparsity to the model factors to produce more
meaningful results. However, none of these models (i.e., the original
PARAFAC2 model, SPARTan [10], and COPA [11]) can incorporate
a non-negativity constraint on the factor matrix Uy.

The uniqueness property ensures that a decomposition is pur-
suing the true latent factors, rather than an arbitrary rotation of
them. The unconstrained version of PARAFAC2 in (1) without con-
straints Up=Q} H and le O=I is not unique. Assume B is an
invertible R X R matrix and {Z} } are R X R diagonal matrices. Then,
we can transform U S kVT as:

UrSkVT = (UkSkB™'Z) 2y (BVT)
- =
Gr ET

which is another valid solution achieving the same approximation
error [13]. This is problematic in terms of the interpretability of
the result. To promote uniqueness, Harshman [12] introduced the
cross-product invariance constraint, which dictates that U! Uy,
should be constant Vk € {1,...,K}. To achieve that, the following
constraint is added: U = Qp H where Qsz = I, so that: U:ka =

HTQ[QrH=HTH=0.

2.2 Non-Negativity constrained Least Squares
(NNLS)

The Non-Negativity constrained Least Squares (NNLS) problem has
the following form:

2
miniénize “BCT - A”F subjectto C >0 (2)

Here, A € RMN B ¢ RMR and ¢ € RNVR where R <
min(M, N). NNLS is a convex problem and the optimal solution of
2 can be solved efficiently. For example, the block principal pivoting
method [14] can be used to solve NNLS problems. Authors in [14]
showed the block principal pivoting method achieves state-of-the-
art performance.

2.3 Unsupervised Computational Phenotyping

A wide range of approaches applies tensor factorization techniques
to extract phenotypes. [3, 4, 15-19] incorporate various constraints
(e.g., sparsity, non-negativity, integer) into regular tensor factor-
ization to produce more clinically-meaningful phenotypes. [10, 11]
identify phenotypes and their temporal trends by using irregular
tensor factorization based on PARAFAC2 [12]; yet, those approaches
cannot model both dynamic and static features for meaningful
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phenotype extraction. As part of our experimental evaluation, we
demonstrate that naively adjusting existing PARAFAC2-based ap-
proaches to incorporate static information results in biased and less
interpretable phenotypes. The authors of [5] proposed a collective
non-negative tensor factorization for phenotyping purposes. How-
ever, the method is not able to jointly incorporate static information
such as demographics with temporal features. Also they do not
employ the orthogonality constraint on the temporal dimension, a
strategy that result in non-unique solutions [12, 13].

3 THE TASTE FRAMEWORK

3.1 Intuition

We first explain the intuition of TASTE in the context of the pheno-
typing application.

Input data include both temporal and static features for all K
patients:

e Temporal features (X}.); For patient k, we record the med-
ical features for different clinical visits in matrix X, € RI&*/
where I is the number of clinical visits and J is the total
number of medical features. Note that I} can be different for
different patients.

o Static features (A): The static features like gender, race,
body mass index (BMI), smoking status! are recorded in
A € REXP where K is the total number of patients and P is
the number of static features. In particular, each row A(k,:)
contains the static features for patient k.

The phenotyping process maps input data into a set of pheno-
types, which involves the definition of phenotypes and a patient’s
temporal evolution. Figure 1 illustrates the following model inter-
pretation. First, phenotype definitions are shared by factor matrices
V and F for temporal and static features, respectively. In particular,
V(,r) or F(;,r) are the rth column of factor matrix V or F which
indicates the participation of temporal or static features in the r‘/
phenotype. Second, personalized phenotype scores for patient k are
provided in the diagonal matrix Sy where its diagonal element
Sk (r, r) indicates the overall importance of the rth phenotype for
patient k. Finally, temporal phenotype evolution for patient k is spec-
ified in factor matrix Uy where its r’ h column Uy (:, r) indicates the
temporal evolution of phenotype r over all clinical visits of patient
k.

3.2 Objective function and challenges

We introduce the following optimization problem:

minimize

& A
Xk = UeSk VT2 ) + 2 11A- WFT |2
2 F)72 F
=1

{Up MO 1
H.{Si.}.V.F —
Coupled Matrix (2)
PARAFAC2 (1)
& Hi
Hre _ 2
+ (51U - QeI ) -
k=1
Uniqueness (3)
subject to Q};Qk =1, U >0, Sg >0, foralk=1,..K
W (k,:) = diag(Sg) forall k=1,...K
V>0 F2>0

! Although BMI and smoking status can change over time, in our data set these values
for each patient are constant over time.
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Our objective function has three main parts as follows:

(1) The first part is related to fitting a PARAFAC2 model that fac-
torizes a set of temporal feature matrices X; € R**/ into
Uy € RI*R | diagonal matrix Sg € R®*R and v e R/*R,

(2) The second part is for optimizing the static feature matrix A
where A € RKXP w € RKXR and F e RP*R_ ) also is the weight
parameter. Common factor matrices {Sy.} are shared between
static and temporal features by setting W (k, :)=diag(S).

(3) The third part enforces both non-negativity of the Uy factor
and also minimizes its difference to Q. H. Due to the constraint
Qng = I, minimizing ||Uj - QkH||12c encourages UIZUk to
be constant over K subjects, which is a desirable PARAFAC2
property that promotes uniqueness, and thus enhances inter-
pretability [13].

A and py. are weighting parameters which are set by the user. For
simplicity, we set yy = pp = --- = pg = p. The challenge in solv-
ing the above optimization problem lies in: 1) addressing all the
non-negative constraints especially on Uy, 2) trying to make U,Z Uy
constant over K subjects by making non-negative Uy as close as pos-
sible to Qg H while Qg H can contain negative values, 3) estimating
all factor matrices in order to best approximate both temporal and
static input matrices, and 4) developing a computationally efficient
method to scale to large patient populations.

3.3 Algorithm

To optimize the objective function (3), we need to update {Q }, H,
{Ur},V, {Sk}, and F iteratively. Although the original problem in
Equation 3 is non-convex, our algorithm utilizes the Block Coor-
dinate Descent framework [20] to mathematically reformulate the
objective function (3) into simpler sub-problems. In each iteration,
we update {Qy.} based on the Orthogonal Procrustes problem [21]
which ensures an orthogonal solution for each Q. (QzQ,c =1).
Factor matrix H can be solved efficiently by least square solvers.
For factor matrices {Ur},V, {Si.} and F, we reformulate the objec-
tive function (3) so that the factor matrices are instances of the
non-negativity constrained least squares (NNLS) problem. Each
NNLS sub-problem is a convex problem and the optimal solution
can be found easily. We use block principal pivoting method [14]
to solve each NNLS sub-problem, as it achieved state-of-the-art
performance on NNLS problems compared to other optimization
techniques [14] as discussed in section 2.2. We also exploit struc-
ture in the underlying computations (e.g., involving Khatri-Rao
products) so that each one of the sub-problems is solved efficiently.
Next, we summarize the solution for each factor matrix.

3.3.1 Solution for factor matrix Qj.. We can rewrite objective
function (3) with respect to Q. based on trace properties [22] as:

minQimize y?kTrace (UIZ Uy.) —pi Trace (U,Z OrH)
k
| S——
constant
+ 'u?kTrace(HTQszH) (4)
constant
subject to Q};Qk =1
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Removing the constant terms and applying the trace property

Trace(ABC) = Trace(CAB) yields the following new objective:
minimize ||UkHT - Qk”fv
Qk 5)
subject to Q}; Or=1

The optimal value of Q. can then be computed via the Orthog-
onal Procrustes problem [21] which has the closed form solution
Ok = Bkcz where By € R%*R and Cy. € RP*R are the right and

left singular vectors of yUp H' . Note that each Qj can contain
negative values.

3.3.2 Solution for factor matrix H. The objective function with
respect to H can be rewritten as an unconstrained problem:

K
L Bk || AT 2
minitmize Z 0 ”Qk Uy - H||F (6)
k=1
Note that Equation 6 is different than the original formulation
introduced in Equation 3, where the Frobenius norm contains the
term Uy, — Qg H. Through this reformulation, TASTE can utilize the
least square solver to efficiently update H.
To obtain the new objective function, we observe that Qy. €
RI*R js a rectangular orthogonal matrix (Q,{Qk = I e RRXR),

We introduce a new orthogonal matrix, Q; € RIXUk=R)  where
— T — —T .
Ok O =1 € RERXI=R 31nd Of. " Of = 0. This can be used to

produce a new square orthogonal matrix [Qp Q;c].
or QiQk Qi 0k
[Jf} [0 Qx| = [ o ko
Ok Or' Ok Or Ox @)
_ [Irxr 0 S
A )

Since [Qx  Of] is a square orthogonal matrix (shown in Equa-
tion (7)), we can now demonstrate that Equation (6) and Equation
(3) are equivalent objectives for H.

K 2
2 B I0kH - Ul = Z”k Q’&] (owH - Uk)
k=1 k=1 F
K
e ||| OF Ok Ry
; 2 QkkTQk QkkTUk , ®
constant

(5 1 - kel + Jox" vl )

P

~
Il
-

~T _|?. .
where Zle “Qk U ”F is a constant and independent of the param-
eter under minimization. Therefore, the value of H that minimizes
ZIk(:l ”zk |OrH — Uk”F alsomlmmlzesZK L3 HH Q,ZUk” and
the update rule for factor matrix H is based on the least square
solution and has the following form:

Zk 1 .qukUk
Zk lluk
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3.3.3 Solution for phenotype evolution matrix Uy. After up-
dating the factor matrices Qg., H, we focus on solving for Ug. In
classic PARAFAC2 [12, 13], this factor is retrieved through the sim-
ple multiplication Uy = Q. H. However, for improved interpretabil-
ity, we prefer temporal factor matrix Uy to be non-negative because
the temporal phenotype evolution for patient k (Ug) should not be
negative. As shown in the empirical results, a naive enforcement of
non-negativity (max (0, Qr H)) violates the important uniqueness
property of PARAFAC2. Therefore, we consider U, as an additional
factor matrix, constrain it to be non-negative, and minimize its
difference to Q; H.

The objective function with respect to Uy can be combined into
the following NNLS form:

2
L L[ VSk |, .7 x]
minimize - -
Uy /733 L Y/ HT or )
subjectto Uy >0

As mentioned earlier, factor matrix Uy, is updated based on block
principal pivoting method.

3.3.4 Solution for temporal phenotype definition V . Factor
matrix V defines the participation of temporal features in different
phenotypes. In Equation (3), the factor matrix V participates in the
PARAFAC?2 part with the non-negativity constraint. Therefore, the
objective function for factor matrix V has the following form:

2

Ui $1 Xi
U,
minimize 252 vl - Xz
v . . (10)
Uk Sk Xkl g
subjectto V >0

To update V based on block principal pivoting, the algorithm
calculates (UgSk)T (UgSg) and Uy Sy X, for all K samples which
can be done in an embarrassingly parallel fashion.

3.3.5 Solution for factor matrix W or {S;}. The objective func-
tion with respect to W yields the following format:

K
L l _ T2 & _ T2

minjmize é (2 Xk - UpSiV \|F) +ZlA-WFT I}

Sk >0

W (k,:) = diag(Sg) forall k=1,...K

Factor matrices {Si} are shared between the PARAFAC2 input

and matrix A where W (k, :)=diag(Sg.). Since vec(UpS V) = (Vo

U)W (k, )T, Equation (11) can be rewritten in the following NNLS

form:

(11)

subject to

g

g e ViA(k,)T (12)
W(k,:) 20

where © denotes Khatri-Rao product. Each row of factor matrix
W (W(k,:) or diag(Sg)) can be solved separately and in parallel.
Unfortunately, the update for each factor matrix Sy involves com-
puting two time-consuming operations: 1)(V © U)T(VvoUu) and
2)(V 0 Ug)Tvec(X},). Instead of explicitly forming the Khatri-Rao
product, both operations can be replaced with more efficient coun-

terparts. The first operation can be replaced with VTV U,Z Ug

subject to
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where * denotes the element-wise (Hadamard) product [23]. The
second operation also can be replaced with diag(U X VT) [23].
Thus, each row of W can be efficiently updated via block principal
pivoting.

3.3.6 Solution for static phenotype definition F. Finally, fac-
tor matrix F represents the participation of static features for the
phenotypes. The objective function for factor matrix F has the
following NNLS form:

o A T 2 )
mmgmze EHWF —AHF subjectto F >0 (13)

which can be easily updated via block principal pivoting.

3.4 Phenotype inference on new data

Given the learned phenotype definition (V, F) and factor matrix
H for some training set, TASTE can project data of new unseen
patients into the existing low-rank space. This is useful because
healthcare providers may want to fix the phenotype definition while
score new patients with those existing definitions. Moreover, such a
methodology enables using the low-rank representation of patients
such as (Sy.) as feature vectors for a predictive modeling task.
Suppose, {X1, X2, ..., Xy } represents the temporal information

of unseen patients {1,2, ..., N,} and A" € RN/XP indicates their
static information. TASTE projects the new patient’s information
into the existing low-rank space (H, V, and F) by optimizing {Qp},
{Un} and {S,} for the following objective function:

N
S 1 T2, A a T2
minimize —|1Xn — UnSnV )+7 A -WF
s ;(ZH n = UnSuVTIE) + Sl [
n

N/
7 ;
#2310 - Q)

OIQn =1 foraln=1,..,N’
U,>0, S,>0 foralln=1,...N’

(14)

subject to

The updates for the factor matrices {Q,} are based on Equation
(5). {Un} can be minimized based on Equation (9). Finally, W can
be updated based on Equation (12) where diag(S,) = W(n,:).

4 EXPERIMENTAL RESULTS

We focus on answering the following questions:

Q1. Does TASTE preserve accuracy and the uniqueness-promoting
constraint, while being fast to compute?

How does TASTE scale for increasing number of patients (K)?
Does TASTE recover the true factor matrices? How does pro-
moting uniqueness correlate with recovery in the presence
of noise?

Does the static information added in TASTE improve predic-
tive performance for detecting heart failure?

Are the heart failure phenotypes produced by TASTE mean-
ingful to an expert cardiologist?

Q2.
Q3.

04.
Q5.

4.1

Table 2 summarizes the statistics of data sets.

Sutter: This dataset is from Sutter Palo Alto Medical Foundation,
a large primary care and multispecialty group practice. The data
set contains the EHRs for patients with new onset of heart failure

Data Set Description
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Table 2: Summary statistics of two real data sets.

Dataset # Patients # Temporal Features Mean(l;) # Static Features
Sutter 64,912 1164 29 22
CMS 151,349 284 50 30

and matched controls (matched by encounter time, and age). It
includes 5912 cases and 59300 controls. For all patients, encounter
features (e.g., medication orders, diagnoses) were extracted from
the electronic health records. We use standard medical concept
groupers to convert the available ICD-9 or ICD-10 diagnosis codes
to Clinical Classification Software (CCS level 3) [24]. We also group
the normalized drug names based on unique therapeutic sub-classes
using the Anatomical Therapeutic Chemical (ATC) Classification
System. Static patient information includes their gender, age, race,
smoking status, alcohol status and BML

Centers for Medicare and Medicaid (CMS):2 The second data
set is CMS 2008-2010 Data Entrepreneurs’ Synthetic Public Use File
(DE-SynPUF). The goal of CMS data set is to provide a set of realistic
data by protecting the privacy of Medicare beneficiaries by using 5%
of real data to synthetically construct the whole dataset. We extract
the ICD-9 diagnosis codes and convert them to CCS diagnostic
categories as in the case of Sutter dataset.

4.2 Evaluation metrics:

RMSE: Accuracy is evaluated as the Root Mean Square Error
(RMSE) which is a standard measure used in coupled matrix-tensor
factorization literature [25, 26]. Given an input collection of matri-
ces Xj € RIJ vk =1, ..., K and a static input matrix A € REXP
we define

K Ix J
2 2 X (Xk(i))

N PR N
3 ] ~ X2 +2 3 3 (AG)) - A, )2
k=1i=1j=1 k

=1j=1

RMSE = =
2oy Ik X J) + KX P

(15)
X (i, j) denotes the (i, j) element of input matrix X and X (i, j)
its approximation through a model’s factors (the (i, j) element of
the product U SV in the case of TASTE). Similarly, A(j, j) is the
(i, j) element of input matrix A and A(i, j) is its approximation (in
TASTE, this is the (i, j) element of WFT).

Cross-Product Invariance (CPI): We use CPI to assess the solu-
tion’s uniqueness, since this is the core constraint promoting it [13].
In particular we check whether UkT Uy is close to constant (H TH)
Vk € {1,...,K}). The cross-product invariance measure is defined
as:

Sr lUfU, - HTHI|%
Sh_, [IHTHI|Z

CPI=1-

The range of CPI is between [—co, 1], with values close to 1 indicat-
ing unique solutions (i.e., UkT U is close to constant).

https://www.cms.gov/Research-Statistics- Data-and-Systems/Downloadable-
Public-Use-Files/SynPUFs/DE_Syn_PUF.html
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Area Under the ROC Curve (AUC): We examine the classifica-
tion model’s performance when the data is imbalanced by compar-
ing the actual and estimated labels. We use AUC on the test set to
evaluate predictive model performance.

4.3 Implementation details

TASTE is implemented in MATLAB. To facilitate reproducibility, we
provide the source code repository on Github. All the approaches
(including the baselines) are evaluated on MatlabR2017b. We uti-
lize the capabilities of Parallel Computing Toolbox of Matlab by
activating parallel pool for all methods. For both datasets, we used
12 workers. For the prediction task, we use the implementation of
regularized logistic regression from Scikit-learn machine learning
library in Python 3.6.

4.4 Q1. TASTE is fast, accurate and preserves
uniqueness-promoting constraints

4.4.1 Baseline Approaches: In this experiment, we compare
TASTE with methods that incorporate non-negativity constraint
on all factor matrices. Note that SPARTan [10] and COPA [11] are
not able to incorporate non-negativity constraint on factor matrices
{Uk}-

Cohen+ [27]: Cohen et al. proposed a PARAFAC2 framework
which imposes non-negativity constraints on all factor matrices
based on non-negative least squares algorithm [20]. We modified
this method to handle the situation where a static matrix A is cou-
pled with PARAFAC2 input based on Figure 1. To do so, we add
’%HA - WFT||12, to their objective function and solve both factor
matrices W and F in an Alternating Least Squares manner, similar
to how the rest of the factors are updated in [27].

COPA+: One simple and fast way to enforce non-negativity con-
straint on factor matrix Uy, is to compute Uy, as: Uy, := max (0, Qi H),
where max() is taken element-wise to ensure non-negative results.
Therefore, we modify the implementation in [11] to handle both
the PARAFAC?2 input and the static matrix A and then apply the
simple heuristic to make {U } non-negative. We will show in the
experimental results section that this heuristic method no longer
guarantees unique solutions (i.e., it violates model constraints).

4.4.2 Setting hyper-parameters: We perform a grid search for
2 €{0.01,0.1,1} and iy = --- = pg = p € {0.01,0.1,1} for TASTE
and Cohen+ for different target ranks (R = {5, 10, 20,40}). Each
method is run with the specific parameter for 5 random initializa-
tions and the best values of A and y are selected based on the lowest
average RMSE value. For COPA+, we search for the best value of
A € {0.1,1,10} since it does not have a p parameter.

4.4.3 Results: Apart from purely evaluating the RMSE and the
computational time achieved, we assess to what extent the cross-
product invariance constraint is satisfied [13]. Therefore, in Figure
2 we present the average and standard deviation of RMSE, CPI, and
the computational time for both the Sutter and CMS data sets for
four different target ranks (R € {5, 10,20,40}). In Figures 2a, 2d,
we compare the RMSE for all three methods. We observe that all
methods achieve comparable RMSE values on the two different
data sets. On the other hand, Figures 2b, 2e show the cross-product
invariance (CPI) for Sutter and CMS respectively. COPA+ achieves
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poor values of CPI for both data sets. This indicates that the output
factors violate model constraints and do not satisfy the uniqueness
property [13]. Also TASTE significantly outperforms Cohen on CPI
in Figures 2b and 2e. Finally, Figures 2c, 2f show the running time
comparison for all three methods where TASTE is up to 4.5X and
2% faster than Cohen on Sutter and CMS data sets. Therefore, our
approach is the only one that achieves a fast and accurate solution
(in terms of RMSE) and preserves model uniqueness (in terms of
CPI).

4.5 Q2. TASTE is scalable

Apart from assessing the time needed for increasing values of tar-
get rank (i.e., number of phenotypes), we evaluate the same three
approaches from section 4.4 in terms of computation time for an
increasing amount of input patients. Each method is run 5 times and
the convergence threshold is set to 1e — 4 for all of them. Figure 3
compares the average and standard deviation of total running time
for 125K, 250K, 500K, and 1 Million patients for R = 40. TASTE is
up to 14X faster than Cohen’s baseline for R = 40. While COPA+ is
a fast approach, this baseline suffers from not satisfying model con-
straints which promote uniqueness as demonstrated in the previous
experiment.

4.6 Q3. Recovery of true factor matrices

In this section, we assess to what extent the original factor matrices
can be recovered through synthetic data experiments 3. We demon-
strate that: a) TASTE recovers the true latent factors more accurately
than baselines for noisy data; and b) the baseline (COPA+) which
does not preserve a high CPI measure fails to match TASTE in terms
of latent factor recovery, despite achieving similar RMSE.

4.6.1 Evaluation Metric: Similarity between two factor ma-
trices: We define the cosine similarity between two vectors x;, y;

as Cij =
X € RI¥Ry € RT*R can be computed as (similar to [13]):

Wﬁjyll Then the similarity between two factor matrices
i J

Sim(X,Y) =

The range of Sim is between [0,1] and values near 1 indicate higher
similarity.

4.6.2 Synthetic Data Construction: We construct the ground-
truth factor matrices H € RR*R Vv € RI*R W e REKXR F ¢ RPXR
by drawing a number uniformly at random between (0,1) to each
element of each matrix. For each factor matrix Qj, we create a
binary non-negative matrix such that Q,ZQk = I and then compute

U=0p H. After constructing all factor matrices, we compute the
input based on X, = Updiag(W (k,:))VT and A = WFT. We set
K =100, ] =30, P = 20, = 100, and R = 4. We then add Gaussian
normal noise to varying percentages of randomly-drawn elements
({5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%}) of Xi,Vk = 1,...,K and A
input matrices.

3The reason that we are working with synthetic data here is that we do not know the
original factor matrices in real data sets.
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Figure 3: The average and standard deviation of running
time (in seconds) for R = 40 and for 5 random initialization
by varying number of patients from 125K to 1 million for
CMS data set. TASTE is upto 14X faster than Cohen.

4.6.3 Results: All three methods achieve the same value for RMSE,
therefore, we omit the RMSE versus different noise levels plot. We
assess the similarity measure between each ground truth latent
factor and its corresponding estimated one (e.g., Sim(V, V)), and
consider the average Sim(-, -) measure across all output factors as
shown in Figure 4a. We also measure CPI and provide the results
in 4b for different levels of noise. We observe that despite achiev-
ing comparable RMSE, COPA+ scores the lowest on the similarity
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between the true and the estimated factors. On the other hand, our
model achieves the highest amount of recovery, in accordance to
the fact that it achieves the highest CPT among all approaches. Over-
all, we demonstrate how promoting uniqueness (by enforcing the
CPI measure to be preserved [13]) leads to more accurate parameter
recovery, as suggested by prior work [13, 28].

4.7 Q4. Static features in TASTE improve
predictive power

We measure the importance of static features in TASTE indirectly
using classification performance. The task is to predict whether a
patient will be diagnosed with heart failure (HF) or not. We assess
whether static features handled by TASTE boost predictive perfor-
mance by using personalized phenotype scores for all patients (W)
as features.

4.7.1 Cohort Construction: After applying the preprocessing
steps (i.e. removing sparse features and eliminating patients with
less than 5 clinical visits), we create a data set from Sutter with
35,113 patients where 3,244 of them are cases and 31,869 are controls
(prevalence of 9.2 %). For case patients, we know the date that they
are diagnosed with heart failure (HF dx). Control patients also have
the same index dates as their corresponding cases. We extract 145
medications, 178 diagnosis codes, and 22 static features from a 2-
year observation window and set the prediction window length to
6 months. Figure 5 depicts the observation and prediction windows
in more detail.
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Figure 4: Figure 4a provides total average similarity between
the estimated and the true factor matrices for different noise
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Figure 4b provides the CPI of three methods for different
levels of noise for a synthetic data with K=100, J=30, P=20,
I;. = 100, R=4. All points in the figures is computed as an aver-
age of 5 random initialization. All three algorithms achieve
similar values for RMSE.
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Figure 5: The arrow represents the encounter visits of a pa-
tient. We extract diagnosis and medications from a 2-year
observation window by setting prediction window length to
6 months.

4.7.2 Baselines: We assess the performance of TASTE with 6 dif-
ferent baselines.

RNN-regularized CNTF: CNTF [5] feeds the temporal phenotype
evolution matrices ({Ug}) into an LSTM model for HF prediction.
This baseline only uses temporal medical features.

RNN Baseline: We use the GRU model for HF prediction imple-
mented in [29]. The one-hot vector format is used to represent all
dynamic and static features for different clinical visits.

Logistic regression with raw dynamic: We create a binary ma-
trix where the rows are the number of patients and columns are
the total number of medical features (323). Row k of this matrix is
created by aggregating over all clinical visits of matrix X}.
Logistic regression with raw static+dynamic: Same as the pre-
vious approach, we create a binary matrix where the rows are
number of patients and columns are the total number of temporal
and static features (345) by appending matrix A to raw dynamic
baseline matrix.

COPA Personalized Score Matrix: We use the implementation
of pure PARAFAC?2 from [11] which learns the low-rank representa-
tion of phenotypes (Vcopq) from the training set and then projects
all the new patients onto the learned phenotypic low-rank space.
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COPA (+static) Personalized Score Matrix: This is same as the
previous baseline, however, we incorporate the static features into
PARAFAC?2 matrix by repeating the value of static features of a
particular patient for all encounter visits.

4.7.3 Training Details: To calculate the AUC score for our model,
we extended 5-fold cross-validation processes (described below) to
access how to use phenotyping models to perform HF prediction,
by calculating AUC score in the cross validation. At each fold, we
take 80% percent of patients as the training set and the remaining
20% as the test set. Figure 6 depicts our heart failure prediction
framework which contains 5 steps including:

(1) First, we apply TASTE on case patients in the training set
and extract the HF phenotypes (Veases, Feases) and calculate
phenotype score values for them ({S(x, ...\ })-

Second, we assign the existing HF phenotypes (Vegses, Feases)
to the control patient information ({X K(controls))}) from
training set (based on section 3.4) and extract personalized
phenotype scores for control patients ({S(k.,,.,,0::) })-

We train a regularized logistic regression classifier on per-
sonalized phenotype scores for all patients in the training
Set ({S(Keases) b 1 (Keontrots) -

We assign the existing HF phenotypes (Veases, Feases) to
the patient information from test set (including cases and
controls) and extract their personalized phenotype scores
({S(Ktest) })

Finally, we predict HF (AUC score) for patients in the test set
based on the classifier model trained in step 3. we pick the
best parameters (C, A, y) based on the highest average AUC
score on the test set.

()

All the other tensor baselines have the same training strategy as
TASTE. For all the baselines under comparison, we apply 5-fold
cross-validation processes and train a Lasso Logistic Regression
4. Lasso Logistic Regression has regularization parameter (C =
[1e —2,1e — 1,1, 10, 100, 1000, 10000]). For all 6 baselines, we just
need to tune parameter C. However, for TASTE we need to perform
a 3-D grid search over A € {0.01,0.1,1} and iy = pp = - -+ = g =
p =€ {0.01,0.1,1} and C.

Results: Figure 7 shows the average of AUC for all baselines and
TASTE. For COPA, COPA(+static), CNTF and TASTE we report the
AUC score for different values of R ({5,10,20,40,60}). TASTE improves
the AUC score over a simple non-negative PARAFAC2 model (COPA
and COPA(+static)) and CNTF which suggests: 1) incorporating
static features with dynamic ones will increase the predictive power
(comparison of TASTE with COPA and CNTF); and 2) incorporating
static features using a coupled matrix improves predictive power
(comparison of TASTE and COPA(+static)). We also observe that
TASTE with R=60 (AUC=0.7687) performs slightly better than the
RNN baseline model. Moreover, TASTE offers interpretability as
the phenotype definitions can be readily extracted. RNNs require
additional mechanisms to explain the model [30].

4Both CNTE [5] and RNN baseline [29] applied logistic regression model to the final
state of the hidden layer to perform the binary classification.
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Figure 7: The average of AUC score for varying number of
phenotypes (R) for TASTE and 3 other tensor baselines on
the test set. The AUC score for a baseline with raw dynamic
features (323) is 0.7437, for the raw dynamic+static baseline
(345) is 0.7487 and for RNN baseline is 0.7680.

4.8 Q5. Heart Failure Phenotype Discovery

Heart failure (HF) is a complex, heterogeneous disease and is the
leading cause of hospitalization in people older than 65 °. How-
ever, there are no well-defined phenotypes other than the simple
categorization of ejection fraction of the heart (i.e., preserved or
reduced ejection fraction). With the comprehensive collection of
available longitudinal EHR data, now we have the opportunity to
computationally tackle the challenge of phenotyping HF patients.

4.8.1 Cohort Construction: We select the patients diagnosed
with HF from the EHRs in Sutter dataset. We extract 145 medications
and 178 diagnosis codes from a 2-year observation window which

Shttps://www.webmd.com/heart-disease/guide/diseases- cardiovascular#1-4
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Table 3: Two sample phenotypes discovered by
COPA(+static) baseline by naively integrating static features
into a simpler PARAFAC2-based model [11] .

Phenotype 1 weight
Static_Alcohol yes 0.3860
Static. White 0.2160
Static_Non_Hispanic 0.2064
Static_Smk_Quit 0.1743
Static_male 0.1508
Static_moderately_obese 0.1025
Phenotype 2 weight
Static_age_between_70_79 1
Static_Non_Hispanic 0.8233
Static_White 0.7502
Static_Alcohol_No 0.6905
Static_moderately_obese 0.2098
Static_male 0.2026
Static_Smk_No 0.1614

ends 6 months before the heart failure diagnosis date (HFdx). ® The
total number of patients (K) is 3,244 (the HF case patients of Sutter
dataset) same as section 4.7.

4.8.2 Pure PARAFAC2 cannot handle static feature integra-
tion. In this experiment, we further analyze the results of the
naive way of incorporating static feature information into a simpler
PARAFAC2-based framework [11]. We posit that this results in less
interpretable phenotypes. We incorporate the static features into
PARAFAC? input by repeating the value of static features on all
clinical visits of the patients in the same fashion as COPA(+static).
For instance, if the male feature of patient k has value 1, we repeat
the value 1 for all the clinical visits of that patient. Then we com-
pare the phenotype definitions discovered by TASTE (matrices V, F)
and by COPA (matrix V). Table 3 contains two sample phenotypes
discovered by this baseline, using the same truncation threshold
that we use throughout this work (we only consider features with

®Figure 5 presents the observation window in more detail.
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values greater than 0.1). We observe that the static features intro-
duce a significant amount of bias into the resulting phenotypes: the
phenotype definitions are essentially dominated by static features,
while the values of weights corresponding to dynamic features are
close to 0. This suggests that pure PARAFAC2-based models such
as the work in [11] are unable to produce meaningful phenotypes
that handle both static and dynamic features. Such a conclusion
extends to other PARAFAC2-based work which does not explicitly
model side information [10, 13, 27].

4.8.3 TASTE Findings of HF Phenotypes. Based on Figure 7, we
present the top 5 phenotypes extracted from TASTE using R = 40
due to space limitations’. This rank is selected as outperforms all
but the RNN baseline and is comparable to R = 60 in terms of
performance. The 5 phenotypes are all confirmed and annotated
by an expert cardiologist. Table 4 provides the details of these phe-
notypes. The clinical description of the 5 phenotypes as provided
by the cardiologist are:

[P1.] Hypertensive Heart Failure: This is a classic and dominant
heart failure phenotype, representing a subgroup of patients with
long history of hypertension, and cardiac performance declines
over time. Anti-hypertensive medications are spelled out as to indi-
cate the treatment to hypertension.

[P2.] Atrial Fibrillation (AF): This phenotype represents patients
with irregular heartbeat and AF predisposes to HF. Medications are
related to managing AF and preventing strokes. This phenotype
is usually more prevalent in male and old patients (i.e. 80 years or
older).

[P3.] Obesity-induced Heart Failure: This phenotype captures
patients with severe obesity (BMI>35) and obesity-induced ortho-
pedic conditions.

[P4.] Cardiometablic Driving Heart Failure: This phenotype
is featured by diabetes and cardiometabolic conditions (i.e. hyper-
lipidemia, hypertension). Diabetes is a well known risk factor for
cardiovascular complications (i.e. stroke, myocardial infaction, etc.),
and increases the risk for heart failure.

[P5.] Severe Coronoary Heart Disease: This phenotype is asso-
ciated with a greater deterioration of left ventricle function and a
worse prognosis. This phenotype is also more prevalent in the male
and white population.

5 CONCLUSIONS

TASTE jointly models temporal and static information from elec-
tronic health records to extract clinically meaningful phenotypes.
We demonstrate the computational efficiency of our model on ex-
tensive experiments that showcase its ability to preserve important
properties underpinning the model’s uniqueness, while maintain-
ing interpretability. TASTE not only identifies clinically meaningful
heart failure phenotypes validated by a cardiologist but the pheno-
types also retain predictive power for predicting heart failure.

To promote reproducibility, we make our implementation public
at: https://github.com/aafshar/TASTE.

"The top 5 phenotypes are selected based on highest phenotype’s prevalence. Preva-
lence of a phenotype is the number of patients belong to that phenotype and is
calculated based on applying hard clustering of patients on the maximum coordinate
of the vector along the diagonal of Sy factor matrix.
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Table 4: TASTE extracted 5 phenotypes from the HF dataset.
Red indicates the static features; Dx_ indicates diagnoses;
Rx_ indicates medication; The phenotype names are pro-
vided by the cardiologist.

P1. Hypertensive Heart Failure: Weight
dx_Essential hypertension [98.] 0.804074
Rx_Calcium Channel Blockers 0.752547
Rx_ACE Inhibitors 0.648243
Rx_Beta Blockers Cardio-Selective 0.439681
Rx_Angiotensin II Receptor Antagonists 0.230808
Rx_Thiazides and Thiazide-Like Diuretics 0.221251
Static_Non_Hispanic 0.411001
Static_female 0.264393
Static_white 0.263096
Static_Smk_NO 0.25793
Static_Alchohol_No 0.239262
P2. Atrial Fibrillation (AF): Weight
dx_Cardiac dysrhythmias [106.] 0.621756
Rx_Coumarin Anticoagulants 0.482428
dx_Heart valve disorders [96.] 0.428493
Static_white 0.216603
Static_age_greater_80 0.20026
Static_Non_Hispanic 0.191727
Static_male 0.163882
Static_Alchohol_yes 0.157758
Static_Smk_Quit 0.132414
P3. Obesity-induced Heart Failure: Weight
dx_Other back problems 0.439425
Rx_Opioid Agonists 0.36535
dx_Intervertebral disc disorders 0.33781
Rx_Central Muscle Relaxants 0.326111
dx_Other nervous system symptoms and disorders 0.22293
Static_white 0.133696
Static_Static_Severely_obese 0.110279
Static_age_between_70_79 0.107631
P4. Cardiometablic Driving Heart Failure: Weight
dx_Diabetes mellitus without complication [49.] 0.58191
Rx_Biguanides 0.075524
Rx_Diagnostic Tests 0.044592
Rx_Sulfonylureas 0.041006
Rx_Insulin 0.031447
Rx_HMG CoA Reductase Inhibitors 0.027469
dx_Esophageal disorders [138.] 0.022313
Static_Severely_obese 0.223931
Static_Alchohol_No 0.205342
Static_Smk_NO 0.149338
Static_male 0.128847
Static_Non_Hispanic 0.124907
Static_age_between_60_69 0.119808
P5. Severe Coronoary Heart Disease: Weight
dx_Coronary atherosclerosis and other heart disease  0.495272
Rx_Platelet Aggregation Inhibitors 0.434221
Rx_Nitrates 0.333018
dx_Heart valve disorders [96.] 0.230577
Rx_Alpha-Beta Blockers 0.225503
dx_Peripheral and visceral atherosclerosis [114.] 0.124041
Rx_Beta Blockers Cardio-Selective 0.121939
Static_male 0.324708
Static_Smk_Quit 0.190111
Static_white 0.117237
Static_Overweight 0.116107
Static_Non_Hispanic 0.10634
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