Spectral Radii of Products of Random Rectangular Matrices

Yongcheng Qi' and  Mengzi Xie?
University of Minnesota Duluth

Abstract

We consider m independent random rectangular matrices whose entries are independent and identically
distributed standard complex Gaussian random variables. Assume the product of the m rectangular
matrices is an n by n square matrix. The maximum absolute values of the n eigenvalues of the product
matrix is called spectral radius. In this paper, we study the limiting spectral radii of the product when m
changes with n and can even diverge. We give a complete description for the limiting distribution of the
spectral radius. Our results reduce to those in Jiang and Qi |26] when the rectangular matrices are square

ones.
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1 Introduction

Since Wishart’s [46] work on large covariance matrices in multivariate analysis, the study of random matrices
has drawn much attention from mathematics and physics communities and has found applications in areas
such as heavy-nuclei (Wigner [45]), condensed matter physics (Beenakker [7]), number theory (Mezzadri and
Snaith [33]), wireless communications (Couillet and Debbah [I8]), and high dimensional statistics (Johnstone
[29,[30], and Jiang [25]). Bouchaud and Potters [I1] provide a survey on applications in finance. The interested
reader can find more references in the Oxford Handbook of Random Matrix Theory by Akemann, Baik and
Francesco [3].

Random matrix theory studies the eigenvalues of random matrices, including the properties of the spectral
radii and the empirical spectral distributions of the eigenvalues. Tracy and Widom [40, 41] show that the
largest eigenvalues of the three Hermitian matrices (Gaussian orthogonal ensemble, Gaussian unitary ensemble
and Gaussian symplectic ensemble) converge in distribution to some limits which are now known as Tracy-
Widom laws. Subsequently, the Tracy-Widom laws have found more applications, see, e.g., Baik et al. [6],
Tracy and Widom [42], Johansson [28], Johnstone [29, B0] and Jiang [25].

The study of non-Hermitian matrices has also attracted attention in the literature. Theoretical results in
this direction can be applied to quantum chromodynamics, choaotic quantum systems and growth processes,
dissipative quantum maps and fractional quantum Hall effect. More applications can be found in Akemann et
al. [3] and Haake [22]. In the stimulating work by Rider [37, 38] and Rider and Sinclair [39], the spectral radii
of the real, complex and symplectic Ginibre ensembles are investigated. It is shown that the spectral radius
of the complex Ginibre ensemble converges to the Gumbel distribution. Jiang and Qi [26] study the largest
radii of three rotation-invariant and non-Hermitian random matrices: the spherical ensemble, the truncation
of circular unitary ensemble and the product ensemble, and Jiang and Qi [27] investigate the limiting empirical
spectral distributions for two types of product ensembles. More related work can be also found in Gui and
Qi [21], Chang and Qi [15], Chang, Li and Qi [I4], and Zeng [47, [48]. The study of the lower and upper tail
probabilities of the largest radii is also of interest, see, e.g., Lacroix-A-Chez-Toine et al. [31] and references
therein.

Products of random matrices are particularly of interest in recent research. Ipsen [23] provides several
applications, include wireless telecommunication, disordered spin chain, the stability of large complex sys-
tem, quantum transport in disordered wires, symplectic maps and Hamiltonian mechanics, quantum chromo-
dynamics at non-zero chemical potential. Here we will do a very brief survey for recent developments on the
limiting spectral radii and empirical spectral distributions for product ensembles. Two recent papers by Jiang
and Qi [26] 27] consider the spectral radii and empirical spectral distribution for the product of m independent
n by n Ginibre ensembles, where m can change with n and obtain the limiting distribution functions for the
spectral radii and limiting empirical spectral distributions. For earlier works on empirical spectral distribution
for the product ensembles for fixed m, see, e.g., Goétze and Tikhomirov [20] , Bordenave [9], O’Rourke and
Soshnikov [35], O’Rourke et al. [36], Burda et al. [13], Burda [12], and Bai [5]. Jiang and Qi [27] also investigate
the limiting empirical spectral distribution for the product of m independent truncated Haar unitary matrices
when m changes with the dimension of the product matrices. For the products of m independent spherical
ensembles, Chang, Li and Qi [I4] study the limiting spectral radius when m can change with the dimension
of the product matrices, Zeng [48] and Chang and Qi [15] investigate the empirical spectral distribution for
the products.

In this paper, we consider the product of m random rectangular matrices with independent and identically



distributed (i.i.d.) complex Gaussian entries and investigate the limiting distributions for the spectral radii.
When m is a fixed integer, Zeng [48] obtains the limiting empirical spectral distribution. When these rectan-
gular matrices are actually squared ones, the product matrix is reduced to the product of Ginibre ensembles,
which has been studied in Jiang and Qi [26]. The products of rectangular matrices have found applications in
wireless telecommunication and econophysics (Akemann et al. [4], Muller [34], Tulino and Verd [43]), trans-
port in disordered and chaotic dynamical system(Crisanti et al. [19], Ipsen and Kieburg [24]). In particular,
for m = 2, the product can be regarded as the asymmetric correlation matrices (Vinayak [44], Vinayak and
Benet [8]) and has been widely used in finance (Bouchaud et al. [10], Bouchaud and Potters [I1], Livan and
Rebecchi [32]).

The rest of the paper is organized as follows. In Section 2] we introduce the main results of the paper. In

Section |3 we present some preliminary lemmas and give the proofs for the main results.

2 Main Results

For integer m > 1, assume {n,., 1 < r < m+1} are positive integers such that ny = n,,+1 = min{ny, -+, npmi1}.
Write n = ny = ny,41 for convenience. For each r € {1,--- ;m}, A, is an n, X n,.;1 random rectangular matrix
given by

gt 9y gl

(r) (r) .. (r)
A = 92.1 92.2 92n'r+1 ’

95::.)1 gg)z T 9£Li~)n7~+1
where gg), 1<i<n.,1<j<n.y areiid. standard complex normal random variables with Egg) =0,
E\gz(;)ﬁ =lfor1<i<ng,1<j<ngq,r=1,--,m.

Define A%m) as the product of the m rectangular matrices A,.’s, that is, A%m) =Ay---A,. Letzq,--- ,2,

be the eigenvalues of A%m). Set I, =n, —n,r=1,--- ,m. The joint density function for z;,--- ,z,, given in

Theorem 2 of Adhikari [2], is as follows

2
p(Z1,'-' uz’ﬂ) :C H |ZJ _Zk?‘ Hw'STth JM)(‘ZJD (21)
j=1

1<j<k<n

with respect to the Lebesgue measure on C", where C' is a normalizing constant, and function wi ’l’")(z)

can be obtained recursively by

(Lo la) e 2y () 48
wy (z):27r/0 wyp ! (g)wl’“ (s)?7 k>2

with initial wgl)(z) = exp(— |2/*) |2|* for any z in the complex plane (see, Zeng [48]).
The spectral radius of AW is defined as the maximal absolute value of the n eigenvalues z1,--- ,z,, i.e.

max |z;|. In this paper we aim at the limiting distribution of max |z;|. We allow that m changes with n.
1<j<n 1<j<n

From now on we will write m as m,,.

We need to define some notation before we introduce the main results.



Define ®(z) = \/% . e~"*/2dt as the standard normal cumulative distribution function (cdf) and A(z) =

exp(—e~7") as the Gumbel distribution function. For o € (0, 00), set

oo

H (@ + jal/?),

Dp(z) = Alx) = exp(—e™ %), and P (z) = ®(z). The digamma function 1 is defined by

d I(2)
= —InDl(2) = 22 2.2
v(2) = ZIT(E) = T (2.2
where I'(z) is the Gamma function. For large y, define
a(y) = (Iny)Y? — (Iny)"?In(v2rlny) and b(y) = (Iny)~ /2 (2.3)
Now we define
Mn 1
A, = —.
The limiting spectral radius depends on the limit of A,,.
We first give a general result on the limiting distribution for the logarithmic spectral radii.
THEOREM 1 Assume that z1,--- ,z, are the eigenvalues of Ai{”"), and
nh_}rrgo A, =a€|0,00]. (2.4)
Define a, = a(A; ') and b, = (A1) ifa =0, and a,, =0, b, =1 if a € (0,00]. Then
1/2 _Z
nh_}rrgo P(QA { max 1n|z]| Zw ny)} < an+ bny) D, (y) (2.5)

fory e R.

Under condition (2.4) with « € [0, 00), we have the limiting distribution for uax |z;].
<j<n

THEOREM 2 Assume condition (2.4) hold with o € [0, 00).
(a). If o =0, then o, (( H ny)~1/? [max |zj| — 1) — B converges weakly to the Gumbel distribution A(z) =
<jsn

exp(—e™®), where o, = 2A 1/2( InA,)Y? and B, = —InA, —In(—InA,,) — Iny/27.

(b). If « € (0,00), then (TH1 n,)"1/? max. |z;| converges weakly to the cdf ®,(a/?/2+2a~?Inx), 2 > 0.
Remark 1. We can show under condition with @ = oo that (maxlgjgn |z fAn)/Bn does not converge
in distribution to any non-degenerate distribution for any normalization constants A, € R and B,, > 0.
Remark 2. Under assumption n = n; = -+ = Ny, 41, the product ensemble Aslm") is the product of
m,, independent Ginibre ensembles. In this case, A, = my,/n, and thus condition is equivalent to
lim,, oo My /n = a € [0,00]. Then our Theoremsandreduce to, respectively, Proposition 2.1 and Theorem
3 in Jiang and Qi [26].

Since n, > n for all 1 < r < m,, we have A,, < > """, 1/n = m,/n. Hence lim,_,o, m,/n = 0 implies
lim,,— o0 A, = 0. From Theorem ' the limiting spectral radii is always Gumbel if lim,,_,, m,/n = 0. We

have the following corollary.



My
COROLLARY 2.1 Assume lim,_,o my,/n =0. Then ozn(( ny)~1/? Jmax |z;| — 1) — Bn converges weakly to
1 SJsn

r=

the Gumbel distribution A(x) = exp(—e~7"), where o, = 2A;1/2(7 InA,)Y? and B, = —In A, —In(—1InA,,) —
In+/2m.

To conclude this section, we provide some comments on the strategy for the proofs which are given in
Section [3l

Strategy for the proofs. Much of our effort will be put in the proof of Theorem We will first use a
distributional representation for the spectral radii (see Lemmas below) and demonstrate that the largest
absolute eigenvalue has the same distribution as the maximum of n products of independent Gamma random
variables, which implies that the logarithmic spectral radius has the same distribution as the maximum of sums
of logarithmic Gamma random variables. Then we decompose each sum of m logarithmic Gamma random
variables as a weighted sum of independent random variables plus a reminder term. Finally, we estimate
the remainder (Lemmas and and apply moderate deviation theorems to the weighted sums so as to
estimate tail probabilities (see Lemmas and below). Somewhat similar steps here can be found in the
proof of Proposition 2.1 in Jiang and Qi [26], but our proofs are much more complicated as we have to handle
more parameters ni,- - ,N,, other than only one parameter m in Jiang and Qi [26]. For this reason we have
to handle sum of weighted random variables in this paper (see, e.g. Lemma and employ new techniques
to get finer estimates for remainders and tail probabilities (Lemmas and .

3 Proofs

In this section, we prove the main results given in Section We first give some preliminary lemmas in
Section [3.I] and then provide the proofs for Theorems [I] and [2] in Section [3.2

3.1 Some Preliminary Lemmas

Define for k& > 0

A',k: T NE j:]-a?v"’,n (31)
! Z;(J+JTV
Note that
Mn 1
Anp =) —oand A=A
r=1"T

LEMMA 3.1 Let {s;,,1 <r <my,j > 1} be independent random variables and s; , have the Gamma density

) My
yItr=le=v[(y > 0)/(j+1.—1)! for each j andr. Then max |zj|2 and max [] s;, have the same distribution.
1<j<n 1<5<n

Proof. The lemma follows from Lemma 2.2 in Zeng [48]. |

LEMMA 3.2 (Lemma 3.1 in Gui and Qi [21]) Suppose {l,,, n > 1} is sequence of positive integers. Let z,; €
ln
[0,1) be real numbers for 1 < j <1, such that maxi<;<y, zn; — 0 as n — oco. Then lim H(l — 2zn;) € (0,1)

n—oo -
j=1



ln
exists if and only if the limit lim Z zn; =: z € (0,00) exists and the relationship of the two limits is given
n— oo

j=1
by
—Z
nhﬂrr;OH — Zni) =€ ~. (3.2)
LEMMA 3.3 (Lemma 2.1 in Jiang and Qi [26]) Let an; € [0,1) be constants for i > 1, n > 1 and
o0
SUD,>1 51 0ni < 1. For each @ > 1, a; = lim a,;. Assume ¢, = > an; < o0 for each n > 1 and
== n—o00 i=1
oo
c= > a; <oo, and lim ¢, =c. Then,
i=1 n—oo
oo o0
lim 1‘[1(1 — i) = 1‘[1(1 —a;).
1= 1=

LEMMA 3.4 (Lemma 2.2 in Jiang and Qi [26]) Let {jn,n > 1} and {x,,n > 1} be positive numbers with
lim x, = co and hm Jnln 2(lnz )12 = oo. For fized y € R, if {cnj,1 < j < jn,n > 1} are real numbers

n—oo

such that hm 0 maxi<;<j, |cn,]xn — 1] =0, then
Jn
_ P ) _ .y
D200 80 e + oo + el = (33)
J

where a(-) and b(-) are defined in (2.3)).

LEMMA 3.5 Set G; = I—f sjr, 1 < j < n, define the function n(z) = — 1 —Inx for x > 0, and write

Mn

Sj Sj
M, (i) = )~ Bn(-25))| 3.4
()= max §:1 (n(5=7) = BO=70)) (3.4)
Recall ¥(z) = 11:,((;6)) as in (2.2). Then for1 <i<n
max InG; — max (mg Spr = U+ 1) +E V(i + 1) )‘ M, (i)
n-itl<j<n 7 n—ifl<j<a N G+,
Proof. The moment-generating function of In s; . is
. T(j+1,+1)
Bty — e tt) 3.5
my,r (6 ) 1-\(] +l'r‘) ( )
for t > —j — .. Then, we have
' +1)
E(lns;, r —0 = - ). 3.6
(HSJ’ ) dtm.] ()|t 0 F(] lr) w( + ) ( )



Using the relationship Inz =  — 1 — n(z), we can rewrite In G; as

InG; =In H Sjr
r=1

mMn Mn

Il
N
.
—|—u
N‘S
+
Fﬂ
5
%
i

r=1
8j (J "‘l-) =
— , — In(
; J+1 Z_; J +l )+ Z n(j +0r)
S]r - ] +l ~ Sj+lr : .
= l) —1 Iy l:) ).
; T +Zw T ;((le) 0+ + i+ 1)
Since E(lns;,) = ¢(j + ;) from (3.6, we obtain that
Sj,r . .
E(n(=—)) =I(j + 1) — (5 + 1), (3.7)

Jj+1r

and thus we have,

WG, =y B UEh) +Zw+z =55 () - B2 ). (38)

= el Al j+i

Note that for any two sequences of real numbers {z,} and {y,},
_ < _
’ 1glja<xn i 1rélja<xn ’ 1I£1Ja<Xn ‘.T] Yi ’
Then it follows from (3.8)) that
e Gth)
1 _ ”7 )] < My(

This complete the proof of the lemma. |

LEMMA 3.6 Recall A, ; is defined in (3.1)). Assume {jn;n > 1} is a sequence of numbers satisfying 1 <
Jn < n/2 for alln > 2, then for n — j, +1 < j < n, we have

(1) Ap g < Aj g <28A, i for any k > 0;

(2) A; Q/AH'“ < j% L for any a > 0.

Proof. Assume n — j, +1 < j <n. Since %= < n, — j, +1 < j+ 1. < n,, we have for k& > 0,

1 < 1 < 2" 1<r<
— < < = r < mpy.
nk = (G +1)F Tk -
By summing up over r € {1,--- ,my}, we obtain that A, , <A < 28 Ay, &, ie. (1) holds.

Note that I, > 0 and I; = 0. We have that j/(j +1{,) < 1forany 1 < j <nand 1 <r < m,, and
A, ; > 1/j. Therefore, for any a > 0,

Mn Mn . My

1 J )2 J
Ajo =y UH)? a—1 7gl(j+l"') a—1 721 I+ jo! a—1
AT E o & m s B e &
j71 (rz=:1 j-‘rlr) o (TE::I j+lT) e (TZ_: Jj+ir ) e (Tz_: J+ir )a
In the last estimation we have used the fact that ) >4 =1 n
J+h



LEMMA 3.7 Assume {jn, n > 1} is a sequence of numbers satisfying 1 < j, < n/2 for all n > 2. Then,
M, (jn) = Op(jn(22)Y2) and M, (jn) = Op(A, Inn) asn — oco.

n

Proof. We have

n My, Sir 91 1/2
< ) z%m.4l))}
j=n—jn+1  r=1 J b
g Zn: My, (;ili — 1)4 }1/2
= . Sj.r
jmn T iz (2min(Fg, 1))?

Sjr — (.7 + lr) . Sj.r o1 1/2
5 Z { E((7)4)(mln(j+lr’l)) 2} .

j=n—jn+1  r=1 J+l

In the last inequality we have used estimation that

Ty 1 (@ —1)2
< =zxz—1—-—lnx= dt < , > 0.
0sn@) =2 ne /1 t ~ 2min(z, 1) *
Since s;, has density /=t VI(y > 0)/(j + I, — 1)!, we have E(s; ) = F(FJ%J:IZ)‘Q By the Marcinkiewicz-

Zygmund inequality(see, for example, Corollary 2 in Section 10.3 from Chow and Teicher [I7]), we obtain
E(sjr — (j+1,))® < C(j +1,)*, where C is a constant not depending on j. From now on we will use C to

denote a generic constant which may be different at different places. Then we have

E((‘WM)‘l(min(jsm, 1))_2)

g+l +1r
< (E(W)S : E(min(jsirlr 1))
su%*”}ji””ﬁ-Eu+4{;fy»U2
s o
<1+ G 1)@0!;}:) ST 3))1/2<E(W)8)1/2
<C+1,)72,



and thus from Lemma we obtain

) 1/2
Therefore M,,(j,) = Op( ]1”/2 Ay / )

Recall ¢(z) = I;((f)) for x > 0. By Formulas 6.3.18 and 6.4.12 in Abramowitz and Stegun [I] we have

1 1 1 1
»(z) zlnx—%—i—O(ﬁ) and ' (z) = ;—i—ﬁ—l—O(E) (3.9)

as  — +00. From B.7), En(r) =In(j +1,) —¢(G + 1) = O(ﬁ) as j — oo, we have

J+l
My, Mn 1
Mo () < o) . 3.10
(J )_7L_jﬁq§j5n;n(]+l ) + (; o) (3.10)

For n — j, +1 < j < n, we consider the moment generating function of n(J.Si’l:). Since s;, has a

Gamma(j + [,-) distribution, we have

EeGH) — | ( y(Sir oy S )
eM7 exp(( nj-l—lr))

it
_tE .

(< el )
_ +l / 1']+l —t—1 7x(1 J+zr)d$

J

J+1 _ _ _

N J+l / it STy ey
=G+ L) G- R

Uniformly over 0 < ¢t < n/4, we have from (3.9)

) 1 — e —
IHM _ /]+ tw(z)dx _ /.]+ t(lnx _ 2i + O(%))dz

L +1) L L, T
l t
B ) NI AL ek S VL S
(el =) — 5 FENA +O((j+lr—t)2)
:(+l _t>ln(j+l7‘_t)_(j+lr)ln(j+lr)+t
i+l - t
1 O .
it ((j+lr)2)



Therefore, we obtain

TG+L) G+bLyt G+l

LG+ —t) (L =)t to\-172
)" e (O

and

S, t t
Eexp (tn(=-2-)) = (1 — ——)71/2 —
exp (tn(=17) = (1= =) e (O )
1t 1 t2 t
_eXp(i'jHﬁZ'(jHr)“O( )

Then we have
Eexp (t; n(ﬁ)) = exp (§Aj71 +O(A ot + Aj,2t2))

< exp (tA, + O(Ay ot + Ay ot))

(3.11)

uniformly over 0 < t < n/4 and n — j, +1 < j < n as n — co. Now plug in t = 1/(44A,,). Since A, > 1, we

have 0 <t < %, and thus we get

Moy Sy
P> n(,i—vl) > 8A, Inn)
—_ J r

E(exp(t 55 n(35)
exp(8tA, Inn)

€Xp (4 + O(A%?/Ai,l + An,Q/An,l))
exp(2Inn)

=0(n?)

from Lemma [3.6] Therefore,

M,

Sj,r -1
_2gr <
P(n—jﬁﬁéjgn;n(]’ n lr) > 8A,, In n) <O(n ) =0,

which means

Mn

. sj,r N
Ma(jn) < max 3 1)+ O(An) = Op(Ay nn).

r=

This completes the proof.

LEMMA 3.8 Let {j,, n > 1} be positive integers satisfying

] A
lim 2% =0, lim ju(—2)"2 = 0o
n—oo M n—r00 Inn
Then, for any x € R
n—Jjn My
. , 12\ _
nl;ngo Zl P(lnG; > Z;w(n +1.)+ A/ 2x) =0.
j= r=

10

(3.12)

(3.13)



Proof. Fix x € R. For each 1 < j < n — j, and any ¢ > 0, we have from (3.5)) that

P(InG; > v(n+1)+ A/ %x)
r=1
< _ E(etlnGj)
exp(t( 3, ¥(n+1r) + A7)
= eXp(Z(lnF(j—i—lr t)—InT(j+ 1)) —t( Zw (n+1) A,ll/Q.T))
r=1
Mn t M
— exp () / (G +1+5) = 90 + 1))ds — (Y@ +1) = v + 1) + A a) ).
r=170 r=1
Since there exists an integer jo such that for all jo < j <n —j, and for all 1 <r < m,,
j4+lr4,5 . 1.1s
In=——— < Iy — l) ly dv < .
N SY[+l+s) -+ /¢J+ +v)dv s
By the first inequality above, for all jo < j <n — j,, 1 <r <m, and all large n,
. n+l, Ny Jn 0.9997,
lr - lr Z]- . Zl . 4'_1 1—=— Z )
Y tl) = 9G L) T, n nr) Ny
which implies
S @n+1) =G +1) > Zln
r=1
and .
> (W +1) =P + 1)) > 0.9995,A,
r=1

uniformly for jo < j < n — j, for all large n. By assumption (3.12), we have AY? = 0(jnAy), and

My, Mn

Z(wn +1,) =Y +1)) + A%z > 0.992111 ; 7}:1
r=1 r=1 T

uniformly over jo < j < n — j, for all large n. Therefore, for all jo < j <n — j,,

P(InG; > Zzp n+1,) 4+ AY%)

exp 112/
= exp{i055t —099152111

mMn

s — 0.99¢ Z In - ’flr }
T

n.
— expd0552A., —0.99tS In —~ }
p{ 3,1 ; j + l'r‘

IN

for all ¢ > 0 and large n. By selecting ¢t = 0.9 i In jnTTz/AJGl’ we have
r=1 "

mMn

P(nGj; > ZQ/’(”-HT) + ALYy < exp{ 04455(2
-1

%

) } (3.14)

11



uniformly over jo < j < n — j, for all large n.

Now we turn to estimate the probability on the right-hand side of . For each r € {1,--- ,m,},
define the function f,(z) = z(Inn, —Inz), 0 < z < n,. Note that f/(z) =Inn, —Inz — 1 is decreasing and
fl(z) = =1/x < 0 for € (0,n,]. This implies that f.(z) is concave in = € (0,n,], and for any constants
0 < a < b < n,, the minimum value of f,.(z) over [a,b] is achieved at the two endpoints of interval [a,b], i.e.,

min fr(x) = min (fr(a)7 fr(b)) (315)

a<z<b

Forany 1 < j <n—j, and 1 <r < m,, set a,; = min(j,n/8) and b,; = n, — j,. Then 1 < a,; < j+I, <
bn; < n, holds uniformly over 1 < j <n — j, and 1 <r < m,, for for all large n. Note that

n n
fr(an;) = anjln —T > Qpjln —

An j Qn j
and . .
. Ny . Jn . Jn 1.
fr(bnj) 2 (n - ]n) In — = *(Tl 7.777,) ln(l - 717) Z 7(“ 7]n)1n(1 - ;) 2 ijn
for all large n. By applying (3.15)) we obtain from (3.15) that
. Ny . n.  Jn
(j+1)In FE > min(an; In o’ ?) =: 0p;,
or equivalently
n, 6nj
In - > ——
J+L T i+
over 1 <j<n-—j,and 1<r <r<m, for all large n. Therefore, we conclude that
Moy n, Moy 1
1 > O — = i A\ 3.16
;nj+lr_ ];j-Flr jRg,1 ( )

uniformly over 1 < j <mn — j, for all large n. Thus, for all large n,

My

2
. — n .
min Ajll( E In —" ) > min 5,21]-Aj’1
1<j<n—jn 7 J+l 1<j<n—jn

r=1

. . 2 n o 1‘2
- (o )20, — 20,
,[in  min (ay;(In anj) a1 g dn i)
1 n 1
S . in (Za . (In —— 2‘*'%A
= 1<iEngn mln(8am(nanj) 'yIn ")
1 n o 1

= min ( 1Sjn§11ln—jn gni (In @) '

200, (3.17)

To obtain the second inequality above we have used the facts that A;, > 1/7, a,;/j = min(j,n/8)/j > 1/8
andejJ Z‘AnJ::‘An-

Our aim is to show that

1 . 1 Mn Ny 2
Inn 1<jens, A (;ln T lr) — 00 asmn — o0o. (3.18)

In fact, condition (3.12)) implies j2A,,/Inn — 0o as n — oco. By (3.17) it remains to show that

1 . n
Ty 1o min ap;(In @)2 — 00 asmn — oo. (3.19)

12



To show this, we consider the function f(z) = x(lnn — Inz)?, 1 < x < n/8. f(x) is increasing since

f'(z) = (Inn—Inz))(Inn—Inz—2) > 0 for z € [0,n/8]. Therefore, we have minj <, <, /s f(z) > f(1) = (Inn)?,
which implies that a,;(In ﬁ)z > (Inn)?, and the left-hand side of (3.19)) is larger than Inn. This proves (3.19).
Now it follows from (3.18) that

My n 9
in A-_l( In—= ) >10Inn

Jo<iSn—jn I Tz::l JgH+l/7
for all large n, which coupled with (3.14)) implies

max P(lnG; > vn+ 1, + A2y < exp(—4.4Inn) = n~*4,
J n

Jo<j<n—jn

r=1
and hence,
n—Jjn My
Z P(InG; > Zw(n +1.)+ A}/%) =0(mn3* =0 asn— occ.
J=jo r=1
Finally, we will consider the tail probability of In G; when 1 < j < jo. From (3.5)) we have
m . m
ST AL 1) T
E(G;) = — = +1.).
Using (3.9) we get for all large n
dodntl)+A e = Y 1)+ O0(A, + A2
r=1 r=1
> Y In(n+1) +O(A, +1).
r=1

For each fixed j, 1 < j < jo, since G; > 0, we have from Chebyshev’s inequality and equation (3.16)) that

P(lnG; > Zw(n-i- l)+ A:/2x)

r=1

= P(G;> exp{z v(n+1)+ A,ll/2x})

r=1
< _ E(G))

exp{ > ¥v(n+1.)+ A}/QJ:}
r=1
< n4,
< - | oA, +1
< expf ;“jﬂﬁ (An +1)}
<A n+l,
< —(1 1 1 o1
< exp{—(1+of ))TZ:1 no T (1)}
< exp{—(1+01) 0 4 0a)p
Jth
< exp{—(1 +o0(1)) m? +0(1)}
—- 0
as n — oo. This proves (3.13)) and completes the proof of the lemma. |
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LEMMA 3.9 (Proposition 4.5 in Chen, Fang and Shao [16]) Let &;, 1 < i < n be independent random variables

n
with B& = 0 and Fe»l&1 < 0o, 1 <i < n for some t,,. Assume that > E¢2 =1. Then
i=1
P(W > x) 3
———— 2 =1+ 0(1)(1 + 23)ye** 3.20
e =l OM+atne (3:20)

for0 <z <t,, where W = Zfl and vy = ZE(|§ Pe II&)_

i=1 i=1
LEMMA 3.10 Let {j,,n > 1} be positive integers satisfying 1 < j, < n/2 and hm ; =0. Let W; =

A;ll/Q Z (sjr— (G +1.))/(G+ 1) and t, = O(n'/7) be any sequence of positive numbers. Then P(W; > z) =
r=1

(1 —®(x))(1+ o(1)) uniformly over 0 <z <t, andn — j, +1<j<n asn — occ.

Proof. Let {X;,, i > 1,7 > 1} be an array of i.i.d. random variables with the standard exponential
distribution. Then for each j, {s;,, 1 <7 < my,} have the same joint distribution as {Zgzl Xir1<r<m,}.
Without loss of generality we assume s;, = 23:1 Xipfor1<r<my,n—j, <j<n

Set dj, = (j +1,)"" and Dj, = dj, /A for 1 <r < my,. Then

My j+ir

—1/2
W =A; ; 2; G +l —1)
my j+ir
*A_l/zzzdjr zri
r=1 i=
My J+1r 1
= Z Z gi,ra
r=1 i=1

where &, = D; . (X;, —1). Since E(X, ,) = Var(X;,) =1, we obtain

my j+ie
E&,=0 and Y Y E, =1
r=1 i=1
Furthermore, we have
My j+ir My
; 3 JtlEi x| 3 t|Dj (X1,-—1)] 1
DY E(lGs ety =S B(ID; (X, — 1)) efPar (el 1.
r=1 i=1 r=1 7T
_ 1
3/2 3 _
:Aj71/ ZE T‘|X17”7]‘| tDJ7‘X1’ 1‘) d_]'r

<AY? Z 43 B((X], + 1)(ePirrrl) o7 tP5r(Xarmh)y),

Using the moment-generating function E(e!PirXir) = (1 — D;,t)~1, we have

6

E(XiretDjm.le) = (1 _ D t)47
VR
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thus

my J+ir

>3 Bl et

r=1 i=1
< Afs/zgédz ( Ge~tDj.r N e~ tDj.r N GetDir N etDi,r )
> 7,1 — j,r (1 — Dj77_t)4 1— Dj,rt (1 + Dj,rt)4 1+ Dj77't .

(3.21)

The above estimate is valid if tD;, <1foralln —j, +1<j<nand 1 <r <m,.
Whenn—j,+1<j<nand1l<r <my, wehave j+1, >n—j, >n/2, Aj1 >1/(j+1)=1/j > 1/n,
and d;, = jﬁ < 2/n. Therefore,

which imphes
tDj,r < 2tan~ > = O(n™*/") = 0

uniformly over 0 <t <t, = O(n1/7), n—jn+1<j<nandl1<r<m,asn— oco. Hence, it follows from
(3-21) and Lemma[3.6] that for some constant C' > 0

Mn
My g+l cy d,
-1 7 CA, C 2C
— 3 St r=1 o 5,2
yi= > Bl el < N < e < i (3.22)
r=1 i=1 i1 Aj,l

uniformly over n — j, + 1 < j <nasn — oo.

By Lemma Pl(i}‘flf(zt)t) = 1+ 01)(1 + 3)ye* 7 = 1+ O(n~Y/14) uniformly over 0 < ¢ < ¢, and

n—7Jn+1<j<nasn— oco. |

3.2 Proofs of Theorems [1] and [2]

Proof of Theorem[1} Define
jn = the integer part of A71/2.pl/7 41, (3.23)

The proof of the theorem will be divided into three steps.
Step 1. We will prove that

n—jn Mn
. . 1/2 —
lim Zl P(InG; > Zlqp(n +1,)+ AY2%(a, + b,y)) =0, y €R. (3.24)
Jj= r=

Since A,, > 1/n, we have from (3.22)) that

) 17 1 2

In n

—< —dt < —— =0
n T pAlZ o on T nd/1

and
A\ 1/2 nl/7 A’}L/Q nl/7
Inn Arl/z (Inn)t/2 (Inn)t/2
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as n — 0o, that is, the conditions in Lemma [3.8] are satisfied. Therefore, (3.23) holds in case o € (0,00]. In

case a = 0, ay, + b,y > 0 for all large n, by Lemma we have

n—jn Moy,

i . 1/2
lim > P(InG; > w(n+1) + AY2(an + buy))
j=1 r=1
n—jn My
< 1 :
< nll)n;o Zl P(lnGJ > le/;(n + lT))
j= r=
= 0.
Note that (3.23)) implies
. L, Gy = )
hmP( o ——>y):0, yeR
n—oo AY?b, bn,
or equivalently
M
i p(122 20 e )1 yem
n1—>H<io Ai/an b, — y) == y '
Step 2. We claim that
M (jn) . o
T converges in probability to zero.
A b,

To prove this, it suffices to show that M, (j,) = OP(A}L/z(ln n)~') since b, > (Inn)~1/2 for large n.

When « € (0, 00], A,'? is bounded, and j, = O(n'/7). By Lemma we have

. A, _ _
M (jn) = OP(Jn(i)l/Q) = OP(A’}L/ZTL 5/15) = OP(A}/Z(lnn) 1)-

n

When « = 0, by Lemma we can obtain that

. Ay
M, (jn) = Op(min {Jn(n)l/Q,An lnn})
= A}L/Qop(min{A;l/Qn_‘r’/M,A,lL/Q lnn})

=AY 07
= O(Al2 ()7

since A;1/2n_5/14 <n /8 if A;l/z < nY7 and A,l/2 Inn < n-1/8if A;l/Q > n'/7. This proves (13.24]).

Step 3. Set
To(ju) =  max {Zﬁiﬁi@+2wﬁwﬁ
r=1

n—jnti<j<n L= G+,

We will show that for every y € R

P(Ta(in) <3 () + AY2(an + bay)) — Baly).

16

(3.25)

(3.26)

(3.27)



In fact,

P(Tu(ja) € (0 +1,) + AY2(an + buy))
r=1
n 1 My )
= I PWi< 50 Wn+1) = ¢ +1)) + A (an + buy)))
Jj=n—jn+1 Aj,l r=1
i S @) — lny — i+ 1)) + AY*(an + bay)
= HP(aniJrl <= T
=1 ( n%m)m
r=1
j7l
= JI0—aw), (3.28)
i=1
where ap; = P(Wy,—i11 > t,;) and
o o # —1/2 o . o 1/2
lni = (; Ny — i+ 1) (;W’(nr) 7/’(nr 1+ 1)) + An (an + bny))-
It follows from and Taylor’s expansion that
= 1 Z1/2 X .
(anfl+1) ;(w(nr)_w(nr_l'i'l))
N R BT s P
= - Laro =) S Lav oy
r—=1 Ny 2 —1 zs Ny
= -0t Ly
n r=1 Mo

(i—1)(1+0(m 1) A)?
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and

My 1 1/2
Y+,

(3 -+ 0(2) 7 Al 1) (a0 + )

Ny Ny

(
(
- (L o3 i;;))_l/z.A}/Q — 1) (an + bay)
(
(

(B +O0(An2)(i = 1) 2 AY2 = 1) (@0 + buy)

(14 0(22)( = 1)) ™ = 1) (an + buy)

n

= 0(7(i _i)f“ (Inn)'/?)

= AYi-1)- 0(2717; (Inn)"/?)
(In

)1/2
nl/2 )-

= A1) 07—

In the above estimation we have used the facts (a): maxi<i<;, (¢ — 1)A, 2/A, < jn/n — 0 from Lemma
(b): an + by = O((Inn)'/?); and (c): A,9/ALS <n=1/2 from Lemma Therefore, we conclude that

tni=(i—1)(L+0n>")AY? +a, + by (3.29)

holds uniformly over 1 < ¢ < j,, as n — oo.

Case 1. If a« =0, then A,, — 0 and

an = a(A7Y) ~ (In(AZY)Y2 and b, = b(AY) ~ (In(A;1)~Y/2,

n

we have

min t,; oo and max t,; = O(A1/2] + (lnn)l/z) = O(n%).
1<i<jn 1<i<jn

It follows from Lemma B.10 that
ani = (14 0(1))(1 = (tn)) (3.30)
uniformly over 1 <4 < j,.
Now define ¢, ; such that ¢, ; = (i — 1)cn; + an + by with ¢,,1 = 0 and apply Lemma 4 with z, = At
by noting that ¢, ; = (1 +O(n=%/14)) . AY? from (??). Then we get
Jn
Zam =(1+0(1)) (1= O(tn:)) — e V.

=1

It is obvious from (??) that max a,; — 0. So we have from Lemma |3.2| that HJ" (1 —ap;) = exp(—e™¥) =
1<i<jn

Dy (y) as n — oo, which together with ( - yields (3 with a =0,

Case 2. If a € (0,00), then j,, ~ a~/2n'/7. By definition, a,, = 0 and b,, = 1, and (??) means

tni=(1+o0(1)a?(i—1)+y

18



holds uniformly over 1 < j < j, as n — co.

Let jo > 1 be an integer such that r<n1£ tn,s > 0. Since 12122}( |tn.i| = O(n'/T), we have from Lemma3.10
Jo<i<jn

=(1+01)(1—P(tns)) (3.31)

uniformly over jo < i < j,. By using the standard central limit theorem, we know this also holds for each
1=1,2,---,j0 — 1. Therefore, for each i > 1,

lim an; =1- (a2 —1)+y) (3.32)
and

> (1 =d(a'?(i—1) +y)) < oo (3.33)

i>1

by the fact 1 — ®(z) ~ \/217“6*7”2/2 as T — +00.

Define a,, ; = 0 for ¢ > j,,. By the fact that ¢, ; > %al/Q(i— 1)+y > yfor1<i<j, forall large n, we have

SUD,, >0 1<i<j, Gni < 1 for some integer ng. And since an; < 2(1—®(3a'/2(i—1)+y)) forall1 <i < j, asnis
Jn 00

sufficiently large and 3 2(1—®(a'/?(i—1)+y)) < oo, we obtain that lim > an; = > (1—®(a/2(i—1)4y)).

i>1 N0 =1 i=1
So it follows from Lemma [3.3] that

lim_ ﬂ(l —ani) = [[ @y +a'?(i - 1)) = a(y),
i= i=1

which together with (3.26) yields (3.25) with a € (0, 00).

Case 3. If o = oo, then by the fact 0 < Al/z( —1) <07 we have t,; = O(n'/7). In particular, we
have t,, 1 =y and for all large n, ¢,,; > 0if 2 <14 < j,, and j,, > 2. So we obtain from Lemma that

ani = (1+0(1))(1 — ®(t,))

uniformly over 1 <4 < j,,. Note that ¢, ; > %A}/z if 2 <14 < j, and j, > 2. For large n we have

Jn 2
_ 1/2 -1/2
I(jn > 2) Ztm§221 A <Zexp 18An)§3\/§7rAn =0

since exp(f% Zn L)< lel exp(f% Zn L)dz for i > 2. It is also obvious that I(j, > 2) L8 i — 0, so

r=1 r=1 1<jn

j’ﬂ
I(jn, >2)(1 — [T (1 —an;)) — 0 as n — oo, which coupled with (3.26) implies

i=2

P(Tu(Gn) < 3 (n) + AY2(ay + b))

- (1- an1)<1 — I > 2)(1 - ﬁu - am)))
=2
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ie. (3.25) holds with a = o0

Now we are ready to conclude the proof. We first have from (3.25)) that

T(jn) — ”i:; Y(n,)

n d
A}I /an — E — D,
By Lemma and (3.24)), we get
My
e %, G r;wm) an d
1/2 —7 = %a;
Ay by, bn

or equivalently

max InG,; — % P(n,)
Qn

, A J
. n—jn+1<j<n r=1
1 P(J —7<)q>u, €R,
e A}/an b, Y W) v
which together with (??) and the independence of max InG; and  max  InG, yields that
1<j<n—jn n—jn+1<j<n
mn
max InG; — TE P(ny) a
P( —— = y)
A b, bn
g G = 2wl
= 7 72 L)
Ay b, by,
InG; — S 9(n,
n—jat1<ign r;w(n ) _ay
P 172 )
ArlZby bn
= Pa(y)

for every y € R. Since G; = [ ). max In|z;| and %1%1 x InG; have the same distribution from
<j<n <j<n

Lemma [B.I] Hence we conclude that

max Injz;| — 35 0(n,),2

1<j<n
( == <ap+ bny) = (I)a(y)»

lim P

n—oo

AP /2
proving (2.5). This completes the proof of Theorem

Proof of Theorem[3 Define for o € [0, 00),
max nfgy| - 55 w2

_ 1<j
n = 711/2[)”/2 - —.

Then V,, converges in distribution to ©,, where 0, is a random variable with the cdf ®,(y). And it can be

20



easily verified that

1 1
max |zj| = exp {2 Zw(nr) + §A;z/2(an + ann)}
r=1

1<j<n
m (3.34)
_ 1 Lo 1/2 L 1/2
—exp{ng(nr)—i— iA” an} ~exp{2An bV v

(a). If a = 0, then we have A,, — 0, a,, = a(x,) ~ (IN A2 = 00, b, = b(A;Y) ~ (InA;1)"1/2 = 0,
and A}/zan ~ A}lﬂb;l as n — oco. Thus, we get from (3.9) and Taylor’s expansion that

1 = 1 1
1rélja<xn |z;] = exp {5 Zlnnr +0(A) + §A}/2an} (14 iAi/anVn + 0, (b2A,))
- r=1
TTL 2 L 12 112
= (I[») "1+ 5 A1 2an + O0(An)(1+ S A6V, + 0p(An))
r=1
My 1 1
= (T1n)0 + 58 P + SAL0V, 4+ 0p(And?),
r=1
which implies that
1 1ré1_a<x 12| a
<j<n an 1/2 —1,3/2
= —-1) - =Vo+ O0,(A*(In A H)7%)
r=1

converges in distribution to A.

(b). If a € (0, 00), then a,, = 0 and b, =1 in this case. Therefore, we have

5l = e (B3 )+ 1Al
1I§Ilja§Xn Z] = exp 2 2 Ny 2 n n
1 o 1
= exp{§ 1/1(7%)} ~exp{§A}/2Vn}.

S
Il
_

Using (3.9), we have i Y(ny) =Y Inn, — A, + 0o(A,), and then we obtain
r=1

B (oot e (G )
(1 n)
r=1

which converges in distribution to @a(%al/Q—&—Qa_l/Q Iny), y > 0, the cumulative distribution of e~ /% exp (%al/z@a).

This completes the proof. |
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